1// SPDX-License-Identifier: LGPL-2.1
2/*
3 *
4 *   Copyright (C) International Business Machines  Corp., 2002,2008
5 *   Author(s): Steve French (sfrench@us.ibm.com)
6 *
7 */
8
9#include <linux/slab.h>
10#include <linux/ctype.h>
11#include <linux/mempool.h>
12#include <linux/vmalloc.h>
13#include "cifspdu.h"
14#include "cifsglob.h"
15#include "cifsproto.h"
16#include "cifs_debug.h"
17#include "smberr.h"
18#include "nterr.h"
19#include "cifs_unicode.h"
20#include "smb2pdu.h"
21#include "cifsfs.h"
22#ifdef CONFIG_CIFS_DFS_UPCALL
23#include "dns_resolve.h"
24#include "dfs_cache.h"
25#include "dfs.h"
26#endif
27#include "fs_context.h"
28#include "cached_dir.h"
29
30/* The xid serves as a useful identifier for each incoming vfs request,
31   in a similar way to the mid which is useful to track each sent smb,
32   and CurrentXid can also provide a running counter (although it
33   will eventually wrap past zero) of the total vfs operations handled
34   since the cifs fs was mounted */
35
36unsigned int
37_get_xid(void)
38{
39	unsigned int xid;
40
41	spin_lock(&GlobalMid_Lock);
42	GlobalTotalActiveXid++;
43
44	/* keep high water mark for number of simultaneous ops in filesystem */
45	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
46		GlobalMaxActiveXid = GlobalTotalActiveXid;
47	if (GlobalTotalActiveXid > 65000)
48		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
49	xid = GlobalCurrentXid++;
50	spin_unlock(&GlobalMid_Lock);
51	return xid;
52}
53
54void
55_free_xid(unsigned int xid)
56{
57	spin_lock(&GlobalMid_Lock);
58	/* if (GlobalTotalActiveXid == 0)
59		BUG(); */
60	GlobalTotalActiveXid--;
61	spin_unlock(&GlobalMid_Lock);
62}
63
64struct cifs_ses *
65sesInfoAlloc(void)
66{
67	struct cifs_ses *ret_buf;
68
69	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
70	if (ret_buf) {
71		atomic_inc(&sesInfoAllocCount);
72		spin_lock_init(&ret_buf->ses_lock);
73		ret_buf->ses_status = SES_NEW;
74		++ret_buf->ses_count;
75		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
76		INIT_LIST_HEAD(&ret_buf->tcon_list);
77		mutex_init(&ret_buf->session_mutex);
78		spin_lock_init(&ret_buf->iface_lock);
79		INIT_LIST_HEAD(&ret_buf->iface_list);
80		spin_lock_init(&ret_buf->chan_lock);
81	}
82	return ret_buf;
83}
84
85void
86sesInfoFree(struct cifs_ses *buf_to_free)
87{
88	struct cifs_server_iface *iface = NULL, *niface = NULL;
89
90	if (buf_to_free == NULL) {
91		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
92		return;
93	}
94
95	unload_nls(buf_to_free->local_nls);
96	atomic_dec(&sesInfoAllocCount);
97	kfree(buf_to_free->serverOS);
98	kfree(buf_to_free->serverDomain);
99	kfree(buf_to_free->serverNOS);
100	kfree_sensitive(buf_to_free->password);
101	kfree_sensitive(buf_to_free->password2);
102	kfree(buf_to_free->user_name);
103	kfree(buf_to_free->domainName);
104	kfree_sensitive(buf_to_free->auth_key.response);
105	spin_lock(&buf_to_free->iface_lock);
106	list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
107				 iface_head)
108		kref_put(&iface->refcount, release_iface);
109	spin_unlock(&buf_to_free->iface_lock);
110	kfree_sensitive(buf_to_free);
111}
112
113struct cifs_tcon *
114tcon_info_alloc(bool dir_leases_enabled, enum smb3_tcon_ref_trace trace)
115{
116	struct cifs_tcon *ret_buf;
117	static atomic_t tcon_debug_id;
118
119	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
120	if (!ret_buf)
121		return NULL;
122
123	if (dir_leases_enabled == true) {
124		ret_buf->cfids = init_cached_dirs();
125		if (!ret_buf->cfids) {
126			kfree(ret_buf);
127			return NULL;
128		}
129	}
130	/* else ret_buf->cfids is already set to NULL above */
131
132	atomic_inc(&tconInfoAllocCount);
133	ret_buf->status = TID_NEW;
134	ret_buf->debug_id = atomic_inc_return(&tcon_debug_id);
135	ret_buf->tc_count = 1;
136	spin_lock_init(&ret_buf->tc_lock);
137	INIT_LIST_HEAD(&ret_buf->openFileList);
138	INIT_LIST_HEAD(&ret_buf->tcon_list);
139	spin_lock_init(&ret_buf->open_file_lock);
140	spin_lock_init(&ret_buf->stat_lock);
141	atomic_set(&ret_buf->num_local_opens, 0);
142	atomic_set(&ret_buf->num_remote_opens, 0);
143	ret_buf->stats_from_time = ktime_get_real_seconds();
144#ifdef CONFIG_CIFS_FSCACHE
145	mutex_init(&ret_buf->fscache_lock);
146#endif
147	trace_smb3_tcon_ref(ret_buf->debug_id, ret_buf->tc_count, trace);
148
149	return ret_buf;
150}
151
152void
153tconInfoFree(struct cifs_tcon *tcon, enum smb3_tcon_ref_trace trace)
154{
155	if (tcon == NULL) {
156		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
157		return;
158	}
159	trace_smb3_tcon_ref(tcon->debug_id, tcon->tc_count, trace);
160	free_cached_dirs(tcon->cfids);
161	atomic_dec(&tconInfoAllocCount);
162	kfree(tcon->nativeFileSystem);
163	kfree_sensitive(tcon->password);
164	kfree(tcon->origin_fullpath);
165	kfree(tcon);
166}
167
168struct smb_hdr *
169cifs_buf_get(void)
170{
171	struct smb_hdr *ret_buf = NULL;
172	/*
173	 * SMB2 header is bigger than CIFS one - no problems to clean some
174	 * more bytes for CIFS.
175	 */
176	size_t buf_size = sizeof(struct smb2_hdr);
177
178	/*
179	 * We could use negotiated size instead of max_msgsize -
180	 * but it may be more efficient to always alloc same size
181	 * albeit slightly larger than necessary and maxbuffersize
182	 * defaults to this and can not be bigger.
183	 */
184	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
185
186	/* clear the first few header bytes */
187	/* for most paths, more is cleared in header_assemble */
188	memset(ret_buf, 0, buf_size + 3);
189	atomic_inc(&buf_alloc_count);
190#ifdef CONFIG_CIFS_STATS2
191	atomic_inc(&total_buf_alloc_count);
192#endif /* CONFIG_CIFS_STATS2 */
193
194	return ret_buf;
195}
196
197void
198cifs_buf_release(void *buf_to_free)
199{
200	if (buf_to_free == NULL) {
201		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
202		return;
203	}
204	mempool_free(buf_to_free, cifs_req_poolp);
205
206	atomic_dec(&buf_alloc_count);
207	return;
208}
209
210struct smb_hdr *
211cifs_small_buf_get(void)
212{
213	struct smb_hdr *ret_buf = NULL;
214
215/* We could use negotiated size instead of max_msgsize -
216   but it may be more efficient to always alloc same size
217   albeit slightly larger than necessary and maxbuffersize
218   defaults to this and can not be bigger */
219	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
220	/* No need to clear memory here, cleared in header assemble */
221	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
222	atomic_inc(&small_buf_alloc_count);
223#ifdef CONFIG_CIFS_STATS2
224	atomic_inc(&total_small_buf_alloc_count);
225#endif /* CONFIG_CIFS_STATS2 */
226
227	return ret_buf;
228}
229
230void
231cifs_small_buf_release(void *buf_to_free)
232{
233
234	if (buf_to_free == NULL) {
235		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
236		return;
237	}
238	mempool_free(buf_to_free, cifs_sm_req_poolp);
239
240	atomic_dec(&small_buf_alloc_count);
241	return;
242}
243
244void
245free_rsp_buf(int resp_buftype, void *rsp)
246{
247	if (resp_buftype == CIFS_SMALL_BUFFER)
248		cifs_small_buf_release(rsp);
249	else if (resp_buftype == CIFS_LARGE_BUFFER)
250		cifs_buf_release(rsp);
251}
252
253/* NB: MID can not be set if treeCon not passed in, in that
254   case it is responsbility of caller to set the mid */
255void
256header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
257		const struct cifs_tcon *treeCon, int word_count
258		/* length of fixed section (word count) in two byte units  */)
259{
260	char *temp = (char *) buffer;
261
262	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
263
264	buffer->smb_buf_length = cpu_to_be32(
265	    (2 * word_count) + sizeof(struct smb_hdr) -
266	    4 /*  RFC 1001 length field does not count */  +
267	    2 /* for bcc field itself */) ;
268
269	buffer->Protocol[0] = 0xFF;
270	buffer->Protocol[1] = 'S';
271	buffer->Protocol[2] = 'M';
272	buffer->Protocol[3] = 'B';
273	buffer->Command = smb_command;
274	buffer->Flags = 0x00;	/* case sensitive */
275	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
276	buffer->Pid = cpu_to_le16((__u16)current->tgid);
277	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
278	if (treeCon) {
279		buffer->Tid = treeCon->tid;
280		if (treeCon->ses) {
281			if (treeCon->ses->capabilities & CAP_UNICODE)
282				buffer->Flags2 |= SMBFLG2_UNICODE;
283			if (treeCon->ses->capabilities & CAP_STATUS32)
284				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
285
286			/* Uid is not converted */
287			buffer->Uid = treeCon->ses->Suid;
288			if (treeCon->ses->server)
289				buffer->Mid = get_next_mid(treeCon->ses->server);
290		}
291		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
292			buffer->Flags2 |= SMBFLG2_DFS;
293		if (treeCon->nocase)
294			buffer->Flags  |= SMBFLG_CASELESS;
295		if ((treeCon->ses) && (treeCon->ses->server))
296			if (treeCon->ses->server->sign)
297				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
298	}
299
300/*  endian conversion of flags is now done just before sending */
301	buffer->WordCount = (char) word_count;
302	return;
303}
304
305static int
306check_smb_hdr(struct smb_hdr *smb)
307{
308	/* does it have the right SMB "signature" ? */
309	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
310		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
311			 *(unsigned int *)smb->Protocol);
312		return 1;
313	}
314
315	/* if it's a response then accept */
316	if (smb->Flags & SMBFLG_RESPONSE)
317		return 0;
318
319	/* only one valid case where server sends us request */
320	if (smb->Command == SMB_COM_LOCKING_ANDX)
321		return 0;
322
323	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
324		 get_mid(smb));
325	return 1;
326}
327
328int
329checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
330{
331	struct smb_hdr *smb = (struct smb_hdr *)buf;
332	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
333	__u32 clc_len;  /* calculated length */
334	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
335		 total_read, rfclen);
336
337	/* is this frame too small to even get to a BCC? */
338	if (total_read < 2 + sizeof(struct smb_hdr)) {
339		if ((total_read >= sizeof(struct smb_hdr) - 1)
340			    && (smb->Status.CifsError != 0)) {
341			/* it's an error return */
342			smb->WordCount = 0;
343			/* some error cases do not return wct and bcc */
344			return 0;
345		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
346				(smb->WordCount == 0)) {
347			char *tmp = (char *)smb;
348			/* Need to work around a bug in two servers here */
349			/* First, check if the part of bcc they sent was zero */
350			if (tmp[sizeof(struct smb_hdr)] == 0) {
351				/* some servers return only half of bcc
352				 * on simple responses (wct, bcc both zero)
353				 * in particular have seen this on
354				 * ulogoffX and FindClose. This leaves
355				 * one byte of bcc potentially unitialized
356				 */
357				/* zero rest of bcc */
358				tmp[sizeof(struct smb_hdr)+1] = 0;
359				return 0;
360			}
361			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
362		} else {
363			cifs_dbg(VFS, "Length less than smb header size\n");
364		}
365		return -EIO;
366	} else if (total_read < sizeof(*smb) + 2 * smb->WordCount) {
367		cifs_dbg(VFS, "%s: can't read BCC due to invalid WordCount(%u)\n",
368			 __func__, smb->WordCount);
369		return -EIO;
370	}
371
372	/* otherwise, there is enough to get to the BCC */
373	if (check_smb_hdr(smb))
374		return -EIO;
375	clc_len = smbCalcSize(smb);
376
377	if (4 + rfclen != total_read) {
378		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
379			 rfclen);
380		return -EIO;
381	}
382
383	if (4 + rfclen != clc_len) {
384		__u16 mid = get_mid(smb);
385		/* check if bcc wrapped around for large read responses */
386		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
387			/* check if lengths match mod 64K */
388			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
389				return 0; /* bcc wrapped */
390		}
391		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
392			 clc_len, 4 + rfclen, mid);
393
394		if (4 + rfclen < clc_len) {
395			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
396				 rfclen, mid);
397			return -EIO;
398		} else if (rfclen > clc_len + 512) {
399			/*
400			 * Some servers (Windows XP in particular) send more
401			 * data than the lengths in the SMB packet would
402			 * indicate on certain calls (byte range locks and
403			 * trans2 find first calls in particular). While the
404			 * client can handle such a frame by ignoring the
405			 * trailing data, we choose limit the amount of extra
406			 * data to 512 bytes.
407			 */
408			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
409				 rfclen, mid);
410			return -EIO;
411		}
412	}
413	return 0;
414}
415
416bool
417is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
418{
419	struct smb_hdr *buf = (struct smb_hdr *)buffer;
420	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
421	struct TCP_Server_Info *pserver;
422	struct cifs_ses *ses;
423	struct cifs_tcon *tcon;
424	struct cifsInodeInfo *pCifsInode;
425	struct cifsFileInfo *netfile;
426
427	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
428	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
429	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
430		struct smb_com_transaction_change_notify_rsp *pSMBr =
431			(struct smb_com_transaction_change_notify_rsp *)buf;
432		struct file_notify_information *pnotify;
433		__u32 data_offset = 0;
434		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
435
436		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
437			data_offset = le32_to_cpu(pSMBr->DataOffset);
438
439			if (data_offset >
440			    len - sizeof(struct file_notify_information)) {
441				cifs_dbg(FYI, "Invalid data_offset %u\n",
442					 data_offset);
443				return true;
444			}
445			pnotify = (struct file_notify_information *)
446				((char *)&pSMBr->hdr.Protocol + data_offset);
447			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
448				 pnotify->FileName, pnotify->Action);
449			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
450				sizeof(struct smb_hdr)+60); */
451			return true;
452		}
453		if (pSMBr->hdr.Status.CifsError) {
454			cifs_dbg(FYI, "notify err 0x%x\n",
455				 pSMBr->hdr.Status.CifsError);
456			return true;
457		}
458		return false;
459	}
460	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
461		return false;
462	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
463		/* no sense logging error on invalid handle on oplock
464		   break - harmless race between close request and oplock
465		   break response is expected from time to time writing out
466		   large dirty files cached on the client */
467		if ((NT_STATUS_INVALID_HANDLE) ==
468		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
469			cifs_dbg(FYI, "Invalid handle on oplock break\n");
470			return true;
471		} else if (ERRbadfid ==
472		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
473			return true;
474		} else {
475			return false; /* on valid oplock brk we get "request" */
476		}
477	}
478	if (pSMB->hdr.WordCount != 8)
479		return false;
480
481	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
482		 pSMB->LockType, pSMB->OplockLevel);
483	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
484		return false;
485
486	/* If server is a channel, select the primary channel */
487	pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
488
489	/* look up tcon based on tid & uid */
490	spin_lock(&cifs_tcp_ses_lock);
491	list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
492		if (cifs_ses_exiting(ses))
493			continue;
494		list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
495			if (tcon->tid != buf->Tid)
496				continue;
497
498			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
499			spin_lock(&tcon->open_file_lock);
500			list_for_each_entry(netfile, &tcon->openFileList, tlist) {
501				if (pSMB->Fid != netfile->fid.netfid)
502					continue;
503
504				cifs_dbg(FYI, "file id match, oplock break\n");
505				pCifsInode = CIFS_I(d_inode(netfile->dentry));
506
507				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
508					&pCifsInode->flags);
509
510				netfile->oplock_epoch = 0;
511				netfile->oplock_level = pSMB->OplockLevel;
512				netfile->oplock_break_cancelled = false;
513				cifs_queue_oplock_break(netfile);
514
515				spin_unlock(&tcon->open_file_lock);
516				spin_unlock(&cifs_tcp_ses_lock);
517				return true;
518			}
519			spin_unlock(&tcon->open_file_lock);
520			spin_unlock(&cifs_tcp_ses_lock);
521			cifs_dbg(FYI, "No matching file for oplock break\n");
522			return true;
523		}
524	}
525	spin_unlock(&cifs_tcp_ses_lock);
526	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
527	return true;
528}
529
530void
531dump_smb(void *buf, int smb_buf_length)
532{
533	if (traceSMB == 0)
534		return;
535
536	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
537		       smb_buf_length, true);
538}
539
540void
541cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
542{
543	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
544		struct cifs_tcon *tcon = NULL;
545
546		if (cifs_sb->master_tlink)
547			tcon = cifs_sb_master_tcon(cifs_sb);
548
549		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
550		cifs_sb->mnt_cifs_serverino_autodisabled = true;
551		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
552			 tcon ? tcon->tree_name : "new server");
553		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
554		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
555
556	}
557}
558
559void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
560{
561	oplock &= 0xF;
562
563	if (oplock == OPLOCK_EXCLUSIVE) {
564		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
565		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
566			 &cinode->netfs.inode);
567	} else if (oplock == OPLOCK_READ) {
568		cinode->oplock = CIFS_CACHE_READ_FLG;
569		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
570			 &cinode->netfs.inode);
571	} else
572		cinode->oplock = 0;
573}
574
575/*
576 * We wait for oplock breaks to be processed before we attempt to perform
577 * writes.
578 */
579int cifs_get_writer(struct cifsInodeInfo *cinode)
580{
581	int rc;
582
583start:
584	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
585			 TASK_KILLABLE);
586	if (rc)
587		return rc;
588
589	spin_lock(&cinode->writers_lock);
590	if (!cinode->writers)
591		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
592	cinode->writers++;
593	/* Check to see if we have started servicing an oplock break */
594	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
595		cinode->writers--;
596		if (cinode->writers == 0) {
597			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
598			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
599		}
600		spin_unlock(&cinode->writers_lock);
601		goto start;
602	}
603	spin_unlock(&cinode->writers_lock);
604	return 0;
605}
606
607void cifs_put_writer(struct cifsInodeInfo *cinode)
608{
609	spin_lock(&cinode->writers_lock);
610	cinode->writers--;
611	if (cinode->writers == 0) {
612		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
613		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
614	}
615	spin_unlock(&cinode->writers_lock);
616}
617
618/**
619 * cifs_queue_oplock_break - queue the oplock break handler for cfile
620 * @cfile: The file to break the oplock on
621 *
622 * This function is called from the demultiplex thread when it
623 * receives an oplock break for @cfile.
624 *
625 * Assumes the tcon->open_file_lock is held.
626 * Assumes cfile->file_info_lock is NOT held.
627 */
628void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
629{
630	/*
631	 * Bump the handle refcount now while we hold the
632	 * open_file_lock to enforce the validity of it for the oplock
633	 * break handler. The matching put is done at the end of the
634	 * handler.
635	 */
636	cifsFileInfo_get(cfile);
637
638	queue_work(cifsoplockd_wq, &cfile->oplock_break);
639}
640
641void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
642{
643	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
644	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
645}
646
647bool
648backup_cred(struct cifs_sb_info *cifs_sb)
649{
650	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
651		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
652			return true;
653	}
654	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
655		if (in_group_p(cifs_sb->ctx->backupgid))
656			return true;
657	}
658
659	return false;
660}
661
662void
663cifs_del_pending_open(struct cifs_pending_open *open)
664{
665	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
666	list_del(&open->olist);
667	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
668}
669
670void
671cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
672			     struct cifs_pending_open *open)
673{
674	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
675	open->oplock = CIFS_OPLOCK_NO_CHANGE;
676	open->tlink = tlink;
677	fid->pending_open = open;
678	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
679}
680
681void
682cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
683		      struct cifs_pending_open *open)
684{
685	spin_lock(&tlink_tcon(tlink)->open_file_lock);
686	cifs_add_pending_open_locked(fid, tlink, open);
687	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
688}
689
690/*
691 * Critical section which runs after acquiring deferred_lock.
692 * As there is no reference count on cifs_deferred_close, pdclose
693 * should not be used outside deferred_lock.
694 */
695bool
696cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
697{
698	struct cifs_deferred_close *dclose;
699
700	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
701		if ((dclose->netfid == cfile->fid.netfid) &&
702			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
703			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
704			*pdclose = dclose;
705			return true;
706		}
707	}
708	return false;
709}
710
711/*
712 * Critical section which runs after acquiring deferred_lock.
713 */
714void
715cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
716{
717	bool is_deferred = false;
718	struct cifs_deferred_close *pdclose;
719
720	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
721	if (is_deferred) {
722		kfree(dclose);
723		return;
724	}
725
726	dclose->tlink = cfile->tlink;
727	dclose->netfid = cfile->fid.netfid;
728	dclose->persistent_fid = cfile->fid.persistent_fid;
729	dclose->volatile_fid = cfile->fid.volatile_fid;
730	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
731}
732
733/*
734 * Critical section which runs after acquiring deferred_lock.
735 */
736void
737cifs_del_deferred_close(struct cifsFileInfo *cfile)
738{
739	bool is_deferred = false;
740	struct cifs_deferred_close *dclose;
741
742	is_deferred = cifs_is_deferred_close(cfile, &dclose);
743	if (!is_deferred)
744		return;
745	list_del(&dclose->dlist);
746	kfree(dclose);
747}
748
749void
750cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
751{
752	struct cifsFileInfo *cfile = NULL;
753	struct file_list *tmp_list, *tmp_next_list;
754	struct list_head file_head;
755
756	if (cifs_inode == NULL)
757		return;
758
759	INIT_LIST_HEAD(&file_head);
760	spin_lock(&cifs_inode->open_file_lock);
761	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
762		if (delayed_work_pending(&cfile->deferred)) {
763			if (cancel_delayed_work(&cfile->deferred)) {
764				spin_lock(&cifs_inode->deferred_lock);
765				cifs_del_deferred_close(cfile);
766				spin_unlock(&cifs_inode->deferred_lock);
767
768				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
769				if (tmp_list == NULL)
770					break;
771				tmp_list->cfile = cfile;
772				list_add_tail(&tmp_list->list, &file_head);
773			}
774		}
775	}
776	spin_unlock(&cifs_inode->open_file_lock);
777
778	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
779		_cifsFileInfo_put(tmp_list->cfile, false, false);
780		list_del(&tmp_list->list);
781		kfree(tmp_list);
782	}
783}
784
785void
786cifs_close_all_deferred_files(struct cifs_tcon *tcon)
787{
788	struct cifsFileInfo *cfile;
789	struct file_list *tmp_list, *tmp_next_list;
790	struct list_head file_head;
791
792	INIT_LIST_HEAD(&file_head);
793	spin_lock(&tcon->open_file_lock);
794	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
795		if (delayed_work_pending(&cfile->deferred)) {
796			if (cancel_delayed_work(&cfile->deferred)) {
797				spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
798				cifs_del_deferred_close(cfile);
799				spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
800
801				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
802				if (tmp_list == NULL)
803					break;
804				tmp_list->cfile = cfile;
805				list_add_tail(&tmp_list->list, &file_head);
806			}
807		}
808	}
809	spin_unlock(&tcon->open_file_lock);
810
811	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
812		_cifsFileInfo_put(tmp_list->cfile, true, false);
813		list_del(&tmp_list->list);
814		kfree(tmp_list);
815	}
816}
817void
818cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
819{
820	struct cifsFileInfo *cfile;
821	struct file_list *tmp_list, *tmp_next_list;
822	struct list_head file_head;
823	void *page;
824	const char *full_path;
825
826	INIT_LIST_HEAD(&file_head);
827	page = alloc_dentry_path();
828	spin_lock(&tcon->open_file_lock);
829	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
830		full_path = build_path_from_dentry(cfile->dentry, page);
831		if (strstr(full_path, path)) {
832			if (delayed_work_pending(&cfile->deferred)) {
833				if (cancel_delayed_work(&cfile->deferred)) {
834					spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
835					cifs_del_deferred_close(cfile);
836					spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
837
838					tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
839					if (tmp_list == NULL)
840						break;
841					tmp_list->cfile = cfile;
842					list_add_tail(&tmp_list->list, &file_head);
843				}
844			}
845		}
846	}
847	spin_unlock(&tcon->open_file_lock);
848
849	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
850		_cifsFileInfo_put(tmp_list->cfile, true, false);
851		list_del(&tmp_list->list);
852		kfree(tmp_list);
853	}
854	free_dentry_path(page);
855}
856
857/*
858 * If a dentry has been deleted, all corresponding open handles should know that
859 * so that we do not defer close them.
860 */
861void cifs_mark_open_handles_for_deleted_file(struct inode *inode,
862					     const char *path)
863{
864	struct cifsFileInfo *cfile;
865	void *page;
866	const char *full_path;
867	struct cifsInodeInfo *cinode = CIFS_I(inode);
868
869	page = alloc_dentry_path();
870	spin_lock(&cinode->open_file_lock);
871
872	/*
873	 * note: we need to construct path from dentry and compare only if the
874	 * inode has any hardlinks. When number of hardlinks is 1, we can just
875	 * mark all open handles since they are going to be from the same file.
876	 */
877	if (inode->i_nlink > 1) {
878		list_for_each_entry(cfile, &cinode->openFileList, flist) {
879			full_path = build_path_from_dentry(cfile->dentry, page);
880			if (!IS_ERR(full_path) && strcmp(full_path, path) == 0)
881				cfile->status_file_deleted = true;
882		}
883	} else {
884		list_for_each_entry(cfile, &cinode->openFileList, flist)
885			cfile->status_file_deleted = true;
886	}
887	spin_unlock(&cinode->open_file_lock);
888	free_dentry_path(page);
889}
890
891/* parses DFS referral V3 structure
892 * caller is responsible for freeing target_nodes
893 * returns:
894 * - on success - 0
895 * - on failure - errno
896 */
897int
898parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
899		    unsigned int *num_of_nodes,
900		    struct dfs_info3_param **target_nodes,
901		    const struct nls_table *nls_codepage, int remap,
902		    const char *searchName, bool is_unicode)
903{
904	int i, rc = 0;
905	char *data_end;
906	struct dfs_referral_level_3 *ref;
907
908	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
909
910	if (*num_of_nodes < 1) {
911		cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
912			 *num_of_nodes);
913		rc = -EINVAL;
914		goto parse_DFS_referrals_exit;
915	}
916
917	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
918	if (ref->VersionNumber != cpu_to_le16(3)) {
919		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
920			 le16_to_cpu(ref->VersionNumber));
921		rc = -EINVAL;
922		goto parse_DFS_referrals_exit;
923	}
924
925	/* get the upper boundary of the resp buffer */
926	data_end = (char *)rsp + rsp_size;
927
928	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
929		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
930
931	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
932				GFP_KERNEL);
933	if (*target_nodes == NULL) {
934		rc = -ENOMEM;
935		goto parse_DFS_referrals_exit;
936	}
937
938	/* collect necessary data from referrals */
939	for (i = 0; i < *num_of_nodes; i++) {
940		char *temp;
941		int max_len;
942		struct dfs_info3_param *node = (*target_nodes)+i;
943
944		node->flags = le32_to_cpu(rsp->DFSFlags);
945		if (is_unicode) {
946			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
947						GFP_KERNEL);
948			if (tmp == NULL) {
949				rc = -ENOMEM;
950				goto parse_DFS_referrals_exit;
951			}
952			cifsConvertToUTF16((__le16 *) tmp, searchName,
953					   PATH_MAX, nls_codepage, remap);
954			node->path_consumed = cifs_utf16_bytes(tmp,
955					le16_to_cpu(rsp->PathConsumed),
956					nls_codepage);
957			kfree(tmp);
958		} else
959			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
960
961		node->server_type = le16_to_cpu(ref->ServerType);
962		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
963
964		/* copy DfsPath */
965		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
966		max_len = data_end - temp;
967		node->path_name = cifs_strndup_from_utf16(temp, max_len,
968						is_unicode, nls_codepage);
969		if (!node->path_name) {
970			rc = -ENOMEM;
971			goto parse_DFS_referrals_exit;
972		}
973
974		/* copy link target UNC */
975		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
976		max_len = data_end - temp;
977		node->node_name = cifs_strndup_from_utf16(temp, max_len,
978						is_unicode, nls_codepage);
979		if (!node->node_name) {
980			rc = -ENOMEM;
981			goto parse_DFS_referrals_exit;
982		}
983
984		node->ttl = le32_to_cpu(ref->TimeToLive);
985
986		ref++;
987	}
988
989parse_DFS_referrals_exit:
990	if (rc) {
991		free_dfs_info_array(*target_nodes, *num_of_nodes);
992		*target_nodes = NULL;
993		*num_of_nodes = 0;
994	}
995	return rc;
996}
997
998struct cifs_aio_ctx *
999cifs_aio_ctx_alloc(void)
1000{
1001	struct cifs_aio_ctx *ctx;
1002
1003	/*
1004	 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
1005	 * to false so that we know when we have to unreference pages within
1006	 * cifs_aio_ctx_release()
1007	 */
1008	ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
1009	if (!ctx)
1010		return NULL;
1011
1012	INIT_LIST_HEAD(&ctx->list);
1013	mutex_init(&ctx->aio_mutex);
1014	init_completion(&ctx->done);
1015	kref_init(&ctx->refcount);
1016	return ctx;
1017}
1018
1019void
1020cifs_aio_ctx_release(struct kref *refcount)
1021{
1022	struct cifs_aio_ctx *ctx = container_of(refcount,
1023					struct cifs_aio_ctx, refcount);
1024
1025	cifsFileInfo_put(ctx->cfile);
1026
1027	/*
1028	 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
1029	 * which means that iov_iter_extract_pages() was a success and thus
1030	 * that we may have references or pins on pages that we need to
1031	 * release.
1032	 */
1033	if (ctx->bv) {
1034		if (ctx->should_dirty || ctx->bv_need_unpin) {
1035			unsigned int i;
1036
1037			for (i = 0; i < ctx->nr_pinned_pages; i++) {
1038				struct page *page = ctx->bv[i].bv_page;
1039
1040				if (ctx->should_dirty)
1041					set_page_dirty(page);
1042				if (ctx->bv_need_unpin)
1043					unpin_user_page(page);
1044			}
1045		}
1046		kvfree(ctx->bv);
1047	}
1048
1049	kfree(ctx);
1050}
1051
1052/**
1053 * cifs_alloc_hash - allocate hash and hash context together
1054 * @name: The name of the crypto hash algo
1055 * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1056 *
1057 * The caller has to make sure @sdesc is initialized to either NULL or
1058 * a valid context. It can be freed via cifs_free_hash().
1059 */
1060int
1061cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1062{
1063	int rc = 0;
1064	struct crypto_shash *alg = NULL;
1065
1066	if (*sdesc)
1067		return 0;
1068
1069	alg = crypto_alloc_shash(name, 0, 0);
1070	if (IS_ERR(alg)) {
1071		cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1072		rc = PTR_ERR(alg);
1073		*sdesc = NULL;
1074		return rc;
1075	}
1076
1077	*sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1078	if (*sdesc == NULL) {
1079		cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1080		crypto_free_shash(alg);
1081		return -ENOMEM;
1082	}
1083
1084	(*sdesc)->tfm = alg;
1085	return 0;
1086}
1087
1088/**
1089 * cifs_free_hash - free hash and hash context together
1090 * @sdesc: Where to find the pointer to the hash TFM
1091 *
1092 * Freeing a NULL descriptor is safe.
1093 */
1094void
1095cifs_free_hash(struct shash_desc **sdesc)
1096{
1097	if (unlikely(!sdesc) || !*sdesc)
1098		return;
1099
1100	if ((*sdesc)->tfm) {
1101		crypto_free_shash((*sdesc)->tfm);
1102		(*sdesc)->tfm = NULL;
1103	}
1104
1105	kfree_sensitive(*sdesc);
1106	*sdesc = NULL;
1107}
1108
1109void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1110{
1111	const char *end;
1112
1113	/* skip initial slashes */
1114	while (*unc && (*unc == '\\' || *unc == '/'))
1115		unc++;
1116
1117	end = unc;
1118
1119	while (*end && !(*end == '\\' || *end == '/'))
1120		end++;
1121
1122	*h = unc;
1123	*len = end - unc;
1124}
1125
1126/**
1127 * copy_path_name - copy src path to dst, possibly truncating
1128 * @dst: The destination buffer
1129 * @src: The source name
1130 *
1131 * returns number of bytes written (including trailing nul)
1132 */
1133int copy_path_name(char *dst, const char *src)
1134{
1135	int name_len;
1136
1137	/*
1138	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1139	 * will truncate and strlen(dst) will be PATH_MAX-1
1140	 */
1141	name_len = strscpy(dst, src, PATH_MAX);
1142	if (WARN_ON_ONCE(name_len < 0))
1143		name_len = PATH_MAX-1;
1144
1145	/* we count the trailing nul */
1146	name_len++;
1147	return name_len;
1148}
1149
1150struct super_cb_data {
1151	void *data;
1152	struct super_block *sb;
1153};
1154
1155static void tcon_super_cb(struct super_block *sb, void *arg)
1156{
1157	struct super_cb_data *sd = arg;
1158	struct cifs_sb_info *cifs_sb;
1159	struct cifs_tcon *t1 = sd->data, *t2;
1160
1161	if (sd->sb)
1162		return;
1163
1164	cifs_sb = CIFS_SB(sb);
1165	t2 = cifs_sb_master_tcon(cifs_sb);
1166
1167	spin_lock(&t2->tc_lock);
1168	if (t1->ses == t2->ses &&
1169	    t1->ses->server == t2->ses->server &&
1170	    t2->origin_fullpath &&
1171	    dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1172		sd->sb = sb;
1173	spin_unlock(&t2->tc_lock);
1174}
1175
1176static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1177					    void *data)
1178{
1179	struct super_cb_data sd = {
1180		.data = data,
1181		.sb = NULL,
1182	};
1183	struct file_system_type **fs_type = (struct file_system_type *[]) {
1184		&cifs_fs_type, &smb3_fs_type, NULL,
1185	};
1186
1187	for (; *fs_type; fs_type++) {
1188		iterate_supers_type(*fs_type, f, &sd);
1189		if (sd.sb) {
1190			/*
1191			 * Grab an active reference in order to prevent automounts (DFS links)
1192			 * of expiring and then freeing up our cifs superblock pointer while
1193			 * we're doing failover.
1194			 */
1195			cifs_sb_active(sd.sb);
1196			return sd.sb;
1197		}
1198	}
1199	pr_warn_once("%s: could not find dfs superblock\n", __func__);
1200	return ERR_PTR(-EINVAL);
1201}
1202
1203static void __cifs_put_super(struct super_block *sb)
1204{
1205	if (!IS_ERR_OR_NULL(sb))
1206		cifs_sb_deactive(sb);
1207}
1208
1209struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1210{
1211	spin_lock(&tcon->tc_lock);
1212	if (!tcon->origin_fullpath) {
1213		spin_unlock(&tcon->tc_lock);
1214		return ERR_PTR(-ENOENT);
1215	}
1216	spin_unlock(&tcon->tc_lock);
1217	return __cifs_get_super(tcon_super_cb, tcon);
1218}
1219
1220void cifs_put_tcp_super(struct super_block *sb)
1221{
1222	__cifs_put_super(sb);
1223}
1224
1225#ifdef CONFIG_CIFS_DFS_UPCALL
1226int match_target_ip(struct TCP_Server_Info *server,
1227		    const char *share, size_t share_len,
1228		    bool *result)
1229{
1230	int rc;
1231	char *target;
1232	struct sockaddr_storage ss;
1233
1234	*result = false;
1235
1236	target = kzalloc(share_len + 3, GFP_KERNEL);
1237	if (!target)
1238		return -ENOMEM;
1239
1240	scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1241
1242	cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1243
1244	rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1245	kfree(target);
1246
1247	if (rc < 0)
1248		return rc;
1249
1250	spin_lock(&server->srv_lock);
1251	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1252	spin_unlock(&server->srv_lock);
1253	cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1254	return 0;
1255}
1256
1257int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1258{
1259	int rc;
1260
1261	kfree(cifs_sb->prepath);
1262	cifs_sb->prepath = NULL;
1263
1264	if (prefix && *prefix) {
1265		cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1266		if (IS_ERR(cifs_sb->prepath)) {
1267			rc = PTR_ERR(cifs_sb->prepath);
1268			cifs_sb->prepath = NULL;
1269			return rc;
1270		}
1271		if (cifs_sb->prepath)
1272			convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1273	}
1274
1275	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1276	return 0;
1277}
1278
1279/*
1280 * Handle weird Windows SMB server behaviour. It responds with
1281 * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1282 * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1283 * non-ASCII unicode symbols.
1284 */
1285int cifs_inval_name_dfs_link_error(const unsigned int xid,
1286				   struct cifs_tcon *tcon,
1287				   struct cifs_sb_info *cifs_sb,
1288				   const char *full_path,
1289				   bool *islink)
1290{
1291	struct cifs_ses *ses = tcon->ses;
1292	size_t len;
1293	char *path;
1294	char *ref_path;
1295
1296	*islink = false;
1297
1298	/*
1299	 * Fast path - skip check when @full_path doesn't have a prefix path to
1300	 * look up or tcon is not DFS.
1301	 */
1302	if (strlen(full_path) < 2 || !cifs_sb ||
1303	    (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1304	    !is_tcon_dfs(tcon))
1305		return 0;
1306
1307	spin_lock(&tcon->tc_lock);
1308	if (!tcon->origin_fullpath) {
1309		spin_unlock(&tcon->tc_lock);
1310		return 0;
1311	}
1312	spin_unlock(&tcon->tc_lock);
1313
1314	/*
1315	 * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1316	 * to get a referral to figure out whether it is an DFS link.
1317	 */
1318	len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1319	path = kmalloc(len, GFP_KERNEL);
1320	if (!path)
1321		return -ENOMEM;
1322
1323	scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1324	ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1325					    cifs_remap(cifs_sb));
1326	kfree(path);
1327
1328	if (IS_ERR(ref_path)) {
1329		if (PTR_ERR(ref_path) != -EINVAL)
1330			return PTR_ERR(ref_path);
1331	} else {
1332		struct dfs_info3_param *refs = NULL;
1333		int num_refs = 0;
1334
1335		/*
1336		 * XXX: we are not using dfs_cache_find() here because we might
1337		 * end up filling all the DFS cache and thus potentially
1338		 * removing cached DFS targets that the client would eventually
1339		 * need during failover.
1340		 */
1341		ses = CIFS_DFS_ROOT_SES(ses);
1342		if (ses->server->ops->get_dfs_refer &&
1343		    !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1344						     &num_refs, cifs_sb->local_nls,
1345						     cifs_remap(cifs_sb)))
1346			*islink = refs[0].server_type == DFS_TYPE_LINK;
1347		free_dfs_info_array(refs, num_refs);
1348		kfree(ref_path);
1349	}
1350	return 0;
1351}
1352#endif
1353
1354int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1355{
1356	int timeout = 10;
1357	int rc;
1358
1359	spin_lock(&server->srv_lock);
1360	if (server->tcpStatus != CifsNeedReconnect) {
1361		spin_unlock(&server->srv_lock);
1362		return 0;
1363	}
1364	timeout *= server->nr_targets;
1365	spin_unlock(&server->srv_lock);
1366
1367	/*
1368	 * Give demultiplex thread up to 10 seconds to each target available for
1369	 * reconnect -- should be greater than cifs socket timeout which is 7
1370	 * seconds.
1371	 *
1372	 * On "soft" mounts we wait once. Hard mounts keep retrying until
1373	 * process is killed or server comes back on-line.
1374	 */
1375	do {
1376		rc = wait_event_interruptible_timeout(server->response_q,
1377						      (server->tcpStatus != CifsNeedReconnect),
1378						      timeout * HZ);
1379		if (rc < 0) {
1380			cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1381				 __func__);
1382			return -ERESTARTSYS;
1383		}
1384
1385		/* are we still trying to reconnect? */
1386		spin_lock(&server->srv_lock);
1387		if (server->tcpStatus != CifsNeedReconnect) {
1388			spin_unlock(&server->srv_lock);
1389			return 0;
1390		}
1391		spin_unlock(&server->srv_lock);
1392	} while (retry);
1393
1394	cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1395	return -EHOSTDOWN;
1396}
1397