1// SPDX-License-Identifier: LGPL-2.1
2/*
3 *   CIFS filesystem cache interface
4 *
5 *   Copyright (c) 2010 Novell, Inc.
6 *   Author(s): Suresh Jayaraman <sjayaraman@suse.de>
7 *
8 */
9#include "fscache.h"
10#include "cifsglob.h"
11#include "cifs_debug.h"
12#include "cifs_fs_sb.h"
13#include "cifsproto.h"
14
15/*
16 * Key for fscache inode.  [!] Contents must match comparisons in cifs_find_inode().
17 */
18struct cifs_fscache_inode_key {
19
20	__le64  uniqueid;	/* server inode number */
21	__le64  createtime;	/* creation time on server */
22	u8	type;		/* S_IFMT file type */
23} __packed;
24
25static void cifs_fscache_fill_volume_coherency(
26	struct cifs_tcon *tcon,
27	struct cifs_fscache_volume_coherency_data *cd)
28{
29	memset(cd, 0, sizeof(*cd));
30	cd->resource_id		= cpu_to_le64(tcon->resource_id);
31	cd->vol_create_time	= tcon->vol_create_time;
32	cd->vol_serial_number	= cpu_to_le32(tcon->vol_serial_number);
33}
34
35int cifs_fscache_get_super_cookie(struct cifs_tcon *tcon)
36{
37	struct cifs_fscache_volume_coherency_data cd;
38	struct TCP_Server_Info *server = tcon->ses->server;
39	struct fscache_volume *vcookie;
40	const struct sockaddr *sa = (struct sockaddr *)&server->dstaddr;
41	size_t slen, i;
42	char *sharename;
43	char *key;
44	int ret = -ENOMEM;
45
46	if (tcon->fscache_acquired)
47		return 0;
48
49	mutex_lock(&tcon->fscache_lock);
50	if (tcon->fscache_acquired) {
51		mutex_unlock(&tcon->fscache_lock);
52		return 0;
53	}
54	tcon->fscache_acquired = true;
55
56	tcon->fscache = NULL;
57	switch (sa->sa_family) {
58	case AF_INET:
59	case AF_INET6:
60		break;
61	default:
62		mutex_unlock(&tcon->fscache_lock);
63		cifs_dbg(VFS, "Unknown network family '%d'\n", sa->sa_family);
64		return -EINVAL;
65	}
66
67	memset(&key, 0, sizeof(key));
68
69	sharename = extract_sharename(tcon->tree_name);
70	if (IS_ERR(sharename)) {
71		mutex_unlock(&tcon->fscache_lock);
72		cifs_dbg(FYI, "%s: couldn't extract sharename\n", __func__);
73		return PTR_ERR(sharename);
74	}
75
76	slen = strlen(sharename);
77	for (i = 0; i < slen; i++)
78		if (sharename[i] == '/')
79			sharename[i] = ';';
80
81	key = kasprintf(GFP_KERNEL, "cifs,%pISpc,%s", sa, sharename);
82	if (!key)
83		goto out;
84
85	cifs_fscache_fill_volume_coherency(tcon, &cd);
86	vcookie = fscache_acquire_volume(key,
87					 NULL, /* preferred_cache */
88					 &cd, sizeof(cd));
89	cifs_dbg(FYI, "%s: (%s/0x%p)\n", __func__, key, vcookie);
90	if (IS_ERR(vcookie)) {
91		if (vcookie != ERR_PTR(-EBUSY)) {
92			ret = PTR_ERR(vcookie);
93			goto out_2;
94		}
95		pr_err("Cache volume key already in use (%s)\n", key);
96		vcookie = NULL;
97		trace_smb3_tcon_ref(tcon->debug_id, tcon->tc_count,
98				    netfs_trace_tcon_ref_see_fscache_collision);
99	} else {
100		trace_smb3_tcon_ref(tcon->debug_id, tcon->tc_count,
101				    netfs_trace_tcon_ref_see_fscache_okay);
102	}
103
104	tcon->fscache = vcookie;
105	ret = 0;
106out_2:
107	kfree(key);
108out:
109	kfree(sharename);
110	mutex_unlock(&tcon->fscache_lock);
111	return ret;
112}
113
114void cifs_fscache_release_super_cookie(struct cifs_tcon *tcon)
115{
116	struct cifs_fscache_volume_coherency_data cd;
117
118	cifs_dbg(FYI, "%s: (0x%p)\n", __func__, tcon->fscache);
119
120	cifs_fscache_fill_volume_coherency(tcon, &cd);
121	fscache_relinquish_volume(tcon->fscache, &cd, false);
122	tcon->fscache = NULL;
123	trace_smb3_tcon_ref(tcon->debug_id, tcon->tc_count,
124			    netfs_trace_tcon_ref_see_fscache_relinq);
125}
126
127void cifs_fscache_get_inode_cookie(struct inode *inode)
128{
129	struct cifs_fscache_inode_coherency_data cd;
130	struct cifs_fscache_inode_key key;
131	struct cifsInodeInfo *cifsi = CIFS_I(inode);
132	struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
133	struct cifs_tcon *tcon = cifs_sb_master_tcon(cifs_sb);
134
135	key.uniqueid	= cpu_to_le64(cifsi->uniqueid);
136	key.createtime	= cpu_to_le64(cifsi->createtime);
137	key.type	= (inode->i_mode & S_IFMT) >> 12;
138	cifs_fscache_fill_coherency(&cifsi->netfs.inode, &cd);
139
140	cifsi->netfs.cache =
141		fscache_acquire_cookie(tcon->fscache, 0,
142				       &key, sizeof(key),
143				       &cd, sizeof(cd),
144				       i_size_read(&cifsi->netfs.inode));
145	if (cifsi->netfs.cache)
146		mapping_set_release_always(inode->i_mapping);
147}
148
149void cifs_fscache_unuse_inode_cookie(struct inode *inode, bool update)
150{
151	if (update) {
152		struct cifs_fscache_inode_coherency_data cd;
153		loff_t i_size = i_size_read(inode);
154
155		cifs_fscache_fill_coherency(inode, &cd);
156		fscache_unuse_cookie(cifs_inode_cookie(inode), &cd, &i_size);
157	} else {
158		fscache_unuse_cookie(cifs_inode_cookie(inode), NULL, NULL);
159	}
160}
161
162void cifs_fscache_release_inode_cookie(struct inode *inode)
163{
164	struct cifsInodeInfo *cifsi = CIFS_I(inode);
165	struct fscache_cookie *cookie = cifs_inode_cookie(inode);
166
167	if (cookie) {
168		cifs_dbg(FYI, "%s: (0x%p)\n", __func__, cookie);
169		fscache_relinquish_cookie(cookie, false);
170		cifsi->netfs.cache = NULL;
171	}
172}
173
174/*
175 * Fallback page reading interface.
176 */
177static int fscache_fallback_read_page(struct inode *inode, struct page *page)
178{
179	struct netfs_cache_resources cres;
180	struct fscache_cookie *cookie = cifs_inode_cookie(inode);
181	struct iov_iter iter;
182	struct bio_vec bvec;
183	int ret;
184
185	memset(&cres, 0, sizeof(cres));
186	bvec_set_page(&bvec, page, PAGE_SIZE, 0);
187	iov_iter_bvec(&iter, ITER_DEST, &bvec, 1, PAGE_SIZE);
188
189	ret = fscache_begin_read_operation(&cres, cookie);
190	if (ret < 0)
191		return ret;
192
193	ret = fscache_read(&cres, page_offset(page), &iter, NETFS_READ_HOLE_FAIL,
194			   NULL, NULL);
195	fscache_end_operation(&cres);
196	return ret;
197}
198
199/*
200 * Fallback page writing interface.
201 */
202static int fscache_fallback_write_pages(struct inode *inode, loff_t start, size_t len,
203					bool no_space_allocated_yet)
204{
205	struct netfs_cache_resources cres;
206	struct fscache_cookie *cookie = cifs_inode_cookie(inode);
207	struct iov_iter iter;
208	int ret;
209
210	memset(&cres, 0, sizeof(cres));
211	iov_iter_xarray(&iter, ITER_SOURCE, &inode->i_mapping->i_pages, start, len);
212
213	ret = fscache_begin_write_operation(&cres, cookie);
214	if (ret < 0)
215		return ret;
216
217	ret = cres.ops->prepare_write(&cres, &start, &len, len, i_size_read(inode),
218				      no_space_allocated_yet);
219	if (ret == 0)
220		ret = fscache_write(&cres, start, &iter, NULL, NULL);
221	fscache_end_operation(&cres);
222	return ret;
223}
224
225/*
226 * Retrieve a page from FS-Cache
227 */
228int __cifs_readpage_from_fscache(struct inode *inode, struct page *page)
229{
230	int ret;
231
232	cifs_dbg(FYI, "%s: (fsc:%p, p:%p, i:0x%p\n",
233		 __func__, cifs_inode_cookie(inode), page, inode);
234
235	ret = fscache_fallback_read_page(inode, page);
236	if (ret < 0)
237		return ret;
238
239	/* Read completed synchronously */
240	SetPageUptodate(page);
241	return 0;
242}
243
244void __cifs_readahead_to_fscache(struct inode *inode, loff_t pos, size_t len)
245{
246	cifs_dbg(FYI, "%s: (fsc: %p, p: %llx, l: %zx, i: %p)\n",
247		 __func__, cifs_inode_cookie(inode), pos, len, inode);
248
249	fscache_fallback_write_pages(inode, pos, len, true);
250}
251
252/*
253 * Query the cache occupancy.
254 */
255int __cifs_fscache_query_occupancy(struct inode *inode,
256				   pgoff_t first, unsigned int nr_pages,
257				   pgoff_t *_data_first,
258				   unsigned int *_data_nr_pages)
259{
260	struct netfs_cache_resources cres;
261	struct fscache_cookie *cookie = cifs_inode_cookie(inode);
262	loff_t start, data_start;
263	size_t len, data_len;
264	int ret;
265
266	ret = fscache_begin_read_operation(&cres, cookie);
267	if (ret < 0)
268		return ret;
269
270	start = first * PAGE_SIZE;
271	len = nr_pages * PAGE_SIZE;
272	ret = cres.ops->query_occupancy(&cres, start, len, PAGE_SIZE,
273					&data_start, &data_len);
274	if (ret == 0) {
275		*_data_first = data_start / PAGE_SIZE;
276		*_data_nr_pages = len / PAGE_SIZE;
277	}
278
279	fscache_end_operation(&cres);
280	return ret;
281}
282