1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/time.h>
6#include <linux/slab.h>
7#include <linux/string.h>
8#include "reiserfs.h"
9#include <linux/buffer_head.h>
10
11/*
12 * To make any changes in the tree we find a node that contains item
13 * to be changed/deleted or position in the node we insert a new item
14 * to. We call this node S. To do balancing we need to decide what we
15 * will shift to left/right neighbor, or to a new node, where new item
16 * will be etc. To make this analysis simpler we build virtual
17 * node. Virtual node is an array of items, that will replace items of
18 * node S. (For instance if we are going to delete an item, virtual
19 * node does not contain it). Virtual node keeps information about
20 * item sizes and types, mergeability of first and last items, sizes
21 * of all entries in directory item. We use this array of items when
22 * calculating what we can shift to neighbors and how many nodes we
23 * have to have if we do not any shiftings, if we shift to left/right
24 * neighbor or to both.
25 */
26
27/*
28 * Takes item number in virtual node, returns number of item
29 * that it has in source buffer
30 */
31static inline int old_item_num(int new_num, int affected_item_num, int mode)
32{
33	if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
34		return new_num;
35
36	if (mode == M_INSERT) {
37
38		RFALSE(new_num == 0,
39		       "vs-8005: for INSERT mode and item number of inserted item");
40
41		return new_num - 1;
42	}
43
44	RFALSE(mode != M_DELETE,
45	       "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
46	       mode);
47	/* delete mode */
48	return new_num + 1;
49}
50
51static void create_virtual_node(struct tree_balance *tb, int h)
52{
53	struct item_head *ih;
54	struct virtual_node *vn = tb->tb_vn;
55	int new_num;
56	struct buffer_head *Sh;	/* this comes from tb->S[h] */
57
58	Sh = PATH_H_PBUFFER(tb->tb_path, h);
59
60	/* size of changed node */
61	vn->vn_size =
62	    MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
63
64	/* for internal nodes array if virtual items is not created */
65	if (h) {
66		vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
67		return;
68	}
69
70	/* number of items in virtual node  */
71	vn->vn_nr_item =
72	    B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
73	    ((vn->vn_mode == M_DELETE) ? 1 : 0);
74
75	/* first virtual item */
76	vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
77	memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
78	vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
79
80	/* first item in the node */
81	ih = item_head(Sh, 0);
82
83	/* define the mergeability for 0-th item (if it is not being deleted) */
84	if (op_is_left_mergeable(&ih->ih_key, Sh->b_size)
85	    && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
86		vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
87
88	/*
89	 * go through all items that remain in the virtual
90	 * node (except for the new (inserted) one)
91	 */
92	for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
93		int j;
94		struct virtual_item *vi = vn->vn_vi + new_num;
95		int is_affected =
96		    ((new_num != vn->vn_affected_item_num) ? 0 : 1);
97
98		if (is_affected && vn->vn_mode == M_INSERT)
99			continue;
100
101		/* get item number in source node */
102		j = old_item_num(new_num, vn->vn_affected_item_num,
103				 vn->vn_mode);
104
105		vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
106		vi->vi_ih = ih + j;
107		vi->vi_item = ih_item_body(Sh, ih + j);
108		vi->vi_uarea = vn->vn_free_ptr;
109
110		/*
111		 * FIXME: there is no check that item operation did not
112		 * consume too much memory
113		 */
114		vn->vn_free_ptr +=
115		    op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
116		if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
117			reiserfs_panic(tb->tb_sb, "vs-8030",
118				       "virtual node space consumed");
119
120		if (!is_affected)
121			/* this is not being changed */
122			continue;
123
124		if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
125			vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
126			/* pointer to data which is going to be pasted */
127			vi->vi_new_data = vn->vn_data;
128		}
129	}
130
131	/* virtual inserted item is not defined yet */
132	if (vn->vn_mode == M_INSERT) {
133		struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
134
135		RFALSE(vn->vn_ins_ih == NULL,
136		       "vs-8040: item header of inserted item is not specified");
137		vi->vi_item_len = tb->insert_size[0];
138		vi->vi_ih = vn->vn_ins_ih;
139		vi->vi_item = vn->vn_data;
140		vi->vi_uarea = vn->vn_free_ptr;
141
142		op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
143			     tb->insert_size[0]);
144	}
145
146	/*
147	 * set right merge flag we take right delimiting key and
148	 * check whether it is a mergeable item
149	 */
150	if (tb->CFR[0]) {
151		struct reiserfs_key *key;
152
153		key = internal_key(tb->CFR[0], tb->rkey[0]);
154		if (op_is_left_mergeable(key, Sh->b_size)
155		    && (vn->vn_mode != M_DELETE
156			|| vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
157			vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
158			    VI_TYPE_RIGHT_MERGEABLE;
159
160#ifdef CONFIG_REISERFS_CHECK
161		if (op_is_left_mergeable(key, Sh->b_size) &&
162		    !(vn->vn_mode != M_DELETE
163		      || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
164			/*
165			 * we delete last item and it could be merged
166			 * with right neighbor's first item
167			 */
168			if (!
169			    (B_NR_ITEMS(Sh) == 1
170			     && is_direntry_le_ih(item_head(Sh, 0))
171			     && ih_entry_count(item_head(Sh, 0)) == 1)) {
172				/*
173				 * node contains more than 1 item, or item
174				 * is not directory item, or this item
175				 * contains more than 1 entry
176				 */
177				print_block(Sh, 0, -1, -1);
178				reiserfs_panic(tb->tb_sb, "vs-8045",
179					       "rdkey %k, affected item==%d "
180					       "(mode==%c) Must be %c",
181					       key, vn->vn_affected_item_num,
182					       vn->vn_mode, M_DELETE);
183			}
184		}
185#endif
186
187	}
188}
189
190/*
191 * Using virtual node check, how many items can be
192 * shifted to left neighbor
193 */
194static void check_left(struct tree_balance *tb, int h, int cur_free)
195{
196	int i;
197	struct virtual_node *vn = tb->tb_vn;
198	struct virtual_item *vi;
199	int d_size, ih_size;
200
201	RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
202
203	/* internal level */
204	if (h > 0) {
205		tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
206		return;
207	}
208
209	/* leaf level */
210
211	if (!cur_free || !vn->vn_nr_item) {
212		/* no free space or nothing to move */
213		tb->lnum[h] = 0;
214		tb->lbytes = -1;
215		return;
216	}
217
218	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
219	       "vs-8055: parent does not exist or invalid");
220
221	vi = vn->vn_vi;
222	if ((unsigned int)cur_free >=
223	    (vn->vn_size -
224	     ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
225		/* all contents of S[0] fits into L[0] */
226
227		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
228		       "vs-8055: invalid mode or balance condition failed");
229
230		tb->lnum[0] = vn->vn_nr_item;
231		tb->lbytes = -1;
232		return;
233	}
234
235	d_size = 0, ih_size = IH_SIZE;
236
237	/* first item may be merge with last item in left neighbor */
238	if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
239		d_size = -((int)IH_SIZE), ih_size = 0;
240
241	tb->lnum[0] = 0;
242	for (i = 0; i < vn->vn_nr_item;
243	     i++, ih_size = IH_SIZE, d_size = 0, vi++) {
244		d_size += vi->vi_item_len;
245		if (cur_free >= d_size) {
246			/* the item can be shifted entirely */
247			cur_free -= d_size;
248			tb->lnum[0]++;
249			continue;
250		}
251
252		/* the item cannot be shifted entirely, try to split it */
253		/*
254		 * check whether L[0] can hold ih and at least one byte
255		 * of the item body
256		 */
257
258		/* cannot shift even a part of the current item */
259		if (cur_free <= ih_size) {
260			tb->lbytes = -1;
261			return;
262		}
263		cur_free -= ih_size;
264
265		tb->lbytes = op_check_left(vi, cur_free, 0, 0);
266		if (tb->lbytes != -1)
267			/* count partially shifted item */
268			tb->lnum[0]++;
269
270		break;
271	}
272
273	return;
274}
275
276/*
277 * Using virtual node check, how many items can be
278 * shifted to right neighbor
279 */
280static void check_right(struct tree_balance *tb, int h, int cur_free)
281{
282	int i;
283	struct virtual_node *vn = tb->tb_vn;
284	struct virtual_item *vi;
285	int d_size, ih_size;
286
287	RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
288
289	/* internal level */
290	if (h > 0) {
291		tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
292		return;
293	}
294
295	/* leaf level */
296
297	if (!cur_free || !vn->vn_nr_item) {
298		/* no free space  */
299		tb->rnum[h] = 0;
300		tb->rbytes = -1;
301		return;
302	}
303
304	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
305	       "vs-8075: parent does not exist or invalid");
306
307	vi = vn->vn_vi + vn->vn_nr_item - 1;
308	if ((unsigned int)cur_free >=
309	    (vn->vn_size -
310	     ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
311		/* all contents of S[0] fits into R[0] */
312
313		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
314		       "vs-8080: invalid mode or balance condition failed");
315
316		tb->rnum[h] = vn->vn_nr_item;
317		tb->rbytes = -1;
318		return;
319	}
320
321	d_size = 0, ih_size = IH_SIZE;
322
323	/* last item may be merge with first item in right neighbor */
324	if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
325		d_size = -(int)IH_SIZE, ih_size = 0;
326
327	tb->rnum[0] = 0;
328	for (i = vn->vn_nr_item - 1; i >= 0;
329	     i--, d_size = 0, ih_size = IH_SIZE, vi--) {
330		d_size += vi->vi_item_len;
331		if (cur_free >= d_size) {
332			/* the item can be shifted entirely */
333			cur_free -= d_size;
334			tb->rnum[0]++;
335			continue;
336		}
337
338		/*
339		 * check whether R[0] can hold ih and at least one
340		 * byte of the item body
341		 */
342
343		/* cannot shift even a part of the current item */
344		if (cur_free <= ih_size) {
345			tb->rbytes = -1;
346			return;
347		}
348
349		/*
350		 * R[0] can hold the header of the item and at least
351		 * one byte of its body
352		 */
353		cur_free -= ih_size;	/* cur_free is still > 0 */
354
355		tb->rbytes = op_check_right(vi, cur_free);
356		if (tb->rbytes != -1)
357			/* count partially shifted item */
358			tb->rnum[0]++;
359
360		break;
361	}
362
363	return;
364}
365
366/*
367 * from - number of items, which are shifted to left neighbor entirely
368 * to - number of item, which are shifted to right neighbor entirely
369 * from_bytes - number of bytes of boundary item (or directory entries)
370 *              which are shifted to left neighbor
371 * to_bytes - number of bytes of boundary item (or directory entries)
372 *            which are shifted to right neighbor
373 */
374static int get_num_ver(int mode, struct tree_balance *tb, int h,
375		       int from, int from_bytes,
376		       int to, int to_bytes, short *snum012, int flow)
377{
378	int i;
379	int units;
380	struct virtual_node *vn = tb->tb_vn;
381	int total_node_size, max_node_size, current_item_size;
382	int needed_nodes;
383
384	/* position of item we start filling node from */
385	int start_item;
386
387	/* position of item we finish filling node by */
388	int end_item;
389
390	/*
391	 * number of first bytes (entries for directory) of start_item-th item
392	 * we do not include into node that is being filled
393	 */
394	int start_bytes;
395
396	/*
397	 * number of last bytes (entries for directory) of end_item-th item
398	 * we do node include into node that is being filled
399	 */
400	int end_bytes;
401
402	/*
403	 * these are positions in virtual item of items, that are split
404	 * between S[0] and S1new and S1new and S2new
405	 */
406	int split_item_positions[2];
407
408	split_item_positions[0] = -1;
409	split_item_positions[1] = -1;
410
411	/*
412	 * We only create additional nodes if we are in insert or paste mode
413	 * or we are in replace mode at the internal level. If h is 0 and
414	 * the mode is M_REPLACE then in fix_nodes we change the mode to
415	 * paste or insert before we get here in the code.
416	 */
417	RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
418	       "vs-8100: insert_size < 0 in overflow");
419
420	max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
421
422	/*
423	 * snum012 [0-2] - number of items, that lay
424	 * to S[0], first new node and second new node
425	 */
426	snum012[3] = -1;	/* s1bytes */
427	snum012[4] = -1;	/* s2bytes */
428
429	/* internal level */
430	if (h > 0) {
431		i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
432		if (i == max_node_size)
433			return 1;
434		return (i / max_node_size + 1);
435	}
436
437	/* leaf level */
438	needed_nodes = 1;
439	total_node_size = 0;
440
441	/* start from 'from'-th item */
442	start_item = from;
443	/* skip its first 'start_bytes' units */
444	start_bytes = ((from_bytes != -1) ? from_bytes : 0);
445
446	/* last included item is the 'end_item'-th one */
447	end_item = vn->vn_nr_item - to - 1;
448	/* do not count last 'end_bytes' units of 'end_item'-th item */
449	end_bytes = (to_bytes != -1) ? to_bytes : 0;
450
451	/*
452	 * go through all item beginning from the start_item-th item
453	 * and ending by the end_item-th item. Do not count first
454	 * 'start_bytes' units of 'start_item'-th item and last
455	 * 'end_bytes' of 'end_item'-th item
456	 */
457	for (i = start_item; i <= end_item; i++) {
458		struct virtual_item *vi = vn->vn_vi + i;
459		int skip_from_end = ((i == end_item) ? end_bytes : 0);
460
461		RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
462
463		/* get size of current item */
464		current_item_size = vi->vi_item_len;
465
466		/*
467		 * do not take in calculation head part (from_bytes)
468		 * of from-th item
469		 */
470		current_item_size -=
471		    op_part_size(vi, 0 /*from start */ , start_bytes);
472
473		/* do not take in calculation tail part of last item */
474		current_item_size -=
475		    op_part_size(vi, 1 /*from end */ , skip_from_end);
476
477		/* if item fits into current node entierly */
478		if (total_node_size + current_item_size <= max_node_size) {
479			snum012[needed_nodes - 1]++;
480			total_node_size += current_item_size;
481			start_bytes = 0;
482			continue;
483		}
484
485		/*
486		 * virtual item length is longer, than max size of item in
487		 * a node. It is impossible for direct item
488		 */
489		if (current_item_size > max_node_size) {
490			RFALSE(is_direct_le_ih(vi->vi_ih),
491			       "vs-8110: "
492			       "direct item length is %d. It can not be longer than %d",
493			       current_item_size, max_node_size);
494			/* we will try to split it */
495			flow = 1;
496		}
497
498		/* as we do not split items, take new node and continue */
499		if (!flow) {
500			needed_nodes++;
501			i--;
502			total_node_size = 0;
503			continue;
504		}
505
506		/*
507		 * calculate number of item units which fit into node being
508		 * filled
509		 */
510		{
511			int free_space;
512
513			free_space = max_node_size - total_node_size - IH_SIZE;
514			units =
515			    op_check_left(vi, free_space, start_bytes,
516					  skip_from_end);
517			/*
518			 * nothing fits into current node, take new
519			 * node and continue
520			 */
521			if (units == -1) {
522				needed_nodes++, i--, total_node_size = 0;
523				continue;
524			}
525		}
526
527		/* something fits into the current node */
528		start_bytes += units;
529		snum012[needed_nodes - 1 + 3] = units;
530
531		if (needed_nodes > 2)
532			reiserfs_warning(tb->tb_sb, "vs-8111",
533					 "split_item_position is out of range");
534		snum012[needed_nodes - 1]++;
535		split_item_positions[needed_nodes - 1] = i;
536		needed_nodes++;
537		/* continue from the same item with start_bytes != -1 */
538		start_item = i;
539		i--;
540		total_node_size = 0;
541	}
542
543	/*
544	 * sum012[4] (if it is not -1) contains number of units of which
545	 * are to be in S1new, snum012[3] - to be in S0. They are supposed
546	 * to be S1bytes and S2bytes correspondingly, so recalculate
547	 */
548	if (snum012[4] > 0) {
549		int split_item_num;
550		int bytes_to_r, bytes_to_l;
551		int bytes_to_S1new;
552
553		split_item_num = split_item_positions[1];
554		bytes_to_l =
555		    ((from == split_item_num
556		      && from_bytes != -1) ? from_bytes : 0);
557		bytes_to_r =
558		    ((end_item == split_item_num
559		      && end_bytes != -1) ? end_bytes : 0);
560		bytes_to_S1new =
561		    ((split_item_positions[0] ==
562		      split_item_positions[1]) ? snum012[3] : 0);
563
564		/* s2bytes */
565		snum012[4] =
566		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
567		    bytes_to_r - bytes_to_l - bytes_to_S1new;
568
569		if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
570		    vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
571			reiserfs_warning(tb->tb_sb, "vs-8115",
572					 "not directory or indirect item");
573	}
574
575	/* now we know S2bytes, calculate S1bytes */
576	if (snum012[3] > 0) {
577		int split_item_num;
578		int bytes_to_r, bytes_to_l;
579		int bytes_to_S2new;
580
581		split_item_num = split_item_positions[0];
582		bytes_to_l =
583		    ((from == split_item_num
584		      && from_bytes != -1) ? from_bytes : 0);
585		bytes_to_r =
586		    ((end_item == split_item_num
587		      && end_bytes != -1) ? end_bytes : 0);
588		bytes_to_S2new =
589		    ((split_item_positions[0] == split_item_positions[1]
590		      && snum012[4] != -1) ? snum012[4] : 0);
591
592		/* s1bytes */
593		snum012[3] =
594		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
595		    bytes_to_r - bytes_to_l - bytes_to_S2new;
596	}
597
598	return needed_nodes;
599}
600
601
602/*
603 * Set parameters for balancing.
604 * Performs write of results of analysis of balancing into structure tb,
605 * where it will later be used by the functions that actually do the balancing.
606 * Parameters:
607 *	tb	tree_balance structure;
608 *	h	current level of the node;
609 *	lnum	number of items from S[h] that must be shifted to L[h];
610 *	rnum	number of items from S[h] that must be shifted to R[h];
611 *	blk_num	number of blocks that S[h] will be splitted into;
612 *	s012	number of items that fall into splitted nodes.
613 *	lbytes	number of bytes which flow to the left neighbor from the
614 *              item that is not shifted entirely
615 *	rbytes	number of bytes which flow to the right neighbor from the
616 *              item that is not shifted entirely
617 *	s1bytes	number of bytes which flow to the first  new node when
618 *              S[0] splits (this number is contained in s012 array)
619 */
620
621static void set_parameters(struct tree_balance *tb, int h, int lnum,
622			   int rnum, int blk_num, short *s012, int lb, int rb)
623{
624
625	tb->lnum[h] = lnum;
626	tb->rnum[h] = rnum;
627	tb->blknum[h] = blk_num;
628
629	/* only for leaf level */
630	if (h == 0) {
631		if (s012 != NULL) {
632			tb->s0num = *s012++;
633			tb->snum[0] = *s012++;
634			tb->snum[1] = *s012++;
635			tb->sbytes[0] = *s012++;
636			tb->sbytes[1] = *s012;
637		}
638		tb->lbytes = lb;
639		tb->rbytes = rb;
640	}
641	PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
642	PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
643
644	PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
645	PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
646}
647
648/*
649 * check if node disappears if we shift tb->lnum[0] items to left
650 * neighbor and tb->rnum[0] to the right one.
651 */
652static int is_leaf_removable(struct tree_balance *tb)
653{
654	struct virtual_node *vn = tb->tb_vn;
655	int to_left, to_right;
656	int size;
657	int remain_items;
658
659	/*
660	 * number of items that will be shifted to left (right) neighbor
661	 * entirely
662	 */
663	to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
664	to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
665	remain_items = vn->vn_nr_item;
666
667	/* how many items remain in S[0] after shiftings to neighbors */
668	remain_items -= (to_left + to_right);
669
670	/* all content of node can be shifted to neighbors */
671	if (remain_items < 1) {
672		set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
673			       NULL, -1, -1);
674		return 1;
675	}
676
677	/* S[0] is not removable */
678	if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
679		return 0;
680
681	/* check whether we can divide 1 remaining item between neighbors */
682
683	/* get size of remaining item (in item units) */
684	size = op_unit_num(&vn->vn_vi[to_left]);
685
686	if (tb->lbytes + tb->rbytes >= size) {
687		set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
688			       tb->lbytes, -1);
689		return 1;
690	}
691
692	return 0;
693}
694
695/* check whether L, S, R can be joined in one node */
696static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
697{
698	struct virtual_node *vn = tb->tb_vn;
699	int ih_size;
700	struct buffer_head *S0;
701
702	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
703
704	ih_size = 0;
705	if (vn->vn_nr_item) {
706		if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
707			ih_size += IH_SIZE;
708
709		if (vn->vn_vi[vn->vn_nr_item - 1].
710		    vi_type & VI_TYPE_RIGHT_MERGEABLE)
711			ih_size += IH_SIZE;
712	} else {
713		/* there was only one item and it will be deleted */
714		struct item_head *ih;
715
716		RFALSE(B_NR_ITEMS(S0) != 1,
717		       "vs-8125: item number must be 1: it is %d",
718		       B_NR_ITEMS(S0));
719
720		ih = item_head(S0, 0);
721		if (tb->CFR[0]
722		    && !comp_short_le_keys(&ih->ih_key,
723					   internal_key(tb->CFR[0],
724							  tb->rkey[0])))
725			/*
726			 * Directory must be in correct state here: that is
727			 * somewhere at the left side should exist first
728			 * directory item. But the item being deleted can
729			 * not be that first one because its right neighbor
730			 * is item of the same directory. (But first item
731			 * always gets deleted in last turn). So, neighbors
732			 * of deleted item can be merged, so we can save
733			 * ih_size
734			 */
735			if (is_direntry_le_ih(ih)) {
736				ih_size = IH_SIZE;
737
738				/*
739				 * we might check that left neighbor exists
740				 * and is of the same directory
741				 */
742				RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
743				       "vs-8130: first directory item can not be removed until directory is not empty");
744			}
745
746	}
747
748	if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
749		set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
750		PROC_INFO_INC(tb->tb_sb, leaves_removable);
751		return 1;
752	}
753	return 0;
754
755}
756
757/* when we do not split item, lnum and rnum are numbers of entire items */
758#define SET_PAR_SHIFT_LEFT \
759if (h)\
760{\
761   int to_l;\
762   \
763   to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
764	      (MAX_NR_KEY(Sh) + 1 - lpar);\
765	      \
766	      set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
767}\
768else \
769{\
770   if (lset==LEFT_SHIFT_FLOW)\
771     set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
772		     tb->lbytes, -1);\
773   else\
774     set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
775		     -1, -1);\
776}
777
778#define SET_PAR_SHIFT_RIGHT \
779if (h)\
780{\
781   int to_r;\
782   \
783   to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
784   \
785   set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
786}\
787else \
788{\
789   if (rset==RIGHT_SHIFT_FLOW)\
790     set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
791		  -1, tb->rbytes);\
792   else\
793     set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
794		  -1, -1);\
795}
796
797static void free_buffers_in_tb(struct tree_balance *tb)
798{
799	int i;
800
801	pathrelse(tb->tb_path);
802
803	for (i = 0; i < MAX_HEIGHT; i++) {
804		brelse(tb->L[i]);
805		brelse(tb->R[i]);
806		brelse(tb->FL[i]);
807		brelse(tb->FR[i]);
808		brelse(tb->CFL[i]);
809		brelse(tb->CFR[i]);
810
811		tb->L[i] = NULL;
812		tb->R[i] = NULL;
813		tb->FL[i] = NULL;
814		tb->FR[i] = NULL;
815		tb->CFL[i] = NULL;
816		tb->CFR[i] = NULL;
817	}
818}
819
820/*
821 * Get new buffers for storing new nodes that are created while balancing.
822 * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
823 *	        CARRY_ON - schedule didn't occur while the function worked;
824 *	        NO_DISK_SPACE - no disk space.
825 */
826/* The function is NOT SCHEDULE-SAFE! */
827static int get_empty_nodes(struct tree_balance *tb, int h)
828{
829	struct buffer_head *new_bh, *Sh = PATH_H_PBUFFER(tb->tb_path, h);
830	b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
831	int counter, number_of_freeblk;
832	int  amount_needed;	/* number of needed empty blocks */
833	int  retval = CARRY_ON;
834	struct super_block *sb = tb->tb_sb;
835
836	/*
837	 * number_of_freeblk is the number of empty blocks which have been
838	 * acquired for use by the balancing algorithm minus the number of
839	 * empty blocks used in the previous levels of the analysis,
840	 * number_of_freeblk = tb->cur_blknum can be non-zero if a schedule
841	 * occurs after empty blocks are acquired, and the balancing analysis
842	 * is then restarted, amount_needed is the number needed by this
843	 * level (h) of the balancing analysis.
844	 *
845	 * Note that for systems with many processes writing, it would be
846	 * more layout optimal to calculate the total number needed by all
847	 * levels and then to run reiserfs_new_blocks to get all of them at
848	 * once.
849	 */
850
851	/*
852	 * Initiate number_of_freeblk to the amount acquired prior to the
853	 * restart of the analysis or 0 if not restarted, then subtract the
854	 * amount needed by all of the levels of the tree below h.
855	 */
856	/* blknum includes S[h], so we subtract 1 in this calculation */
857	for (counter = 0, number_of_freeblk = tb->cur_blknum;
858	     counter < h; counter++)
859		number_of_freeblk -=
860		    (tb->blknum[counter]) ? (tb->blknum[counter] -
861						   1) : 0;
862
863	/* Allocate missing empty blocks. */
864	/* if Sh == 0  then we are getting a new root */
865	amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
866	/*
867	 * Amount_needed = the amount that we need more than the
868	 * amount that we have.
869	 */
870	if (amount_needed > number_of_freeblk)
871		amount_needed -= number_of_freeblk;
872	else	/* If we have enough already then there is nothing to do. */
873		return CARRY_ON;
874
875	/*
876	 * No need to check quota - is not allocated for blocks used
877	 * for formatted nodes
878	 */
879	if (reiserfs_new_form_blocknrs(tb, blocknrs,
880				       amount_needed) == NO_DISK_SPACE)
881		return NO_DISK_SPACE;
882
883	/* for each blocknumber we just got, get a buffer and stick it on FEB */
884	for (blocknr = blocknrs, counter = 0;
885	     counter < amount_needed; blocknr++, counter++) {
886
887		RFALSE(!*blocknr,
888		       "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
889
890		new_bh = sb_getblk(sb, *blocknr);
891		RFALSE(buffer_dirty(new_bh) ||
892		       buffer_journaled(new_bh) ||
893		       buffer_journal_dirty(new_bh),
894		       "PAP-8140: journaled or dirty buffer %b for the new block",
895		       new_bh);
896
897		/* Put empty buffers into the array. */
898		RFALSE(tb->FEB[tb->cur_blknum],
899		       "PAP-8141: busy slot for new buffer");
900
901		set_buffer_journal_new(new_bh);
902		tb->FEB[tb->cur_blknum++] = new_bh;
903	}
904
905	if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
906		retval = REPEAT_SEARCH;
907
908	return retval;
909}
910
911/*
912 * Get free space of the left neighbor, which is stored in the parent
913 * node of the left neighbor.
914 */
915static int get_lfree(struct tree_balance *tb, int h)
916{
917	struct buffer_head *l, *f;
918	int order;
919
920	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
921	    (l = tb->FL[h]) == NULL)
922		return 0;
923
924	if (f == l)
925		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
926	else {
927		order = B_NR_ITEMS(l);
928		f = l;
929	}
930
931	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
932}
933
934/*
935 * Get free space of the right neighbor,
936 * which is stored in the parent node of the right neighbor.
937 */
938static int get_rfree(struct tree_balance *tb, int h)
939{
940	struct buffer_head *r, *f;
941	int order;
942
943	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
944	    (r = tb->FR[h]) == NULL)
945		return 0;
946
947	if (f == r)
948		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
949	else {
950		order = 0;
951		f = r;
952	}
953
954	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
955
956}
957
958/* Check whether left neighbor is in memory. */
959static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
960{
961	struct buffer_head *father, *left;
962	struct super_block *sb = tb->tb_sb;
963	b_blocknr_t left_neighbor_blocknr;
964	int left_neighbor_position;
965
966	/* Father of the left neighbor does not exist. */
967	if (!tb->FL[h])
968		return 0;
969
970	/* Calculate father of the node to be balanced. */
971	father = PATH_H_PBUFFER(tb->tb_path, h + 1);
972
973	RFALSE(!father ||
974	       !B_IS_IN_TREE(father) ||
975	       !B_IS_IN_TREE(tb->FL[h]) ||
976	       !buffer_uptodate(father) ||
977	       !buffer_uptodate(tb->FL[h]),
978	       "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
979	       father, tb->FL[h]);
980
981	/*
982	 * Get position of the pointer to the left neighbor
983	 * into the left father.
984	 */
985	left_neighbor_position = (father == tb->FL[h]) ?
986	    tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
987	/* Get left neighbor block number. */
988	left_neighbor_blocknr =
989	    B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
990	/* Look for the left neighbor in the cache. */
991	if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
992
993		RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
994		       "vs-8170: left neighbor (%b %z) is not in the tree",
995		       left, left);
996		put_bh(left);
997		return 1;
998	}
999
1000	return 0;
1001}
1002
1003#define LEFT_PARENTS  'l'
1004#define RIGHT_PARENTS 'r'
1005
1006static void decrement_key(struct cpu_key *key)
1007{
1008	/* call item specific function for this key */
1009	item_ops[cpu_key_k_type(key)]->decrement_key(key);
1010}
1011
1012/*
1013 * Calculate far left/right parent of the left/right neighbor of the
1014 * current node, that is calculate the left/right (FL[h]/FR[h]) neighbor
1015 * of the parent F[h].
1016 * Calculate left/right common parent of the current node and L[h]/R[h].
1017 * Calculate left/right delimiting key position.
1018 * Returns:	PATH_INCORRECT    - path in the tree is not correct
1019 *		SCHEDULE_OCCURRED - schedule occurred while the function worked
1020 *	        CARRY_ON          - schedule didn't occur while the function
1021 *				    worked
1022 */
1023static int get_far_parent(struct tree_balance *tb,
1024			  int h,
1025			  struct buffer_head **pfather,
1026			  struct buffer_head **pcom_father, char c_lr_par)
1027{
1028	struct buffer_head *parent;
1029	INITIALIZE_PATH(s_path_to_neighbor_father);
1030	struct treepath *path = tb->tb_path;
1031	struct cpu_key s_lr_father_key;
1032	int counter,
1033	    position = INT_MAX,
1034	    first_last_position = 0,
1035	    path_offset = PATH_H_PATH_OFFSET(path, h);
1036
1037	/*
1038	 * Starting from F[h] go upwards in the tree, and look for the common
1039	 * ancestor of F[h], and its neighbor l/r, that should be obtained.
1040	 */
1041
1042	counter = path_offset;
1043
1044	RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
1045	       "PAP-8180: invalid path length");
1046
1047	for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
1048		/*
1049		 * Check whether parent of the current buffer in the path
1050		 * is really parent in the tree.
1051		 */
1052		if (!B_IS_IN_TREE
1053		    (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
1054			return REPEAT_SEARCH;
1055
1056		/* Check whether position in the parent is correct. */
1057		if ((position =
1058		     PATH_OFFSET_POSITION(path,
1059					  counter - 1)) >
1060		    B_NR_ITEMS(parent))
1061			return REPEAT_SEARCH;
1062
1063		/*
1064		 * Check whether parent at the path really points
1065		 * to the child.
1066		 */
1067		if (B_N_CHILD_NUM(parent, position) !=
1068		    PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
1069			return REPEAT_SEARCH;
1070
1071		/*
1072		 * Return delimiting key if position in the parent is not
1073		 * equal to first/last one.
1074		 */
1075		if (c_lr_par == RIGHT_PARENTS)
1076			first_last_position = B_NR_ITEMS(parent);
1077		if (position != first_last_position) {
1078			*pcom_father = parent;
1079			get_bh(*pcom_father);
1080			/*(*pcom_father = parent)->b_count++; */
1081			break;
1082		}
1083	}
1084
1085	/* if we are in the root of the tree, then there is no common father */
1086	if (counter == FIRST_PATH_ELEMENT_OFFSET) {
1087		/*
1088		 * Check whether first buffer in the path is the
1089		 * root of the tree.
1090		 */
1091		if (PATH_OFFSET_PBUFFER
1092		    (tb->tb_path,
1093		     FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1094		    SB_ROOT_BLOCK(tb->tb_sb)) {
1095			*pfather = *pcom_father = NULL;
1096			return CARRY_ON;
1097		}
1098		return REPEAT_SEARCH;
1099	}
1100
1101	RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
1102	       "PAP-8185: (%b %z) level too small",
1103	       *pcom_father, *pcom_father);
1104
1105	/* Check whether the common parent is locked. */
1106
1107	if (buffer_locked(*pcom_father)) {
1108
1109		/* Release the write lock while the buffer is busy */
1110		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
1111		__wait_on_buffer(*pcom_father);
1112		reiserfs_write_lock_nested(tb->tb_sb, depth);
1113		if (FILESYSTEM_CHANGED_TB(tb)) {
1114			brelse(*pcom_father);
1115			return REPEAT_SEARCH;
1116		}
1117	}
1118
1119	/*
1120	 * So, we got common parent of the current node and its
1121	 * left/right neighbor.  Now we are getting the parent of the
1122	 * left/right neighbor.
1123	 */
1124
1125	/* Form key to get parent of the left/right neighbor. */
1126	le_key2cpu_key(&s_lr_father_key,
1127		       internal_key(*pcom_father,
1128				      (c_lr_par ==
1129				       LEFT_PARENTS) ? (tb->lkey[h - 1] =
1130							position -
1131							1) : (tb->rkey[h -
1132									   1] =
1133							      position)));
1134
1135	if (c_lr_par == LEFT_PARENTS)
1136		decrement_key(&s_lr_father_key);
1137
1138	if (search_by_key
1139	    (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1140	     h + 1) == IO_ERROR)
1141		/* path is released */
1142		return IO_ERROR;
1143
1144	if (FILESYSTEM_CHANGED_TB(tb)) {
1145		pathrelse(&s_path_to_neighbor_father);
1146		brelse(*pcom_father);
1147		return REPEAT_SEARCH;
1148	}
1149
1150	*pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1151
1152	RFALSE(B_LEVEL(*pfather) != h + 1,
1153	       "PAP-8190: (%b %z) level too small", *pfather, *pfather);
1154	RFALSE(s_path_to_neighbor_father.path_length <
1155	       FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1156
1157	s_path_to_neighbor_father.path_length--;
1158	pathrelse(&s_path_to_neighbor_father);
1159	return CARRY_ON;
1160}
1161
1162/*
1163 * Get parents of neighbors of node in the path(S[path_offset]) and
1164 * common parents of S[path_offset] and L[path_offset]/R[path_offset]:
1165 * F[path_offset], FL[path_offset], FR[path_offset], CFL[path_offset],
1166 * CFR[path_offset].
1167 * Calculate numbers of left and right delimiting keys position:
1168 * lkey[path_offset], rkey[path_offset].
1169 * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked
1170 *	        CARRY_ON - schedule didn't occur while the function worked
1171 */
1172static int get_parents(struct tree_balance *tb, int h)
1173{
1174	struct treepath *path = tb->tb_path;
1175	int position,
1176	    ret,
1177	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1178	struct buffer_head *curf, *curcf;
1179
1180	/* Current node is the root of the tree or will be root of the tree */
1181	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1182		/*
1183		 * The root can not have parents.
1184		 * Release nodes which previously were obtained as
1185		 * parents of the current node neighbors.
1186		 */
1187		brelse(tb->FL[h]);
1188		brelse(tb->CFL[h]);
1189		brelse(tb->FR[h]);
1190		brelse(tb->CFR[h]);
1191		tb->FL[h]  = NULL;
1192		tb->CFL[h] = NULL;
1193		tb->FR[h]  = NULL;
1194		tb->CFR[h] = NULL;
1195		return CARRY_ON;
1196	}
1197
1198	/* Get parent FL[path_offset] of L[path_offset]. */
1199	position = PATH_OFFSET_POSITION(path, path_offset - 1);
1200	if (position) {
1201		/* Current node is not the first child of its parent. */
1202		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1203		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1204		get_bh(curf);
1205		get_bh(curf);
1206		tb->lkey[h] = position - 1;
1207	} else {
1208		/*
1209		 * Calculate current parent of L[path_offset], which is the
1210		 * left neighbor of the current node.  Calculate current
1211		 * common parent of L[path_offset] and the current node.
1212		 * Note that CFL[path_offset] not equal FL[path_offset] and
1213		 * CFL[path_offset] not equal F[path_offset].
1214		 * Calculate lkey[path_offset].
1215		 */
1216		if ((ret = get_far_parent(tb, h + 1, &curf,
1217						  &curcf,
1218						  LEFT_PARENTS)) != CARRY_ON)
1219			return ret;
1220	}
1221
1222	brelse(tb->FL[h]);
1223	tb->FL[h] = curf;	/* New initialization of FL[h]. */
1224	brelse(tb->CFL[h]);
1225	tb->CFL[h] = curcf;	/* New initialization of CFL[h]. */
1226
1227	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1228	       (curcf && !B_IS_IN_TREE(curcf)),
1229	       "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
1230
1231	/* Get parent FR[h] of R[h]. */
1232
1233	/* Current node is the last child of F[h]. FR[h] != F[h]. */
1234	if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
1235		/*
1236		 * Calculate current parent of R[h], which is the right
1237		 * neighbor of F[h].  Calculate current common parent of
1238		 * R[h] and current node. Note that CFR[h] not equal
1239		 * FR[path_offset] and CFR[h] not equal F[h].
1240		 */
1241		if ((ret =
1242		     get_far_parent(tb, h + 1, &curf, &curcf,
1243				    RIGHT_PARENTS)) != CARRY_ON)
1244			return ret;
1245	} else {
1246		/* Current node is not the last child of its parent F[h]. */
1247		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1248		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1249		get_bh(curf);
1250		get_bh(curf);
1251		tb->rkey[h] = position;
1252	}
1253
1254	brelse(tb->FR[h]);
1255	/* New initialization of FR[path_offset]. */
1256	tb->FR[h] = curf;
1257
1258	brelse(tb->CFR[h]);
1259	/* New initialization of CFR[path_offset]. */
1260	tb->CFR[h] = curcf;
1261
1262	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1263	       (curcf && !B_IS_IN_TREE(curcf)),
1264	       "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
1265
1266	return CARRY_ON;
1267}
1268
1269/*
1270 * it is possible to remove node as result of shiftings to
1271 * neighbors even when we insert or paste item.
1272 */
1273static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1274				      struct tree_balance *tb, int h)
1275{
1276	struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1277	int levbytes = tb->insert_size[h];
1278	struct item_head *ih;
1279	struct reiserfs_key *r_key = NULL;
1280
1281	ih = item_head(Sh, 0);
1282	if (tb->CFR[h])
1283		r_key = internal_key(tb->CFR[h], tb->rkey[h]);
1284
1285	if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1286	    /* shifting may merge items which might save space */
1287	    -
1288	    ((!h
1289	      && op_is_left_mergeable(&ih->ih_key, Sh->b_size)) ? IH_SIZE : 0)
1290	    -
1291	    ((!h && r_key
1292	      && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1293	    + ((h) ? KEY_SIZE : 0)) {
1294		/* node can not be removed */
1295		if (sfree >= levbytes) {
1296			/* new item fits into node S[h] without any shifting */
1297			if (!h)
1298				tb->s0num =
1299				    B_NR_ITEMS(Sh) +
1300				    ((mode == M_INSERT) ? 1 : 0);
1301			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1302			return NO_BALANCING_NEEDED;
1303		}
1304	}
1305	PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1306	return !NO_BALANCING_NEEDED;
1307}
1308
1309/*
1310 * Check whether current node S[h] is balanced when increasing its size by
1311 * Inserting or Pasting.
1312 * Calculate parameters for balancing for current level h.
1313 * Parameters:
1314 *	tb	tree_balance structure;
1315 *	h	current level of the node;
1316 *	inum	item number in S[h];
1317 *	mode	i - insert, p - paste;
1318 * Returns:	1 - schedule occurred;
1319 *	        0 - balancing for higher levels needed;
1320 *	       -1 - no balancing for higher levels needed;
1321 *	       -2 - no disk space.
1322 */
1323/* ip means Inserting or Pasting */
1324static int ip_check_balance(struct tree_balance *tb, int h)
1325{
1326	struct virtual_node *vn = tb->tb_vn;
1327	/*
1328	 * Number of bytes that must be inserted into (value is negative
1329	 * if bytes are deleted) buffer which contains node being balanced.
1330	 * The mnemonic is that the attempted change in node space used
1331	 * level is levbytes bytes.
1332	 */
1333	int levbytes;
1334	int ret;
1335
1336	int lfree, sfree, rfree /* free space in L, S and R */ ;
1337
1338	/*
1339	 * nver is short for number of vertixes, and lnver is the number if
1340	 * we shift to the left, rnver is the number if we shift to the
1341	 * right, and lrnver is the number if we shift in both directions.
1342	 * The goal is to minimize first the number of vertixes, and second,
1343	 * the number of vertixes whose contents are changed by shifting,
1344	 * and third the number of uncached vertixes whose contents are
1345	 * changed by shifting and must be read from disk.
1346	 */
1347	int nver, lnver, rnver, lrnver;
1348
1349	/*
1350	 * used at leaf level only, S0 = S[0] is the node being balanced,
1351	 * sInum [ I = 0,1,2 ] is the number of items that will
1352	 * remain in node SI after balancing.  S1 and S2 are new
1353	 * nodes that might be created.
1354	 */
1355
1356	/*
1357	 * we perform 8 calls to get_num_ver().  For each call we
1358	 * calculate five parameters.  where 4th parameter is s1bytes
1359	 * and 5th - s2bytes
1360	 *
1361	 * s0num, s1num, s2num for 8 cases
1362	 * 0,1 - do not shift and do not shift but bottle
1363	 * 2   - shift only whole item to left
1364	 * 3   - shift to left and bottle as much as possible
1365	 * 4,5 - shift to right (whole items and as much as possible
1366	 * 6,7 - shift to both directions (whole items and as much as possible)
1367	 */
1368	short snum012[40] = { 0, };
1369
1370	/* Sh is the node whose balance is currently being checked */
1371	struct buffer_head *Sh;
1372
1373	Sh = PATH_H_PBUFFER(tb->tb_path, h);
1374	levbytes = tb->insert_size[h];
1375
1376	/* Calculate balance parameters for creating new root. */
1377	if (!Sh) {
1378		if (!h)
1379			reiserfs_panic(tb->tb_sb, "vs-8210",
1380				       "S[0] can not be 0");
1381		switch (ret = get_empty_nodes(tb, h)) {
1382		/* no balancing for higher levels needed */
1383		case CARRY_ON:
1384			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1385			return NO_BALANCING_NEEDED;
1386
1387		case NO_DISK_SPACE:
1388		case REPEAT_SEARCH:
1389			return ret;
1390		default:
1391			reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
1392				       "return value of get_empty_nodes");
1393		}
1394	}
1395
1396	/* get parents of S[h] neighbors. */
1397	ret = get_parents(tb, h);
1398	if (ret != CARRY_ON)
1399		return ret;
1400
1401	sfree = B_FREE_SPACE(Sh);
1402
1403	/* get free space of neighbors */
1404	rfree = get_rfree(tb, h);
1405	lfree = get_lfree(tb, h);
1406
1407	/* and new item fits into node S[h] without any shifting */
1408	if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1409	    NO_BALANCING_NEEDED)
1410		return NO_BALANCING_NEEDED;
1411
1412	create_virtual_node(tb, h);
1413
1414	/*
1415	 * determine maximal number of items we can shift to the left
1416	 * neighbor (in tb structure) and the maximal number of bytes
1417	 * that can flow to the left neighbor from the left most liquid
1418	 * item that cannot be shifted from S[0] entirely (returned value)
1419	 */
1420	check_left(tb, h, lfree);
1421
1422	/*
1423	 * determine maximal number of items we can shift to the right
1424	 * neighbor (in tb structure) and the maximal number of bytes
1425	 * that can flow to the right neighbor from the right most liquid
1426	 * item that cannot be shifted from S[0] entirely (returned value)
1427	 */
1428	check_right(tb, h, rfree);
1429
1430	/*
1431	 * all contents of internal node S[h] can be moved into its
1432	 * neighbors, S[h] will be removed after balancing
1433	 */
1434	if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1435		int to_r;
1436
1437		/*
1438		 * Since we are working on internal nodes, and our internal
1439		 * nodes have fixed size entries, then we can balance by the
1440		 * number of items rather than the space they consume.  In this
1441		 * routine we set the left node equal to the right node,
1442		 * allowing a difference of less than or equal to 1 child
1443		 * pointer.
1444		 */
1445		to_r =
1446		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1447		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1448						tb->rnum[h]);
1449		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1450			       -1, -1);
1451		return CARRY_ON;
1452	}
1453
1454	/*
1455	 * this checks balance condition, that any two neighboring nodes
1456	 * can not fit in one node
1457	 */
1458	RFALSE(h &&
1459	       (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1460		tb->rnum[h] >= vn->vn_nr_item + 1),
1461	       "vs-8220: tree is not balanced on internal level");
1462	RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1463		      (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1464	       "vs-8225: tree is not balanced on leaf level");
1465
1466	/*
1467	 * all contents of S[0] can be moved into its neighbors
1468	 * S[0] will be removed after balancing.
1469	 */
1470	if (!h && is_leaf_removable(tb))
1471		return CARRY_ON;
1472
1473	/*
1474	 * why do we perform this check here rather than earlier??
1475	 * Answer: we can win 1 node in some cases above. Moreover we
1476	 * checked it above, when we checked, that S[0] is not removable
1477	 * in principle
1478	 */
1479
1480	 /* new item fits into node S[h] without any shifting */
1481	if (sfree >= levbytes) {
1482		if (!h)
1483			tb->s0num = vn->vn_nr_item;
1484		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1485		return NO_BALANCING_NEEDED;
1486	}
1487
1488	{
1489		int lpar, rpar, nset, lset, rset, lrset;
1490		/* regular overflowing of the node */
1491
1492		/*
1493		 * get_num_ver works in 2 modes (FLOW & NO_FLOW)
1494		 * lpar, rpar - number of items we can shift to left/right
1495		 *              neighbor (including splitting item)
1496		 * nset, lset, rset, lrset - shows, whether flowing items
1497		 *                           give better packing
1498		 */
1499#define FLOW 1
1500#define NO_FLOW 0		/* do not any splitting */
1501
1502		/* we choose one of the following */
1503#define NOTHING_SHIFT_NO_FLOW	0
1504#define NOTHING_SHIFT_FLOW	5
1505#define LEFT_SHIFT_NO_FLOW	10
1506#define LEFT_SHIFT_FLOW		15
1507#define RIGHT_SHIFT_NO_FLOW	20
1508#define RIGHT_SHIFT_FLOW	25
1509#define LR_SHIFT_NO_FLOW	30
1510#define LR_SHIFT_FLOW		35
1511
1512		lpar = tb->lnum[h];
1513		rpar = tb->rnum[h];
1514
1515		/*
1516		 * calculate number of blocks S[h] must be split into when
1517		 * nothing is shifted to the neighbors, as well as number of
1518		 * items in each part of the split node (s012 numbers),
1519		 * and number of bytes (s1bytes) of the shared drop which
1520		 * flow to S1 if any
1521		 */
1522		nset = NOTHING_SHIFT_NO_FLOW;
1523		nver = get_num_ver(vn->vn_mode, tb, h,
1524				   0, -1, h ? vn->vn_nr_item : 0, -1,
1525				   snum012, NO_FLOW);
1526
1527		if (!h) {
1528			int nver1;
1529
1530			/*
1531			 * note, that in this case we try to bottle
1532			 * between S[0] and S1 (S1 - the first new node)
1533			 */
1534			nver1 = get_num_ver(vn->vn_mode, tb, h,
1535					    0, -1, 0, -1,
1536					    snum012 + NOTHING_SHIFT_FLOW, FLOW);
1537			if (nver > nver1)
1538				nset = NOTHING_SHIFT_FLOW, nver = nver1;
1539		}
1540
1541		/*
1542		 * calculate number of blocks S[h] must be split into when
1543		 * l_shift_num first items and l_shift_bytes of the right
1544		 * most liquid item to be shifted are shifted to the left
1545		 * neighbor, as well as number of items in each part of the
1546		 * splitted node (s012 numbers), and number of bytes
1547		 * (s1bytes) of the shared drop which flow to S1 if any
1548		 */
1549		lset = LEFT_SHIFT_NO_FLOW;
1550		lnver = get_num_ver(vn->vn_mode, tb, h,
1551				    lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1552				    -1, h ? vn->vn_nr_item : 0, -1,
1553				    snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1554		if (!h) {
1555			int lnver1;
1556
1557			lnver1 = get_num_ver(vn->vn_mode, tb, h,
1558					     lpar -
1559					     ((tb->lbytes != -1) ? 1 : 0),
1560					     tb->lbytes, 0, -1,
1561					     snum012 + LEFT_SHIFT_FLOW, FLOW);
1562			if (lnver > lnver1)
1563				lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1564		}
1565
1566		/*
1567		 * calculate number of blocks S[h] must be split into when
1568		 * r_shift_num first items and r_shift_bytes of the left most
1569		 * liquid item to be shifted are shifted to the right neighbor,
1570		 * as well as number of items in each part of the splitted
1571		 * node (s012 numbers), and number of bytes (s1bytes) of the
1572		 * shared drop which flow to S1 if any
1573		 */
1574		rset = RIGHT_SHIFT_NO_FLOW;
1575		rnver = get_num_ver(vn->vn_mode, tb, h,
1576				    0, -1,
1577				    h ? (vn->vn_nr_item - rpar) : (rpar -
1578								   ((tb->
1579								     rbytes !=
1580								     -1) ? 1 :
1581								    0)), -1,
1582				    snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1583		if (!h) {
1584			int rnver1;
1585
1586			rnver1 = get_num_ver(vn->vn_mode, tb, h,
1587					     0, -1,
1588					     (rpar -
1589					      ((tb->rbytes != -1) ? 1 : 0)),
1590					     tb->rbytes,
1591					     snum012 + RIGHT_SHIFT_FLOW, FLOW);
1592
1593			if (rnver > rnver1)
1594				rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1595		}
1596
1597		/*
1598		 * calculate number of blocks S[h] must be split into when
1599		 * items are shifted in both directions, as well as number
1600		 * of items in each part of the splitted node (s012 numbers),
1601		 * and number of bytes (s1bytes) of the shared drop which
1602		 * flow to S1 if any
1603		 */
1604		lrset = LR_SHIFT_NO_FLOW;
1605		lrnver = get_num_ver(vn->vn_mode, tb, h,
1606				     lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1607				     -1,
1608				     h ? (vn->vn_nr_item - rpar) : (rpar -
1609								    ((tb->
1610								      rbytes !=
1611								      -1) ? 1 :
1612								     0)), -1,
1613				     snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1614		if (!h) {
1615			int lrnver1;
1616
1617			lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1618					      lpar -
1619					      ((tb->lbytes != -1) ? 1 : 0),
1620					      tb->lbytes,
1621					      (rpar -
1622					       ((tb->rbytes != -1) ? 1 : 0)),
1623					      tb->rbytes,
1624					      snum012 + LR_SHIFT_FLOW, FLOW);
1625			if (lrnver > lrnver1)
1626				lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1627		}
1628
1629		/*
1630		 * Our general shifting strategy is:
1631		 * 1) to minimized number of new nodes;
1632		 * 2) to minimized number of neighbors involved in shifting;
1633		 * 3) to minimized number of disk reads;
1634		 */
1635
1636		/* we can win TWO or ONE nodes by shifting in both directions */
1637		if (lrnver < lnver && lrnver < rnver) {
1638			RFALSE(h &&
1639			       (tb->lnum[h] != 1 ||
1640				tb->rnum[h] != 1 ||
1641				lrnver != 1 || rnver != 2 || lnver != 2
1642				|| h != 1), "vs-8230: bad h");
1643			if (lrset == LR_SHIFT_FLOW)
1644				set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1645					       lrnver, snum012 + lrset,
1646					       tb->lbytes, tb->rbytes);
1647			else
1648				set_parameters(tb, h,
1649					       tb->lnum[h] -
1650					       ((tb->lbytes == -1) ? 0 : 1),
1651					       tb->rnum[h] -
1652					       ((tb->rbytes == -1) ? 0 : 1),
1653					       lrnver, snum012 + lrset, -1, -1);
1654
1655			return CARRY_ON;
1656		}
1657
1658		/*
1659		 * if shifting doesn't lead to better packing
1660		 * then don't shift
1661		 */
1662		if (nver == lrnver) {
1663			set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1664				       -1);
1665			return CARRY_ON;
1666		}
1667
1668		/*
1669		 * now we know that for better packing shifting in only one
1670		 * direction either to the left or to the right is required
1671		 */
1672
1673		/*
1674		 * if shifting to the left is better than
1675		 * shifting to the right
1676		 */
1677		if (lnver < rnver) {
1678			SET_PAR_SHIFT_LEFT;
1679			return CARRY_ON;
1680		}
1681
1682		/*
1683		 * if shifting to the right is better than
1684		 * shifting to the left
1685		 */
1686		if (lnver > rnver) {
1687			SET_PAR_SHIFT_RIGHT;
1688			return CARRY_ON;
1689		}
1690
1691		/*
1692		 * now shifting in either direction gives the same number
1693		 * of nodes and we can make use of the cached neighbors
1694		 */
1695		if (is_left_neighbor_in_cache(tb, h)) {
1696			SET_PAR_SHIFT_LEFT;
1697			return CARRY_ON;
1698		}
1699
1700		/*
1701		 * shift to the right independently on whether the
1702		 * right neighbor in cache or not
1703		 */
1704		SET_PAR_SHIFT_RIGHT;
1705		return CARRY_ON;
1706	}
1707}
1708
1709/*
1710 * Check whether current node S[h] is balanced when Decreasing its size by
1711 * Deleting or Cutting for INTERNAL node of S+tree.
1712 * Calculate parameters for balancing for current level h.
1713 * Parameters:
1714 *	tb	tree_balance structure;
1715 *	h	current level of the node;
1716 *	inum	item number in S[h];
1717 *	mode	i - insert, p - paste;
1718 * Returns:	1 - schedule occurred;
1719 *	        0 - balancing for higher levels needed;
1720 *	       -1 - no balancing for higher levels needed;
1721 *	       -2 - no disk space.
1722 *
1723 * Note: Items of internal nodes have fixed size, so the balance condition for
1724 * the internal part of S+tree is as for the B-trees.
1725 */
1726static int dc_check_balance_internal(struct tree_balance *tb, int h)
1727{
1728	struct virtual_node *vn = tb->tb_vn;
1729
1730	/*
1731	 * Sh is the node whose balance is currently being checked,
1732	 * and Fh is its father.
1733	 */
1734	struct buffer_head *Sh, *Fh;
1735	int ret;
1736	int lfree, rfree /* free space in L and R */ ;
1737
1738	Sh = PATH_H_PBUFFER(tb->tb_path, h);
1739	Fh = PATH_H_PPARENT(tb->tb_path, h);
1740
1741	/*
1742	 * using tb->insert_size[h], which is negative in this case,
1743	 * create_virtual_node calculates:
1744	 * new_nr_item = number of items node would have if operation is
1745	 * performed without balancing (new_nr_item);
1746	 */
1747	create_virtual_node(tb, h);
1748
1749	if (!Fh) {		/* S[h] is the root. */
1750		/* no balancing for higher levels needed */
1751		if (vn->vn_nr_item > 0) {
1752			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1753			return NO_BALANCING_NEEDED;
1754		}
1755		/*
1756		 * new_nr_item == 0.
1757		 * Current root will be deleted resulting in
1758		 * decrementing the tree height.
1759		 */
1760		set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1761		return CARRY_ON;
1762	}
1763
1764	if ((ret = get_parents(tb, h)) != CARRY_ON)
1765		return ret;
1766
1767	/* get free space of neighbors */
1768	rfree = get_rfree(tb, h);
1769	lfree = get_lfree(tb, h);
1770
1771	/* determine maximal number of items we can fit into neighbors */
1772	check_left(tb, h, lfree);
1773	check_right(tb, h, rfree);
1774
1775	/*
1776	 * Balance condition for the internal node is valid.
1777	 * In this case we balance only if it leads to better packing.
1778	 */
1779	if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) {
1780		/*
1781		 * Here we join S[h] with one of its neighbors,
1782		 * which is impossible with greater values of new_nr_item.
1783		 */
1784		if (vn->vn_nr_item == MIN_NR_KEY(Sh)) {
1785			/* All contents of S[h] can be moved to L[h]. */
1786			if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1787				int n;
1788				int order_L;
1789
1790				order_L =
1791				    ((n =
1792				      PATH_H_B_ITEM_ORDER(tb->tb_path,
1793							  h)) ==
1794				     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1795				n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1796				    (DC_SIZE + KEY_SIZE);
1797				set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1798					       -1);
1799				return CARRY_ON;
1800			}
1801
1802			/* All contents of S[h] can be moved to R[h]. */
1803			if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1804				int n;
1805				int order_R;
1806
1807				order_R =
1808				    ((n =
1809				      PATH_H_B_ITEM_ORDER(tb->tb_path,
1810							  h)) ==
1811				     B_NR_ITEMS(Fh)) ? 0 : n + 1;
1812				n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1813				    (DC_SIZE + KEY_SIZE);
1814				set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1815					       -1);
1816				return CARRY_ON;
1817			}
1818		}
1819
1820		/*
1821		 * All contents of S[h] can be moved to the neighbors
1822		 * (L[h] & R[h]).
1823		 */
1824		if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1825			int to_r;
1826
1827			to_r =
1828			    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1829			     tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1830			    (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1831			set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1832				       0, NULL, -1, -1);
1833			return CARRY_ON;
1834		}
1835
1836		/* Balancing does not lead to better packing. */
1837		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1838		return NO_BALANCING_NEEDED;
1839	}
1840
1841	/*
1842	 * Current node contain insufficient number of items.
1843	 * Balancing is required.
1844	 */
1845	/* Check whether we can merge S[h] with left neighbor. */
1846	if (tb->lnum[h] >= vn->vn_nr_item + 1)
1847		if (is_left_neighbor_in_cache(tb, h)
1848		    || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1849			int n;
1850			int order_L;
1851
1852			order_L =
1853			    ((n =
1854			      PATH_H_B_ITEM_ORDER(tb->tb_path,
1855						  h)) ==
1856			     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1857			n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1858								      KEY_SIZE);
1859			set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1860			return CARRY_ON;
1861		}
1862
1863	/* Check whether we can merge S[h] with right neighbor. */
1864	if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1865		int n;
1866		int order_R;
1867
1868		order_R =
1869		    ((n =
1870		      PATH_H_B_ITEM_ORDER(tb->tb_path,
1871					  h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1872		n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1873							      KEY_SIZE);
1874		set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1875		return CARRY_ON;
1876	}
1877
1878	/* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1879	if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1880		int to_r;
1881
1882		to_r =
1883		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1884		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1885						tb->rnum[h]);
1886		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1887			       -1, -1);
1888		return CARRY_ON;
1889	}
1890
1891	/* For internal nodes try to borrow item from a neighbor */
1892	RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1893
1894	/* Borrow one or two items from caching neighbor */
1895	if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1896		int from_l;
1897
1898		from_l =
1899		    (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1900		     1) / 2 - (vn->vn_nr_item + 1);
1901		set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1902		return CARRY_ON;
1903	}
1904
1905	set_parameters(tb, h, 0,
1906		       -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1907			  1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1908	return CARRY_ON;
1909}
1910
1911/*
1912 * Check whether current node S[h] is balanced when Decreasing its size by
1913 * Deleting or Truncating for LEAF node of S+tree.
1914 * Calculate parameters for balancing for current level h.
1915 * Parameters:
1916 *	tb	tree_balance structure;
1917 *	h	current level of the node;
1918 *	inum	item number in S[h];
1919 *	mode	i - insert, p - paste;
1920 * Returns:	1 - schedule occurred;
1921 *	        0 - balancing for higher levels needed;
1922 *	       -1 - no balancing for higher levels needed;
1923 *	       -2 - no disk space.
1924 */
1925static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1926{
1927	struct virtual_node *vn = tb->tb_vn;
1928
1929	/*
1930	 * Number of bytes that must be deleted from
1931	 * (value is negative if bytes are deleted) buffer which
1932	 * contains node being balanced.  The mnemonic is that the
1933	 * attempted change in node space used level is levbytes bytes.
1934	 */
1935	int levbytes;
1936
1937	/* the maximal item size */
1938	int maxsize, ret;
1939
1940	/*
1941	 * S0 is the node whose balance is currently being checked,
1942	 * and F0 is its father.
1943	 */
1944	struct buffer_head *S0, *F0;
1945	int lfree, rfree /* free space in L and R */ ;
1946
1947	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1948	F0 = PATH_H_PPARENT(tb->tb_path, 0);
1949
1950	levbytes = tb->insert_size[h];
1951
1952	maxsize = MAX_CHILD_SIZE(S0);	/* maximal possible size of an item */
1953
1954	if (!F0) {		/* S[0] is the root now. */
1955
1956		RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1957		       "vs-8240: attempt to create empty buffer tree");
1958
1959		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1960		return NO_BALANCING_NEEDED;
1961	}
1962
1963	if ((ret = get_parents(tb, h)) != CARRY_ON)
1964		return ret;
1965
1966	/* get free space of neighbors */
1967	rfree = get_rfree(tb, h);
1968	lfree = get_lfree(tb, h);
1969
1970	create_virtual_node(tb, h);
1971
1972	/* if 3 leaves can be merge to one, set parameters and return */
1973	if (are_leaves_removable(tb, lfree, rfree))
1974		return CARRY_ON;
1975
1976	/*
1977	 * determine maximal number of items we can shift to the left/right
1978	 * neighbor and the maximal number of bytes that can flow to the
1979	 * left/right neighbor from the left/right most liquid item that
1980	 * cannot be shifted from S[0] entirely
1981	 */
1982	check_left(tb, h, lfree);
1983	check_right(tb, h, rfree);
1984
1985	/* check whether we can merge S with left neighbor. */
1986	if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1987		if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) ||	/* S can not be merged with R */
1988		    !tb->FR[h]) {
1989
1990			RFALSE(!tb->FL[h],
1991			       "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1992
1993			/* set parameter to merge S[0] with its left neighbor */
1994			set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1995			return CARRY_ON;
1996		}
1997
1998	/* check whether we can merge S[0] with right neighbor. */
1999	if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
2000		set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
2001		return CARRY_ON;
2002	}
2003
2004	/*
2005	 * All contents of S[0] can be moved to the neighbors (L[0] & R[0]).
2006	 * Set parameters and return
2007	 */
2008	if (is_leaf_removable(tb))
2009		return CARRY_ON;
2010
2011	/* Balancing is not required. */
2012	tb->s0num = vn->vn_nr_item;
2013	set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
2014	return NO_BALANCING_NEEDED;
2015}
2016
2017/*
2018 * Check whether current node S[h] is balanced when Decreasing its size by
2019 * Deleting or Cutting.
2020 * Calculate parameters for balancing for current level h.
2021 * Parameters:
2022 *	tb	tree_balance structure;
2023 *	h	current level of the node;
2024 *	inum	item number in S[h];
2025 *	mode	d - delete, c - cut.
2026 * Returns:	1 - schedule occurred;
2027 *	        0 - balancing for higher levels needed;
2028 *	       -1 - no balancing for higher levels needed;
2029 *	       -2 - no disk space.
2030 */
2031static int dc_check_balance(struct tree_balance *tb, int h)
2032{
2033	RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
2034	       "vs-8250: S is not initialized");
2035
2036	if (h)
2037		return dc_check_balance_internal(tb, h);
2038	else
2039		return dc_check_balance_leaf(tb, h);
2040}
2041
2042/*
2043 * Check whether current node S[h] is balanced.
2044 * Calculate parameters for balancing for current level h.
2045 * Parameters:
2046 *
2047 *	tb	tree_balance structure:
2048 *
2049 *              tb is a large structure that must be read about in the header
2050 *		file at the same time as this procedure if the reader is
2051 *		to successfully understand this procedure
2052 *
2053 *	h	current level of the node;
2054 *	inum	item number in S[h];
2055 *	mode	i - insert, p - paste, d - delete, c - cut.
2056 * Returns:	1 - schedule occurred;
2057 *	        0 - balancing for higher levels needed;
2058 *	       -1 - no balancing for higher levels needed;
2059 *	       -2 - no disk space.
2060 */
2061static int check_balance(int mode,
2062			 struct tree_balance *tb,
2063			 int h,
2064			 int inum,
2065			 int pos_in_item,
2066			 struct item_head *ins_ih, const void *data)
2067{
2068	struct virtual_node *vn;
2069
2070	vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
2071	vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
2072	vn->vn_mode = mode;
2073	vn->vn_affected_item_num = inum;
2074	vn->vn_pos_in_item = pos_in_item;
2075	vn->vn_ins_ih = ins_ih;
2076	vn->vn_data = data;
2077
2078	RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
2079	       "vs-8255: ins_ih can not be 0 in insert mode");
2080
2081	/* Calculate balance parameters when size of node is increasing. */
2082	if (tb->insert_size[h] > 0)
2083		return ip_check_balance(tb, h);
2084
2085	/* Calculate balance parameters when  size of node is decreasing. */
2086	return dc_check_balance(tb, h);
2087}
2088
2089/* Check whether parent at the path is the really parent of the current node.*/
2090static int get_direct_parent(struct tree_balance *tb, int h)
2091{
2092	struct buffer_head *bh;
2093	struct treepath *path = tb->tb_path;
2094	int position,
2095	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
2096
2097	/* We are in the root or in the new root. */
2098	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
2099
2100		RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
2101		       "PAP-8260: invalid offset in the path");
2102
2103		if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
2104		    b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
2105			/* Root is not changed. */
2106			PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
2107			PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
2108			return CARRY_ON;
2109		}
2110		/* Root is changed and we must recalculate the path. */
2111		return REPEAT_SEARCH;
2112	}
2113
2114	/* Parent in the path is not in the tree. */
2115	if (!B_IS_IN_TREE
2116	    (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
2117		return REPEAT_SEARCH;
2118
2119	if ((position =
2120	     PATH_OFFSET_POSITION(path,
2121				  path_offset - 1)) > B_NR_ITEMS(bh))
2122		return REPEAT_SEARCH;
2123
2124	/* Parent in the path is not parent of the current node in the tree. */
2125	if (B_N_CHILD_NUM(bh, position) !=
2126	    PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
2127		return REPEAT_SEARCH;
2128
2129	if (buffer_locked(bh)) {
2130		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2131		__wait_on_buffer(bh);
2132		reiserfs_write_lock_nested(tb->tb_sb, depth);
2133		if (FILESYSTEM_CHANGED_TB(tb))
2134			return REPEAT_SEARCH;
2135	}
2136
2137	/*
2138	 * Parent in the path is unlocked and really parent
2139	 * of the current node.
2140	 */
2141	return CARRY_ON;
2142}
2143
2144/*
2145 * Using lnum[h] and rnum[h] we should determine what neighbors
2146 * of S[h] we
2147 * need in order to balance S[h], and get them if necessary.
2148 * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
2149 *	        CARRY_ON - schedule didn't occur while the function worked;
2150 */
2151static int get_neighbors(struct tree_balance *tb, int h)
2152{
2153	int child_position,
2154	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
2155	unsigned long son_number;
2156	struct super_block *sb = tb->tb_sb;
2157	struct buffer_head *bh;
2158	int depth;
2159
2160	PROC_INFO_INC(sb, get_neighbors[h]);
2161
2162	if (tb->lnum[h]) {
2163		/* We need left neighbor to balance S[h]. */
2164		PROC_INFO_INC(sb, need_l_neighbor[h]);
2165		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2166
2167		RFALSE(bh == tb->FL[h] &&
2168		       !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
2169		       "PAP-8270: invalid position in the parent");
2170
2171		child_position =
2172		    (bh ==
2173		     tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
2174								       FL[h]);
2175		son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
2176		depth = reiserfs_write_unlock_nested(tb->tb_sb);
2177		bh = sb_bread(sb, son_number);
2178		reiserfs_write_lock_nested(tb->tb_sb, depth);
2179		if (!bh)
2180			return IO_ERROR;
2181		if (FILESYSTEM_CHANGED_TB(tb)) {
2182			brelse(bh);
2183			PROC_INFO_INC(sb, get_neighbors_restart[h]);
2184			return REPEAT_SEARCH;
2185		}
2186
2187		RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
2188		       child_position > B_NR_ITEMS(tb->FL[h]) ||
2189		       B_N_CHILD_NUM(tb->FL[h], child_position) !=
2190		       bh->b_blocknr, "PAP-8275: invalid parent");
2191		RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
2192		RFALSE(!h &&
2193		       B_FREE_SPACE(bh) !=
2194		       MAX_CHILD_SIZE(bh) -
2195		       dc_size(B_N_CHILD(tb->FL[0], child_position)),
2196		       "PAP-8290: invalid child size of left neighbor");
2197
2198		brelse(tb->L[h]);
2199		tb->L[h] = bh;
2200	}
2201
2202	/* We need right neighbor to balance S[path_offset]. */
2203	if (tb->rnum[h]) {
2204		PROC_INFO_INC(sb, need_r_neighbor[h]);
2205		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2206
2207		RFALSE(bh == tb->FR[h] &&
2208		       PATH_OFFSET_POSITION(tb->tb_path,
2209					    path_offset) >=
2210		       B_NR_ITEMS(bh),
2211		       "PAP-8295: invalid position in the parent");
2212
2213		child_position =
2214		    (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
2215		son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
2216		depth = reiserfs_write_unlock_nested(tb->tb_sb);
2217		bh = sb_bread(sb, son_number);
2218		reiserfs_write_lock_nested(tb->tb_sb, depth);
2219		if (!bh)
2220			return IO_ERROR;
2221		if (FILESYSTEM_CHANGED_TB(tb)) {
2222			brelse(bh);
2223			PROC_INFO_INC(sb, get_neighbors_restart[h]);
2224			return REPEAT_SEARCH;
2225		}
2226		brelse(tb->R[h]);
2227		tb->R[h] = bh;
2228
2229		RFALSE(!h
2230		       && B_FREE_SPACE(bh) !=
2231		       MAX_CHILD_SIZE(bh) -
2232		       dc_size(B_N_CHILD(tb->FR[0], child_position)),
2233		       "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2234		       B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
2235		       dc_size(B_N_CHILD(tb->FR[0], child_position)));
2236
2237	}
2238	return CARRY_ON;
2239}
2240
2241static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2242{
2243	int max_num_of_items;
2244	int max_num_of_entries;
2245	unsigned long blocksize = sb->s_blocksize;
2246
2247#define MIN_NAME_LEN 1
2248
2249	max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2250	max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2251	    (DEH_SIZE + MIN_NAME_LEN);
2252
2253	return sizeof(struct virtual_node) +
2254	    max(max_num_of_items * sizeof(struct virtual_item),
2255		sizeof(struct virtual_item) +
2256		struct_size_t(struct direntry_uarea, entry_sizes,
2257			      max_num_of_entries));
2258}
2259
2260/*
2261 * maybe we should fail balancing we are going to perform when kmalloc
2262 * fails several times. But now it will loop until kmalloc gets
2263 * required memory
2264 */
2265static int get_mem_for_virtual_node(struct tree_balance *tb)
2266{
2267	int check_fs = 0;
2268	int size;
2269	char *buf;
2270
2271	size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2272
2273	/* we have to allocate more memory for virtual node */
2274	if (size > tb->vn_buf_size) {
2275		if (tb->vn_buf) {
2276			/* free memory allocated before */
2277			kfree(tb->vn_buf);
2278			/* this is not needed if kfree is atomic */
2279			check_fs = 1;
2280		}
2281
2282		/* virtual node requires now more memory */
2283		tb->vn_buf_size = size;
2284
2285		/* get memory for virtual item */
2286		buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
2287		if (!buf) {
2288			/*
2289			 * getting memory with GFP_KERNEL priority may involve
2290			 * balancing now (due to indirect_to_direct conversion
2291			 * on dcache shrinking). So, release path and collected
2292			 * resources here
2293			 */
2294			free_buffers_in_tb(tb);
2295			buf = kmalloc(size, GFP_NOFS);
2296			if (!buf) {
2297				tb->vn_buf_size = 0;
2298			}
2299			tb->vn_buf = buf;
2300			schedule();
2301			return REPEAT_SEARCH;
2302		}
2303
2304		tb->vn_buf = buf;
2305	}
2306
2307	if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2308		return REPEAT_SEARCH;
2309
2310	return CARRY_ON;
2311}
2312
2313#ifdef CONFIG_REISERFS_CHECK
2314static void tb_buffer_sanity_check(struct super_block *sb,
2315				   struct buffer_head *bh,
2316				   const char *descr, int level)
2317{
2318	if (bh) {
2319		if (atomic_read(&(bh->b_count)) <= 0)
2320
2321			reiserfs_panic(sb, "jmacd-1", "negative or zero "
2322				       "reference counter for buffer %s[%d] "
2323				       "(%b)", descr, level, bh);
2324
2325		if (!buffer_uptodate(bh))
2326			reiserfs_panic(sb, "jmacd-2", "buffer is not up "
2327				       "to date %s[%d] (%b)",
2328				       descr, level, bh);
2329
2330		if (!B_IS_IN_TREE(bh))
2331			reiserfs_panic(sb, "jmacd-3", "buffer is not "
2332				       "in tree %s[%d] (%b)",
2333				       descr, level, bh);
2334
2335		if (bh->b_bdev != sb->s_bdev)
2336			reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
2337				       "device %s[%d] (%b)",
2338				       descr, level, bh);
2339
2340		if (bh->b_size != sb->s_blocksize)
2341			reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
2342				       "blocksize %s[%d] (%b)",
2343				       descr, level, bh);
2344
2345		if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
2346			reiserfs_panic(sb, "jmacd-6", "buffer block "
2347				       "number too high %s[%d] (%b)",
2348				       descr, level, bh);
2349	}
2350}
2351#else
2352static void tb_buffer_sanity_check(struct super_block *sb,
2353				   struct buffer_head *bh,
2354				   const char *descr, int level)
2355{;
2356}
2357#endif
2358
2359static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2360{
2361	return reiserfs_prepare_for_journal(s, bh, 0);
2362}
2363
2364static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
2365{
2366	struct buffer_head *locked;
2367#ifdef CONFIG_REISERFS_CHECK
2368	int repeat_counter = 0;
2369#endif
2370	int i;
2371
2372	do {
2373
2374		locked = NULL;
2375
2376		for (i = tb->tb_path->path_length;
2377		     !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2378			if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
2379				/*
2380				 * if I understand correctly, we can only
2381				 * be sure the last buffer in the path is
2382				 * in the tree --clm
2383				 */
2384#ifdef CONFIG_REISERFS_CHECK
2385				if (PATH_PLAST_BUFFER(tb->tb_path) ==
2386				    PATH_OFFSET_PBUFFER(tb->tb_path, i))
2387					tb_buffer_sanity_check(tb->tb_sb,
2388							       PATH_OFFSET_PBUFFER
2389							       (tb->tb_path,
2390								i), "S",
2391							       tb->tb_path->
2392							       path_length - i);
2393#endif
2394				if (!clear_all_dirty_bits(tb->tb_sb,
2395							  PATH_OFFSET_PBUFFER
2396							  (tb->tb_path,
2397							   i))) {
2398					locked =
2399					    PATH_OFFSET_PBUFFER(tb->tb_path,
2400								i);
2401				}
2402			}
2403		}
2404
2405		for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
2406		     i++) {
2407
2408			if (tb->lnum[i]) {
2409
2410				if (tb->L[i]) {
2411					tb_buffer_sanity_check(tb->tb_sb,
2412							       tb->L[i],
2413							       "L", i);
2414					if (!clear_all_dirty_bits
2415					    (tb->tb_sb, tb->L[i]))
2416						locked = tb->L[i];
2417				}
2418
2419				if (!locked && tb->FL[i]) {
2420					tb_buffer_sanity_check(tb->tb_sb,
2421							       tb->FL[i],
2422							       "FL", i);
2423					if (!clear_all_dirty_bits
2424					    (tb->tb_sb, tb->FL[i]))
2425						locked = tb->FL[i];
2426				}
2427
2428				if (!locked && tb->CFL[i]) {
2429					tb_buffer_sanity_check(tb->tb_sb,
2430							       tb->CFL[i],
2431							       "CFL", i);
2432					if (!clear_all_dirty_bits
2433					    (tb->tb_sb, tb->CFL[i]))
2434						locked = tb->CFL[i];
2435				}
2436
2437			}
2438
2439			if (!locked && (tb->rnum[i])) {
2440
2441				if (tb->R[i]) {
2442					tb_buffer_sanity_check(tb->tb_sb,
2443							       tb->R[i],
2444							       "R", i);
2445					if (!clear_all_dirty_bits
2446					    (tb->tb_sb, tb->R[i]))
2447						locked = tb->R[i];
2448				}
2449
2450				if (!locked && tb->FR[i]) {
2451					tb_buffer_sanity_check(tb->tb_sb,
2452							       tb->FR[i],
2453							       "FR", i);
2454					if (!clear_all_dirty_bits
2455					    (tb->tb_sb, tb->FR[i]))
2456						locked = tb->FR[i];
2457				}
2458
2459				if (!locked && tb->CFR[i]) {
2460					tb_buffer_sanity_check(tb->tb_sb,
2461							       tb->CFR[i],
2462							       "CFR", i);
2463					if (!clear_all_dirty_bits
2464					    (tb->tb_sb, tb->CFR[i]))
2465						locked = tb->CFR[i];
2466				}
2467			}
2468		}
2469
2470		/*
2471		 * as far as I can tell, this is not required.  The FEB list
2472		 * seems to be full of newly allocated nodes, which will
2473		 * never be locked, dirty, or anything else.
2474		 * To be safe, I'm putting in the checks and waits in.
2475		 * For the moment, they are needed to keep the code in
2476		 * journal.c from complaining about the buffer.
2477		 * That code is inside CONFIG_REISERFS_CHECK as well.  --clm
2478		 */
2479		for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2480			if (tb->FEB[i]) {
2481				if (!clear_all_dirty_bits
2482				    (tb->tb_sb, tb->FEB[i]))
2483					locked = tb->FEB[i];
2484			}
2485		}
2486
2487		if (locked) {
2488			int depth;
2489#ifdef CONFIG_REISERFS_CHECK
2490			repeat_counter++;
2491			if ((repeat_counter % 10000) == 0) {
2492				reiserfs_warning(tb->tb_sb, "reiserfs-8200",
2493						 "too many iterations waiting "
2494						 "for buffer to unlock "
2495						 "(%b)", locked);
2496
2497				/* Don't loop forever.  Try to recover from possible error. */
2498
2499				return (FILESYSTEM_CHANGED_TB(tb)) ?
2500				    REPEAT_SEARCH : CARRY_ON;
2501			}
2502#endif
2503			depth = reiserfs_write_unlock_nested(tb->tb_sb);
2504			__wait_on_buffer(locked);
2505			reiserfs_write_lock_nested(tb->tb_sb, depth);
2506			if (FILESYSTEM_CHANGED_TB(tb))
2507				return REPEAT_SEARCH;
2508		}
2509
2510	} while (locked);
2511
2512	return CARRY_ON;
2513}
2514
2515/*
2516 * Prepare for balancing, that is
2517 *	get all necessary parents, and neighbors;
2518 *	analyze what and where should be moved;
2519 *	get sufficient number of new nodes;
2520 * Balancing will start only after all resources will be collected at a time.
2521 *
2522 * When ported to SMP kernels, only at the last moment after all needed nodes
2523 * are collected in cache, will the resources be locked using the usual
2524 * textbook ordered lock acquisition algorithms.  Note that ensuring that
2525 * this code neither write locks what it does not need to write lock nor locks
2526 * out of order will be a pain in the butt that could have been avoided.
2527 * Grumble grumble. -Hans
2528 *
2529 * fix is meant in the sense of render unchanging
2530 *
2531 * Latency might be improved by first gathering a list of what buffers
2532 * are needed and then getting as many of them in parallel as possible? -Hans
2533 *
2534 * Parameters:
2535 *	op_mode	i - insert, d - delete, c - cut (truncate), p - paste (append)
2536 *	tb	tree_balance structure;
2537 *	inum	item number in S[h];
2538 *      pos_in_item - comment this if you can
2539 *      ins_ih	item head of item being inserted
2540 *	data	inserted item or data to be pasted
2541 * Returns:	1 - schedule occurred while the function worked;
2542 *	        0 - schedule didn't occur while the function worked;
2543 *             -1 - if no_disk_space
2544 */
2545
2546int fix_nodes(int op_mode, struct tree_balance *tb,
2547	      struct item_head *ins_ih, const void *data)
2548{
2549	int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
2550	int pos_in_item;
2551
2552	/*
2553	 * we set wait_tb_buffers_run when we have to restore any dirty
2554	 * bits cleared during wait_tb_buffers_run
2555	 */
2556	int wait_tb_buffers_run = 0;
2557	struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
2558
2559	++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
2560
2561	pos_in_item = tb->tb_path->pos_in_item;
2562
2563	tb->fs_gen = get_generation(tb->tb_sb);
2564
2565	/*
2566	 * we prepare and log the super here so it will already be in the
2567	 * transaction when do_balance needs to change it.
2568	 * This way do_balance won't have to schedule when trying to prepare
2569	 * the super for logging
2570	 */
2571	reiserfs_prepare_for_journal(tb->tb_sb,
2572				     SB_BUFFER_WITH_SB(tb->tb_sb), 1);
2573	journal_mark_dirty(tb->transaction_handle,
2574			   SB_BUFFER_WITH_SB(tb->tb_sb));
2575	if (FILESYSTEM_CHANGED_TB(tb))
2576		return REPEAT_SEARCH;
2577
2578	/* if it possible in indirect_to_direct conversion */
2579	if (buffer_locked(tbS0)) {
2580		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2581		__wait_on_buffer(tbS0);
2582		reiserfs_write_lock_nested(tb->tb_sb, depth);
2583		if (FILESYSTEM_CHANGED_TB(tb))
2584			return REPEAT_SEARCH;
2585	}
2586#ifdef CONFIG_REISERFS_CHECK
2587	if (REISERFS_SB(tb->tb_sb)->cur_tb) {
2588		print_cur_tb("fix_nodes");
2589		reiserfs_panic(tb->tb_sb, "PAP-8305",
2590			       "there is pending do_balance");
2591	}
2592
2593	if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
2594		reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
2595			       "not uptodate at the beginning of fix_nodes "
2596			       "or not in tree (mode %c)",
2597			       tbS0, tbS0, op_mode);
2598
2599	/* Check parameters. */
2600	switch (op_mode) {
2601	case M_INSERT:
2602		if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
2603			reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
2604				       "item number %d (in S0 - %d) in case "
2605				       "of insert", item_num,
2606				       B_NR_ITEMS(tbS0));
2607		break;
2608	case M_PASTE:
2609	case M_DELETE:
2610	case M_CUT:
2611		if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
2612			print_block(tbS0, 0, -1, -1);
2613			reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
2614				       "item number(%d); mode = %c "
2615				       "insert_size = %d",
2616				       item_num, op_mode,
2617				       tb->insert_size[0]);
2618		}
2619		break;
2620	default:
2621		reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
2622			       "of operation");
2623	}
2624#endif
2625
2626	if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
2627		/* FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat */
2628		return REPEAT_SEARCH;
2629
2630	/* Starting from the leaf level; for all levels h of the tree. */
2631	for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
2632		ret = get_direct_parent(tb, h);
2633		if (ret != CARRY_ON)
2634			goto repeat;
2635
2636		ret = check_balance(op_mode, tb, h, item_num,
2637				    pos_in_item, ins_ih, data);
2638		if (ret != CARRY_ON) {
2639			if (ret == NO_BALANCING_NEEDED) {
2640				/* No balancing for higher levels needed. */
2641				ret = get_neighbors(tb, h);
2642				if (ret != CARRY_ON)
2643					goto repeat;
2644				if (h != MAX_HEIGHT - 1)
2645					tb->insert_size[h + 1] = 0;
2646				/*
2647				 * ok, analysis and resource gathering
2648				 * are complete
2649				 */
2650				break;
2651			}
2652			goto repeat;
2653		}
2654
2655		ret = get_neighbors(tb, h);
2656		if (ret != CARRY_ON)
2657			goto repeat;
2658
2659		/*
2660		 * No disk space, or schedule occurred and analysis may be
2661		 * invalid and needs to be redone.
2662		 */
2663		ret = get_empty_nodes(tb, h);
2664		if (ret != CARRY_ON)
2665			goto repeat;
2666
2667		/*
2668		 * We have a positive insert size but no nodes exist on this
2669		 * level, this means that we are creating a new root.
2670		 */
2671		if (!PATH_H_PBUFFER(tb->tb_path, h)) {
2672
2673			RFALSE(tb->blknum[h] != 1,
2674			       "PAP-8350: creating new empty root");
2675
2676			if (h < MAX_HEIGHT - 1)
2677				tb->insert_size[h + 1] = 0;
2678		} else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
2679			/*
2680			 * The tree needs to be grown, so this node S[h]
2681			 * which is the root node is split into two nodes,
2682			 * and a new node (S[h+1]) will be created to
2683			 * become the root node.
2684			 */
2685			if (tb->blknum[h] > 1) {
2686
2687				RFALSE(h == MAX_HEIGHT - 1,
2688				       "PAP-8355: attempt to create too high of a tree");
2689
2690				tb->insert_size[h + 1] =
2691				    (DC_SIZE +
2692				     KEY_SIZE) * (tb->blknum[h] - 1) +
2693				    DC_SIZE;
2694			} else if (h < MAX_HEIGHT - 1)
2695				tb->insert_size[h + 1] = 0;
2696		} else
2697			tb->insert_size[h + 1] =
2698			    (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
2699	}
2700
2701	ret = wait_tb_buffers_until_unlocked(tb);
2702	if (ret == CARRY_ON) {
2703		if (FILESYSTEM_CHANGED_TB(tb)) {
2704			wait_tb_buffers_run = 1;
2705			ret = REPEAT_SEARCH;
2706			goto repeat;
2707		} else {
2708			return CARRY_ON;
2709		}
2710	} else {
2711		wait_tb_buffers_run = 1;
2712		goto repeat;
2713	}
2714
2715repeat:
2716	/*
2717	 * fix_nodes was unable to perform its calculation due to
2718	 * filesystem got changed under us, lack of free disk space or i/o
2719	 * failure. If the first is the case - the search will be
2720	 * repeated. For now - free all resources acquired so far except
2721	 * for the new allocated nodes
2722	 */
2723	{
2724		int i;
2725
2726		/* Release path buffers. */
2727		if (wait_tb_buffers_run) {
2728			pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2729		} else {
2730			pathrelse(tb->tb_path);
2731		}
2732		/* brelse all resources collected for balancing */
2733		for (i = 0; i < MAX_HEIGHT; i++) {
2734			if (wait_tb_buffers_run) {
2735				reiserfs_restore_prepared_buffer(tb->tb_sb,
2736								 tb->L[i]);
2737				reiserfs_restore_prepared_buffer(tb->tb_sb,
2738								 tb->R[i]);
2739				reiserfs_restore_prepared_buffer(tb->tb_sb,
2740								 tb->FL[i]);
2741				reiserfs_restore_prepared_buffer(tb->tb_sb,
2742								 tb->FR[i]);
2743				reiserfs_restore_prepared_buffer(tb->tb_sb,
2744								 tb->
2745								 CFL[i]);
2746				reiserfs_restore_prepared_buffer(tb->tb_sb,
2747								 tb->
2748								 CFR[i]);
2749			}
2750
2751			brelse(tb->L[i]);
2752			brelse(tb->R[i]);
2753			brelse(tb->FL[i]);
2754			brelse(tb->FR[i]);
2755			brelse(tb->CFL[i]);
2756			brelse(tb->CFR[i]);
2757
2758			tb->L[i] = NULL;
2759			tb->R[i] = NULL;
2760			tb->FL[i] = NULL;
2761			tb->FR[i] = NULL;
2762			tb->CFL[i] = NULL;
2763			tb->CFR[i] = NULL;
2764		}
2765
2766		if (wait_tb_buffers_run) {
2767			for (i = 0; i < MAX_FEB_SIZE; i++) {
2768				if (tb->FEB[i])
2769					reiserfs_restore_prepared_buffer
2770					    (tb->tb_sb, tb->FEB[i]);
2771			}
2772		}
2773		return ret;
2774	}
2775
2776}
2777
2778void unfix_nodes(struct tree_balance *tb)
2779{
2780	int i;
2781
2782	/* Release path buffers. */
2783	pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2784
2785	/* brelse all resources collected for balancing */
2786	for (i = 0; i < MAX_HEIGHT; i++) {
2787		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2788		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2789		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2790		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2791		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2792		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2793
2794		brelse(tb->L[i]);
2795		brelse(tb->R[i]);
2796		brelse(tb->FL[i]);
2797		brelse(tb->FR[i]);
2798		brelse(tb->CFL[i]);
2799		brelse(tb->CFR[i]);
2800	}
2801
2802	/* deal with list of allocated (used and unused) nodes */
2803	for (i = 0; i < MAX_FEB_SIZE; i++) {
2804		if (tb->FEB[i]) {
2805			b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2806			/*
2807			 * de-allocated block which was not used by
2808			 * balancing and bforget about buffer for it
2809			 */
2810			brelse(tb->FEB[i]);
2811			reiserfs_free_block(tb->transaction_handle, NULL,
2812					    blocknr, 0);
2813		}
2814		if (tb->used[i]) {
2815			/* release used as new nodes including a new root */
2816			brelse(tb->used[i]);
2817		}
2818	}
2819
2820	kfree(tb->vn_buf);
2821
2822}
2823