1// SPDX-License-Identifier: GPL-2.0
2/*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 * TODO: try to use extents tree (instead of array)
7 */
8
9#include <linux/blkdev.h>
10#include <linux/fs.h>
11#include <linux/log2.h>
12
13#include "debug.h"
14#include "ntfs.h"
15#include "ntfs_fs.h"
16
17/* runs_tree is a continues memory. Try to avoid big size. */
18#define NTFS3_RUN_MAX_BYTES 0x10000
19
20struct ntfs_run {
21	CLST vcn; /* Virtual cluster number. */
22	CLST len; /* Length in clusters. */
23	CLST lcn; /* Logical cluster number. */
24};
25
26/*
27 * run_lookup - Lookup the index of a MCB entry that is first <= vcn.
28 *
29 * Case of success it will return non-zero value and set
30 * @index parameter to index of entry been found.
31 * Case of entry missing from list 'index' will be set to
32 * point to insertion position for the entry question.
33 */
34static bool run_lookup(const struct runs_tree *run, CLST vcn, size_t *index)
35{
36	size_t min_idx, max_idx, mid_idx;
37	struct ntfs_run *r;
38
39	if (!run->count) {
40		*index = 0;
41		return false;
42	}
43
44	min_idx = 0;
45	max_idx = run->count - 1;
46
47	/* Check boundary cases specially, 'cause they cover the often requests. */
48	r = run->runs;
49	if (vcn < r->vcn) {
50		*index = 0;
51		return false;
52	}
53
54	if (vcn < r->vcn + r->len) {
55		*index = 0;
56		return true;
57	}
58
59	r += max_idx;
60	if (vcn >= r->vcn + r->len) {
61		*index = run->count;
62		return false;
63	}
64
65	if (vcn >= r->vcn) {
66		*index = max_idx;
67		return true;
68	}
69
70	do {
71		mid_idx = min_idx + ((max_idx - min_idx) >> 1);
72		r = run->runs + mid_idx;
73
74		if (vcn < r->vcn) {
75			max_idx = mid_idx - 1;
76			if (!mid_idx)
77				break;
78		} else if (vcn >= r->vcn + r->len) {
79			min_idx = mid_idx + 1;
80		} else {
81			*index = mid_idx;
82			return true;
83		}
84	} while (min_idx <= max_idx);
85
86	*index = max_idx + 1;
87	return false;
88}
89
90/*
91 * run_consolidate - Consolidate runs starting from a given one.
92 */
93static void run_consolidate(struct runs_tree *run, size_t index)
94{
95	size_t i;
96	struct ntfs_run *r = run->runs + index;
97
98	while (index + 1 < run->count) {
99		/*
100		 * I should merge current run with next
101		 * if start of the next run lies inside one being tested.
102		 */
103		struct ntfs_run *n = r + 1;
104		CLST end = r->vcn + r->len;
105		CLST dl;
106
107		/* Stop if runs are not aligned one to another. */
108		if (n->vcn > end)
109			break;
110
111		dl = end - n->vcn;
112
113		/*
114		 * If range at index overlaps with next one
115		 * then I will either adjust it's start position
116		 * or (if completely matches) dust remove one from the list.
117		 */
118		if (dl > 0) {
119			if (n->len <= dl)
120				goto remove_next_range;
121
122			n->len -= dl;
123			n->vcn += dl;
124			if (n->lcn != SPARSE_LCN)
125				n->lcn += dl;
126			dl = 0;
127		}
128
129		/*
130		 * Stop if sparse mode does not match
131		 * both current and next runs.
132		 */
133		if ((n->lcn == SPARSE_LCN) != (r->lcn == SPARSE_LCN)) {
134			index += 1;
135			r = n;
136			continue;
137		}
138
139		/*
140		 * Check if volume block
141		 * of a next run lcn does not match
142		 * last volume block of the current run.
143		 */
144		if (n->lcn != SPARSE_LCN && n->lcn != r->lcn + r->len)
145			break;
146
147		/*
148		 * Next and current are siblings.
149		 * Eat/join.
150		 */
151		r->len += n->len - dl;
152
153remove_next_range:
154		i = run->count - (index + 1);
155		if (i > 1)
156			memmove(n, n + 1, sizeof(*n) * (i - 1));
157
158		run->count -= 1;
159	}
160}
161
162/*
163 * run_is_mapped_full
164 *
165 * Return: True if range [svcn - evcn] is mapped.
166 */
167bool run_is_mapped_full(const struct runs_tree *run, CLST svcn, CLST evcn)
168{
169	size_t i;
170	const struct ntfs_run *r, *end;
171	CLST next_vcn;
172
173	if (!run_lookup(run, svcn, &i))
174		return false;
175
176	end = run->runs + run->count;
177	r = run->runs + i;
178
179	for (;;) {
180		next_vcn = r->vcn + r->len;
181		if (next_vcn > evcn)
182			return true;
183
184		if (++r >= end)
185			return false;
186
187		if (r->vcn != next_vcn)
188			return false;
189	}
190}
191
192bool run_lookup_entry(const struct runs_tree *run, CLST vcn, CLST *lcn,
193		      CLST *len, size_t *index)
194{
195	size_t idx;
196	CLST gap;
197	struct ntfs_run *r;
198
199	/* Fail immediately if nrun was not touched yet. */
200	if (!run->runs)
201		return false;
202
203	if (!run_lookup(run, vcn, &idx))
204		return false;
205
206	r = run->runs + idx;
207
208	if (vcn >= r->vcn + r->len)
209		return false;
210
211	gap = vcn - r->vcn;
212	if (r->len <= gap)
213		return false;
214
215	*lcn = r->lcn == SPARSE_LCN ? SPARSE_LCN : (r->lcn + gap);
216
217	if (len)
218		*len = r->len - gap;
219	if (index)
220		*index = idx;
221
222	return true;
223}
224
225/*
226 * run_truncate_head - Decommit the range before vcn.
227 */
228void run_truncate_head(struct runs_tree *run, CLST vcn)
229{
230	size_t index;
231	struct ntfs_run *r;
232
233	if (run_lookup(run, vcn, &index)) {
234		r = run->runs + index;
235
236		if (vcn > r->vcn) {
237			CLST dlen = vcn - r->vcn;
238
239			r->vcn = vcn;
240			r->len -= dlen;
241			if (r->lcn != SPARSE_LCN)
242				r->lcn += dlen;
243		}
244
245		if (!index)
246			return;
247	}
248	r = run->runs;
249	memmove(r, r + index, sizeof(*r) * (run->count - index));
250
251	run->count -= index;
252
253	if (!run->count) {
254		kvfree(run->runs);
255		run->runs = NULL;
256		run->allocated = 0;
257	}
258}
259
260/*
261 * run_truncate - Decommit the range after vcn.
262 */
263void run_truncate(struct runs_tree *run, CLST vcn)
264{
265	size_t index;
266
267	/*
268	 * If I hit the range then
269	 * I have to truncate one.
270	 * If range to be truncated is becoming empty
271	 * then it will entirely be removed.
272	 */
273	if (run_lookup(run, vcn, &index)) {
274		struct ntfs_run *r = run->runs + index;
275
276		r->len = vcn - r->vcn;
277
278		if (r->len > 0)
279			index += 1;
280	}
281
282	/*
283	 * At this point 'index' is set to position that
284	 * should be thrown away (including index itself)
285	 * Simple one - just set the limit.
286	 */
287	run->count = index;
288
289	/* Do not reallocate array 'runs'. Only free if possible. */
290	if (!index) {
291		kvfree(run->runs);
292		run->runs = NULL;
293		run->allocated = 0;
294	}
295}
296
297/*
298 * run_truncate_around - Trim head and tail if necessary.
299 */
300void run_truncate_around(struct runs_tree *run, CLST vcn)
301{
302	run_truncate_head(run, vcn);
303
304	if (run->count >= NTFS3_RUN_MAX_BYTES / sizeof(struct ntfs_run) / 2)
305		run_truncate(run, (run->runs + (run->count >> 1))->vcn);
306}
307
308/*
309 * run_add_entry
310 *
311 * Sets location to known state.
312 * Run to be added may overlap with existing location.
313 *
314 * Return: false if of memory.
315 */
316bool run_add_entry(struct runs_tree *run, CLST vcn, CLST lcn, CLST len,
317		   bool is_mft)
318{
319	size_t used, index;
320	struct ntfs_run *r;
321	bool inrange;
322	CLST tail_vcn = 0, tail_len = 0, tail_lcn = 0;
323	bool should_add_tail = false;
324
325	/*
326	 * Lookup the insertion point.
327	 *
328	 * Execute bsearch for the entry containing
329	 * start position question.
330	 */
331	inrange = run_lookup(run, vcn, &index);
332
333	/*
334	 * Shortcut here would be case of
335	 * range not been found but one been added
336	 * continues previous run.
337	 * This case I can directly make use of
338	 * existing range as my start point.
339	 */
340	if (!inrange && index > 0) {
341		struct ntfs_run *t = run->runs + index - 1;
342
343		if (t->vcn + t->len == vcn &&
344		    (t->lcn == SPARSE_LCN) == (lcn == SPARSE_LCN) &&
345		    (lcn == SPARSE_LCN || lcn == t->lcn + t->len)) {
346			inrange = true;
347			index -= 1;
348		}
349	}
350
351	/*
352	 * At this point 'index' either points to the range
353	 * containing start position or to the insertion position
354	 * for a new range.
355	 * So first let's check if range I'm probing is here already.
356	 */
357	if (!inrange) {
358requires_new_range:
359		/*
360		 * Range was not found.
361		 * Insert at position 'index'
362		 */
363		used = run->count * sizeof(struct ntfs_run);
364
365		/*
366		 * Check allocated space.
367		 * If one is not enough to get one more entry
368		 * then it will be reallocated.
369		 */
370		if (run->allocated < used + sizeof(struct ntfs_run)) {
371			size_t bytes;
372			struct ntfs_run *new_ptr;
373
374			/* Use power of 2 for 'bytes'. */
375			if (!used) {
376				bytes = 64;
377			} else if (used <= 16 * PAGE_SIZE) {
378				if (is_power_of_2(run->allocated))
379					bytes = run->allocated << 1;
380				else
381					bytes = (size_t)1
382						<< (2 + blksize_bits(used));
383			} else {
384				bytes = run->allocated + (16 * PAGE_SIZE);
385			}
386
387			WARN_ON(!is_mft && bytes > NTFS3_RUN_MAX_BYTES);
388
389			new_ptr = kvmalloc(bytes, GFP_KERNEL);
390
391			if (!new_ptr)
392				return false;
393
394			r = new_ptr + index;
395			memcpy(new_ptr, run->runs,
396			       index * sizeof(struct ntfs_run));
397			memcpy(r + 1, run->runs + index,
398			       sizeof(struct ntfs_run) * (run->count - index));
399
400			kvfree(run->runs);
401			run->runs = new_ptr;
402			run->allocated = bytes;
403
404		} else {
405			size_t i = run->count - index;
406
407			r = run->runs + index;
408
409			/* memmove appears to be a bottle neck here... */
410			if (i > 0)
411				memmove(r + 1, r, sizeof(struct ntfs_run) * i);
412		}
413
414		r->vcn = vcn;
415		r->lcn = lcn;
416		r->len = len;
417		run->count += 1;
418	} else {
419		r = run->runs + index;
420
421		/*
422		 * If one of ranges was not allocated then we
423		 * have to split location we just matched and
424		 * insert current one.
425		 * A common case this requires tail to be reinserted
426		 * a recursive call.
427		 */
428		if (((lcn == SPARSE_LCN) != (r->lcn == SPARSE_LCN)) ||
429		    (lcn != SPARSE_LCN && lcn != r->lcn + (vcn - r->vcn))) {
430			CLST to_eat = vcn - r->vcn;
431			CLST Tovcn = to_eat + len;
432
433			should_add_tail = Tovcn < r->len;
434
435			if (should_add_tail) {
436				tail_lcn = r->lcn == SPARSE_LCN ?
437						   SPARSE_LCN :
438						   (r->lcn + Tovcn);
439				tail_vcn = r->vcn + Tovcn;
440				tail_len = r->len - Tovcn;
441			}
442
443			if (to_eat > 0) {
444				r->len = to_eat;
445				inrange = false;
446				index += 1;
447				goto requires_new_range;
448			}
449
450			/* lcn should match one were going to add. */
451			r->lcn = lcn;
452		}
453
454		/*
455		 * If existing range fits then were done.
456		 * Otherwise extend found one and fall back to range jocode.
457		 */
458		if (r->vcn + r->len < vcn + len)
459			r->len += len - ((r->vcn + r->len) - vcn);
460	}
461
462	/*
463	 * And normalize it starting from insertion point.
464	 * It's possible that no insertion needed case if
465	 * start point lies within the range of an entry
466	 * that 'index' points to.
467	 */
468	if (inrange && index > 0)
469		index -= 1;
470	run_consolidate(run, index);
471	run_consolidate(run, index + 1);
472
473	/*
474	 * A special case.
475	 * We have to add extra range a tail.
476	 */
477	if (should_add_tail &&
478	    !run_add_entry(run, tail_vcn, tail_lcn, tail_len, is_mft))
479		return false;
480
481	return true;
482}
483
484/* run_collapse_range
485 *
486 * Helper for attr_collapse_range(),
487 * which is helper for fallocate(collapse_range).
488 */
489bool run_collapse_range(struct runs_tree *run, CLST vcn, CLST len)
490{
491	size_t index, eat;
492	struct ntfs_run *r, *e, *eat_start, *eat_end;
493	CLST end;
494
495	if (WARN_ON(!run_lookup(run, vcn, &index)))
496		return true; /* Should never be here. */
497
498	e = run->runs + run->count;
499	r = run->runs + index;
500	end = vcn + len;
501
502	if (vcn > r->vcn) {
503		if (r->vcn + r->len <= end) {
504			/* Collapse tail of run .*/
505			r->len = vcn - r->vcn;
506		} else if (r->lcn == SPARSE_LCN) {
507			/* Collapse a middle part of sparsed run. */
508			r->len -= len;
509		} else {
510			/* Collapse a middle part of normal run, split. */
511			if (!run_add_entry(run, vcn, SPARSE_LCN, len, false))
512				return false;
513			return run_collapse_range(run, vcn, len);
514		}
515
516		r += 1;
517	}
518
519	eat_start = r;
520	eat_end = r;
521
522	for (; r < e; r++) {
523		CLST d;
524
525		if (r->vcn >= end) {
526			r->vcn -= len;
527			continue;
528		}
529
530		if (r->vcn + r->len <= end) {
531			/* Eat this run. */
532			eat_end = r + 1;
533			continue;
534		}
535
536		d = end - r->vcn;
537		if (r->lcn != SPARSE_LCN)
538			r->lcn += d;
539		r->len -= d;
540		r->vcn -= len - d;
541	}
542
543	eat = eat_end - eat_start;
544	memmove(eat_start, eat_end, (e - eat_end) * sizeof(*r));
545	run->count -= eat;
546
547	return true;
548}
549
550/* run_insert_range
551 *
552 * Helper for attr_insert_range(),
553 * which is helper for fallocate(insert_range).
554 */
555bool run_insert_range(struct runs_tree *run, CLST vcn, CLST len)
556{
557	size_t index;
558	struct ntfs_run *r, *e;
559
560	if (WARN_ON(!run_lookup(run, vcn, &index)))
561		return false; /* Should never be here. */
562
563	e = run->runs + run->count;
564	r = run->runs + index;
565
566	if (vcn > r->vcn)
567		r += 1;
568
569	for (; r < e; r++)
570		r->vcn += len;
571
572	r = run->runs + index;
573
574	if (vcn > r->vcn) {
575		/* split fragment. */
576		CLST len1 = vcn - r->vcn;
577		CLST len2 = r->len - len1;
578		CLST lcn2 = r->lcn == SPARSE_LCN ? SPARSE_LCN : (r->lcn + len1);
579
580		r->len = len1;
581
582		if (!run_add_entry(run, vcn + len, lcn2, len2, false))
583			return false;
584	}
585
586	if (!run_add_entry(run, vcn, SPARSE_LCN, len, false))
587		return false;
588
589	return true;
590}
591
592/*
593 * run_get_entry - Return index-th mapped region.
594 */
595bool run_get_entry(const struct runs_tree *run, size_t index, CLST *vcn,
596		   CLST *lcn, CLST *len)
597{
598	const struct ntfs_run *r;
599
600	if (index >= run->count)
601		return false;
602
603	r = run->runs + index;
604
605	if (!r->len)
606		return false;
607
608	if (vcn)
609		*vcn = r->vcn;
610	if (lcn)
611		*lcn = r->lcn;
612	if (len)
613		*len = r->len;
614	return true;
615}
616
617/*
618 * run_packed_size - Calculate the size of packed int64.
619 */
620#ifdef __BIG_ENDIAN
621static inline int run_packed_size(const s64 n)
622{
623	const u8 *p = (const u8 *)&n + sizeof(n) - 1;
624
625	if (n >= 0) {
626		if (p[-7] || p[-6] || p[-5] || p[-4])
627			p -= 4;
628		if (p[-3] || p[-2])
629			p -= 2;
630		if (p[-1])
631			p -= 1;
632		if (p[0] & 0x80)
633			p -= 1;
634	} else {
635		if (p[-7] != 0xff || p[-6] != 0xff || p[-5] != 0xff ||
636		    p[-4] != 0xff)
637			p -= 4;
638		if (p[-3] != 0xff || p[-2] != 0xff)
639			p -= 2;
640		if (p[-1] != 0xff)
641			p -= 1;
642		if (!(p[0] & 0x80))
643			p -= 1;
644	}
645	return (const u8 *)&n + sizeof(n) - p;
646}
647
648/* Full trusted function. It does not check 'size' for errors. */
649static inline void run_pack_s64(u8 *run_buf, u8 size, s64 v)
650{
651	const u8 *p = (u8 *)&v;
652
653	switch (size) {
654	case 8:
655		run_buf[7] = p[0];
656		fallthrough;
657	case 7:
658		run_buf[6] = p[1];
659		fallthrough;
660	case 6:
661		run_buf[5] = p[2];
662		fallthrough;
663	case 5:
664		run_buf[4] = p[3];
665		fallthrough;
666	case 4:
667		run_buf[3] = p[4];
668		fallthrough;
669	case 3:
670		run_buf[2] = p[5];
671		fallthrough;
672	case 2:
673		run_buf[1] = p[6];
674		fallthrough;
675	case 1:
676		run_buf[0] = p[7];
677	}
678}
679
680/* Full trusted function. It does not check 'size' for errors. */
681static inline s64 run_unpack_s64(const u8 *run_buf, u8 size, s64 v)
682{
683	u8 *p = (u8 *)&v;
684
685	switch (size) {
686	case 8:
687		p[0] = run_buf[7];
688		fallthrough;
689	case 7:
690		p[1] = run_buf[6];
691		fallthrough;
692	case 6:
693		p[2] = run_buf[5];
694		fallthrough;
695	case 5:
696		p[3] = run_buf[4];
697		fallthrough;
698	case 4:
699		p[4] = run_buf[3];
700		fallthrough;
701	case 3:
702		p[5] = run_buf[2];
703		fallthrough;
704	case 2:
705		p[6] = run_buf[1];
706		fallthrough;
707	case 1:
708		p[7] = run_buf[0];
709	}
710	return v;
711}
712
713#else
714
715static inline int run_packed_size(const s64 n)
716{
717	const u8 *p = (const u8 *)&n;
718
719	if (n >= 0) {
720		if (p[7] || p[6] || p[5] || p[4])
721			p += 4;
722		if (p[3] || p[2])
723			p += 2;
724		if (p[1])
725			p += 1;
726		if (p[0] & 0x80)
727			p += 1;
728	} else {
729		if (p[7] != 0xff || p[6] != 0xff || p[5] != 0xff ||
730		    p[4] != 0xff)
731			p += 4;
732		if (p[3] != 0xff || p[2] != 0xff)
733			p += 2;
734		if (p[1] != 0xff)
735			p += 1;
736		if (!(p[0] & 0x80))
737			p += 1;
738	}
739
740	return 1 + p - (const u8 *)&n;
741}
742
743/* Full trusted function. It does not check 'size' for errors. */
744static inline void run_pack_s64(u8 *run_buf, u8 size, s64 v)
745{
746	const u8 *p = (u8 *)&v;
747
748	/* memcpy( run_buf, &v, size); Is it faster? */
749	switch (size) {
750	case 8:
751		run_buf[7] = p[7];
752		fallthrough;
753	case 7:
754		run_buf[6] = p[6];
755		fallthrough;
756	case 6:
757		run_buf[5] = p[5];
758		fallthrough;
759	case 5:
760		run_buf[4] = p[4];
761		fallthrough;
762	case 4:
763		run_buf[3] = p[3];
764		fallthrough;
765	case 3:
766		run_buf[2] = p[2];
767		fallthrough;
768	case 2:
769		run_buf[1] = p[1];
770		fallthrough;
771	case 1:
772		run_buf[0] = p[0];
773	}
774}
775
776/* full trusted function. It does not check 'size' for errors */
777static inline s64 run_unpack_s64(const u8 *run_buf, u8 size, s64 v)
778{
779	u8 *p = (u8 *)&v;
780
781	/* memcpy( &v, run_buf, size); Is it faster? */
782	switch (size) {
783	case 8:
784		p[7] = run_buf[7];
785		fallthrough;
786	case 7:
787		p[6] = run_buf[6];
788		fallthrough;
789	case 6:
790		p[5] = run_buf[5];
791		fallthrough;
792	case 5:
793		p[4] = run_buf[4];
794		fallthrough;
795	case 4:
796		p[3] = run_buf[3];
797		fallthrough;
798	case 3:
799		p[2] = run_buf[2];
800		fallthrough;
801	case 2:
802		p[1] = run_buf[1];
803		fallthrough;
804	case 1:
805		p[0] = run_buf[0];
806	}
807	return v;
808}
809#endif
810
811/*
812 * run_pack - Pack runs into buffer.
813 *
814 * packed_vcns - How much runs we have packed.
815 * packed_size - How much bytes we have used run_buf.
816 */
817int run_pack(const struct runs_tree *run, CLST svcn, CLST len, u8 *run_buf,
818	     u32 run_buf_size, CLST *packed_vcns)
819{
820	CLST next_vcn, vcn, lcn;
821	CLST prev_lcn = 0;
822	CLST evcn1 = svcn + len;
823	const struct ntfs_run *r, *r_end;
824	int packed_size = 0;
825	size_t i;
826	s64 dlcn;
827	int offset_size, size_size, tmp;
828
829	*packed_vcns = 0;
830
831	if (!len)
832		goto out;
833
834	/* Check all required entries [svcn, encv1) available. */
835	if (!run_lookup(run, svcn, &i))
836		return -ENOENT;
837
838	r_end = run->runs + run->count;
839	r = run->runs + i;
840
841	for (next_vcn = r->vcn + r->len; next_vcn < evcn1;
842	     next_vcn = r->vcn + r->len) {
843		if (++r >= r_end || r->vcn != next_vcn)
844			return -ENOENT;
845	}
846
847	/* Repeat cycle above and pack runs. Assume no errors. */
848	r = run->runs + i;
849	len = svcn - r->vcn;
850	vcn = svcn;
851	lcn = r->lcn == SPARSE_LCN ? SPARSE_LCN : (r->lcn + len);
852	len = r->len - len;
853
854	for (;;) {
855		next_vcn = vcn + len;
856		if (next_vcn > evcn1)
857			len = evcn1 - vcn;
858
859		/* How much bytes required to pack len. */
860		size_size = run_packed_size(len);
861
862		/* offset_size - How much bytes is packed dlcn. */
863		if (lcn == SPARSE_LCN) {
864			offset_size = 0;
865			dlcn = 0;
866		} else {
867			/* NOTE: lcn can be less than prev_lcn! */
868			dlcn = (s64)lcn - prev_lcn;
869			offset_size = run_packed_size(dlcn);
870			prev_lcn = lcn;
871		}
872
873		tmp = run_buf_size - packed_size - 2 - offset_size;
874		if (tmp <= 0)
875			goto out;
876
877		/* Can we store this entire run. */
878		if (tmp < size_size)
879			goto out;
880
881		if (run_buf) {
882			/* Pack run header. */
883			run_buf[0] = ((u8)(size_size | (offset_size << 4)));
884			run_buf += 1;
885
886			/* Pack the length of run. */
887			run_pack_s64(run_buf, size_size, len);
888
889			run_buf += size_size;
890			/* Pack the offset from previous LCN. */
891			run_pack_s64(run_buf, offset_size, dlcn);
892			run_buf += offset_size;
893		}
894
895		packed_size += 1 + offset_size + size_size;
896		*packed_vcns += len;
897
898		if (packed_size + 1 >= run_buf_size || next_vcn >= evcn1)
899			goto out;
900
901		r += 1;
902		vcn = r->vcn;
903		lcn = r->lcn;
904		len = r->len;
905	}
906
907out:
908	/* Store last zero. */
909	if (run_buf)
910		run_buf[0] = 0;
911
912	return packed_size + 1;
913}
914
915/*
916 * run_unpack - Unpack packed runs from @run_buf.
917 *
918 * Return: Error if negative, or real used bytes.
919 */
920int run_unpack(struct runs_tree *run, struct ntfs_sb_info *sbi, CLST ino,
921	       CLST svcn, CLST evcn, CLST vcn, const u8 *run_buf,
922	       int run_buf_size)
923{
924	u64 prev_lcn, vcn64, lcn, next_vcn;
925	const u8 *run_last, *run_0;
926	bool is_mft = ino == MFT_REC_MFT;
927
928	if (run_buf_size < 0)
929		return -EINVAL;
930
931	/* Check for empty. */
932	if (evcn + 1 == svcn)
933		return 0;
934
935	if (evcn < svcn)
936		return -EINVAL;
937
938	run_0 = run_buf;
939	run_last = run_buf + run_buf_size;
940	prev_lcn = 0;
941	vcn64 = svcn;
942
943	/* Read all runs the chain. */
944	/* size_size - How much bytes is packed len. */
945	while (run_buf < run_last) {
946		/* size_size - How much bytes is packed len. */
947		u8 size_size = *run_buf & 0xF;
948		/* offset_size - How much bytes is packed dlcn. */
949		u8 offset_size = *run_buf++ >> 4;
950		u64 len;
951
952		if (!size_size)
953			break;
954
955		/*
956		 * Unpack runs.
957		 * NOTE: Runs are stored little endian order
958		 * "len" is unsigned value, "dlcn" is signed.
959		 * Large positive number requires to store 5 bytes
960		 * e.g.: 05 FF 7E FF FF 00 00 00
961		 */
962		if (size_size > 8)
963			return -EINVAL;
964
965		len = run_unpack_s64(run_buf, size_size, 0);
966		/* Skip size_size. */
967		run_buf += size_size;
968
969		if (!len)
970			return -EINVAL;
971
972		if (!offset_size)
973			lcn = SPARSE_LCN64;
974		else if (offset_size <= 8) {
975			s64 dlcn;
976
977			/* Initial value of dlcn is -1 or 0. */
978			dlcn = (run_buf[offset_size - 1] & 0x80) ? (s64)-1 : 0;
979			dlcn = run_unpack_s64(run_buf, offset_size, dlcn);
980			/* Skip offset_size. */
981			run_buf += offset_size;
982
983			if (!dlcn)
984				return -EINVAL;
985			lcn = prev_lcn + dlcn;
986			prev_lcn = lcn;
987		} else
988			return -EINVAL;
989
990		next_vcn = vcn64 + len;
991		/* Check boundary. */
992		if (next_vcn > evcn + 1)
993			return -EINVAL;
994
995#ifndef CONFIG_NTFS3_64BIT_CLUSTER
996		if (next_vcn > 0x100000000ull || (lcn + len) > 0x100000000ull) {
997			ntfs_err(
998				sbi->sb,
999				"This driver is compiled without CONFIG_NTFS3_64BIT_CLUSTER (like windows driver).\n"
1000				"Volume contains 64 bits run: vcn %llx, lcn %llx, len %llx.\n"
1001				"Activate CONFIG_NTFS3_64BIT_CLUSTER to process this case",
1002				vcn64, lcn, len);
1003			return -EOPNOTSUPP;
1004		}
1005#endif
1006		if (lcn != SPARSE_LCN64 && lcn + len > sbi->used.bitmap.nbits) {
1007			/* LCN range is out of volume. */
1008			return -EINVAL;
1009		}
1010
1011		if (!run)
1012			; /* Called from check_attr(fslog.c) to check run. */
1013		else if (run == RUN_DEALLOCATE) {
1014			/*
1015			 * Called from ni_delete_all to free clusters
1016			 * without storing in run.
1017			 */
1018			if (lcn != SPARSE_LCN64)
1019				mark_as_free_ex(sbi, lcn, len, true);
1020		} else if (vcn64 >= vcn) {
1021			if (!run_add_entry(run, vcn64, lcn, len, is_mft))
1022				return -ENOMEM;
1023		} else if (next_vcn > vcn) {
1024			u64 dlen = vcn - vcn64;
1025
1026			if (!run_add_entry(run, vcn, lcn + dlen, len - dlen,
1027					   is_mft))
1028				return -ENOMEM;
1029		}
1030
1031		vcn64 = next_vcn;
1032	}
1033
1034	if (vcn64 != evcn + 1) {
1035		/* Not expected length of unpacked runs. */
1036		return -EINVAL;
1037	}
1038
1039	return run_buf - run_0;
1040}
1041
1042#ifdef NTFS3_CHECK_FREE_CLST
1043/*
1044 * run_unpack_ex - Unpack packed runs from "run_buf".
1045 *
1046 * Checks unpacked runs to be used in bitmap.
1047 *
1048 * Return: Error if negative, or real used bytes.
1049 */
1050int run_unpack_ex(struct runs_tree *run, struct ntfs_sb_info *sbi, CLST ino,
1051		  CLST svcn, CLST evcn, CLST vcn, const u8 *run_buf,
1052		  int run_buf_size)
1053{
1054	int ret, err;
1055	CLST next_vcn, lcn, len;
1056	size_t index;
1057	bool ok;
1058	struct wnd_bitmap *wnd;
1059
1060	ret = run_unpack(run, sbi, ino, svcn, evcn, vcn, run_buf, run_buf_size);
1061	if (ret <= 0)
1062		return ret;
1063
1064	if (!sbi->used.bitmap.sb || !run || run == RUN_DEALLOCATE)
1065		return ret;
1066
1067	if (ino == MFT_REC_BADCLUST)
1068		return ret;
1069
1070	next_vcn = vcn = svcn;
1071	wnd = &sbi->used.bitmap;
1072
1073	for (ok = run_lookup_entry(run, vcn, &lcn, &len, &index);
1074	     next_vcn <= evcn;
1075	     ok = run_get_entry(run, ++index, &vcn, &lcn, &len)) {
1076		if (!ok || next_vcn != vcn)
1077			return -EINVAL;
1078
1079		next_vcn = vcn + len;
1080
1081		if (lcn == SPARSE_LCN)
1082			continue;
1083
1084		if (sbi->flags & NTFS_FLAGS_NEED_REPLAY)
1085			continue;
1086
1087		down_read_nested(&wnd->rw_lock, BITMAP_MUTEX_CLUSTERS);
1088		/* Check for free blocks. */
1089		ok = wnd_is_used(wnd, lcn, len);
1090		up_read(&wnd->rw_lock);
1091		if (ok)
1092			continue;
1093
1094		/* Looks like volume is corrupted. */
1095		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1096
1097		if (down_write_trylock(&wnd->rw_lock)) {
1098			/* Mark all zero bits as used in range [lcn, lcn+len). */
1099			size_t done;
1100			err = wnd_set_used_safe(wnd, lcn, len, &done);
1101			up_write(&wnd->rw_lock);
1102			if (err)
1103				return err;
1104		}
1105	}
1106
1107	return ret;
1108}
1109#endif
1110
1111/*
1112 * run_get_highest_vcn
1113 *
1114 * Return the highest vcn from a mapping pairs array
1115 * it used while replaying log file.
1116 */
1117int run_get_highest_vcn(CLST vcn, const u8 *run_buf, u64 *highest_vcn)
1118{
1119	u64 vcn64 = vcn;
1120	u8 size_size;
1121
1122	while ((size_size = *run_buf & 0xF)) {
1123		u8 offset_size = *run_buf++ >> 4;
1124		u64 len;
1125
1126		if (size_size > 8 || offset_size > 8)
1127			return -EINVAL;
1128
1129		len = run_unpack_s64(run_buf, size_size, 0);
1130		if (!len)
1131			return -EINVAL;
1132
1133		run_buf += size_size + offset_size;
1134		vcn64 += len;
1135
1136#ifndef CONFIG_NTFS3_64BIT_CLUSTER
1137		if (vcn64 > 0x100000000ull)
1138			return -EINVAL;
1139#endif
1140	}
1141
1142	*highest_vcn = vcn64 - 1;
1143	return 0;
1144}
1145
1146/*
1147 * run_clone
1148 *
1149 * Make a copy of run
1150 */
1151int run_clone(const struct runs_tree *run, struct runs_tree *new_run)
1152{
1153	size_t bytes = run->count * sizeof(struct ntfs_run);
1154
1155	if (bytes > new_run->allocated) {
1156		struct ntfs_run *new_ptr = kvmalloc(bytes, GFP_KERNEL);
1157
1158		if (!new_ptr)
1159			return -ENOMEM;
1160
1161		kvfree(new_run->runs);
1162		new_run->runs = new_ptr;
1163		new_run->allocated = bytes;
1164	}
1165
1166	memcpy(new_run->runs, run->runs, bytes);
1167	new_run->count = run->count;
1168	return 0;
1169}
1170