1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * NILFS module and super block management.
4 *
5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 *
7 * Written by Ryusuke Konishi.
8 */
9/*
10 *  linux/fs/ext2/super.c
11 *
12 * Copyright (C) 1992, 1993, 1994, 1995
13 * Remy Card (card@masi.ibp.fr)
14 * Laboratoire MASI - Institut Blaise Pascal
15 * Universite Pierre et Marie Curie (Paris VI)
16 *
17 *  from
18 *
19 *  linux/fs/minix/inode.c
20 *
21 *  Copyright (C) 1991, 1992  Linus Torvalds
22 *
23 *  Big-endian to little-endian byte-swapping/bitmaps by
24 *        David S. Miller (davem@caip.rutgers.edu), 1995
25 */
26
27#include <linux/module.h>
28#include <linux/string.h>
29#include <linux/slab.h>
30#include <linux/init.h>
31#include <linux/blkdev.h>
32#include <linux/parser.h>
33#include <linux/crc32.h>
34#include <linux/vfs.h>
35#include <linux/writeback.h>
36#include <linux/seq_file.h>
37#include <linux/mount.h>
38#include <linux/fs_context.h>
39#include "nilfs.h"
40#include "export.h"
41#include "mdt.h"
42#include "alloc.h"
43#include "btree.h"
44#include "btnode.h"
45#include "page.h"
46#include "cpfile.h"
47#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
48#include "ifile.h"
49#include "dat.h"
50#include "segment.h"
51#include "segbuf.h"
52
53MODULE_AUTHOR("NTT Corp.");
54MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
55		   "(NILFS)");
56MODULE_LICENSE("GPL");
57
58static struct kmem_cache *nilfs_inode_cachep;
59struct kmem_cache *nilfs_transaction_cachep;
60struct kmem_cache *nilfs_segbuf_cachep;
61struct kmem_cache *nilfs_btree_path_cache;
62
63static int nilfs_setup_super(struct super_block *sb, int is_mount);
64static int nilfs_remount(struct super_block *sb, int *flags, char *data);
65
66void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
67{
68	struct va_format vaf;
69	va_list args;
70	int level;
71
72	va_start(args, fmt);
73
74	level = printk_get_level(fmt);
75	vaf.fmt = printk_skip_level(fmt);
76	vaf.va = &args;
77
78	if (sb)
79		printk("%c%cNILFS (%s): %pV\n",
80		       KERN_SOH_ASCII, level, sb->s_id, &vaf);
81	else
82		printk("%c%cNILFS: %pV\n",
83		       KERN_SOH_ASCII, level, &vaf);
84
85	va_end(args);
86}
87
88static void nilfs_set_error(struct super_block *sb)
89{
90	struct the_nilfs *nilfs = sb->s_fs_info;
91	struct nilfs_super_block **sbp;
92
93	down_write(&nilfs->ns_sem);
94	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
95		nilfs->ns_mount_state |= NILFS_ERROR_FS;
96		sbp = nilfs_prepare_super(sb, 0);
97		if (likely(sbp)) {
98			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
99			if (sbp[1])
100				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
101			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
102		}
103	}
104	up_write(&nilfs->ns_sem);
105}
106
107/**
108 * __nilfs_error() - report failure condition on a filesystem
109 *
110 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
111 * reporting an error message.  This function should be called when
112 * NILFS detects incoherences or defects of meta data on disk.
113 *
114 * This implements the body of nilfs_error() macro.  Normally,
115 * nilfs_error() should be used.  As for sustainable errors such as a
116 * single-shot I/O error, nilfs_err() should be used instead.
117 *
118 * Callers should not add a trailing newline since this will do it.
119 */
120void __nilfs_error(struct super_block *sb, const char *function,
121		   const char *fmt, ...)
122{
123	struct the_nilfs *nilfs = sb->s_fs_info;
124	struct va_format vaf;
125	va_list args;
126
127	va_start(args, fmt);
128
129	vaf.fmt = fmt;
130	vaf.va = &args;
131
132	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
133	       sb->s_id, function, &vaf);
134
135	va_end(args);
136
137	if (!sb_rdonly(sb)) {
138		nilfs_set_error(sb);
139
140		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
141			printk(KERN_CRIT "Remounting filesystem read-only\n");
142			sb->s_flags |= SB_RDONLY;
143		}
144	}
145
146	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
147		panic("NILFS (device %s): panic forced after error\n",
148		      sb->s_id);
149}
150
151struct inode *nilfs_alloc_inode(struct super_block *sb)
152{
153	struct nilfs_inode_info *ii;
154
155	ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS);
156	if (!ii)
157		return NULL;
158	ii->i_bh = NULL;
159	ii->i_state = 0;
160	ii->i_cno = 0;
161	ii->i_assoc_inode = NULL;
162	ii->i_bmap = &ii->i_bmap_data;
163	return &ii->vfs_inode;
164}
165
166static void nilfs_free_inode(struct inode *inode)
167{
168	if (nilfs_is_metadata_file_inode(inode))
169		nilfs_mdt_destroy(inode);
170
171	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
172}
173
174static int nilfs_sync_super(struct super_block *sb, int flag)
175{
176	struct the_nilfs *nilfs = sb->s_fs_info;
177	int err;
178
179 retry:
180	set_buffer_dirty(nilfs->ns_sbh[0]);
181	if (nilfs_test_opt(nilfs, BARRIER)) {
182		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
183					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
184	} else {
185		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
186	}
187
188	if (unlikely(err)) {
189		nilfs_err(sb, "unable to write superblock: err=%d", err);
190		if (err == -EIO && nilfs->ns_sbh[1]) {
191			/*
192			 * sbp[0] points to newer log than sbp[1],
193			 * so copy sbp[0] to sbp[1] to take over sbp[0].
194			 */
195			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
196			       nilfs->ns_sbsize);
197			nilfs_fall_back_super_block(nilfs);
198			goto retry;
199		}
200	} else {
201		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
202
203		nilfs->ns_sbwcount++;
204
205		/*
206		 * The latest segment becomes trailable from the position
207		 * written in superblock.
208		 */
209		clear_nilfs_discontinued(nilfs);
210
211		/* update GC protection for recent segments */
212		if (nilfs->ns_sbh[1]) {
213			if (flag == NILFS_SB_COMMIT_ALL) {
214				set_buffer_dirty(nilfs->ns_sbh[1]);
215				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
216					goto out;
217			}
218			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
219			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
220				sbp = nilfs->ns_sbp[1];
221		}
222
223		spin_lock(&nilfs->ns_last_segment_lock);
224		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
225		spin_unlock(&nilfs->ns_last_segment_lock);
226	}
227 out:
228	return err;
229}
230
231void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
232			  struct the_nilfs *nilfs)
233{
234	sector_t nfreeblocks;
235
236	/* nilfs->ns_sem must be locked by the caller. */
237	nilfs_count_free_blocks(nilfs, &nfreeblocks);
238	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
239
240	spin_lock(&nilfs->ns_last_segment_lock);
241	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
242	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
243	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
244	spin_unlock(&nilfs->ns_last_segment_lock);
245}
246
247struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
248					       int flip)
249{
250	struct the_nilfs *nilfs = sb->s_fs_info;
251	struct nilfs_super_block **sbp = nilfs->ns_sbp;
252
253	/* nilfs->ns_sem must be locked by the caller. */
254	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
255		if (sbp[1] &&
256		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
257			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
258		} else {
259			nilfs_crit(sb, "superblock broke");
260			return NULL;
261		}
262	} else if (sbp[1] &&
263		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
264		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
265	}
266
267	if (flip && sbp[1])
268		nilfs_swap_super_block(nilfs);
269
270	return sbp;
271}
272
273int nilfs_commit_super(struct super_block *sb, int flag)
274{
275	struct the_nilfs *nilfs = sb->s_fs_info;
276	struct nilfs_super_block **sbp = nilfs->ns_sbp;
277	time64_t t;
278
279	/* nilfs->ns_sem must be locked by the caller. */
280	t = ktime_get_real_seconds();
281	nilfs->ns_sbwtime = t;
282	sbp[0]->s_wtime = cpu_to_le64(t);
283	sbp[0]->s_sum = 0;
284	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
285					     (unsigned char *)sbp[0],
286					     nilfs->ns_sbsize));
287	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
288		sbp[1]->s_wtime = sbp[0]->s_wtime;
289		sbp[1]->s_sum = 0;
290		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
291					    (unsigned char *)sbp[1],
292					    nilfs->ns_sbsize));
293	}
294	clear_nilfs_sb_dirty(nilfs);
295	nilfs->ns_flushed_device = 1;
296	/* make sure store to ns_flushed_device cannot be reordered */
297	smp_wmb();
298	return nilfs_sync_super(sb, flag);
299}
300
301/**
302 * nilfs_cleanup_super() - write filesystem state for cleanup
303 * @sb: super block instance to be unmounted or degraded to read-only
304 *
305 * This function restores state flags in the on-disk super block.
306 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
307 * filesystem was not clean previously.
308 */
309int nilfs_cleanup_super(struct super_block *sb)
310{
311	struct the_nilfs *nilfs = sb->s_fs_info;
312	struct nilfs_super_block **sbp;
313	int flag = NILFS_SB_COMMIT;
314	int ret = -EIO;
315
316	sbp = nilfs_prepare_super(sb, 0);
317	if (sbp) {
318		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
319		nilfs_set_log_cursor(sbp[0], nilfs);
320		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
321			/*
322			 * make the "clean" flag also to the opposite
323			 * super block if both super blocks point to
324			 * the same checkpoint.
325			 */
326			sbp[1]->s_state = sbp[0]->s_state;
327			flag = NILFS_SB_COMMIT_ALL;
328		}
329		ret = nilfs_commit_super(sb, flag);
330	}
331	return ret;
332}
333
334/**
335 * nilfs_move_2nd_super - relocate secondary super block
336 * @sb: super block instance
337 * @sb2off: new offset of the secondary super block (in bytes)
338 */
339static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
340{
341	struct the_nilfs *nilfs = sb->s_fs_info;
342	struct buffer_head *nsbh;
343	struct nilfs_super_block *nsbp;
344	sector_t blocknr, newblocknr;
345	unsigned long offset;
346	int sb2i;  /* array index of the secondary superblock */
347	int ret = 0;
348
349	/* nilfs->ns_sem must be locked by the caller. */
350	if (nilfs->ns_sbh[1] &&
351	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
352		sb2i = 1;
353		blocknr = nilfs->ns_sbh[1]->b_blocknr;
354	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
355		sb2i = 0;
356		blocknr = nilfs->ns_sbh[0]->b_blocknr;
357	} else {
358		sb2i = -1;
359		blocknr = 0;
360	}
361	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
362		goto out;  /* super block location is unchanged */
363
364	/* Get new super block buffer */
365	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
366	offset = sb2off & (nilfs->ns_blocksize - 1);
367	nsbh = sb_getblk(sb, newblocknr);
368	if (!nsbh) {
369		nilfs_warn(sb,
370			   "unable to move secondary superblock to block %llu",
371			   (unsigned long long)newblocknr);
372		ret = -EIO;
373		goto out;
374	}
375	nsbp = (void *)nsbh->b_data + offset;
376
377	lock_buffer(nsbh);
378	if (sb2i >= 0) {
379		/*
380		 * The position of the second superblock only changes by 4KiB,
381		 * which is larger than the maximum superblock data size
382		 * (= 1KiB), so there is no need to use memmove() to allow
383		 * overlap between source and destination.
384		 */
385		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
386
387		/*
388		 * Zero fill after copy to avoid overwriting in case of move
389		 * within the same block.
390		 */
391		memset(nsbh->b_data, 0, offset);
392		memset((void *)nsbp + nilfs->ns_sbsize, 0,
393		       nsbh->b_size - offset - nilfs->ns_sbsize);
394	} else {
395		memset(nsbh->b_data, 0, nsbh->b_size);
396	}
397	set_buffer_uptodate(nsbh);
398	unlock_buffer(nsbh);
399
400	if (sb2i >= 0) {
401		brelse(nilfs->ns_sbh[sb2i]);
402		nilfs->ns_sbh[sb2i] = nsbh;
403		nilfs->ns_sbp[sb2i] = nsbp;
404	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
405		/* secondary super block will be restored to index 1 */
406		nilfs->ns_sbh[1] = nsbh;
407		nilfs->ns_sbp[1] = nsbp;
408	} else {
409		brelse(nsbh);
410	}
411out:
412	return ret;
413}
414
415/**
416 * nilfs_resize_fs - resize the filesystem
417 * @sb: super block instance
418 * @newsize: new size of the filesystem (in bytes)
419 */
420int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
421{
422	struct the_nilfs *nilfs = sb->s_fs_info;
423	struct nilfs_super_block **sbp;
424	__u64 devsize, newnsegs;
425	loff_t sb2off;
426	int ret;
427
428	ret = -ERANGE;
429	devsize = bdev_nr_bytes(sb->s_bdev);
430	if (newsize > devsize)
431		goto out;
432
433	/*
434	 * Prevent underflow in second superblock position calculation.
435	 * The exact minimum size check is done in nilfs_sufile_resize().
436	 */
437	if (newsize < 4096) {
438		ret = -ENOSPC;
439		goto out;
440	}
441
442	/*
443	 * Write lock is required to protect some functions depending
444	 * on the number of segments, the number of reserved segments,
445	 * and so forth.
446	 */
447	down_write(&nilfs->ns_segctor_sem);
448
449	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
450	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
451	newnsegs = div64_ul(newnsegs, nilfs->ns_blocks_per_segment);
452
453	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
454	up_write(&nilfs->ns_segctor_sem);
455	if (ret < 0)
456		goto out;
457
458	ret = nilfs_construct_segment(sb);
459	if (ret < 0)
460		goto out;
461
462	down_write(&nilfs->ns_sem);
463	nilfs_move_2nd_super(sb, sb2off);
464	ret = -EIO;
465	sbp = nilfs_prepare_super(sb, 0);
466	if (likely(sbp)) {
467		nilfs_set_log_cursor(sbp[0], nilfs);
468		/*
469		 * Drop NILFS_RESIZE_FS flag for compatibility with
470		 * mount-time resize which may be implemented in a
471		 * future release.
472		 */
473		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
474					      ~NILFS_RESIZE_FS);
475		sbp[0]->s_dev_size = cpu_to_le64(newsize);
476		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
477		if (sbp[1])
478			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
479		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
480	}
481	up_write(&nilfs->ns_sem);
482
483	/*
484	 * Reset the range of allocatable segments last.  This order
485	 * is important in the case of expansion because the secondary
486	 * superblock must be protected from log write until migration
487	 * completes.
488	 */
489	if (!ret)
490		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
491out:
492	return ret;
493}
494
495static void nilfs_put_super(struct super_block *sb)
496{
497	struct the_nilfs *nilfs = sb->s_fs_info;
498
499	nilfs_detach_log_writer(sb);
500
501	if (!sb_rdonly(sb)) {
502		down_write(&nilfs->ns_sem);
503		nilfs_cleanup_super(sb);
504		up_write(&nilfs->ns_sem);
505	}
506
507	nilfs_sysfs_delete_device_group(nilfs);
508	iput(nilfs->ns_sufile);
509	iput(nilfs->ns_cpfile);
510	iput(nilfs->ns_dat);
511
512	destroy_nilfs(nilfs);
513	sb->s_fs_info = NULL;
514}
515
516static int nilfs_sync_fs(struct super_block *sb, int wait)
517{
518	struct the_nilfs *nilfs = sb->s_fs_info;
519	struct nilfs_super_block **sbp;
520	int err = 0;
521
522	/* This function is called when super block should be written back */
523	if (wait)
524		err = nilfs_construct_segment(sb);
525
526	down_write(&nilfs->ns_sem);
527	if (nilfs_sb_dirty(nilfs)) {
528		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
529		if (likely(sbp)) {
530			nilfs_set_log_cursor(sbp[0], nilfs);
531			nilfs_commit_super(sb, NILFS_SB_COMMIT);
532		}
533	}
534	up_write(&nilfs->ns_sem);
535
536	if (!err)
537		err = nilfs_flush_device(nilfs);
538
539	return err;
540}
541
542int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
543			    struct nilfs_root **rootp)
544{
545	struct the_nilfs *nilfs = sb->s_fs_info;
546	struct nilfs_root *root;
547	int err = -ENOMEM;
548
549	root = nilfs_find_or_create_root(
550		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
551	if (!root)
552		return err;
553
554	if (root->ifile)
555		goto reuse; /* already attached checkpoint */
556
557	down_read(&nilfs->ns_segctor_sem);
558	err = nilfs_ifile_read(sb, root, cno, nilfs->ns_inode_size);
559	up_read(&nilfs->ns_segctor_sem);
560	if (unlikely(err))
561		goto failed;
562
563 reuse:
564	*rootp = root;
565	return 0;
566
567 failed:
568	if (err == -EINVAL)
569		nilfs_err(sb, "Invalid checkpoint (checkpoint number=%llu)",
570			  (unsigned long long)cno);
571	nilfs_put_root(root);
572
573	return err;
574}
575
576static int nilfs_freeze(struct super_block *sb)
577{
578	struct the_nilfs *nilfs = sb->s_fs_info;
579	int err;
580
581	if (sb_rdonly(sb))
582		return 0;
583
584	/* Mark super block clean */
585	down_write(&nilfs->ns_sem);
586	err = nilfs_cleanup_super(sb);
587	up_write(&nilfs->ns_sem);
588	return err;
589}
590
591static int nilfs_unfreeze(struct super_block *sb)
592{
593	struct the_nilfs *nilfs = sb->s_fs_info;
594
595	if (sb_rdonly(sb))
596		return 0;
597
598	down_write(&nilfs->ns_sem);
599	nilfs_setup_super(sb, false);
600	up_write(&nilfs->ns_sem);
601	return 0;
602}
603
604static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
605{
606	struct super_block *sb = dentry->d_sb;
607	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
608	struct the_nilfs *nilfs = root->nilfs;
609	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
610	unsigned long long blocks;
611	unsigned long overhead;
612	unsigned long nrsvblocks;
613	sector_t nfreeblocks;
614	u64 nmaxinodes, nfreeinodes;
615	int err;
616
617	/*
618	 * Compute all of the segment blocks
619	 *
620	 * The blocks before first segment and after last segment
621	 * are excluded.
622	 */
623	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
624		- nilfs->ns_first_data_block;
625	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
626
627	/*
628	 * Compute the overhead
629	 *
630	 * When distributing meta data blocks outside segment structure,
631	 * We must count them as the overhead.
632	 */
633	overhead = 0;
634
635	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
636	if (unlikely(err))
637		return err;
638
639	err = nilfs_ifile_count_free_inodes(root->ifile,
640					    &nmaxinodes, &nfreeinodes);
641	if (unlikely(err)) {
642		nilfs_warn(sb, "failed to count free inodes: err=%d", err);
643		if (err == -ERANGE) {
644			/*
645			 * If nilfs_palloc_count_max_entries() returns
646			 * -ERANGE error code then we simply treat
647			 * curent inodes count as maximum possible and
648			 * zero as free inodes value.
649			 */
650			nmaxinodes = atomic64_read(&root->inodes_count);
651			nfreeinodes = 0;
652			err = 0;
653		} else
654			return err;
655	}
656
657	buf->f_type = NILFS_SUPER_MAGIC;
658	buf->f_bsize = sb->s_blocksize;
659	buf->f_blocks = blocks - overhead;
660	buf->f_bfree = nfreeblocks;
661	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
662		(buf->f_bfree - nrsvblocks) : 0;
663	buf->f_files = nmaxinodes;
664	buf->f_ffree = nfreeinodes;
665	buf->f_namelen = NILFS_NAME_LEN;
666	buf->f_fsid = u64_to_fsid(id);
667
668	return 0;
669}
670
671static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
672{
673	struct super_block *sb = dentry->d_sb;
674	struct the_nilfs *nilfs = sb->s_fs_info;
675	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
676
677	if (!nilfs_test_opt(nilfs, BARRIER))
678		seq_puts(seq, ",nobarrier");
679	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
680		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
681	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
682		seq_puts(seq, ",errors=panic");
683	if (nilfs_test_opt(nilfs, ERRORS_CONT))
684		seq_puts(seq, ",errors=continue");
685	if (nilfs_test_opt(nilfs, STRICT_ORDER))
686		seq_puts(seq, ",order=strict");
687	if (nilfs_test_opt(nilfs, NORECOVERY))
688		seq_puts(seq, ",norecovery");
689	if (nilfs_test_opt(nilfs, DISCARD))
690		seq_puts(seq, ",discard");
691
692	return 0;
693}
694
695static const struct super_operations nilfs_sops = {
696	.alloc_inode    = nilfs_alloc_inode,
697	.free_inode     = nilfs_free_inode,
698	.dirty_inode    = nilfs_dirty_inode,
699	.evict_inode    = nilfs_evict_inode,
700	.put_super      = nilfs_put_super,
701	.sync_fs        = nilfs_sync_fs,
702	.freeze_fs	= nilfs_freeze,
703	.unfreeze_fs	= nilfs_unfreeze,
704	.statfs         = nilfs_statfs,
705	.remount_fs     = nilfs_remount,
706	.show_options = nilfs_show_options
707};
708
709enum {
710	Opt_err_cont, Opt_err_panic, Opt_err_ro,
711	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
712	Opt_discard, Opt_nodiscard, Opt_err,
713};
714
715static match_table_t tokens = {
716	{Opt_err_cont, "errors=continue"},
717	{Opt_err_panic, "errors=panic"},
718	{Opt_err_ro, "errors=remount-ro"},
719	{Opt_barrier, "barrier"},
720	{Opt_nobarrier, "nobarrier"},
721	{Opt_snapshot, "cp=%u"},
722	{Opt_order, "order=%s"},
723	{Opt_norecovery, "norecovery"},
724	{Opt_discard, "discard"},
725	{Opt_nodiscard, "nodiscard"},
726	{Opt_err, NULL}
727};
728
729static int parse_options(char *options, struct super_block *sb, int is_remount)
730{
731	struct the_nilfs *nilfs = sb->s_fs_info;
732	char *p;
733	substring_t args[MAX_OPT_ARGS];
734
735	if (!options)
736		return 1;
737
738	while ((p = strsep(&options, ",")) != NULL) {
739		int token;
740
741		if (!*p)
742			continue;
743
744		token = match_token(p, tokens, args);
745		switch (token) {
746		case Opt_barrier:
747			nilfs_set_opt(nilfs, BARRIER);
748			break;
749		case Opt_nobarrier:
750			nilfs_clear_opt(nilfs, BARRIER);
751			break;
752		case Opt_order:
753			if (strcmp(args[0].from, "relaxed") == 0)
754				/* Ordered data semantics */
755				nilfs_clear_opt(nilfs, STRICT_ORDER);
756			else if (strcmp(args[0].from, "strict") == 0)
757				/* Strict in-order semantics */
758				nilfs_set_opt(nilfs, STRICT_ORDER);
759			else
760				return 0;
761			break;
762		case Opt_err_panic:
763			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
764			break;
765		case Opt_err_ro:
766			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
767			break;
768		case Opt_err_cont:
769			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
770			break;
771		case Opt_snapshot:
772			if (is_remount) {
773				nilfs_err(sb,
774					  "\"%s\" option is invalid for remount",
775					  p);
776				return 0;
777			}
778			break;
779		case Opt_norecovery:
780			nilfs_set_opt(nilfs, NORECOVERY);
781			break;
782		case Opt_discard:
783			nilfs_set_opt(nilfs, DISCARD);
784			break;
785		case Opt_nodiscard:
786			nilfs_clear_opt(nilfs, DISCARD);
787			break;
788		default:
789			nilfs_err(sb, "unrecognized mount option \"%s\"", p);
790			return 0;
791		}
792	}
793	return 1;
794}
795
796static inline void
797nilfs_set_default_options(struct super_block *sb,
798			  struct nilfs_super_block *sbp)
799{
800	struct the_nilfs *nilfs = sb->s_fs_info;
801
802	nilfs->ns_mount_opt =
803		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
804}
805
806static int nilfs_setup_super(struct super_block *sb, int is_mount)
807{
808	struct the_nilfs *nilfs = sb->s_fs_info;
809	struct nilfs_super_block **sbp;
810	int max_mnt_count;
811	int mnt_count;
812
813	/* nilfs->ns_sem must be locked by the caller. */
814	sbp = nilfs_prepare_super(sb, 0);
815	if (!sbp)
816		return -EIO;
817
818	if (!is_mount)
819		goto skip_mount_setup;
820
821	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
822	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
823
824	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
825		nilfs_warn(sb, "mounting fs with errors");
826#if 0
827	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
828		nilfs_warn(sb, "maximal mount count reached");
829#endif
830	}
831	if (!max_mnt_count)
832		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
833
834	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
835	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
836
837skip_mount_setup:
838	sbp[0]->s_state =
839		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
840	/* synchronize sbp[1] with sbp[0] */
841	if (sbp[1])
842		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
843	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
844}
845
846struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
847						 u64 pos, int blocksize,
848						 struct buffer_head **pbh)
849{
850	unsigned long long sb_index = pos;
851	unsigned long offset;
852
853	offset = do_div(sb_index, blocksize);
854	*pbh = sb_bread(sb, sb_index);
855	if (!*pbh)
856		return NULL;
857	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
858}
859
860int nilfs_store_magic_and_option(struct super_block *sb,
861				 struct nilfs_super_block *sbp,
862				 char *data)
863{
864	struct the_nilfs *nilfs = sb->s_fs_info;
865
866	sb->s_magic = le16_to_cpu(sbp->s_magic);
867
868	/* FS independent flags */
869#ifdef NILFS_ATIME_DISABLE
870	sb->s_flags |= SB_NOATIME;
871#endif
872
873	nilfs_set_default_options(sb, sbp);
874
875	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
876	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
877	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
878	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
879
880	return !parse_options(data, sb, 0) ? -EINVAL : 0;
881}
882
883int nilfs_check_feature_compatibility(struct super_block *sb,
884				      struct nilfs_super_block *sbp)
885{
886	__u64 features;
887
888	features = le64_to_cpu(sbp->s_feature_incompat) &
889		~NILFS_FEATURE_INCOMPAT_SUPP;
890	if (features) {
891		nilfs_err(sb,
892			  "couldn't mount because of unsupported optional features (%llx)",
893			  (unsigned long long)features);
894		return -EINVAL;
895	}
896	features = le64_to_cpu(sbp->s_feature_compat_ro) &
897		~NILFS_FEATURE_COMPAT_RO_SUPP;
898	if (!sb_rdonly(sb) && features) {
899		nilfs_err(sb,
900			  "couldn't mount RDWR because of unsupported optional features (%llx)",
901			  (unsigned long long)features);
902		return -EINVAL;
903	}
904	return 0;
905}
906
907static int nilfs_get_root_dentry(struct super_block *sb,
908				 struct nilfs_root *root,
909				 struct dentry **root_dentry)
910{
911	struct inode *inode;
912	struct dentry *dentry;
913	int ret = 0;
914
915	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
916	if (IS_ERR(inode)) {
917		ret = PTR_ERR(inode);
918		nilfs_err(sb, "error %d getting root inode", ret);
919		goto out;
920	}
921	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
922		iput(inode);
923		nilfs_err(sb, "corrupt root inode");
924		ret = -EINVAL;
925		goto out;
926	}
927
928	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
929		dentry = d_find_alias(inode);
930		if (!dentry) {
931			dentry = d_make_root(inode);
932			if (!dentry) {
933				ret = -ENOMEM;
934				goto failed_dentry;
935			}
936		} else {
937			iput(inode);
938		}
939	} else {
940		dentry = d_obtain_root(inode);
941		if (IS_ERR(dentry)) {
942			ret = PTR_ERR(dentry);
943			goto failed_dentry;
944		}
945	}
946	*root_dentry = dentry;
947 out:
948	return ret;
949
950 failed_dentry:
951	nilfs_err(sb, "error %d getting root dentry", ret);
952	goto out;
953}
954
955static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
956				 struct dentry **root_dentry)
957{
958	struct the_nilfs *nilfs = s->s_fs_info;
959	struct nilfs_root *root;
960	int ret;
961
962	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
963
964	down_read(&nilfs->ns_segctor_sem);
965	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
966	up_read(&nilfs->ns_segctor_sem);
967	if (ret < 0) {
968		ret = (ret == -ENOENT) ? -EINVAL : ret;
969		goto out;
970	} else if (!ret) {
971		nilfs_err(s,
972			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
973			  (unsigned long long)cno);
974		ret = -EINVAL;
975		goto out;
976	}
977
978	ret = nilfs_attach_checkpoint(s, cno, false, &root);
979	if (ret) {
980		nilfs_err(s,
981			  "error %d while loading snapshot (checkpoint number=%llu)",
982			  ret, (unsigned long long)cno);
983		goto out;
984	}
985	ret = nilfs_get_root_dentry(s, root, root_dentry);
986	nilfs_put_root(root);
987 out:
988	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
989	return ret;
990}
991
992/**
993 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
994 * @root_dentry: root dentry of the tree to be shrunk
995 *
996 * This function returns true if the tree was in-use.
997 */
998static bool nilfs_tree_is_busy(struct dentry *root_dentry)
999{
1000	shrink_dcache_parent(root_dentry);
1001	return d_count(root_dentry) > 1;
1002}
1003
1004int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1005{
1006	struct the_nilfs *nilfs = sb->s_fs_info;
1007	struct nilfs_root *root;
1008	struct inode *inode;
1009	struct dentry *dentry;
1010	int ret;
1011
1012	if (cno > nilfs->ns_cno)
1013		return false;
1014
1015	if (cno >= nilfs_last_cno(nilfs))
1016		return true;	/* protect recent checkpoints */
1017
1018	ret = false;
1019	root = nilfs_lookup_root(nilfs, cno);
1020	if (root) {
1021		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1022		if (inode) {
1023			dentry = d_find_alias(inode);
1024			if (dentry) {
1025				ret = nilfs_tree_is_busy(dentry);
1026				dput(dentry);
1027			}
1028			iput(inode);
1029		}
1030		nilfs_put_root(root);
1031	}
1032	return ret;
1033}
1034
1035/**
1036 * nilfs_fill_super() - initialize a super block instance
1037 * @sb: super_block
1038 * @data: mount options
1039 * @silent: silent mode flag
1040 *
1041 * This function is called exclusively by nilfs->ns_mount_mutex.
1042 * So, the recovery process is protected from other simultaneous mounts.
1043 */
1044static int
1045nilfs_fill_super(struct super_block *sb, void *data, int silent)
1046{
1047	struct the_nilfs *nilfs;
1048	struct nilfs_root *fsroot;
1049	__u64 cno;
1050	int err;
1051
1052	nilfs = alloc_nilfs(sb);
1053	if (!nilfs)
1054		return -ENOMEM;
1055
1056	sb->s_fs_info = nilfs;
1057
1058	err = init_nilfs(nilfs, sb, (char *)data);
1059	if (err)
1060		goto failed_nilfs;
1061
1062	sb->s_op = &nilfs_sops;
1063	sb->s_export_op = &nilfs_export_ops;
1064	sb->s_root = NULL;
1065	sb->s_time_gran = 1;
1066	sb->s_max_links = NILFS_LINK_MAX;
1067
1068	sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1069
1070	err = load_nilfs(nilfs, sb);
1071	if (err)
1072		goto failed_nilfs;
1073
1074	cno = nilfs_last_cno(nilfs);
1075	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1076	if (err) {
1077		nilfs_err(sb,
1078			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1079			  err, (unsigned long long)cno);
1080		goto failed_unload;
1081	}
1082
1083	if (!sb_rdonly(sb)) {
1084		err = nilfs_attach_log_writer(sb, fsroot);
1085		if (err)
1086			goto failed_checkpoint;
1087	}
1088
1089	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1090	if (err)
1091		goto failed_segctor;
1092
1093	nilfs_put_root(fsroot);
1094
1095	if (!sb_rdonly(sb)) {
1096		down_write(&nilfs->ns_sem);
1097		nilfs_setup_super(sb, true);
1098		up_write(&nilfs->ns_sem);
1099	}
1100
1101	return 0;
1102
1103 failed_segctor:
1104	nilfs_detach_log_writer(sb);
1105
1106 failed_checkpoint:
1107	nilfs_put_root(fsroot);
1108
1109 failed_unload:
1110	nilfs_sysfs_delete_device_group(nilfs);
1111	iput(nilfs->ns_sufile);
1112	iput(nilfs->ns_cpfile);
1113	iput(nilfs->ns_dat);
1114
1115 failed_nilfs:
1116	destroy_nilfs(nilfs);
1117	return err;
1118}
1119
1120static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1121{
1122	struct the_nilfs *nilfs = sb->s_fs_info;
1123	unsigned long old_sb_flags;
1124	unsigned long old_mount_opt;
1125	int err;
1126
1127	sync_filesystem(sb);
1128	old_sb_flags = sb->s_flags;
1129	old_mount_opt = nilfs->ns_mount_opt;
1130
1131	if (!parse_options(data, sb, 1)) {
1132		err = -EINVAL;
1133		goto restore_opts;
1134	}
1135	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1136
1137	err = -EINVAL;
1138
1139	if (!nilfs_valid_fs(nilfs)) {
1140		nilfs_warn(sb,
1141			   "couldn't remount because the filesystem is in an incomplete recovery state");
1142		goto restore_opts;
1143	}
1144
1145	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1146		goto out;
1147	if (*flags & SB_RDONLY) {
1148		sb->s_flags |= SB_RDONLY;
1149
1150		/*
1151		 * Remounting a valid RW partition RDONLY, so set
1152		 * the RDONLY flag and then mark the partition as valid again.
1153		 */
1154		down_write(&nilfs->ns_sem);
1155		nilfs_cleanup_super(sb);
1156		up_write(&nilfs->ns_sem);
1157	} else {
1158		__u64 features;
1159		struct nilfs_root *root;
1160
1161		/*
1162		 * Mounting a RDONLY partition read-write, so reread and
1163		 * store the current valid flag.  (It may have been changed
1164		 * by fsck since we originally mounted the partition.)
1165		 */
1166		down_read(&nilfs->ns_sem);
1167		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1168			~NILFS_FEATURE_COMPAT_RO_SUPP;
1169		up_read(&nilfs->ns_sem);
1170		if (features) {
1171			nilfs_warn(sb,
1172				   "couldn't remount RDWR because of unsupported optional features (%llx)",
1173				   (unsigned long long)features);
1174			err = -EROFS;
1175			goto restore_opts;
1176		}
1177
1178		sb->s_flags &= ~SB_RDONLY;
1179
1180		root = NILFS_I(d_inode(sb->s_root))->i_root;
1181		err = nilfs_attach_log_writer(sb, root);
1182		if (err)
1183			goto restore_opts;
1184
1185		down_write(&nilfs->ns_sem);
1186		nilfs_setup_super(sb, true);
1187		up_write(&nilfs->ns_sem);
1188	}
1189 out:
1190	return 0;
1191
1192 restore_opts:
1193	sb->s_flags = old_sb_flags;
1194	nilfs->ns_mount_opt = old_mount_opt;
1195	return err;
1196}
1197
1198struct nilfs_super_data {
1199	__u64 cno;
1200	int flags;
1201};
1202
1203static int nilfs_parse_snapshot_option(const char *option,
1204				       const substring_t *arg,
1205				       struct nilfs_super_data *sd)
1206{
1207	unsigned long long val;
1208	const char *msg = NULL;
1209	int err;
1210
1211	if (!(sd->flags & SB_RDONLY)) {
1212		msg = "read-only option is not specified";
1213		goto parse_error;
1214	}
1215
1216	err = kstrtoull(arg->from, 0, &val);
1217	if (err) {
1218		if (err == -ERANGE)
1219			msg = "too large checkpoint number";
1220		else
1221			msg = "malformed argument";
1222		goto parse_error;
1223	} else if (val == 0) {
1224		msg = "invalid checkpoint number 0";
1225		goto parse_error;
1226	}
1227	sd->cno = val;
1228	return 0;
1229
1230parse_error:
1231	nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1232	return 1;
1233}
1234
1235/**
1236 * nilfs_identify - pre-read mount options needed to identify mount instance
1237 * @data: mount options
1238 * @sd: nilfs_super_data
1239 */
1240static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1241{
1242	char *p, *options = data;
1243	substring_t args[MAX_OPT_ARGS];
1244	int token;
1245	int ret = 0;
1246
1247	do {
1248		p = strsep(&options, ",");
1249		if (p != NULL && *p) {
1250			token = match_token(p, tokens, args);
1251			if (token == Opt_snapshot)
1252				ret = nilfs_parse_snapshot_option(p, &args[0],
1253								  sd);
1254		}
1255		if (!options)
1256			break;
1257		BUG_ON(options == data);
1258		*(options - 1) = ',';
1259	} while (!ret);
1260	return ret;
1261}
1262
1263static int nilfs_set_bdev_super(struct super_block *s, void *data)
1264{
1265	s->s_dev = *(dev_t *)data;
1266	return 0;
1267}
1268
1269static int nilfs_test_bdev_super(struct super_block *s, void *data)
1270{
1271	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1272}
1273
1274static struct dentry *
1275nilfs_mount(struct file_system_type *fs_type, int flags,
1276	     const char *dev_name, void *data)
1277{
1278	struct nilfs_super_data sd = { .flags = flags };
1279	struct super_block *s;
1280	dev_t dev;
1281	int err;
1282
1283	if (nilfs_identify(data, &sd))
1284		return ERR_PTR(-EINVAL);
1285
1286	err = lookup_bdev(dev_name, &dev);
1287	if (err)
1288		return ERR_PTR(err);
1289
1290	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1291		 &dev);
1292	if (IS_ERR(s))
1293		return ERR_CAST(s);
1294
1295	if (!s->s_root) {
1296		err = setup_bdev_super(s, flags, NULL);
1297		if (!err)
1298			err = nilfs_fill_super(s, data,
1299					       flags & SB_SILENT ? 1 : 0);
1300		if (err)
1301			goto failed_super;
1302
1303		s->s_flags |= SB_ACTIVE;
1304	} else if (!sd.cno) {
1305		if (nilfs_tree_is_busy(s->s_root)) {
1306			if ((flags ^ s->s_flags) & SB_RDONLY) {
1307				nilfs_err(s,
1308					  "the device already has a %s mount.",
1309					  sb_rdonly(s) ? "read-only" : "read/write");
1310				err = -EBUSY;
1311				goto failed_super;
1312			}
1313		} else {
1314			/*
1315			 * Try remount to setup mount states if the current
1316			 * tree is not mounted and only snapshots use this sb.
1317			 */
1318			err = nilfs_remount(s, &flags, data);
1319			if (err)
1320				goto failed_super;
1321		}
1322	}
1323
1324	if (sd.cno) {
1325		struct dentry *root_dentry;
1326
1327		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1328		if (err)
1329			goto failed_super;
1330		return root_dentry;
1331	}
1332
1333	return dget(s->s_root);
1334
1335 failed_super:
1336	deactivate_locked_super(s);
1337	return ERR_PTR(err);
1338}
1339
1340struct file_system_type nilfs_fs_type = {
1341	.owner    = THIS_MODULE,
1342	.name     = "nilfs2",
1343	.mount    = nilfs_mount,
1344	.kill_sb  = kill_block_super,
1345	.fs_flags = FS_REQUIRES_DEV,
1346};
1347MODULE_ALIAS_FS("nilfs2");
1348
1349static void nilfs_inode_init_once(void *obj)
1350{
1351	struct nilfs_inode_info *ii = obj;
1352
1353	INIT_LIST_HEAD(&ii->i_dirty);
1354#ifdef CONFIG_NILFS_XATTR
1355	init_rwsem(&ii->xattr_sem);
1356#endif
1357	inode_init_once(&ii->vfs_inode);
1358}
1359
1360static void nilfs_segbuf_init_once(void *obj)
1361{
1362	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1363}
1364
1365static void nilfs_destroy_cachep(void)
1366{
1367	/*
1368	 * Make sure all delayed rcu free inodes are flushed before we
1369	 * destroy cache.
1370	 */
1371	rcu_barrier();
1372
1373	kmem_cache_destroy(nilfs_inode_cachep);
1374	kmem_cache_destroy(nilfs_transaction_cachep);
1375	kmem_cache_destroy(nilfs_segbuf_cachep);
1376	kmem_cache_destroy(nilfs_btree_path_cache);
1377}
1378
1379static int __init nilfs_init_cachep(void)
1380{
1381	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1382			sizeof(struct nilfs_inode_info), 0,
1383			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1384			nilfs_inode_init_once);
1385	if (!nilfs_inode_cachep)
1386		goto fail;
1387
1388	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1389			sizeof(struct nilfs_transaction_info), 0,
1390			SLAB_RECLAIM_ACCOUNT, NULL);
1391	if (!nilfs_transaction_cachep)
1392		goto fail;
1393
1394	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1395			sizeof(struct nilfs_segment_buffer), 0,
1396			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1397	if (!nilfs_segbuf_cachep)
1398		goto fail;
1399
1400	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1401			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1402			0, 0, NULL);
1403	if (!nilfs_btree_path_cache)
1404		goto fail;
1405
1406	return 0;
1407
1408fail:
1409	nilfs_destroy_cachep();
1410	return -ENOMEM;
1411}
1412
1413static int __init init_nilfs_fs(void)
1414{
1415	int err;
1416
1417	err = nilfs_init_cachep();
1418	if (err)
1419		goto fail;
1420
1421	err = nilfs_sysfs_init();
1422	if (err)
1423		goto free_cachep;
1424
1425	err = register_filesystem(&nilfs_fs_type);
1426	if (err)
1427		goto deinit_sysfs_entry;
1428
1429	printk(KERN_INFO "NILFS version 2 loaded\n");
1430	return 0;
1431
1432deinit_sysfs_entry:
1433	nilfs_sysfs_exit();
1434free_cachep:
1435	nilfs_destroy_cachep();
1436fail:
1437	return err;
1438}
1439
1440static void __exit exit_nilfs_fs(void)
1441{
1442	nilfs_destroy_cachep();
1443	nilfs_sysfs_exit();
1444	unregister_filesystem(&nilfs_fs_type);
1445}
1446
1447module_init(init_nilfs_fs)
1448module_exit(exit_nilfs_fs)
1449