1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * linux/fs/jbd2/journal.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates.  This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
15 *
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
20 */
21
22#include <linux/module.h>
23#include <linux/time.h>
24#include <linux/fs.h>
25#include <linux/jbd2.h>
26#include <linux/errno.h>
27#include <linux/slab.h>
28#include <linux/init.h>
29#include <linux/mm.h>
30#include <linux/freezer.h>
31#include <linux/pagemap.h>
32#include <linux/kthread.h>
33#include <linux/poison.h>
34#include <linux/proc_fs.h>
35#include <linux/seq_file.h>
36#include <linux/math64.h>
37#include <linux/hash.h>
38#include <linux/log2.h>
39#include <linux/vmalloc.h>
40#include <linux/backing-dev.h>
41#include <linux/bitops.h>
42#include <linux/ratelimit.h>
43#include <linux/sched/mm.h>
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/jbd2.h>
47
48#include <linux/uaccess.h>
49#include <asm/page.h>
50
51#ifdef CONFIG_JBD2_DEBUG
52static ushort jbd2_journal_enable_debug __read_mostly;
53
54module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
55MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
56#endif
57
58EXPORT_SYMBOL(jbd2_journal_extend);
59EXPORT_SYMBOL(jbd2_journal_stop);
60EXPORT_SYMBOL(jbd2_journal_lock_updates);
61EXPORT_SYMBOL(jbd2_journal_unlock_updates);
62EXPORT_SYMBOL(jbd2_journal_get_write_access);
63EXPORT_SYMBOL(jbd2_journal_get_create_access);
64EXPORT_SYMBOL(jbd2_journal_get_undo_access);
65EXPORT_SYMBOL(jbd2_journal_set_triggers);
66EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
67EXPORT_SYMBOL(jbd2_journal_forget);
68EXPORT_SYMBOL(jbd2_journal_flush);
69EXPORT_SYMBOL(jbd2_journal_revoke);
70
71EXPORT_SYMBOL(jbd2_journal_init_dev);
72EXPORT_SYMBOL(jbd2_journal_init_inode);
73EXPORT_SYMBOL(jbd2_journal_check_used_features);
74EXPORT_SYMBOL(jbd2_journal_check_available_features);
75EXPORT_SYMBOL(jbd2_journal_set_features);
76EXPORT_SYMBOL(jbd2_journal_load);
77EXPORT_SYMBOL(jbd2_journal_destroy);
78EXPORT_SYMBOL(jbd2_journal_abort);
79EXPORT_SYMBOL(jbd2_journal_errno);
80EXPORT_SYMBOL(jbd2_journal_ack_err);
81EXPORT_SYMBOL(jbd2_journal_clear_err);
82EXPORT_SYMBOL(jbd2_log_wait_commit);
83EXPORT_SYMBOL(jbd2_journal_start_commit);
84EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85EXPORT_SYMBOL(jbd2_journal_wipe);
86EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87EXPORT_SYMBOL(jbd2_journal_invalidate_folio);
88EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89EXPORT_SYMBOL(jbd2_journal_force_commit);
90EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
91EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
92EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
93EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
94EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
95EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
96EXPORT_SYMBOL(jbd2_inode_cache);
97
98static int jbd2_journal_create_slab(size_t slab_size);
99
100#ifdef CONFIG_JBD2_DEBUG
101void __jbd2_debug(int level, const char *file, const char *func,
102		  unsigned int line, const char *fmt, ...)
103{
104	struct va_format vaf;
105	va_list args;
106
107	if (level > jbd2_journal_enable_debug)
108		return;
109	va_start(args, fmt);
110	vaf.fmt = fmt;
111	vaf.va = &args;
112	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
113	va_end(args);
114}
115#endif
116
117/* Checksumming functions */
118static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
119{
120	__u32 csum;
121	__be32 old_csum;
122
123	old_csum = sb->s_checksum;
124	sb->s_checksum = 0;
125	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
126	sb->s_checksum = old_csum;
127
128	return cpu_to_be32(csum);
129}
130
131/*
132 * Helper function used to manage commit timeouts
133 */
134
135static void commit_timeout(struct timer_list *t)
136{
137	journal_t *journal = from_timer(journal, t, j_commit_timer);
138
139	wake_up_process(journal->j_task);
140}
141
142/*
143 * kjournald2: The main thread function used to manage a logging device
144 * journal.
145 *
146 * This kernel thread is responsible for two things:
147 *
148 * 1) COMMIT:  Every so often we need to commit the current state of the
149 *    filesystem to disk.  The journal thread is responsible for writing
150 *    all of the metadata buffers to disk. If a fast commit is ongoing
151 *    journal thread waits until it's done and then continues from
152 *    there on.
153 *
154 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
155 *    of the data in that part of the log has been rewritten elsewhere on
156 *    the disk.  Flushing these old buffers to reclaim space in the log is
157 *    known as checkpointing, and this thread is responsible for that job.
158 */
159
160static int kjournald2(void *arg)
161{
162	journal_t *journal = arg;
163	transaction_t *transaction;
164
165	/*
166	 * Set up an interval timer which can be used to trigger a commit wakeup
167	 * after the commit interval expires
168	 */
169	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
170
171	set_freezable();
172
173	/* Record that the journal thread is running */
174	journal->j_task = current;
175	wake_up(&journal->j_wait_done_commit);
176
177	/*
178	 * Make sure that no allocations from this kernel thread will ever
179	 * recurse to the fs layer because we are responsible for the
180	 * transaction commit and any fs involvement might get stuck waiting for
181	 * the trasn. commit.
182	 */
183	memalloc_nofs_save();
184
185	/*
186	 * And now, wait forever for commit wakeup events.
187	 */
188	write_lock(&journal->j_state_lock);
189
190loop:
191	if (journal->j_flags & JBD2_UNMOUNT)
192		goto end_loop;
193
194	jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n",
195		journal->j_commit_sequence, journal->j_commit_request);
196
197	if (journal->j_commit_sequence != journal->j_commit_request) {
198		jbd2_debug(1, "OK, requests differ\n");
199		write_unlock(&journal->j_state_lock);
200		del_timer_sync(&journal->j_commit_timer);
201		jbd2_journal_commit_transaction(journal);
202		write_lock(&journal->j_state_lock);
203		goto loop;
204	}
205
206	wake_up(&journal->j_wait_done_commit);
207	if (freezing(current)) {
208		/*
209		 * The simpler the better. Flushing journal isn't a
210		 * good idea, because that depends on threads that may
211		 * be already stopped.
212		 */
213		jbd2_debug(1, "Now suspending kjournald2\n");
214		write_unlock(&journal->j_state_lock);
215		try_to_freeze();
216		write_lock(&journal->j_state_lock);
217	} else {
218		/*
219		 * We assume on resume that commits are already there,
220		 * so we don't sleep
221		 */
222		DEFINE_WAIT(wait);
223		int should_sleep = 1;
224
225		prepare_to_wait(&journal->j_wait_commit, &wait,
226				TASK_INTERRUPTIBLE);
227		if (journal->j_commit_sequence != journal->j_commit_request)
228			should_sleep = 0;
229		transaction = journal->j_running_transaction;
230		if (transaction && time_after_eq(jiffies,
231						transaction->t_expires))
232			should_sleep = 0;
233		if (journal->j_flags & JBD2_UNMOUNT)
234			should_sleep = 0;
235		if (should_sleep) {
236			write_unlock(&journal->j_state_lock);
237			schedule();
238			write_lock(&journal->j_state_lock);
239		}
240		finish_wait(&journal->j_wait_commit, &wait);
241	}
242
243	jbd2_debug(1, "kjournald2 wakes\n");
244
245	/*
246	 * Were we woken up by a commit wakeup event?
247	 */
248	transaction = journal->j_running_transaction;
249	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
250		journal->j_commit_request = transaction->t_tid;
251		jbd2_debug(1, "woke because of timeout\n");
252	}
253	goto loop;
254
255end_loop:
256	del_timer_sync(&journal->j_commit_timer);
257	journal->j_task = NULL;
258	wake_up(&journal->j_wait_done_commit);
259	jbd2_debug(1, "Journal thread exiting.\n");
260	write_unlock(&journal->j_state_lock);
261	return 0;
262}
263
264static int jbd2_journal_start_thread(journal_t *journal)
265{
266	struct task_struct *t;
267
268	t = kthread_run(kjournald2, journal, "jbd2/%s",
269			journal->j_devname);
270	if (IS_ERR(t))
271		return PTR_ERR(t);
272
273	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
274	return 0;
275}
276
277static void journal_kill_thread(journal_t *journal)
278{
279	write_lock(&journal->j_state_lock);
280	journal->j_flags |= JBD2_UNMOUNT;
281
282	while (journal->j_task) {
283		write_unlock(&journal->j_state_lock);
284		wake_up(&journal->j_wait_commit);
285		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
286		write_lock(&journal->j_state_lock);
287	}
288	write_unlock(&journal->j_state_lock);
289}
290
291/*
292 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
293 *
294 * Writes a metadata buffer to a given disk block.  The actual IO is not
295 * performed but a new buffer_head is constructed which labels the data
296 * to be written with the correct destination disk block.
297 *
298 * Any magic-number escaping which needs to be done will cause a
299 * copy-out here.  If the buffer happens to start with the
300 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
301 * magic number is only written to the log for descripter blocks.  In
302 * this case, we copy the data and replace the first word with 0, and we
303 * return a result code which indicates that this buffer needs to be
304 * marked as an escaped buffer in the corresponding log descriptor
305 * block.  The missing word can then be restored when the block is read
306 * during recovery.
307 *
308 * If the source buffer has already been modified by a new transaction
309 * since we took the last commit snapshot, we use the frozen copy of
310 * that data for IO. If we end up using the existing buffer_head's data
311 * for the write, then we have to make sure nobody modifies it while the
312 * IO is in progress. do_get_write_access() handles this.
313 *
314 * The function returns a pointer to the buffer_head to be used for IO.
315 *
316 *
317 * Return value:
318 *  <0: Error
319 * >=0: Finished OK
320 *
321 * On success:
322 * Bit 0 set == escape performed on the data
323 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
324 */
325
326int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
327				  struct journal_head  *jh_in,
328				  struct buffer_head **bh_out,
329				  sector_t blocknr)
330{
331	int need_copy_out = 0;
332	int done_copy_out = 0;
333	int do_escape = 0;
334	char *mapped_data;
335	struct buffer_head *new_bh;
336	struct folio *new_folio;
337	unsigned int new_offset;
338	struct buffer_head *bh_in = jh2bh(jh_in);
339	journal_t *journal = transaction->t_journal;
340
341	/*
342	 * The buffer really shouldn't be locked: only the current committing
343	 * transaction is allowed to write it, so nobody else is allowed
344	 * to do any IO.
345	 *
346	 * akpm: except if we're journalling data, and write() output is
347	 * also part of a shared mapping, and another thread has
348	 * decided to launch a writepage() against this buffer.
349	 */
350	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
351
352	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
353
354	/* keep subsequent assertions sane */
355	atomic_set(&new_bh->b_count, 1);
356
357	spin_lock(&jh_in->b_state_lock);
358repeat:
359	/*
360	 * If a new transaction has already done a buffer copy-out, then
361	 * we use that version of the data for the commit.
362	 */
363	if (jh_in->b_frozen_data) {
364		done_copy_out = 1;
365		new_folio = virt_to_folio(jh_in->b_frozen_data);
366		new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
367	} else {
368		new_folio = jh2bh(jh_in)->b_folio;
369		new_offset = offset_in_folio(new_folio, jh2bh(jh_in)->b_data);
370	}
371
372	mapped_data = kmap_local_folio(new_folio, new_offset);
373	/*
374	 * Fire data frozen trigger if data already wasn't frozen.  Do this
375	 * before checking for escaping, as the trigger may modify the magic
376	 * offset.  If a copy-out happens afterwards, it will have the correct
377	 * data in the buffer.
378	 */
379	if (!done_copy_out)
380		jbd2_buffer_frozen_trigger(jh_in, mapped_data,
381					   jh_in->b_triggers);
382
383	/*
384	 * Check for escaping
385	 */
386	if (*((__be32 *)mapped_data) == cpu_to_be32(JBD2_MAGIC_NUMBER)) {
387		need_copy_out = 1;
388		do_escape = 1;
389	}
390	kunmap_local(mapped_data);
391
392	/*
393	 * Do we need to do a data copy?
394	 */
395	if (need_copy_out && !done_copy_out) {
396		char *tmp;
397
398		spin_unlock(&jh_in->b_state_lock);
399		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
400		if (!tmp) {
401			brelse(new_bh);
402			return -ENOMEM;
403		}
404		spin_lock(&jh_in->b_state_lock);
405		if (jh_in->b_frozen_data) {
406			jbd2_free(tmp, bh_in->b_size);
407			goto repeat;
408		}
409
410		jh_in->b_frozen_data = tmp;
411		memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size);
412
413		new_folio = virt_to_folio(tmp);
414		new_offset = offset_in_folio(new_folio, tmp);
415		done_copy_out = 1;
416
417		/*
418		 * This isn't strictly necessary, as we're using frozen
419		 * data for the escaping, but it keeps consistency with
420		 * b_frozen_data usage.
421		 */
422		jh_in->b_frozen_triggers = jh_in->b_triggers;
423	}
424
425	/*
426	 * Did we need to do an escaping?  Now we've done all the
427	 * copying, we can finally do so.
428	 */
429	if (do_escape) {
430		mapped_data = kmap_local_folio(new_folio, new_offset);
431		*((unsigned int *)mapped_data) = 0;
432		kunmap_local(mapped_data);
433	}
434
435	folio_set_bh(new_bh, new_folio, new_offset);
436	new_bh->b_size = bh_in->b_size;
437	new_bh->b_bdev = journal->j_dev;
438	new_bh->b_blocknr = blocknr;
439	new_bh->b_private = bh_in;
440	set_buffer_mapped(new_bh);
441	set_buffer_dirty(new_bh);
442
443	*bh_out = new_bh;
444
445	/*
446	 * The to-be-written buffer needs to get moved to the io queue,
447	 * and the original buffer whose contents we are shadowing or
448	 * copying is moved to the transaction's shadow queue.
449	 */
450	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
451	spin_lock(&journal->j_list_lock);
452	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
453	spin_unlock(&journal->j_list_lock);
454	set_buffer_shadow(bh_in);
455	spin_unlock(&jh_in->b_state_lock);
456
457	return do_escape | (done_copy_out << 1);
458}
459
460/*
461 * Allocation code for the journal file.  Manage the space left in the
462 * journal, so that we can begin checkpointing when appropriate.
463 */
464
465/*
466 * Called with j_state_lock locked for writing.
467 * Returns true if a transaction commit was started.
468 */
469static int __jbd2_log_start_commit(journal_t *journal, tid_t target)
470{
471	/* Return if the txn has already requested to be committed */
472	if (journal->j_commit_request == target)
473		return 0;
474
475	/*
476	 * The only transaction we can possibly wait upon is the
477	 * currently running transaction (if it exists).  Otherwise,
478	 * the target tid must be an old one.
479	 */
480	if (journal->j_running_transaction &&
481	    journal->j_running_transaction->t_tid == target) {
482		/*
483		 * We want a new commit: OK, mark the request and wakeup the
484		 * commit thread.  We do _not_ do the commit ourselves.
485		 */
486
487		journal->j_commit_request = target;
488		jbd2_debug(1, "JBD2: requesting commit %u/%u\n",
489			  journal->j_commit_request,
490			  journal->j_commit_sequence);
491		journal->j_running_transaction->t_requested = jiffies;
492		wake_up(&journal->j_wait_commit);
493		return 1;
494	} else if (!tid_geq(journal->j_commit_request, target))
495		/* This should never happen, but if it does, preserve
496		   the evidence before kjournald goes into a loop and
497		   increments j_commit_sequence beyond all recognition. */
498		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
499			  journal->j_commit_request,
500			  journal->j_commit_sequence,
501			  target, journal->j_running_transaction ?
502			  journal->j_running_transaction->t_tid : 0);
503	return 0;
504}
505
506int jbd2_log_start_commit(journal_t *journal, tid_t tid)
507{
508	int ret;
509
510	write_lock(&journal->j_state_lock);
511	ret = __jbd2_log_start_commit(journal, tid);
512	write_unlock(&journal->j_state_lock);
513	return ret;
514}
515
516/*
517 * Force and wait any uncommitted transactions.  We can only force the running
518 * transaction if we don't have an active handle, otherwise, we will deadlock.
519 * Returns: <0 in case of error,
520 *           0 if nothing to commit,
521 *           1 if transaction was successfully committed.
522 */
523static int __jbd2_journal_force_commit(journal_t *journal)
524{
525	transaction_t *transaction = NULL;
526	tid_t tid;
527	int need_to_start = 0, ret = 0;
528
529	read_lock(&journal->j_state_lock);
530	if (journal->j_running_transaction && !current->journal_info) {
531		transaction = journal->j_running_transaction;
532		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
533			need_to_start = 1;
534	} else if (journal->j_committing_transaction)
535		transaction = journal->j_committing_transaction;
536
537	if (!transaction) {
538		/* Nothing to commit */
539		read_unlock(&journal->j_state_lock);
540		return 0;
541	}
542	tid = transaction->t_tid;
543	read_unlock(&journal->j_state_lock);
544	if (need_to_start)
545		jbd2_log_start_commit(journal, tid);
546	ret = jbd2_log_wait_commit(journal, tid);
547	if (!ret)
548		ret = 1;
549
550	return ret;
551}
552
553/**
554 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
555 * calling process is not within transaction.
556 *
557 * @journal: journal to force
558 * Returns true if progress was made.
559 *
560 * This is used for forcing out undo-protected data which contains
561 * bitmaps, when the fs is running out of space.
562 */
563int jbd2_journal_force_commit_nested(journal_t *journal)
564{
565	int ret;
566
567	ret = __jbd2_journal_force_commit(journal);
568	return ret > 0;
569}
570
571/**
572 * jbd2_journal_force_commit() - force any uncommitted transactions
573 * @journal: journal to force
574 *
575 * Caller want unconditional commit. We can only force the running transaction
576 * if we don't have an active handle, otherwise, we will deadlock.
577 */
578int jbd2_journal_force_commit(journal_t *journal)
579{
580	int ret;
581
582	J_ASSERT(!current->journal_info);
583	ret = __jbd2_journal_force_commit(journal);
584	if (ret > 0)
585		ret = 0;
586	return ret;
587}
588
589/*
590 * Start a commit of the current running transaction (if any).  Returns true
591 * if a transaction is going to be committed (or is currently already
592 * committing), and fills its tid in at *ptid
593 */
594int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
595{
596	int ret = 0;
597
598	write_lock(&journal->j_state_lock);
599	if (journal->j_running_transaction) {
600		tid_t tid = journal->j_running_transaction->t_tid;
601
602		__jbd2_log_start_commit(journal, tid);
603		/* There's a running transaction and we've just made sure
604		 * it's commit has been scheduled. */
605		if (ptid)
606			*ptid = tid;
607		ret = 1;
608	} else if (journal->j_committing_transaction) {
609		/*
610		 * If commit has been started, then we have to wait for
611		 * completion of that transaction.
612		 */
613		if (ptid)
614			*ptid = journal->j_committing_transaction->t_tid;
615		ret = 1;
616	}
617	write_unlock(&journal->j_state_lock);
618	return ret;
619}
620
621/*
622 * Return 1 if a given transaction has not yet sent barrier request
623 * connected with a transaction commit. If 0 is returned, transaction
624 * may or may not have sent the barrier. Used to avoid sending barrier
625 * twice in common cases.
626 */
627int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
628{
629	int ret = 0;
630	transaction_t *commit_trans;
631
632	if (!(journal->j_flags & JBD2_BARRIER))
633		return 0;
634	read_lock(&journal->j_state_lock);
635	/* Transaction already committed? */
636	if (tid_geq(journal->j_commit_sequence, tid))
637		goto out;
638	commit_trans = journal->j_committing_transaction;
639	if (!commit_trans || commit_trans->t_tid != tid) {
640		ret = 1;
641		goto out;
642	}
643	/*
644	 * Transaction is being committed and we already proceeded to
645	 * submitting a flush to fs partition?
646	 */
647	if (journal->j_fs_dev != journal->j_dev) {
648		if (!commit_trans->t_need_data_flush ||
649		    commit_trans->t_state >= T_COMMIT_DFLUSH)
650			goto out;
651	} else {
652		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
653			goto out;
654	}
655	ret = 1;
656out:
657	read_unlock(&journal->j_state_lock);
658	return ret;
659}
660EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
661
662/*
663 * Wait for a specified commit to complete.
664 * The caller may not hold the journal lock.
665 */
666int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
667{
668	int err = 0;
669
670	read_lock(&journal->j_state_lock);
671#ifdef CONFIG_PROVE_LOCKING
672	/*
673	 * Some callers make sure transaction is already committing and in that
674	 * case we cannot block on open handles anymore. So don't warn in that
675	 * case.
676	 */
677	if (tid_gt(tid, journal->j_commit_sequence) &&
678	    (!journal->j_committing_transaction ||
679	     journal->j_committing_transaction->t_tid != tid)) {
680		read_unlock(&journal->j_state_lock);
681		jbd2_might_wait_for_commit(journal);
682		read_lock(&journal->j_state_lock);
683	}
684#endif
685#ifdef CONFIG_JBD2_DEBUG
686	if (!tid_geq(journal->j_commit_request, tid)) {
687		printk(KERN_ERR
688		       "%s: error: j_commit_request=%u, tid=%u\n",
689		       __func__, journal->j_commit_request, tid);
690	}
691#endif
692	while (tid_gt(tid, journal->j_commit_sequence)) {
693		jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
694				  tid, journal->j_commit_sequence);
695		read_unlock(&journal->j_state_lock);
696		wake_up(&journal->j_wait_commit);
697		wait_event(journal->j_wait_done_commit,
698				!tid_gt(tid, journal->j_commit_sequence));
699		read_lock(&journal->j_state_lock);
700	}
701	read_unlock(&journal->j_state_lock);
702
703	if (unlikely(is_journal_aborted(journal)))
704		err = -EIO;
705	return err;
706}
707
708/*
709 * Start a fast commit. If there's an ongoing fast or full commit wait for
710 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
711 * if a fast commit is not needed, either because there's an already a commit
712 * going on or this tid has already been committed. Returns -EINVAL if no jbd2
713 * commit has yet been performed.
714 */
715int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
716{
717	if (unlikely(is_journal_aborted(journal)))
718		return -EIO;
719	/*
720	 * Fast commits only allowed if at least one full commit has
721	 * been processed.
722	 */
723	if (!journal->j_stats.ts_tid)
724		return -EINVAL;
725
726	write_lock(&journal->j_state_lock);
727	if (tid <= journal->j_commit_sequence) {
728		write_unlock(&journal->j_state_lock);
729		return -EALREADY;
730	}
731
732	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
733	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
734		DEFINE_WAIT(wait);
735
736		prepare_to_wait(&journal->j_fc_wait, &wait,
737				TASK_UNINTERRUPTIBLE);
738		write_unlock(&journal->j_state_lock);
739		schedule();
740		finish_wait(&journal->j_fc_wait, &wait);
741		return -EALREADY;
742	}
743	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
744	write_unlock(&journal->j_state_lock);
745	jbd2_journal_lock_updates(journal);
746
747	return 0;
748}
749EXPORT_SYMBOL(jbd2_fc_begin_commit);
750
751/*
752 * Stop a fast commit. If fallback is set, this function starts commit of
753 * TID tid before any other fast commit can start.
754 */
755static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
756{
757	jbd2_journal_unlock_updates(journal);
758	if (journal->j_fc_cleanup_callback)
759		journal->j_fc_cleanup_callback(journal, 0, tid);
760	write_lock(&journal->j_state_lock);
761	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
762	if (fallback)
763		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
764	write_unlock(&journal->j_state_lock);
765	wake_up(&journal->j_fc_wait);
766	if (fallback)
767		return jbd2_complete_transaction(journal, tid);
768	return 0;
769}
770
771int jbd2_fc_end_commit(journal_t *journal)
772{
773	return __jbd2_fc_end_commit(journal, 0, false);
774}
775EXPORT_SYMBOL(jbd2_fc_end_commit);
776
777int jbd2_fc_end_commit_fallback(journal_t *journal)
778{
779	tid_t tid;
780
781	read_lock(&journal->j_state_lock);
782	tid = journal->j_running_transaction ?
783		journal->j_running_transaction->t_tid : 0;
784	read_unlock(&journal->j_state_lock);
785	return __jbd2_fc_end_commit(journal, tid, true);
786}
787EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
788
789/* Return 1 when transaction with given tid has already committed. */
790int jbd2_transaction_committed(journal_t *journal, tid_t tid)
791{
792	int ret = 1;
793
794	read_lock(&journal->j_state_lock);
795	if (journal->j_running_transaction &&
796	    journal->j_running_transaction->t_tid == tid)
797		ret = 0;
798	if (journal->j_committing_transaction &&
799	    journal->j_committing_transaction->t_tid == tid)
800		ret = 0;
801	read_unlock(&journal->j_state_lock);
802	return ret;
803}
804EXPORT_SYMBOL(jbd2_transaction_committed);
805
806/*
807 * When this function returns the transaction corresponding to tid
808 * will be completed.  If the transaction has currently running, start
809 * committing that transaction before waiting for it to complete.  If
810 * the transaction id is stale, it is by definition already completed,
811 * so just return SUCCESS.
812 */
813int jbd2_complete_transaction(journal_t *journal, tid_t tid)
814{
815	int	need_to_wait = 1;
816
817	read_lock(&journal->j_state_lock);
818	if (journal->j_running_transaction &&
819	    journal->j_running_transaction->t_tid == tid) {
820		if (journal->j_commit_request != tid) {
821			/* transaction not yet started, so request it */
822			read_unlock(&journal->j_state_lock);
823			jbd2_log_start_commit(journal, tid);
824			goto wait_commit;
825		}
826	} else if (!(journal->j_committing_transaction &&
827		     journal->j_committing_transaction->t_tid == tid))
828		need_to_wait = 0;
829	read_unlock(&journal->j_state_lock);
830	if (!need_to_wait)
831		return 0;
832wait_commit:
833	return jbd2_log_wait_commit(journal, tid);
834}
835EXPORT_SYMBOL(jbd2_complete_transaction);
836
837/*
838 * Log buffer allocation routines:
839 */
840
841int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
842{
843	unsigned long blocknr;
844
845	write_lock(&journal->j_state_lock);
846	J_ASSERT(journal->j_free > 1);
847
848	blocknr = journal->j_head;
849	journal->j_head++;
850	journal->j_free--;
851	if (journal->j_head == journal->j_last)
852		journal->j_head = journal->j_first;
853	write_unlock(&journal->j_state_lock);
854	return jbd2_journal_bmap(journal, blocknr, retp);
855}
856
857/* Map one fast commit buffer for use by the file system */
858int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
859{
860	unsigned long long pblock;
861	unsigned long blocknr;
862	int ret = 0;
863	struct buffer_head *bh;
864	int fc_off;
865
866	*bh_out = NULL;
867
868	if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
869		fc_off = journal->j_fc_off;
870		blocknr = journal->j_fc_first + fc_off;
871		journal->j_fc_off++;
872	} else {
873		ret = -EINVAL;
874	}
875
876	if (ret)
877		return ret;
878
879	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
880	if (ret)
881		return ret;
882
883	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
884	if (!bh)
885		return -ENOMEM;
886
887
888	journal->j_fc_wbuf[fc_off] = bh;
889
890	*bh_out = bh;
891
892	return 0;
893}
894EXPORT_SYMBOL(jbd2_fc_get_buf);
895
896/*
897 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
898 * for completion.
899 */
900int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
901{
902	struct buffer_head *bh;
903	int i, j_fc_off;
904
905	j_fc_off = journal->j_fc_off;
906
907	/*
908	 * Wait in reverse order to minimize chances of us being woken up before
909	 * all IOs have completed
910	 */
911	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
912		bh = journal->j_fc_wbuf[i];
913		wait_on_buffer(bh);
914		/*
915		 * Update j_fc_off so jbd2_fc_release_bufs can release remain
916		 * buffer head.
917		 */
918		if (unlikely(!buffer_uptodate(bh))) {
919			journal->j_fc_off = i + 1;
920			return -EIO;
921		}
922		put_bh(bh);
923		journal->j_fc_wbuf[i] = NULL;
924	}
925
926	return 0;
927}
928EXPORT_SYMBOL(jbd2_fc_wait_bufs);
929
930int jbd2_fc_release_bufs(journal_t *journal)
931{
932	struct buffer_head *bh;
933	int i, j_fc_off;
934
935	j_fc_off = journal->j_fc_off;
936
937	for (i = j_fc_off - 1; i >= 0; i--) {
938		bh = journal->j_fc_wbuf[i];
939		if (!bh)
940			break;
941		put_bh(bh);
942		journal->j_fc_wbuf[i] = NULL;
943	}
944
945	return 0;
946}
947EXPORT_SYMBOL(jbd2_fc_release_bufs);
948
949/*
950 * Conversion of logical to physical block numbers for the journal
951 *
952 * On external journals the journal blocks are identity-mapped, so
953 * this is a no-op.  If needed, we can use j_blk_offset - everything is
954 * ready.
955 */
956int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
957		 unsigned long long *retp)
958{
959	int err = 0;
960	unsigned long long ret;
961	sector_t block = blocknr;
962
963	if (journal->j_bmap) {
964		err = journal->j_bmap(journal, &block);
965		if (err == 0)
966			*retp = block;
967	} else if (journal->j_inode) {
968		ret = bmap(journal->j_inode, &block);
969
970		if (ret || !block) {
971			printk(KERN_ALERT "%s: journal block not found "
972					"at offset %lu on %s\n",
973			       __func__, blocknr, journal->j_devname);
974			err = -EIO;
975			jbd2_journal_abort(journal, err);
976		} else {
977			*retp = block;
978		}
979
980	} else {
981		*retp = blocknr; /* +journal->j_blk_offset */
982	}
983	return err;
984}
985
986/*
987 * We play buffer_head aliasing tricks to write data/metadata blocks to
988 * the journal without copying their contents, but for journal
989 * descriptor blocks we do need to generate bona fide buffers.
990 *
991 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
992 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
993 * But we don't bother doing that, so there will be coherency problems with
994 * mmaps of blockdevs which hold live JBD-controlled filesystems.
995 */
996struct buffer_head *
997jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
998{
999	journal_t *journal = transaction->t_journal;
1000	struct buffer_head *bh;
1001	unsigned long long blocknr;
1002	journal_header_t *header;
1003	int err;
1004
1005	err = jbd2_journal_next_log_block(journal, &blocknr);
1006
1007	if (err)
1008		return NULL;
1009
1010	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1011	if (!bh)
1012		return NULL;
1013	atomic_dec(&transaction->t_outstanding_credits);
1014	lock_buffer(bh);
1015	memset(bh->b_data, 0, journal->j_blocksize);
1016	header = (journal_header_t *)bh->b_data;
1017	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1018	header->h_blocktype = cpu_to_be32(type);
1019	header->h_sequence = cpu_to_be32(transaction->t_tid);
1020	set_buffer_uptodate(bh);
1021	unlock_buffer(bh);
1022	BUFFER_TRACE(bh, "return this buffer");
1023	return bh;
1024}
1025
1026void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1027{
1028	struct jbd2_journal_block_tail *tail;
1029	__u32 csum;
1030
1031	if (!jbd2_journal_has_csum_v2or3(j))
1032		return;
1033
1034	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1035			sizeof(struct jbd2_journal_block_tail));
1036	tail->t_checksum = 0;
1037	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1038	tail->t_checksum = cpu_to_be32(csum);
1039}
1040
1041/*
1042 * Return tid of the oldest transaction in the journal and block in the journal
1043 * where the transaction starts.
1044 *
1045 * If the journal is now empty, return which will be the next transaction ID
1046 * we will write and where will that transaction start.
1047 *
1048 * The return value is 0 if journal tail cannot be pushed any further, 1 if
1049 * it can.
1050 */
1051int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1052			      unsigned long *block)
1053{
1054	transaction_t *transaction;
1055	int ret;
1056
1057	read_lock(&journal->j_state_lock);
1058	spin_lock(&journal->j_list_lock);
1059	transaction = journal->j_checkpoint_transactions;
1060	if (transaction) {
1061		*tid = transaction->t_tid;
1062		*block = transaction->t_log_start;
1063	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1064		*tid = transaction->t_tid;
1065		*block = transaction->t_log_start;
1066	} else if ((transaction = journal->j_running_transaction) != NULL) {
1067		*tid = transaction->t_tid;
1068		*block = journal->j_head;
1069	} else {
1070		*tid = journal->j_transaction_sequence;
1071		*block = journal->j_head;
1072	}
1073	ret = tid_gt(*tid, journal->j_tail_sequence);
1074	spin_unlock(&journal->j_list_lock);
1075	read_unlock(&journal->j_state_lock);
1076
1077	return ret;
1078}
1079
1080/*
1081 * Update information in journal structure and in on disk journal superblock
1082 * about log tail. This function does not check whether information passed in
1083 * really pushes log tail further. It's responsibility of the caller to make
1084 * sure provided log tail information is valid (e.g. by holding
1085 * j_checkpoint_mutex all the time between computing log tail and calling this
1086 * function as is the case with jbd2_cleanup_journal_tail()).
1087 *
1088 * Requires j_checkpoint_mutex
1089 */
1090int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1091{
1092	unsigned long freed;
1093	int ret;
1094
1095	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1096
1097	/*
1098	 * We cannot afford for write to remain in drive's caches since as
1099	 * soon as we update j_tail, next transaction can start reusing journal
1100	 * space and if we lose sb update during power failure we'd replay
1101	 * old transaction with possibly newly overwritten data.
1102	 */
1103	ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA);
1104	if (ret)
1105		goto out;
1106
1107	write_lock(&journal->j_state_lock);
1108	freed = block - journal->j_tail;
1109	if (block < journal->j_tail)
1110		freed += journal->j_last - journal->j_first;
1111
1112	trace_jbd2_update_log_tail(journal, tid, block, freed);
1113	jbd2_debug(1,
1114		  "Cleaning journal tail from %u to %u (offset %lu), "
1115		  "freeing %lu\n",
1116		  journal->j_tail_sequence, tid, block, freed);
1117
1118	journal->j_free += freed;
1119	journal->j_tail_sequence = tid;
1120	journal->j_tail = block;
1121	write_unlock(&journal->j_state_lock);
1122
1123out:
1124	return ret;
1125}
1126
1127/*
1128 * This is a variation of __jbd2_update_log_tail which checks for validity of
1129 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1130 * with other threads updating log tail.
1131 */
1132void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1133{
1134	mutex_lock_io(&journal->j_checkpoint_mutex);
1135	if (tid_gt(tid, journal->j_tail_sequence))
1136		__jbd2_update_log_tail(journal, tid, block);
1137	mutex_unlock(&journal->j_checkpoint_mutex);
1138}
1139
1140struct jbd2_stats_proc_session {
1141	journal_t *journal;
1142	struct transaction_stats_s *stats;
1143	int start;
1144	int max;
1145};
1146
1147static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1148{
1149	return *pos ? NULL : SEQ_START_TOKEN;
1150}
1151
1152static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1153{
1154	(*pos)++;
1155	return NULL;
1156}
1157
1158static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1159{
1160	struct jbd2_stats_proc_session *s = seq->private;
1161
1162	if (v != SEQ_START_TOKEN)
1163		return 0;
1164	seq_printf(seq, "%lu transactions (%lu requested), "
1165		   "each up to %u blocks\n",
1166		   s->stats->ts_tid, s->stats->ts_requested,
1167		   s->journal->j_max_transaction_buffers);
1168	if (s->stats->ts_tid == 0)
1169		return 0;
1170	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1171	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1172	seq_printf(seq, "  %ums request delay\n",
1173	    (s->stats->ts_requested == 0) ? 0 :
1174	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1175			     s->stats->ts_requested));
1176	seq_printf(seq, "  %ums running transaction\n",
1177	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1178	seq_printf(seq, "  %ums transaction was being locked\n",
1179	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1180	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1181	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1182	seq_printf(seq, "  %ums logging transaction\n",
1183	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1184	seq_printf(seq, "  %lluus average transaction commit time\n",
1185		   div_u64(s->journal->j_average_commit_time, 1000));
1186	seq_printf(seq, "  %lu handles per transaction\n",
1187	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1188	seq_printf(seq, "  %lu blocks per transaction\n",
1189	    s->stats->run.rs_blocks / s->stats->ts_tid);
1190	seq_printf(seq, "  %lu logged blocks per transaction\n",
1191	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1192	return 0;
1193}
1194
1195static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1196{
1197}
1198
1199static const struct seq_operations jbd2_seq_info_ops = {
1200	.start  = jbd2_seq_info_start,
1201	.next   = jbd2_seq_info_next,
1202	.stop   = jbd2_seq_info_stop,
1203	.show   = jbd2_seq_info_show,
1204};
1205
1206static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1207{
1208	journal_t *journal = pde_data(inode);
1209	struct jbd2_stats_proc_session *s;
1210	int rc, size;
1211
1212	s = kmalloc(sizeof(*s), GFP_KERNEL);
1213	if (s == NULL)
1214		return -ENOMEM;
1215	size = sizeof(struct transaction_stats_s);
1216	s->stats = kmalloc(size, GFP_KERNEL);
1217	if (s->stats == NULL) {
1218		kfree(s);
1219		return -ENOMEM;
1220	}
1221	spin_lock(&journal->j_history_lock);
1222	memcpy(s->stats, &journal->j_stats, size);
1223	s->journal = journal;
1224	spin_unlock(&journal->j_history_lock);
1225
1226	rc = seq_open(file, &jbd2_seq_info_ops);
1227	if (rc == 0) {
1228		struct seq_file *m = file->private_data;
1229		m->private = s;
1230	} else {
1231		kfree(s->stats);
1232		kfree(s);
1233	}
1234	return rc;
1235
1236}
1237
1238static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1239{
1240	struct seq_file *seq = file->private_data;
1241	struct jbd2_stats_proc_session *s = seq->private;
1242	kfree(s->stats);
1243	kfree(s);
1244	return seq_release(inode, file);
1245}
1246
1247static const struct proc_ops jbd2_info_proc_ops = {
1248	.proc_open	= jbd2_seq_info_open,
1249	.proc_read	= seq_read,
1250	.proc_lseek	= seq_lseek,
1251	.proc_release	= jbd2_seq_info_release,
1252};
1253
1254static struct proc_dir_entry *proc_jbd2_stats;
1255
1256static void jbd2_stats_proc_init(journal_t *journal)
1257{
1258	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1259	if (journal->j_proc_entry) {
1260		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1261				 &jbd2_info_proc_ops, journal);
1262	}
1263}
1264
1265static void jbd2_stats_proc_exit(journal_t *journal)
1266{
1267	remove_proc_entry("info", journal->j_proc_entry);
1268	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1269}
1270
1271/* Minimum size of descriptor tag */
1272static int jbd2_min_tag_size(void)
1273{
1274	/*
1275	 * Tag with 32-bit block numbers does not use last four bytes of the
1276	 * structure
1277	 */
1278	return sizeof(journal_block_tag_t) - 4;
1279}
1280
1281/**
1282 * jbd2_journal_shrink_scan()
1283 * @shrink: shrinker to work on
1284 * @sc: reclaim request to process
1285 *
1286 * Scan the checkpointed buffer on the checkpoint list and release the
1287 * journal_head.
1288 */
1289static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1290					      struct shrink_control *sc)
1291{
1292	journal_t *journal = shrink->private_data;
1293	unsigned long nr_to_scan = sc->nr_to_scan;
1294	unsigned long nr_shrunk;
1295	unsigned long count;
1296
1297	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1298	trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1299
1300	nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1301
1302	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1303	trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1304
1305	return nr_shrunk;
1306}
1307
1308/**
1309 * jbd2_journal_shrink_count()
1310 * @shrink: shrinker to work on
1311 * @sc: reclaim request to process
1312 *
1313 * Count the number of checkpoint buffers on the checkpoint list.
1314 */
1315static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1316					       struct shrink_control *sc)
1317{
1318	journal_t *journal = shrink->private_data;
1319	unsigned long count;
1320
1321	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1322	trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1323
1324	return count;
1325}
1326
1327/*
1328 * If the journal init or create aborts, we need to mark the journal
1329 * superblock as being NULL to prevent the journal destroy from writing
1330 * back a bogus superblock.
1331 */
1332static void journal_fail_superblock(journal_t *journal)
1333{
1334	struct buffer_head *bh = journal->j_sb_buffer;
1335	brelse(bh);
1336	journal->j_sb_buffer = NULL;
1337}
1338
1339/*
1340 * Check the superblock for a given journal, performing initial
1341 * validation of the format.
1342 */
1343static int journal_check_superblock(journal_t *journal)
1344{
1345	journal_superblock_t *sb = journal->j_superblock;
1346	int num_fc_blks;
1347	int err = -EINVAL;
1348
1349	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1350	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1351		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1352		return err;
1353	}
1354
1355	if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 &&
1356	    be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) {
1357		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1358		return err;
1359	}
1360
1361	if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1362		printk(KERN_WARNING "JBD2: journal file too short\n");
1363		return err;
1364	}
1365
1366	if (be32_to_cpu(sb->s_first) == 0 ||
1367	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1368		printk(KERN_WARNING
1369			"JBD2: Invalid start block of journal: %u\n",
1370			be32_to_cpu(sb->s_first));
1371		return err;
1372	}
1373
1374	/*
1375	 * If this is a V2 superblock, then we have to check the
1376	 * features flags on it.
1377	 */
1378	if (!jbd2_format_support_feature(journal))
1379		return 0;
1380
1381	if ((sb->s_feature_ro_compat &
1382			~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1383	    (sb->s_feature_incompat &
1384			~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1385		printk(KERN_WARNING "JBD2: Unrecognised features on journal\n");
1386		return err;
1387	}
1388
1389	num_fc_blks = jbd2_has_feature_fast_commit(journal) ?
1390				jbd2_journal_get_num_fc_blks(sb) : 0;
1391	if (be32_to_cpu(sb->s_maxlen) < JBD2_MIN_JOURNAL_BLOCKS ||
1392	    be32_to_cpu(sb->s_maxlen) - JBD2_MIN_JOURNAL_BLOCKS < num_fc_blks) {
1393		printk(KERN_ERR "JBD2: journal file too short %u,%d\n",
1394		       be32_to_cpu(sb->s_maxlen), num_fc_blks);
1395		return err;
1396	}
1397
1398	if (jbd2_has_feature_csum2(journal) &&
1399	    jbd2_has_feature_csum3(journal)) {
1400		/* Can't have checksum v2 and v3 at the same time! */
1401		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1402		       "at the same time!\n");
1403		return err;
1404	}
1405
1406	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1407	    jbd2_has_feature_checksum(journal)) {
1408		/* Can't have checksum v1 and v2 on at the same time! */
1409		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1410		       "at the same time!\n");
1411		return err;
1412	}
1413
1414	/* Load the checksum driver */
1415	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1416		if (sb->s_checksum_type != JBD2_CRC32C_CHKSUM) {
1417			printk(KERN_ERR "JBD2: Unknown checksum type\n");
1418			return err;
1419		}
1420
1421		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1422		if (IS_ERR(journal->j_chksum_driver)) {
1423			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1424			err = PTR_ERR(journal->j_chksum_driver);
1425			journal->j_chksum_driver = NULL;
1426			return err;
1427		}
1428		/* Check superblock checksum */
1429		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1430			printk(KERN_ERR "JBD2: journal checksum error\n");
1431			err = -EFSBADCRC;
1432			return err;
1433		}
1434	}
1435
1436	return 0;
1437}
1438
1439static int journal_revoke_records_per_block(journal_t *journal)
1440{
1441	int record_size;
1442	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1443
1444	if (jbd2_has_feature_64bit(journal))
1445		record_size = 8;
1446	else
1447		record_size = 4;
1448
1449	if (jbd2_journal_has_csum_v2or3(journal))
1450		space -= sizeof(struct jbd2_journal_block_tail);
1451	return space / record_size;
1452}
1453
1454/*
1455 * Load the on-disk journal superblock and read the key fields into the
1456 * journal_t.
1457 */
1458static int journal_load_superblock(journal_t *journal)
1459{
1460	int err;
1461	struct buffer_head *bh;
1462	journal_superblock_t *sb;
1463
1464	bh = getblk_unmovable(journal->j_dev, journal->j_blk_offset,
1465			      journal->j_blocksize);
1466	if (bh)
1467		err = bh_read(bh, 0);
1468	if (!bh || err < 0) {
1469		pr_err("%s: Cannot read journal superblock\n", __func__);
1470		brelse(bh);
1471		return -EIO;
1472	}
1473
1474	journal->j_sb_buffer = bh;
1475	sb = (journal_superblock_t *)bh->b_data;
1476	journal->j_superblock = sb;
1477	err = journal_check_superblock(journal);
1478	if (err) {
1479		journal_fail_superblock(journal);
1480		return err;
1481	}
1482
1483	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1484	journal->j_tail = be32_to_cpu(sb->s_start);
1485	journal->j_first = be32_to_cpu(sb->s_first);
1486	journal->j_errno = be32_to_cpu(sb->s_errno);
1487	journal->j_last = be32_to_cpu(sb->s_maxlen);
1488
1489	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1490		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1491	/* Precompute checksum seed for all metadata */
1492	if (jbd2_journal_has_csum_v2or3(journal))
1493		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1494						   sizeof(sb->s_uuid));
1495	journal->j_revoke_records_per_block =
1496				journal_revoke_records_per_block(journal);
1497
1498	if (jbd2_has_feature_fast_commit(journal)) {
1499		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1500		journal->j_last = journal->j_fc_last -
1501				  jbd2_journal_get_num_fc_blks(sb);
1502		journal->j_fc_first = journal->j_last + 1;
1503		journal->j_fc_off = 0;
1504	}
1505
1506	return 0;
1507}
1508
1509
1510/*
1511 * Management for journal control blocks: functions to create and
1512 * destroy journal_t structures, and to initialise and read existing
1513 * journal blocks from disk.  */
1514
1515/* First: create and setup a journal_t object in memory.  We initialise
1516 * very few fields yet: that has to wait until we have created the
1517 * journal structures from from scratch, or loaded them from disk. */
1518
1519static journal_t *journal_init_common(struct block_device *bdev,
1520			struct block_device *fs_dev,
1521			unsigned long long start, int len, int blocksize)
1522{
1523	static struct lock_class_key jbd2_trans_commit_key;
1524	journal_t *journal;
1525	int err;
1526	int n;
1527
1528	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1529	if (!journal)
1530		return ERR_PTR(-ENOMEM);
1531
1532	journal->j_blocksize = blocksize;
1533	journal->j_dev = bdev;
1534	journal->j_fs_dev = fs_dev;
1535	journal->j_blk_offset = start;
1536	journal->j_total_len = len;
1537	jbd2_init_fs_dev_write_error(journal);
1538
1539	err = journal_load_superblock(journal);
1540	if (err)
1541		goto err_cleanup;
1542
1543	init_waitqueue_head(&journal->j_wait_transaction_locked);
1544	init_waitqueue_head(&journal->j_wait_done_commit);
1545	init_waitqueue_head(&journal->j_wait_commit);
1546	init_waitqueue_head(&journal->j_wait_updates);
1547	init_waitqueue_head(&journal->j_wait_reserved);
1548	init_waitqueue_head(&journal->j_fc_wait);
1549	mutex_init(&journal->j_abort_mutex);
1550	mutex_init(&journal->j_barrier);
1551	mutex_init(&journal->j_checkpoint_mutex);
1552	spin_lock_init(&journal->j_revoke_lock);
1553	spin_lock_init(&journal->j_list_lock);
1554	spin_lock_init(&journal->j_history_lock);
1555	rwlock_init(&journal->j_state_lock);
1556
1557	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1558	journal->j_min_batch_time = 0;
1559	journal->j_max_batch_time = 15000; /* 15ms */
1560	atomic_set(&journal->j_reserved_credits, 0);
1561	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1562			 &jbd2_trans_commit_key, 0);
1563
1564	/* The journal is marked for error until we succeed with recovery! */
1565	journal->j_flags = JBD2_ABORT;
1566
1567	/* Set up a default-sized revoke table for the new mount. */
1568	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1569	if (err)
1570		goto err_cleanup;
1571
1572	/*
1573	 * journal descriptor can store up to n blocks, we need enough
1574	 * buffers to write out full descriptor block.
1575	 */
1576	err = -ENOMEM;
1577	n = journal->j_blocksize / jbd2_min_tag_size();
1578	journal->j_wbufsize = n;
1579	journal->j_fc_wbuf = NULL;
1580	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1581					GFP_KERNEL);
1582	if (!journal->j_wbuf)
1583		goto err_cleanup;
1584
1585	err = percpu_counter_init(&journal->j_checkpoint_jh_count, 0,
1586				  GFP_KERNEL);
1587	if (err)
1588		goto err_cleanup;
1589
1590	journal->j_shrink_transaction = NULL;
1591
1592	journal->j_shrinker = shrinker_alloc(0, "jbd2-journal:(%u:%u)",
1593					     MAJOR(bdev->bd_dev),
1594					     MINOR(bdev->bd_dev));
1595	if (!journal->j_shrinker) {
1596		err = -ENOMEM;
1597		goto err_cleanup;
1598	}
1599
1600	journal->j_shrinker->scan_objects = jbd2_journal_shrink_scan;
1601	journal->j_shrinker->count_objects = jbd2_journal_shrink_count;
1602	journal->j_shrinker->batch = journal->j_max_transaction_buffers;
1603	journal->j_shrinker->private_data = journal;
1604
1605	shrinker_register(journal->j_shrinker);
1606
1607	return journal;
1608
1609err_cleanup:
1610	percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1611	if (journal->j_chksum_driver)
1612		crypto_free_shash(journal->j_chksum_driver);
1613	kfree(journal->j_wbuf);
1614	jbd2_journal_destroy_revoke(journal);
1615	journal_fail_superblock(journal);
1616	kfree(journal);
1617	return ERR_PTR(err);
1618}
1619
1620/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1621 *
1622 * Create a journal structure assigned some fixed set of disk blocks to
1623 * the journal.  We don't actually touch those disk blocks yet, but we
1624 * need to set up all of the mapping information to tell the journaling
1625 * system where the journal blocks are.
1626 *
1627 */
1628
1629/**
1630 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1631 *  @bdev: Block device on which to create the journal
1632 *  @fs_dev: Device which hold journalled filesystem for this journal.
1633 *  @start: Block nr Start of journal.
1634 *  @len:  Length of the journal in blocks.
1635 *  @blocksize: blocksize of journalling device
1636 *
1637 *  Returns: a newly created journal_t *
1638 *
1639 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1640 *  range of blocks on an arbitrary block device.
1641 *
1642 */
1643journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1644			struct block_device *fs_dev,
1645			unsigned long long start, int len, int blocksize)
1646{
1647	journal_t *journal;
1648
1649	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1650	if (IS_ERR(journal))
1651		return ERR_CAST(journal);
1652
1653	snprintf(journal->j_devname, sizeof(journal->j_devname),
1654		 "%pg", journal->j_dev);
1655	strreplace(journal->j_devname, '/', '!');
1656	jbd2_stats_proc_init(journal);
1657
1658	return journal;
1659}
1660
1661/**
1662 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1663 *  @inode: An inode to create the journal in
1664 *
1665 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1666 * the journal.  The inode must exist already, must support bmap() and
1667 * must have all data blocks preallocated.
1668 */
1669journal_t *jbd2_journal_init_inode(struct inode *inode)
1670{
1671	journal_t *journal;
1672	sector_t blocknr;
1673	int err = 0;
1674
1675	blocknr = 0;
1676	err = bmap(inode, &blocknr);
1677	if (err || !blocknr) {
1678		pr_err("%s: Cannot locate journal superblock\n", __func__);
1679		return err ? ERR_PTR(err) : ERR_PTR(-EINVAL);
1680	}
1681
1682	jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1683		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1684		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1685
1686	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1687			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1688			inode->i_sb->s_blocksize);
1689	if (IS_ERR(journal))
1690		return ERR_CAST(journal);
1691
1692	journal->j_inode = inode;
1693	snprintf(journal->j_devname, sizeof(journal->j_devname),
1694		 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino);
1695	strreplace(journal->j_devname, '/', '!');
1696	jbd2_stats_proc_init(journal);
1697
1698	return journal;
1699}
1700
1701/*
1702 * Given a journal_t structure, initialise the various fields for
1703 * startup of a new journaling session.  We use this both when creating
1704 * a journal, and after recovering an old journal to reset it for
1705 * subsequent use.
1706 */
1707
1708static int journal_reset(journal_t *journal)
1709{
1710	journal_superblock_t *sb = journal->j_superblock;
1711	unsigned long long first, last;
1712
1713	first = be32_to_cpu(sb->s_first);
1714	last = be32_to_cpu(sb->s_maxlen);
1715	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1716		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1717		       first, last);
1718		journal_fail_superblock(journal);
1719		return -EINVAL;
1720	}
1721
1722	journal->j_first = first;
1723	journal->j_last = last;
1724
1725	if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) {
1726		/*
1727		 * Disable the cycled recording mode if the journal head block
1728		 * number is not correct.
1729		 */
1730		if (journal->j_head < first || journal->j_head >= last) {
1731			printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, "
1732			       "disable journal_cycle_record\n",
1733			       journal->j_head);
1734			journal->j_head = journal->j_first;
1735		}
1736	} else {
1737		journal->j_head = journal->j_first;
1738	}
1739	journal->j_tail = journal->j_head;
1740	journal->j_free = journal->j_last - journal->j_first;
1741
1742	journal->j_tail_sequence = journal->j_transaction_sequence;
1743	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1744	journal->j_commit_request = journal->j_commit_sequence;
1745
1746	journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1747
1748	/*
1749	 * Now that journal recovery is done, turn fast commits off here. This
1750	 * way, if fast commit was enabled before the crash but if now FS has
1751	 * disabled it, we don't enable fast commits.
1752	 */
1753	jbd2_clear_feature_fast_commit(journal);
1754
1755	/*
1756	 * As a special case, if the on-disk copy is already marked as needing
1757	 * no recovery (s_start == 0), then we can safely defer the superblock
1758	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1759	 * attempting a write to a potential-readonly device.
1760	 */
1761	if (sb->s_start == 0) {
1762		jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb "
1763			"(start %ld, seq %u, errno %d)\n",
1764			journal->j_tail, journal->j_tail_sequence,
1765			journal->j_errno);
1766		journal->j_flags |= JBD2_FLUSHED;
1767	} else {
1768		/* Lock here to make assertions happy... */
1769		mutex_lock_io(&journal->j_checkpoint_mutex);
1770		/*
1771		 * Update log tail information. We use REQ_FUA since new
1772		 * transaction will start reusing journal space and so we
1773		 * must make sure information about current log tail is on
1774		 * disk before that.
1775		 */
1776		jbd2_journal_update_sb_log_tail(journal,
1777						journal->j_tail_sequence,
1778						journal->j_tail, REQ_FUA);
1779		mutex_unlock(&journal->j_checkpoint_mutex);
1780	}
1781	return jbd2_journal_start_thread(journal);
1782}
1783
1784/*
1785 * This function expects that the caller will have locked the journal
1786 * buffer head, and will return with it unlocked
1787 */
1788static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags)
1789{
1790	struct buffer_head *bh = journal->j_sb_buffer;
1791	journal_superblock_t *sb = journal->j_superblock;
1792	int ret = 0;
1793
1794	/* Buffer got discarded which means block device got invalidated */
1795	if (!buffer_mapped(bh)) {
1796		unlock_buffer(bh);
1797		return -EIO;
1798	}
1799
1800	/*
1801	 * Always set high priority flags to exempt from block layer's
1802	 * QOS policies, e.g. writeback throttle.
1803	 */
1804	write_flags |= JBD2_JOURNAL_REQ_FLAGS;
1805	if (!(journal->j_flags & JBD2_BARRIER))
1806		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1807
1808	trace_jbd2_write_superblock(journal, write_flags);
1809
1810	if (buffer_write_io_error(bh)) {
1811		/*
1812		 * Oh, dear.  A previous attempt to write the journal
1813		 * superblock failed.  This could happen because the
1814		 * USB device was yanked out.  Or it could happen to
1815		 * be a transient write error and maybe the block will
1816		 * be remapped.  Nothing we can do but to retry the
1817		 * write and hope for the best.
1818		 */
1819		printk(KERN_ERR "JBD2: previous I/O error detected "
1820		       "for journal superblock update for %s.\n",
1821		       journal->j_devname);
1822		clear_buffer_write_io_error(bh);
1823		set_buffer_uptodate(bh);
1824	}
1825	if (jbd2_journal_has_csum_v2or3(journal))
1826		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1827	get_bh(bh);
1828	bh->b_end_io = end_buffer_write_sync;
1829	submit_bh(REQ_OP_WRITE | write_flags, bh);
1830	wait_on_buffer(bh);
1831	if (buffer_write_io_error(bh)) {
1832		clear_buffer_write_io_error(bh);
1833		set_buffer_uptodate(bh);
1834		ret = -EIO;
1835	}
1836	if (ret) {
1837		printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n",
1838				journal->j_devname);
1839		if (!is_journal_aborted(journal))
1840			jbd2_journal_abort(journal, ret);
1841	}
1842
1843	return ret;
1844}
1845
1846/**
1847 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1848 * @journal: The journal to update.
1849 * @tail_tid: TID of the new transaction at the tail of the log
1850 * @tail_block: The first block of the transaction at the tail of the log
1851 * @write_flags: Flags for the journal sb write operation
1852 *
1853 * Update a journal's superblock information about log tail and write it to
1854 * disk, waiting for the IO to complete.
1855 */
1856int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1857				    unsigned long tail_block,
1858				    blk_opf_t write_flags)
1859{
1860	journal_superblock_t *sb = journal->j_superblock;
1861	int ret;
1862
1863	if (is_journal_aborted(journal))
1864		return -EIO;
1865	if (jbd2_check_fs_dev_write_error(journal)) {
1866		jbd2_journal_abort(journal, -EIO);
1867		return -EIO;
1868	}
1869
1870	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1871	jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1872		  tail_block, tail_tid);
1873
1874	lock_buffer(journal->j_sb_buffer);
1875	sb->s_sequence = cpu_to_be32(tail_tid);
1876	sb->s_start    = cpu_to_be32(tail_block);
1877
1878	ret = jbd2_write_superblock(journal, write_flags);
1879	if (ret)
1880		goto out;
1881
1882	/* Log is no longer empty */
1883	write_lock(&journal->j_state_lock);
1884	WARN_ON(!sb->s_sequence);
1885	journal->j_flags &= ~JBD2_FLUSHED;
1886	write_unlock(&journal->j_state_lock);
1887
1888out:
1889	return ret;
1890}
1891
1892/**
1893 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1894 * @journal: The journal to update.
1895 * @write_flags: Flags for the journal sb write operation
1896 *
1897 * Update a journal's dynamic superblock fields to show that journal is empty.
1898 * Write updated superblock to disk waiting for IO to complete.
1899 */
1900static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags)
1901{
1902	journal_superblock_t *sb = journal->j_superblock;
1903	bool had_fast_commit = false;
1904
1905	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1906	lock_buffer(journal->j_sb_buffer);
1907	if (sb->s_start == 0) {		/* Is it already empty? */
1908		unlock_buffer(journal->j_sb_buffer);
1909		return;
1910	}
1911
1912	jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1913		  journal->j_tail_sequence);
1914
1915	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1916	sb->s_start    = cpu_to_be32(0);
1917	sb->s_head     = cpu_to_be32(journal->j_head);
1918	if (jbd2_has_feature_fast_commit(journal)) {
1919		/*
1920		 * When journal is clean, no need to commit fast commit flag and
1921		 * make file system incompatible with older kernels.
1922		 */
1923		jbd2_clear_feature_fast_commit(journal);
1924		had_fast_commit = true;
1925	}
1926
1927	jbd2_write_superblock(journal, write_flags);
1928
1929	if (had_fast_commit)
1930		jbd2_set_feature_fast_commit(journal);
1931
1932	/* Log is no longer empty */
1933	write_lock(&journal->j_state_lock);
1934	journal->j_flags |= JBD2_FLUSHED;
1935	write_unlock(&journal->j_state_lock);
1936}
1937
1938/**
1939 * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1940 * @journal: The journal to erase.
1941 * @flags: A discard/zeroout request is sent for each physically contigous
1942 *	region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1943 *	JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1944 *	to perform.
1945 *
1946 * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1947 * will be explicitly written if no hardware offload is available, see
1948 * blkdev_issue_zeroout for more details.
1949 */
1950static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1951{
1952	int err = 0;
1953	unsigned long block, log_offset; /* logical */
1954	unsigned long long phys_block, block_start, block_stop; /* physical */
1955	loff_t byte_start, byte_stop, byte_count;
1956
1957	/* flags must be set to either discard or zeroout */
1958	if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1959			((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1960			(flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1961		return -EINVAL;
1962
1963	if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1964	    !bdev_max_discard_sectors(journal->j_dev))
1965		return -EOPNOTSUPP;
1966
1967	/*
1968	 * lookup block mapping and issue discard/zeroout for each
1969	 * contiguous region
1970	 */
1971	log_offset = be32_to_cpu(journal->j_superblock->s_first);
1972	block_start =  ~0ULL;
1973	for (block = log_offset; block < journal->j_total_len; block++) {
1974		err = jbd2_journal_bmap(journal, block, &phys_block);
1975		if (err) {
1976			pr_err("JBD2: bad block at offset %lu", block);
1977			return err;
1978		}
1979
1980		if (block_start == ~0ULL) {
1981			block_start = phys_block;
1982			block_stop = block_start - 1;
1983		}
1984
1985		/*
1986		 * last block not contiguous with current block,
1987		 * process last contiguous region and return to this block on
1988		 * next loop
1989		 */
1990		if (phys_block != block_stop + 1) {
1991			block--;
1992		} else {
1993			block_stop++;
1994			/*
1995			 * if this isn't the last block of journal,
1996			 * no need to process now because next block may also
1997			 * be part of this contiguous region
1998			 */
1999			if (block != journal->j_total_len - 1)
2000				continue;
2001		}
2002
2003		/*
2004		 * end of contiguous region or this is last block of journal,
2005		 * take care of the region
2006		 */
2007		byte_start = block_start * journal->j_blocksize;
2008		byte_stop = block_stop * journal->j_blocksize;
2009		byte_count = (block_stop - block_start + 1) *
2010				journal->j_blocksize;
2011
2012		truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping,
2013				byte_start, byte_stop);
2014
2015		if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
2016			err = blkdev_issue_discard(journal->j_dev,
2017					byte_start >> SECTOR_SHIFT,
2018					byte_count >> SECTOR_SHIFT,
2019					GFP_NOFS);
2020		} else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
2021			err = blkdev_issue_zeroout(journal->j_dev,
2022					byte_start >> SECTOR_SHIFT,
2023					byte_count >> SECTOR_SHIFT,
2024					GFP_NOFS, 0);
2025		}
2026
2027		if (unlikely(err != 0)) {
2028			pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu",
2029					err, block_start, block_stop);
2030			return err;
2031		}
2032
2033		/* reset start and stop after processing a region */
2034		block_start = ~0ULL;
2035	}
2036
2037	return blkdev_issue_flush(journal->j_dev);
2038}
2039
2040/**
2041 * jbd2_journal_update_sb_errno() - Update error in the journal.
2042 * @journal: The journal to update.
2043 *
2044 * Update a journal's errno.  Write updated superblock to disk waiting for IO
2045 * to complete.
2046 */
2047void jbd2_journal_update_sb_errno(journal_t *journal)
2048{
2049	journal_superblock_t *sb = journal->j_superblock;
2050	int errcode;
2051
2052	lock_buffer(journal->j_sb_buffer);
2053	errcode = journal->j_errno;
2054	if (errcode == -ESHUTDOWN)
2055		errcode = 0;
2056	jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
2057	sb->s_errno    = cpu_to_be32(errcode);
2058
2059	jbd2_write_superblock(journal, REQ_FUA);
2060}
2061EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
2062
2063/**
2064 * jbd2_journal_load() - Read journal from disk.
2065 * @journal: Journal to act on.
2066 *
2067 * Given a journal_t structure which tells us which disk blocks contain
2068 * a journal, read the journal from disk to initialise the in-memory
2069 * structures.
2070 */
2071int jbd2_journal_load(journal_t *journal)
2072{
2073	int err;
2074	journal_superblock_t *sb = journal->j_superblock;
2075
2076	/*
2077	 * Create a slab for this blocksize
2078	 */
2079	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2080	if (err)
2081		return err;
2082
2083	/* Let the recovery code check whether it needs to recover any
2084	 * data from the journal. */
2085	err = jbd2_journal_recover(journal);
2086	if (err) {
2087		pr_warn("JBD2: journal recovery failed\n");
2088		return err;
2089	}
2090
2091	if (journal->j_failed_commit) {
2092		printk(KERN_ERR "JBD2: journal transaction %u on %s "
2093		       "is corrupt.\n", journal->j_failed_commit,
2094		       journal->j_devname);
2095		return -EFSCORRUPTED;
2096	}
2097	/*
2098	 * clear JBD2_ABORT flag initialized in journal_init_common
2099	 * here to update log tail information with the newest seq.
2100	 */
2101	journal->j_flags &= ~JBD2_ABORT;
2102
2103	/* OK, we've finished with the dynamic journal bits:
2104	 * reinitialise the dynamic contents of the superblock in memory
2105	 * and reset them on disk. */
2106	err = journal_reset(journal);
2107	if (err) {
2108		pr_warn("JBD2: journal reset failed\n");
2109		return err;
2110	}
2111
2112	journal->j_flags |= JBD2_LOADED;
2113	return 0;
2114}
2115
2116/**
2117 * jbd2_journal_destroy() - Release a journal_t structure.
2118 * @journal: Journal to act on.
2119 *
2120 * Release a journal_t structure once it is no longer in use by the
2121 * journaled object.
2122 * Return <0 if we couldn't clean up the journal.
2123 */
2124int jbd2_journal_destroy(journal_t *journal)
2125{
2126	int err = 0;
2127
2128	/* Wait for the commit thread to wake up and die. */
2129	journal_kill_thread(journal);
2130
2131	/* Force a final log commit */
2132	if (journal->j_running_transaction)
2133		jbd2_journal_commit_transaction(journal);
2134
2135	/* Force any old transactions to disk */
2136
2137	/* Totally anal locking here... */
2138	spin_lock(&journal->j_list_lock);
2139	while (journal->j_checkpoint_transactions != NULL) {
2140		spin_unlock(&journal->j_list_lock);
2141		mutex_lock_io(&journal->j_checkpoint_mutex);
2142		err = jbd2_log_do_checkpoint(journal);
2143		mutex_unlock(&journal->j_checkpoint_mutex);
2144		/*
2145		 * If checkpointing failed, just free the buffers to avoid
2146		 * looping forever
2147		 */
2148		if (err) {
2149			jbd2_journal_destroy_checkpoint(journal);
2150			spin_lock(&journal->j_list_lock);
2151			break;
2152		}
2153		spin_lock(&journal->j_list_lock);
2154	}
2155
2156	J_ASSERT(journal->j_running_transaction == NULL);
2157	J_ASSERT(journal->j_committing_transaction == NULL);
2158	J_ASSERT(journal->j_checkpoint_transactions == NULL);
2159	spin_unlock(&journal->j_list_lock);
2160
2161	/*
2162	 * OK, all checkpoint transactions have been checked, now check the
2163	 * writeback errseq of fs dev and abort the journal if some buffer
2164	 * failed to write back to the original location, otherwise the
2165	 * filesystem may become inconsistent.
2166	 */
2167	if (!is_journal_aborted(journal) &&
2168	    jbd2_check_fs_dev_write_error(journal))
2169		jbd2_journal_abort(journal, -EIO);
2170
2171	if (journal->j_sb_buffer) {
2172		if (!is_journal_aborted(journal)) {
2173			mutex_lock_io(&journal->j_checkpoint_mutex);
2174
2175			write_lock(&journal->j_state_lock);
2176			journal->j_tail_sequence =
2177				++journal->j_transaction_sequence;
2178			write_unlock(&journal->j_state_lock);
2179
2180			jbd2_mark_journal_empty(journal, REQ_PREFLUSH | REQ_FUA);
2181			mutex_unlock(&journal->j_checkpoint_mutex);
2182		} else
2183			err = -EIO;
2184		brelse(journal->j_sb_buffer);
2185	}
2186
2187	if (journal->j_shrinker) {
2188		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2189		shrinker_free(journal->j_shrinker);
2190	}
2191	if (journal->j_proc_entry)
2192		jbd2_stats_proc_exit(journal);
2193	iput(journal->j_inode);
2194	if (journal->j_revoke)
2195		jbd2_journal_destroy_revoke(journal);
2196	if (journal->j_chksum_driver)
2197		crypto_free_shash(journal->j_chksum_driver);
2198	kfree(journal->j_fc_wbuf);
2199	kfree(journal->j_wbuf);
2200	kfree(journal);
2201
2202	return err;
2203}
2204
2205
2206/**
2207 * jbd2_journal_check_used_features() - Check if features specified are used.
2208 * @journal: Journal to check.
2209 * @compat: bitmask of compatible features
2210 * @ro: bitmask of features that force read-only mount
2211 * @incompat: bitmask of incompatible features
2212 *
2213 * Check whether the journal uses all of a given set of
2214 * features.  Return true (non-zero) if it does.
2215 **/
2216
2217int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2218				 unsigned long ro, unsigned long incompat)
2219{
2220	journal_superblock_t *sb;
2221
2222	if (!compat && !ro && !incompat)
2223		return 1;
2224	if (!jbd2_format_support_feature(journal))
2225		return 0;
2226
2227	sb = journal->j_superblock;
2228
2229	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2230	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2231	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2232		return 1;
2233
2234	return 0;
2235}
2236
2237/**
2238 * jbd2_journal_check_available_features() - Check feature set in journalling layer
2239 * @journal: Journal to check.
2240 * @compat: bitmask of compatible features
2241 * @ro: bitmask of features that force read-only mount
2242 * @incompat: bitmask of incompatible features
2243 *
2244 * Check whether the journaling code supports the use of
2245 * all of a given set of features on this journal.  Return true
2246 * (non-zero) if it can. */
2247
2248int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2249				      unsigned long ro, unsigned long incompat)
2250{
2251	if (!compat && !ro && !incompat)
2252		return 1;
2253
2254	if (!jbd2_format_support_feature(journal))
2255		return 0;
2256
2257	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2258	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2259	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2260		return 1;
2261
2262	return 0;
2263}
2264
2265static int
2266jbd2_journal_initialize_fast_commit(journal_t *journal)
2267{
2268	journal_superblock_t *sb = journal->j_superblock;
2269	unsigned long long num_fc_blks;
2270
2271	num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2272	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2273		return -ENOSPC;
2274
2275	/* Are we called twice? */
2276	WARN_ON(journal->j_fc_wbuf != NULL);
2277	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2278				sizeof(struct buffer_head *), GFP_KERNEL);
2279	if (!journal->j_fc_wbuf)
2280		return -ENOMEM;
2281
2282	journal->j_fc_wbufsize = num_fc_blks;
2283	journal->j_fc_last = journal->j_last;
2284	journal->j_last = journal->j_fc_last - num_fc_blks;
2285	journal->j_fc_first = journal->j_last + 1;
2286	journal->j_fc_off = 0;
2287	journal->j_free = journal->j_last - journal->j_first;
2288	journal->j_max_transaction_buffers =
2289		jbd2_journal_get_max_txn_bufs(journal);
2290
2291	return 0;
2292}
2293
2294/**
2295 * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2296 * @journal: Journal to act on.
2297 * @compat: bitmask of compatible features
2298 * @ro: bitmask of features that force read-only mount
2299 * @incompat: bitmask of incompatible features
2300 *
2301 * Mark a given journal feature as present on the
2302 * superblock.  Returns true if the requested features could be set.
2303 *
2304 */
2305
2306int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2307			  unsigned long ro, unsigned long incompat)
2308{
2309#define INCOMPAT_FEATURE_ON(f) \
2310		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2311#define COMPAT_FEATURE_ON(f) \
2312		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2313	journal_superblock_t *sb;
2314
2315	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2316		return 1;
2317
2318	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2319		return 0;
2320
2321	/* If enabling v2 checksums, turn on v3 instead */
2322	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2323		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2324		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2325	}
2326
2327	/* Asking for checksumming v3 and v1?  Only give them v3. */
2328	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2329	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2330		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2331
2332	jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2333		  compat, ro, incompat);
2334
2335	sb = journal->j_superblock;
2336
2337	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2338		if (jbd2_journal_initialize_fast_commit(journal)) {
2339			pr_err("JBD2: Cannot enable fast commits.\n");
2340			return 0;
2341		}
2342	}
2343
2344	/* Load the checksum driver if necessary */
2345	if ((journal->j_chksum_driver == NULL) &&
2346	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2347		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2348		if (IS_ERR(journal->j_chksum_driver)) {
2349			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2350			journal->j_chksum_driver = NULL;
2351			return 0;
2352		}
2353		/* Precompute checksum seed for all metadata */
2354		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2355						   sizeof(sb->s_uuid));
2356	}
2357
2358	lock_buffer(journal->j_sb_buffer);
2359
2360	/* If enabling v3 checksums, update superblock */
2361	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2362		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2363		sb->s_feature_compat &=
2364			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2365	}
2366
2367	/* If enabling v1 checksums, downgrade superblock */
2368	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2369		sb->s_feature_incompat &=
2370			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2371				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2372
2373	sb->s_feature_compat    |= cpu_to_be32(compat);
2374	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2375	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2376	unlock_buffer(journal->j_sb_buffer);
2377	journal->j_revoke_records_per_block =
2378				journal_revoke_records_per_block(journal);
2379
2380	return 1;
2381#undef COMPAT_FEATURE_ON
2382#undef INCOMPAT_FEATURE_ON
2383}
2384
2385/*
2386 * jbd2_journal_clear_features() - Clear a given journal feature in the
2387 * 				    superblock
2388 * @journal: Journal to act on.
2389 * @compat: bitmask of compatible features
2390 * @ro: bitmask of features that force read-only mount
2391 * @incompat: bitmask of incompatible features
2392 *
2393 * Clear a given journal feature as present on the
2394 * superblock.
2395 */
2396void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2397				unsigned long ro, unsigned long incompat)
2398{
2399	journal_superblock_t *sb;
2400
2401	jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2402		  compat, ro, incompat);
2403
2404	sb = journal->j_superblock;
2405
2406	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2407	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2408	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2409	journal->j_revoke_records_per_block =
2410				journal_revoke_records_per_block(journal);
2411}
2412EXPORT_SYMBOL(jbd2_journal_clear_features);
2413
2414/**
2415 * jbd2_journal_flush() - Flush journal
2416 * @journal: Journal to act on.
2417 * @flags: optional operation on the journal blocks after the flush (see below)
2418 *
2419 * Flush all data for a given journal to disk and empty the journal.
2420 * Filesystems can use this when remounting readonly to ensure that
2421 * recovery does not need to happen on remount. Optionally, a discard or zeroout
2422 * can be issued on the journal blocks after flushing.
2423 *
2424 * flags:
2425 *	JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2426 *	JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2427 */
2428int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2429{
2430	int err = 0;
2431	transaction_t *transaction = NULL;
2432
2433	write_lock(&journal->j_state_lock);
2434
2435	/* Force everything buffered to the log... */
2436	if (journal->j_running_transaction) {
2437		transaction = journal->j_running_transaction;
2438		__jbd2_log_start_commit(journal, transaction->t_tid);
2439	} else if (journal->j_committing_transaction)
2440		transaction = journal->j_committing_transaction;
2441
2442	/* Wait for the log commit to complete... */
2443	if (transaction) {
2444		tid_t tid = transaction->t_tid;
2445
2446		write_unlock(&journal->j_state_lock);
2447		jbd2_log_wait_commit(journal, tid);
2448	} else {
2449		write_unlock(&journal->j_state_lock);
2450	}
2451
2452	/* ...and flush everything in the log out to disk. */
2453	spin_lock(&journal->j_list_lock);
2454	while (!err && journal->j_checkpoint_transactions != NULL) {
2455		spin_unlock(&journal->j_list_lock);
2456		mutex_lock_io(&journal->j_checkpoint_mutex);
2457		err = jbd2_log_do_checkpoint(journal);
2458		mutex_unlock(&journal->j_checkpoint_mutex);
2459		spin_lock(&journal->j_list_lock);
2460	}
2461	spin_unlock(&journal->j_list_lock);
2462
2463	if (is_journal_aborted(journal))
2464		return -EIO;
2465
2466	mutex_lock_io(&journal->j_checkpoint_mutex);
2467	if (!err) {
2468		err = jbd2_cleanup_journal_tail(journal);
2469		if (err < 0) {
2470			mutex_unlock(&journal->j_checkpoint_mutex);
2471			goto out;
2472		}
2473		err = 0;
2474	}
2475
2476	/* Finally, mark the journal as really needing no recovery.
2477	 * This sets s_start==0 in the underlying superblock, which is
2478	 * the magic code for a fully-recovered superblock.  Any future
2479	 * commits of data to the journal will restore the current
2480	 * s_start value. */
2481	jbd2_mark_journal_empty(journal, REQ_FUA);
2482
2483	if (flags)
2484		err = __jbd2_journal_erase(journal, flags);
2485
2486	mutex_unlock(&journal->j_checkpoint_mutex);
2487	write_lock(&journal->j_state_lock);
2488	J_ASSERT(!journal->j_running_transaction);
2489	J_ASSERT(!journal->j_committing_transaction);
2490	J_ASSERT(!journal->j_checkpoint_transactions);
2491	J_ASSERT(journal->j_head == journal->j_tail);
2492	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2493	write_unlock(&journal->j_state_lock);
2494out:
2495	return err;
2496}
2497
2498/**
2499 * jbd2_journal_wipe() - Wipe journal contents
2500 * @journal: Journal to act on.
2501 * @write: flag (see below)
2502 *
2503 * Wipe out all of the contents of a journal, safely.  This will produce
2504 * a warning if the journal contains any valid recovery information.
2505 * Must be called between journal_init_*() and jbd2_journal_load().
2506 *
2507 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2508 * we merely suppress recovery.
2509 */
2510
2511int jbd2_journal_wipe(journal_t *journal, int write)
2512{
2513	int err;
2514
2515	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2516
2517	if (!journal->j_tail)
2518		return 0;
2519
2520	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2521		write ? "Clearing" : "Ignoring");
2522
2523	err = jbd2_journal_skip_recovery(journal);
2524	if (write) {
2525		/* Lock to make assertions happy... */
2526		mutex_lock_io(&journal->j_checkpoint_mutex);
2527		jbd2_mark_journal_empty(journal, REQ_FUA);
2528		mutex_unlock(&journal->j_checkpoint_mutex);
2529	}
2530
2531	return err;
2532}
2533
2534/**
2535 * jbd2_journal_abort () - Shutdown the journal immediately.
2536 * @journal: the journal to shutdown.
2537 * @errno:   an error number to record in the journal indicating
2538 *           the reason for the shutdown.
2539 *
2540 * Perform a complete, immediate shutdown of the ENTIRE
2541 * journal (not of a single transaction).  This operation cannot be
2542 * undone without closing and reopening the journal.
2543 *
2544 * The jbd2_journal_abort function is intended to support higher level error
2545 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2546 * mode.
2547 *
2548 * Journal abort has very specific semantics.  Any existing dirty,
2549 * unjournaled buffers in the main filesystem will still be written to
2550 * disk by bdflush, but the journaling mechanism will be suspended
2551 * immediately and no further transaction commits will be honoured.
2552 *
2553 * Any dirty, journaled buffers will be written back to disk without
2554 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2555 * filesystem, but we _do_ attempt to leave as much data as possible
2556 * behind for fsck to use for cleanup.
2557 *
2558 * Any attempt to get a new transaction handle on a journal which is in
2559 * ABORT state will just result in an -EROFS error return.  A
2560 * jbd2_journal_stop on an existing handle will return -EIO if we have
2561 * entered abort state during the update.
2562 *
2563 * Recursive transactions are not disturbed by journal abort until the
2564 * final jbd2_journal_stop, which will receive the -EIO error.
2565 *
2566 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2567 * which will be recorded (if possible) in the journal superblock.  This
2568 * allows a client to record failure conditions in the middle of a
2569 * transaction without having to complete the transaction to record the
2570 * failure to disk.  ext3_error, for example, now uses this
2571 * functionality.
2572 *
2573 */
2574
2575void jbd2_journal_abort(journal_t *journal, int errno)
2576{
2577	transaction_t *transaction;
2578
2579	/*
2580	 * Lock the aborting procedure until everything is done, this avoid
2581	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2582	 * ensure panic after the error info is written into journal's
2583	 * superblock.
2584	 */
2585	mutex_lock(&journal->j_abort_mutex);
2586	/*
2587	 * ESHUTDOWN always takes precedence because a file system check
2588	 * caused by any other journal abort error is not required after
2589	 * a shutdown triggered.
2590	 */
2591	write_lock(&journal->j_state_lock);
2592	if (journal->j_flags & JBD2_ABORT) {
2593		int old_errno = journal->j_errno;
2594
2595		write_unlock(&journal->j_state_lock);
2596		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2597			journal->j_errno = errno;
2598			jbd2_journal_update_sb_errno(journal);
2599		}
2600		mutex_unlock(&journal->j_abort_mutex);
2601		return;
2602	}
2603
2604	/*
2605	 * Mark the abort as occurred and start current running transaction
2606	 * to release all journaled buffer.
2607	 */
2608	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2609
2610	journal->j_flags |= JBD2_ABORT;
2611	journal->j_errno = errno;
2612	transaction = journal->j_running_transaction;
2613	if (transaction)
2614		__jbd2_log_start_commit(journal, transaction->t_tid);
2615	write_unlock(&journal->j_state_lock);
2616
2617	/*
2618	 * Record errno to the journal super block, so that fsck and jbd2
2619	 * layer could realise that a filesystem check is needed.
2620	 */
2621	jbd2_journal_update_sb_errno(journal);
2622	mutex_unlock(&journal->j_abort_mutex);
2623}
2624
2625/**
2626 * jbd2_journal_errno() - returns the journal's error state.
2627 * @journal: journal to examine.
2628 *
2629 * This is the errno number set with jbd2_journal_abort(), the last
2630 * time the journal was mounted - if the journal was stopped
2631 * without calling abort this will be 0.
2632 *
2633 * If the journal has been aborted on this mount time -EROFS will
2634 * be returned.
2635 */
2636int jbd2_journal_errno(journal_t *journal)
2637{
2638	int err;
2639
2640	read_lock(&journal->j_state_lock);
2641	if (journal->j_flags & JBD2_ABORT)
2642		err = -EROFS;
2643	else
2644		err = journal->j_errno;
2645	read_unlock(&journal->j_state_lock);
2646	return err;
2647}
2648
2649/**
2650 * jbd2_journal_clear_err() - clears the journal's error state
2651 * @journal: journal to act on.
2652 *
2653 * An error must be cleared or acked to take a FS out of readonly
2654 * mode.
2655 */
2656int jbd2_journal_clear_err(journal_t *journal)
2657{
2658	int err = 0;
2659
2660	write_lock(&journal->j_state_lock);
2661	if (journal->j_flags & JBD2_ABORT)
2662		err = -EROFS;
2663	else
2664		journal->j_errno = 0;
2665	write_unlock(&journal->j_state_lock);
2666	return err;
2667}
2668
2669/**
2670 * jbd2_journal_ack_err() - Ack journal err.
2671 * @journal: journal to act on.
2672 *
2673 * An error must be cleared or acked to take a FS out of readonly
2674 * mode.
2675 */
2676void jbd2_journal_ack_err(journal_t *journal)
2677{
2678	write_lock(&journal->j_state_lock);
2679	if (journal->j_errno)
2680		journal->j_flags |= JBD2_ACK_ERR;
2681	write_unlock(&journal->j_state_lock);
2682}
2683
2684int jbd2_journal_blocks_per_page(struct inode *inode)
2685{
2686	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2687}
2688
2689/*
2690 * helper functions to deal with 32 or 64bit block numbers.
2691 */
2692size_t journal_tag_bytes(journal_t *journal)
2693{
2694	size_t sz;
2695
2696	if (jbd2_has_feature_csum3(journal))
2697		return sizeof(journal_block_tag3_t);
2698
2699	sz = sizeof(journal_block_tag_t);
2700
2701	if (jbd2_has_feature_csum2(journal))
2702		sz += sizeof(__u16);
2703
2704	if (jbd2_has_feature_64bit(journal))
2705		return sz;
2706	else
2707		return sz - sizeof(__u32);
2708}
2709
2710/*
2711 * JBD memory management
2712 *
2713 * These functions are used to allocate block-sized chunks of memory
2714 * used for making copies of buffer_head data.  Very often it will be
2715 * page-sized chunks of data, but sometimes it will be in
2716 * sub-page-size chunks.  (For example, 16k pages on Power systems
2717 * with a 4k block file system.)  For blocks smaller than a page, we
2718 * use a SLAB allocator.  There are slab caches for each block size,
2719 * which are allocated at mount time, if necessary, and we only free
2720 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2721 * this reason we don't need to a mutex to protect access to
2722 * jbd2_slab[] allocating or releasing memory; only in
2723 * jbd2_journal_create_slab().
2724 */
2725#define JBD2_MAX_SLABS 8
2726static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2727
2728static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2729	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2730	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2731};
2732
2733
2734static void jbd2_journal_destroy_slabs(void)
2735{
2736	int i;
2737
2738	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2739		kmem_cache_destroy(jbd2_slab[i]);
2740		jbd2_slab[i] = NULL;
2741	}
2742}
2743
2744static int jbd2_journal_create_slab(size_t size)
2745{
2746	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2747	int i = order_base_2(size) - 10;
2748	size_t slab_size;
2749
2750	if (size == PAGE_SIZE)
2751		return 0;
2752
2753	if (i >= JBD2_MAX_SLABS)
2754		return -EINVAL;
2755
2756	if (unlikely(i < 0))
2757		i = 0;
2758	mutex_lock(&jbd2_slab_create_mutex);
2759	if (jbd2_slab[i]) {
2760		mutex_unlock(&jbd2_slab_create_mutex);
2761		return 0;	/* Already created */
2762	}
2763
2764	slab_size = 1 << (i+10);
2765	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2766					 slab_size, 0, NULL);
2767	mutex_unlock(&jbd2_slab_create_mutex);
2768	if (!jbd2_slab[i]) {
2769		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2770		return -ENOMEM;
2771	}
2772	return 0;
2773}
2774
2775static struct kmem_cache *get_slab(size_t size)
2776{
2777	int i = order_base_2(size) - 10;
2778
2779	BUG_ON(i >= JBD2_MAX_SLABS);
2780	if (unlikely(i < 0))
2781		i = 0;
2782	BUG_ON(jbd2_slab[i] == NULL);
2783	return jbd2_slab[i];
2784}
2785
2786void *jbd2_alloc(size_t size, gfp_t flags)
2787{
2788	void *ptr;
2789
2790	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2791
2792	if (size < PAGE_SIZE)
2793		ptr = kmem_cache_alloc(get_slab(size), flags);
2794	else
2795		ptr = (void *)__get_free_pages(flags, get_order(size));
2796
2797	/* Check alignment; SLUB has gotten this wrong in the past,
2798	 * and this can lead to user data corruption! */
2799	BUG_ON(((unsigned long) ptr) & (size-1));
2800
2801	return ptr;
2802}
2803
2804void jbd2_free(void *ptr, size_t size)
2805{
2806	if (size < PAGE_SIZE)
2807		kmem_cache_free(get_slab(size), ptr);
2808	else
2809		free_pages((unsigned long)ptr, get_order(size));
2810};
2811
2812/*
2813 * Journal_head storage management
2814 */
2815static struct kmem_cache *jbd2_journal_head_cache;
2816#ifdef CONFIG_JBD2_DEBUG
2817static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2818#endif
2819
2820static int __init jbd2_journal_init_journal_head_cache(void)
2821{
2822	J_ASSERT(!jbd2_journal_head_cache);
2823	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2824				sizeof(struct journal_head),
2825				0,		/* offset */
2826				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2827				NULL);		/* ctor */
2828	if (!jbd2_journal_head_cache) {
2829		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2830		return -ENOMEM;
2831	}
2832	return 0;
2833}
2834
2835static void jbd2_journal_destroy_journal_head_cache(void)
2836{
2837	kmem_cache_destroy(jbd2_journal_head_cache);
2838	jbd2_journal_head_cache = NULL;
2839}
2840
2841/*
2842 * journal_head splicing and dicing
2843 */
2844static struct journal_head *journal_alloc_journal_head(void)
2845{
2846	struct journal_head *ret;
2847
2848#ifdef CONFIG_JBD2_DEBUG
2849	atomic_inc(&nr_journal_heads);
2850#endif
2851	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2852	if (!ret) {
2853		jbd2_debug(1, "out of memory for journal_head\n");
2854		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2855		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2856				GFP_NOFS | __GFP_NOFAIL);
2857	}
2858	if (ret)
2859		spin_lock_init(&ret->b_state_lock);
2860	return ret;
2861}
2862
2863static void journal_free_journal_head(struct journal_head *jh)
2864{
2865#ifdef CONFIG_JBD2_DEBUG
2866	atomic_dec(&nr_journal_heads);
2867	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2868#endif
2869	kmem_cache_free(jbd2_journal_head_cache, jh);
2870}
2871
2872/*
2873 * A journal_head is attached to a buffer_head whenever JBD has an
2874 * interest in the buffer.
2875 *
2876 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2877 * is set.  This bit is tested in core kernel code where we need to take
2878 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2879 * there.
2880 *
2881 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2882 *
2883 * When a buffer has its BH_JBD bit set it is immune from being released by
2884 * core kernel code, mainly via ->b_count.
2885 *
2886 * A journal_head is detached from its buffer_head when the journal_head's
2887 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2888 * transaction (b_cp_transaction) hold their references to b_jcount.
2889 *
2890 * Various places in the kernel want to attach a journal_head to a buffer_head
2891 * _before_ attaching the journal_head to a transaction.  To protect the
2892 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2893 * journal_head's b_jcount refcount by one.  The caller must call
2894 * jbd2_journal_put_journal_head() to undo this.
2895 *
2896 * So the typical usage would be:
2897 *
2898 *	(Attach a journal_head if needed.  Increments b_jcount)
2899 *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2900 *	...
2901 *      (Get another reference for transaction)
2902 *	jbd2_journal_grab_journal_head(bh);
2903 *	jh->b_transaction = xxx;
2904 *	(Put original reference)
2905 *	jbd2_journal_put_journal_head(jh);
2906 */
2907
2908/*
2909 * Give a buffer_head a journal_head.
2910 *
2911 * May sleep.
2912 */
2913struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2914{
2915	struct journal_head *jh;
2916	struct journal_head *new_jh = NULL;
2917
2918repeat:
2919	if (!buffer_jbd(bh))
2920		new_jh = journal_alloc_journal_head();
2921
2922	jbd_lock_bh_journal_head(bh);
2923	if (buffer_jbd(bh)) {
2924		jh = bh2jh(bh);
2925	} else {
2926		J_ASSERT_BH(bh,
2927			(atomic_read(&bh->b_count) > 0) ||
2928			(bh->b_folio && bh->b_folio->mapping));
2929
2930		if (!new_jh) {
2931			jbd_unlock_bh_journal_head(bh);
2932			goto repeat;
2933		}
2934
2935		jh = new_jh;
2936		new_jh = NULL;		/* We consumed it */
2937		set_buffer_jbd(bh);
2938		bh->b_private = jh;
2939		jh->b_bh = bh;
2940		get_bh(bh);
2941		BUFFER_TRACE(bh, "added journal_head");
2942	}
2943	jh->b_jcount++;
2944	jbd_unlock_bh_journal_head(bh);
2945	if (new_jh)
2946		journal_free_journal_head(new_jh);
2947	return bh->b_private;
2948}
2949
2950/*
2951 * Grab a ref against this buffer_head's journal_head.  If it ended up not
2952 * having a journal_head, return NULL
2953 */
2954struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2955{
2956	struct journal_head *jh = NULL;
2957
2958	jbd_lock_bh_journal_head(bh);
2959	if (buffer_jbd(bh)) {
2960		jh = bh2jh(bh);
2961		jh->b_jcount++;
2962	}
2963	jbd_unlock_bh_journal_head(bh);
2964	return jh;
2965}
2966EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2967
2968static void __journal_remove_journal_head(struct buffer_head *bh)
2969{
2970	struct journal_head *jh = bh2jh(bh);
2971
2972	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2973	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2974	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2975	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2976	J_ASSERT_BH(bh, buffer_jbd(bh));
2977	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2978	BUFFER_TRACE(bh, "remove journal_head");
2979
2980	/* Unlink before dropping the lock */
2981	bh->b_private = NULL;
2982	jh->b_bh = NULL;	/* debug, really */
2983	clear_buffer_jbd(bh);
2984}
2985
2986static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2987{
2988	if (jh->b_frozen_data) {
2989		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2990		jbd2_free(jh->b_frozen_data, b_size);
2991	}
2992	if (jh->b_committed_data) {
2993		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2994		jbd2_free(jh->b_committed_data, b_size);
2995	}
2996	journal_free_journal_head(jh);
2997}
2998
2999/*
3000 * Drop a reference on the passed journal_head.  If it fell to zero then
3001 * release the journal_head from the buffer_head.
3002 */
3003void jbd2_journal_put_journal_head(struct journal_head *jh)
3004{
3005	struct buffer_head *bh = jh2bh(jh);
3006
3007	jbd_lock_bh_journal_head(bh);
3008	J_ASSERT_JH(jh, jh->b_jcount > 0);
3009	--jh->b_jcount;
3010	if (!jh->b_jcount) {
3011		__journal_remove_journal_head(bh);
3012		jbd_unlock_bh_journal_head(bh);
3013		journal_release_journal_head(jh, bh->b_size);
3014		__brelse(bh);
3015	} else {
3016		jbd_unlock_bh_journal_head(bh);
3017	}
3018}
3019EXPORT_SYMBOL(jbd2_journal_put_journal_head);
3020
3021/*
3022 * Initialize jbd inode head
3023 */
3024void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3025{
3026	jinode->i_transaction = NULL;
3027	jinode->i_next_transaction = NULL;
3028	jinode->i_vfs_inode = inode;
3029	jinode->i_flags = 0;
3030	jinode->i_dirty_start = 0;
3031	jinode->i_dirty_end = 0;
3032	INIT_LIST_HEAD(&jinode->i_list);
3033}
3034
3035/*
3036 * Function to be called before we start removing inode from memory (i.e.,
3037 * clear_inode() is a fine place to be called from). It removes inode from
3038 * transaction's lists.
3039 */
3040void jbd2_journal_release_jbd_inode(journal_t *journal,
3041				    struct jbd2_inode *jinode)
3042{
3043	if (!journal)
3044		return;
3045restart:
3046	spin_lock(&journal->j_list_lock);
3047	/* Is commit writing out inode - we have to wait */
3048	if (jinode->i_flags & JI_COMMIT_RUNNING) {
3049		wait_queue_head_t *wq;
3050		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3051		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3052		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3053		spin_unlock(&journal->j_list_lock);
3054		schedule();
3055		finish_wait(wq, &wait.wq_entry);
3056		goto restart;
3057	}
3058
3059	if (jinode->i_transaction) {
3060		list_del(&jinode->i_list);
3061		jinode->i_transaction = NULL;
3062	}
3063	spin_unlock(&journal->j_list_lock);
3064}
3065
3066
3067#ifdef CONFIG_PROC_FS
3068
3069#define JBD2_STATS_PROC_NAME "fs/jbd2"
3070
3071static void __init jbd2_create_jbd_stats_proc_entry(void)
3072{
3073	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3074}
3075
3076static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3077{
3078	if (proc_jbd2_stats)
3079		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3080}
3081
3082#else
3083
3084#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3085#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3086
3087#endif
3088
3089struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3090
3091static int __init jbd2_journal_init_inode_cache(void)
3092{
3093	J_ASSERT(!jbd2_inode_cache);
3094	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3095	if (!jbd2_inode_cache) {
3096		pr_emerg("JBD2: failed to create inode cache\n");
3097		return -ENOMEM;
3098	}
3099	return 0;
3100}
3101
3102static int __init jbd2_journal_init_handle_cache(void)
3103{
3104	J_ASSERT(!jbd2_handle_cache);
3105	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3106	if (!jbd2_handle_cache) {
3107		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3108		return -ENOMEM;
3109	}
3110	return 0;
3111}
3112
3113static void jbd2_journal_destroy_inode_cache(void)
3114{
3115	kmem_cache_destroy(jbd2_inode_cache);
3116	jbd2_inode_cache = NULL;
3117}
3118
3119static void jbd2_journal_destroy_handle_cache(void)
3120{
3121	kmem_cache_destroy(jbd2_handle_cache);
3122	jbd2_handle_cache = NULL;
3123}
3124
3125/*
3126 * Module startup and shutdown
3127 */
3128
3129static int __init journal_init_caches(void)
3130{
3131	int ret;
3132
3133	ret = jbd2_journal_init_revoke_record_cache();
3134	if (ret == 0)
3135		ret = jbd2_journal_init_revoke_table_cache();
3136	if (ret == 0)
3137		ret = jbd2_journal_init_journal_head_cache();
3138	if (ret == 0)
3139		ret = jbd2_journal_init_handle_cache();
3140	if (ret == 0)
3141		ret = jbd2_journal_init_inode_cache();
3142	if (ret == 0)
3143		ret = jbd2_journal_init_transaction_cache();
3144	return ret;
3145}
3146
3147static void jbd2_journal_destroy_caches(void)
3148{
3149	jbd2_journal_destroy_revoke_record_cache();
3150	jbd2_journal_destroy_revoke_table_cache();
3151	jbd2_journal_destroy_journal_head_cache();
3152	jbd2_journal_destroy_handle_cache();
3153	jbd2_journal_destroy_inode_cache();
3154	jbd2_journal_destroy_transaction_cache();
3155	jbd2_journal_destroy_slabs();
3156}
3157
3158static int __init journal_init(void)
3159{
3160	int ret;
3161
3162	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3163
3164	ret = journal_init_caches();
3165	if (ret == 0) {
3166		jbd2_create_jbd_stats_proc_entry();
3167	} else {
3168		jbd2_journal_destroy_caches();
3169	}
3170	return ret;
3171}
3172
3173static void __exit journal_exit(void)
3174{
3175#ifdef CONFIG_JBD2_DEBUG
3176	int n = atomic_read(&nr_journal_heads);
3177	if (n)
3178		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3179#endif
3180	jbd2_remove_jbd_stats_proc_entry();
3181	jbd2_journal_destroy_caches();
3182}
3183
3184MODULE_LICENSE("GPL");
3185module_init(journal_init);
3186module_exit(journal_exit);
3187
3188