1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  linux/fs/ext2/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 *  from
11 *
12 *  linux/fs/minix/inode.c
13 *
14 *  Copyright (C) 1991, 1992  Linus Torvalds
15 *
16 *  Goal-directed block allocation by Stephen Tweedie
17 * 	(sct@dcs.ed.ac.uk), 1993, 1998
18 *  Big-endian to little-endian byte-swapping/bitmaps by
19 *        David S. Miller (davem@caip.rutgers.edu), 1995
20 *  64-bit file support on 64-bit platforms by Jakub Jelinek
21 * 	(jj@sunsite.ms.mff.cuni.cz)
22 *
23 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
24 */
25
26#include <linux/time.h>
27#include <linux/highuid.h>
28#include <linux/pagemap.h>
29#include <linux/dax.h>
30#include <linux/blkdev.h>
31#include <linux/quotaops.h>
32#include <linux/writeback.h>
33#include <linux/buffer_head.h>
34#include <linux/mpage.h>
35#include <linux/fiemap.h>
36#include <linux/iomap.h>
37#include <linux/namei.h>
38#include <linux/uio.h>
39#include "ext2.h"
40#include "acl.h"
41#include "xattr.h"
42
43static int __ext2_write_inode(struct inode *inode, int do_sync);
44
45/*
46 * Test whether an inode is a fast symlink.
47 */
48static inline int ext2_inode_is_fast_symlink(struct inode *inode)
49{
50	int ea_blocks = EXT2_I(inode)->i_file_acl ?
51		(inode->i_sb->s_blocksize >> 9) : 0;
52
53	return (S_ISLNK(inode->i_mode) &&
54		inode->i_blocks - ea_blocks == 0);
55}
56
57static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
58
59void ext2_write_failed(struct address_space *mapping, loff_t to)
60{
61	struct inode *inode = mapping->host;
62
63	if (to > inode->i_size) {
64		truncate_pagecache(inode, inode->i_size);
65		ext2_truncate_blocks(inode, inode->i_size);
66	}
67}
68
69/*
70 * Called at the last iput() if i_nlink is zero.
71 */
72void ext2_evict_inode(struct inode * inode)
73{
74	struct ext2_block_alloc_info *rsv;
75	int want_delete = 0;
76
77	if (!inode->i_nlink && !is_bad_inode(inode)) {
78		want_delete = 1;
79		dquot_initialize(inode);
80	} else {
81		dquot_drop(inode);
82	}
83
84	truncate_inode_pages_final(&inode->i_data);
85
86	if (want_delete) {
87		sb_start_intwrite(inode->i_sb);
88		/* set dtime */
89		EXT2_I(inode)->i_dtime	= ktime_get_real_seconds();
90		mark_inode_dirty(inode);
91		__ext2_write_inode(inode, inode_needs_sync(inode));
92		/* truncate to 0 */
93		inode->i_size = 0;
94		if (inode->i_blocks)
95			ext2_truncate_blocks(inode, 0);
96		ext2_xattr_delete_inode(inode);
97	}
98
99	invalidate_inode_buffers(inode);
100	clear_inode(inode);
101
102	ext2_discard_reservation(inode);
103	rsv = EXT2_I(inode)->i_block_alloc_info;
104	EXT2_I(inode)->i_block_alloc_info = NULL;
105	if (unlikely(rsv))
106		kfree(rsv);
107
108	if (want_delete) {
109		ext2_free_inode(inode);
110		sb_end_intwrite(inode->i_sb);
111	}
112}
113
114typedef struct {
115	__le32	*p;
116	__le32	key;
117	struct buffer_head *bh;
118} Indirect;
119
120static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
121{
122	p->key = *(p->p = v);
123	p->bh = bh;
124}
125
126static inline int verify_chain(Indirect *from, Indirect *to)
127{
128	while (from <= to && from->key == *from->p)
129		from++;
130	return (from > to);
131}
132
133/**
134 *	ext2_block_to_path - parse the block number into array of offsets
135 *	@inode: inode in question (we are only interested in its superblock)
136 *	@i_block: block number to be parsed
137 *	@offsets: array to store the offsets in
138 *      @boundary: set this non-zero if the referred-to block is likely to be
139 *             followed (on disk) by an indirect block.
140 *	To store the locations of file's data ext2 uses a data structure common
141 *	for UNIX filesystems - tree of pointers anchored in the inode, with
142 *	data blocks at leaves and indirect blocks in intermediate nodes.
143 *	This function translates the block number into path in that tree -
144 *	return value is the path length and @offsets[n] is the offset of
145 *	pointer to (n+1)th node in the nth one. If @block is out of range
146 *	(negative or too large) warning is printed and zero returned.
147 *
148 *	Note: function doesn't find node addresses, so no IO is needed. All
149 *	we need to know is the capacity of indirect blocks (taken from the
150 *	inode->i_sb).
151 */
152
153/*
154 * Portability note: the last comparison (check that we fit into triple
155 * indirect block) is spelled differently, because otherwise on an
156 * architecture with 32-bit longs and 8Kb pages we might get into trouble
157 * if our filesystem had 8Kb blocks. We might use long long, but that would
158 * kill us on x86. Oh, well, at least the sign propagation does not matter -
159 * i_block would have to be negative in the very beginning, so we would not
160 * get there at all.
161 */
162
163static int ext2_block_to_path(struct inode *inode,
164			long i_block, int offsets[4], int *boundary)
165{
166	int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
167	int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
168	const long direct_blocks = EXT2_NDIR_BLOCKS,
169		indirect_blocks = ptrs,
170		double_blocks = (1 << (ptrs_bits * 2));
171	int n = 0;
172	int final = 0;
173
174	if (i_block < 0) {
175		ext2_msg(inode->i_sb, KERN_WARNING,
176			"warning: %s: block < 0", __func__);
177	} else if (i_block < direct_blocks) {
178		offsets[n++] = i_block;
179		final = direct_blocks;
180	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
181		offsets[n++] = EXT2_IND_BLOCK;
182		offsets[n++] = i_block;
183		final = ptrs;
184	} else if ((i_block -= indirect_blocks) < double_blocks) {
185		offsets[n++] = EXT2_DIND_BLOCK;
186		offsets[n++] = i_block >> ptrs_bits;
187		offsets[n++] = i_block & (ptrs - 1);
188		final = ptrs;
189	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
190		offsets[n++] = EXT2_TIND_BLOCK;
191		offsets[n++] = i_block >> (ptrs_bits * 2);
192		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
193		offsets[n++] = i_block & (ptrs - 1);
194		final = ptrs;
195	} else {
196		ext2_msg(inode->i_sb, KERN_WARNING,
197			"warning: %s: block is too big", __func__);
198	}
199	if (boundary)
200		*boundary = final - 1 - (i_block & (ptrs - 1));
201
202	return n;
203}
204
205/**
206 *	ext2_get_branch - read the chain of indirect blocks leading to data
207 *	@inode: inode in question
208 *	@depth: depth of the chain (1 - direct pointer, etc.)
209 *	@offsets: offsets of pointers in inode/indirect blocks
210 *	@chain: place to store the result
211 *	@err: here we store the error value
212 *
213 *	Function fills the array of triples <key, p, bh> and returns %NULL
214 *	if everything went OK or the pointer to the last filled triple
215 *	(incomplete one) otherwise. Upon the return chain[i].key contains
216 *	the number of (i+1)-th block in the chain (as it is stored in memory,
217 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
218 *	number (it points into struct inode for i==0 and into the bh->b_data
219 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
220 *	block for i>0 and NULL for i==0. In other words, it holds the block
221 *	numbers of the chain, addresses they were taken from (and where we can
222 *	verify that chain did not change) and buffer_heads hosting these
223 *	numbers.
224 *
225 *	Function stops when it stumbles upon zero pointer (absent block)
226 *		(pointer to last triple returned, *@err == 0)
227 *	or when it gets an IO error reading an indirect block
228 *		(ditto, *@err == -EIO)
229 *	or when it notices that chain had been changed while it was reading
230 *		(ditto, *@err == -EAGAIN)
231 *	or when it reads all @depth-1 indirect blocks successfully and finds
232 *	the whole chain, all way to the data (returns %NULL, *err == 0).
233 */
234static Indirect *ext2_get_branch(struct inode *inode,
235				 int depth,
236				 int *offsets,
237				 Indirect chain[4],
238				 int *err)
239{
240	struct super_block *sb = inode->i_sb;
241	Indirect *p = chain;
242	struct buffer_head *bh;
243
244	*err = 0;
245	/* i_data is not going away, no lock needed */
246	add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
247	if (!p->key)
248		goto no_block;
249	while (--depth) {
250		bh = sb_bread(sb, le32_to_cpu(p->key));
251		if (!bh)
252			goto failure;
253		read_lock(&EXT2_I(inode)->i_meta_lock);
254		if (!verify_chain(chain, p))
255			goto changed;
256		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
257		read_unlock(&EXT2_I(inode)->i_meta_lock);
258		if (!p->key)
259			goto no_block;
260	}
261	return NULL;
262
263changed:
264	read_unlock(&EXT2_I(inode)->i_meta_lock);
265	brelse(bh);
266	*err = -EAGAIN;
267	goto no_block;
268failure:
269	*err = -EIO;
270no_block:
271	return p;
272}
273
274/**
275 *	ext2_find_near - find a place for allocation with sufficient locality
276 *	@inode: owner
277 *	@ind: descriptor of indirect block.
278 *
279 *	This function returns the preferred place for block allocation.
280 *	It is used when heuristic for sequential allocation fails.
281 *	Rules are:
282 *	  + if there is a block to the left of our position - allocate near it.
283 *	  + if pointer will live in indirect block - allocate near that block.
284 *	  + if pointer will live in inode - allocate in the same cylinder group.
285 *
286 * In the latter case we colour the starting block by the callers PID to
287 * prevent it from clashing with concurrent allocations for a different inode
288 * in the same block group.   The PID is used here so that functionally related
289 * files will be close-by on-disk.
290 *
291 *	Caller must make sure that @ind is valid and will stay that way.
292 */
293
294static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
295{
296	struct ext2_inode_info *ei = EXT2_I(inode);
297	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
298	__le32 *p;
299	ext2_fsblk_t bg_start;
300	ext2_fsblk_t colour;
301
302	/* Try to find previous block */
303	for (p = ind->p - 1; p >= start; p--)
304		if (*p)
305			return le32_to_cpu(*p);
306
307	/* No such thing, so let's try location of indirect block */
308	if (ind->bh)
309		return ind->bh->b_blocknr;
310
311	/*
312	 * It is going to be referred from inode itself? OK, just put it into
313	 * the same cylinder group then.
314	 */
315	bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
316	colour = (current->pid % 16) *
317			(EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
318	return bg_start + colour;
319}
320
321/**
322 *	ext2_find_goal - find a preferred place for allocation.
323 *	@inode: owner
324 *	@block:  block we want
325 *	@partial: pointer to the last triple within a chain
326 *
327 *	Returns preferred place for a block (the goal).
328 */
329
330static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
331					  Indirect *partial)
332{
333	struct ext2_block_alloc_info *block_i;
334
335	block_i = EXT2_I(inode)->i_block_alloc_info;
336
337	/*
338	 * try the heuristic for sequential allocation,
339	 * failing that at least try to get decent locality.
340	 */
341	if (block_i && (block == block_i->last_alloc_logical_block + 1)
342		&& (block_i->last_alloc_physical_block != 0)) {
343		return block_i->last_alloc_physical_block + 1;
344	}
345
346	return ext2_find_near(inode, partial);
347}
348
349/**
350 *	ext2_blks_to_allocate: Look up the block map and count the number
351 *	of direct blocks need to be allocated for the given branch.
352 *
353 * 	@branch: chain of indirect blocks
354 *	@k: number of blocks need for indirect blocks
355 *	@blks: number of data blocks to be mapped.
356 *	@blocks_to_boundary:  the offset in the indirect block
357 *
358 *	return the number of direct blocks to allocate.
359 */
360static int
361ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
362		int blocks_to_boundary)
363{
364	unsigned long count = 0;
365
366	/*
367	 * Simple case, [t,d]Indirect block(s) has not allocated yet
368	 * then it's clear blocks on that path have not allocated
369	 */
370	if (k > 0) {
371		/* right now don't hanel cross boundary allocation */
372		if (blks < blocks_to_boundary + 1)
373			count += blks;
374		else
375			count += blocks_to_boundary + 1;
376		return count;
377	}
378
379	count++;
380	while (count < blks && count <= blocks_to_boundary
381		&& le32_to_cpu(*(branch[0].p + count)) == 0) {
382		count++;
383	}
384	return count;
385}
386
387/**
388 * ext2_alloc_blocks: Allocate multiple blocks needed for a branch.
389 * @inode: Owner.
390 * @goal: Preferred place for allocation.
391 * @indirect_blks: The number of blocks needed to allocate for indirect blocks.
392 * @blks: The number of blocks need to allocate for direct blocks.
393 * @new_blocks: On return it will store the new block numbers for
394 *	the indirect blocks(if needed) and the first direct block.
395 * @err: Error pointer.
396 *
397 * Return: Number of blocks allocated.
398 */
399static int ext2_alloc_blocks(struct inode *inode,
400			ext2_fsblk_t goal, int indirect_blks, int blks,
401			ext2_fsblk_t new_blocks[4], int *err)
402{
403	int target, i;
404	unsigned long count = 0;
405	int index = 0;
406	ext2_fsblk_t current_block = 0;
407	int ret = 0;
408
409	/*
410	 * Here we try to allocate the requested multiple blocks at once,
411	 * on a best-effort basis.
412	 * To build a branch, we should allocate blocks for
413	 * the indirect blocks(if not allocated yet), and at least
414	 * the first direct block of this branch.  That's the
415	 * minimum number of blocks need to allocate(required)
416	 */
417	target = blks + indirect_blks;
418
419	while (1) {
420		count = target;
421		/* allocating blocks for indirect blocks and direct blocks */
422		current_block = ext2_new_blocks(inode, goal, &count, err, 0);
423		if (*err)
424			goto failed_out;
425
426		target -= count;
427		/* allocate blocks for indirect blocks */
428		while (index < indirect_blks && count) {
429			new_blocks[index++] = current_block++;
430			count--;
431		}
432
433		if (count > 0)
434			break;
435	}
436
437	/* save the new block number for the first direct block */
438	new_blocks[index] = current_block;
439
440	/* total number of blocks allocated for direct blocks */
441	ret = count;
442	*err = 0;
443	return ret;
444failed_out:
445	for (i = 0; i <index; i++)
446		ext2_free_blocks(inode, new_blocks[i], 1);
447	if (index)
448		mark_inode_dirty(inode);
449	return ret;
450}
451
452/**
453 *	ext2_alloc_branch - allocate and set up a chain of blocks.
454 *	@inode: owner
455 *	@indirect_blks: depth of the chain (number of blocks to allocate)
456 *	@blks: number of allocated direct blocks
457 *	@goal: preferred place for allocation
458 *	@offsets: offsets (in the blocks) to store the pointers to next.
459 *	@branch: place to store the chain in.
460 *
461 *	This function allocates @num blocks, zeroes out all but the last one,
462 *	links them into chain and (if we are synchronous) writes them to disk.
463 *	In other words, it prepares a branch that can be spliced onto the
464 *	inode. It stores the information about that chain in the branch[], in
465 *	the same format as ext2_get_branch() would do. We are calling it after
466 *	we had read the existing part of chain and partial points to the last
467 *	triple of that (one with zero ->key). Upon the exit we have the same
468 *	picture as after the successful ext2_get_block(), except that in one
469 *	place chain is disconnected - *branch->p is still zero (we did not
470 *	set the last link), but branch->key contains the number that should
471 *	be placed into *branch->p to fill that gap.
472 *
473 *	If allocation fails we free all blocks we've allocated (and forget
474 *	their buffer_heads) and return the error value the from failed
475 *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
476 *	as described above and return 0.
477 */
478
479static int ext2_alloc_branch(struct inode *inode,
480			int indirect_blks, int *blks, ext2_fsblk_t goal,
481			int *offsets, Indirect *branch)
482{
483	int blocksize = inode->i_sb->s_blocksize;
484	int i, n = 0;
485	int err = 0;
486	struct buffer_head *bh;
487	int num;
488	ext2_fsblk_t new_blocks[4];
489	ext2_fsblk_t current_block;
490
491	num = ext2_alloc_blocks(inode, goal, indirect_blks,
492				*blks, new_blocks, &err);
493	if (err)
494		return err;
495
496	branch[0].key = cpu_to_le32(new_blocks[0]);
497	/*
498	 * metadata blocks and data blocks are allocated.
499	 */
500	for (n = 1; n <= indirect_blks;  n++) {
501		/*
502		 * Get buffer_head for parent block, zero it out
503		 * and set the pointer to new one, then send
504		 * parent to disk.
505		 */
506		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
507		if (unlikely(!bh)) {
508			err = -ENOMEM;
509			goto failed;
510		}
511		branch[n].bh = bh;
512		lock_buffer(bh);
513		memset(bh->b_data, 0, blocksize);
514		branch[n].p = (__le32 *) bh->b_data + offsets[n];
515		branch[n].key = cpu_to_le32(new_blocks[n]);
516		*branch[n].p = branch[n].key;
517		if ( n == indirect_blks) {
518			current_block = new_blocks[n];
519			/*
520			 * End of chain, update the last new metablock of
521			 * the chain to point to the new allocated
522			 * data blocks numbers
523			 */
524			for (i=1; i < num; i++)
525				*(branch[n].p + i) = cpu_to_le32(++current_block);
526		}
527		set_buffer_uptodate(bh);
528		unlock_buffer(bh);
529		mark_buffer_dirty_inode(bh, inode);
530		/* We used to sync bh here if IS_SYNC(inode).
531		 * But we now rely upon generic_write_sync()
532		 * and b_inode_buffers.  But not for directories.
533		 */
534		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
535			sync_dirty_buffer(bh);
536	}
537	*blks = num;
538	return err;
539
540failed:
541	for (i = 1; i < n; i++)
542		bforget(branch[i].bh);
543	for (i = 0; i < indirect_blks; i++)
544		ext2_free_blocks(inode, new_blocks[i], 1);
545	ext2_free_blocks(inode, new_blocks[i], num);
546	return err;
547}
548
549/**
550 * ext2_splice_branch - splice the allocated branch onto inode.
551 * @inode: owner
552 * @block: (logical) number of block we are adding
553 * @where: location of missing link
554 * @num:   number of indirect blocks we are adding
555 * @blks:  number of direct blocks we are adding
556 *
557 * This function fills the missing link and does all housekeeping needed in
558 * inode (->i_blocks, etc.). In case of success we end up with the full
559 * chain to new block and return 0.
560 */
561static void ext2_splice_branch(struct inode *inode,
562			long block, Indirect *where, int num, int blks)
563{
564	int i;
565	struct ext2_block_alloc_info *block_i;
566	ext2_fsblk_t current_block;
567
568	block_i = EXT2_I(inode)->i_block_alloc_info;
569
570	/* XXX LOCKING probably should have i_meta_lock ?*/
571	/* That's it */
572
573	*where->p = where->key;
574
575	/*
576	 * Update the host buffer_head or inode to point to more just allocated
577	 * direct blocks blocks
578	 */
579	if (num == 0 && blks > 1) {
580		current_block = le32_to_cpu(where->key) + 1;
581		for (i = 1; i < blks; i++)
582			*(where->p + i ) = cpu_to_le32(current_block++);
583	}
584
585	/*
586	 * update the most recently allocated logical & physical block
587	 * in i_block_alloc_info, to assist find the proper goal block for next
588	 * allocation
589	 */
590	if (block_i) {
591		block_i->last_alloc_logical_block = block + blks - 1;
592		block_i->last_alloc_physical_block =
593				le32_to_cpu(where[num].key) + blks - 1;
594	}
595
596	/* We are done with atomic stuff, now do the rest of housekeeping */
597
598	/* had we spliced it onto indirect block? */
599	if (where->bh)
600		mark_buffer_dirty_inode(where->bh, inode);
601
602	inode_set_ctime_current(inode);
603	mark_inode_dirty(inode);
604}
605
606/*
607 * Allocation strategy is simple: if we have to allocate something, we will
608 * have to go the whole way to leaf. So let's do it before attaching anything
609 * to tree, set linkage between the newborn blocks, write them if sync is
610 * required, recheck the path, free and repeat if check fails, otherwise
611 * set the last missing link (that will protect us from any truncate-generated
612 * removals - all blocks on the path are immune now) and possibly force the
613 * write on the parent block.
614 * That has a nice additional property: no special recovery from the failed
615 * allocations is needed - we simply release blocks and do not touch anything
616 * reachable from inode.
617 *
618 * `handle' can be NULL if create == 0.
619 *
620 * return > 0, # of blocks mapped or allocated.
621 * return = 0, if plain lookup failed.
622 * return < 0, error case.
623 */
624static int ext2_get_blocks(struct inode *inode,
625			   sector_t iblock, unsigned long maxblocks,
626			   u32 *bno, bool *new, bool *boundary,
627			   int create)
628{
629	int err;
630	int offsets[4];
631	Indirect chain[4];
632	Indirect *partial;
633	ext2_fsblk_t goal;
634	int indirect_blks;
635	int blocks_to_boundary = 0;
636	int depth;
637	struct ext2_inode_info *ei = EXT2_I(inode);
638	int count = 0;
639	ext2_fsblk_t first_block = 0;
640
641	BUG_ON(maxblocks == 0);
642
643	depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
644
645	if (depth == 0)
646		return -EIO;
647
648	partial = ext2_get_branch(inode, depth, offsets, chain, &err);
649	/* Simplest case - block found, no allocation needed */
650	if (!partial) {
651		first_block = le32_to_cpu(chain[depth - 1].key);
652		count++;
653		/*map more blocks*/
654		while (count < maxblocks && count <= blocks_to_boundary) {
655			ext2_fsblk_t blk;
656
657			if (!verify_chain(chain, chain + depth - 1)) {
658				/*
659				 * Indirect block might be removed by
660				 * truncate while we were reading it.
661				 * Handling of that case: forget what we've
662				 * got now, go to reread.
663				 */
664				err = -EAGAIN;
665				count = 0;
666				partial = chain + depth - 1;
667				break;
668			}
669			blk = le32_to_cpu(*(chain[depth-1].p + count));
670			if (blk == first_block + count)
671				count++;
672			else
673				break;
674		}
675		if (err != -EAGAIN)
676			goto got_it;
677	}
678
679	/* Next simple case - plain lookup or failed read of indirect block */
680	if (!create || err == -EIO)
681		goto cleanup;
682
683	mutex_lock(&ei->truncate_mutex);
684	/*
685	 * If the indirect block is missing while we are reading
686	 * the chain(ext2_get_branch() returns -EAGAIN err), or
687	 * if the chain has been changed after we grab the semaphore,
688	 * (either because another process truncated this branch, or
689	 * another get_block allocated this branch) re-grab the chain to see if
690	 * the request block has been allocated or not.
691	 *
692	 * Since we already block the truncate/other get_block
693	 * at this point, we will have the current copy of the chain when we
694	 * splice the branch into the tree.
695	 */
696	if (err == -EAGAIN || !verify_chain(chain, partial)) {
697		while (partial > chain) {
698			brelse(partial->bh);
699			partial--;
700		}
701		partial = ext2_get_branch(inode, depth, offsets, chain, &err);
702		if (!partial) {
703			count++;
704			mutex_unlock(&ei->truncate_mutex);
705			goto got_it;
706		}
707
708		if (err) {
709			mutex_unlock(&ei->truncate_mutex);
710			goto cleanup;
711		}
712	}
713
714	/*
715	 * Okay, we need to do block allocation.  Lazily initialize the block
716	 * allocation info here if necessary
717	*/
718	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
719		ext2_init_block_alloc_info(inode);
720
721	goal = ext2_find_goal(inode, iblock, partial);
722
723	/* the number of blocks need to allocate for [d,t]indirect blocks */
724	indirect_blks = (chain + depth) - partial - 1;
725	/*
726	 * Next look up the indirect map to count the total number of
727	 * direct blocks to allocate for this branch.
728	 */
729	count = ext2_blks_to_allocate(partial, indirect_blks,
730					maxblocks, blocks_to_boundary);
731	/*
732	 * XXX ???? Block out ext2_truncate while we alter the tree
733	 */
734	err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
735				offsets + (partial - chain), partial);
736
737	if (err) {
738		mutex_unlock(&ei->truncate_mutex);
739		goto cleanup;
740	}
741
742	if (IS_DAX(inode)) {
743		/*
744		 * We must unmap blocks before zeroing so that writeback cannot
745		 * overwrite zeros with stale data from block device page cache.
746		 */
747		clean_bdev_aliases(inode->i_sb->s_bdev,
748				   le32_to_cpu(chain[depth-1].key),
749				   count);
750		/*
751		 * block must be initialised before we put it in the tree
752		 * so that it's not found by another thread before it's
753		 * initialised
754		 */
755		err = sb_issue_zeroout(inode->i_sb,
756				le32_to_cpu(chain[depth-1].key), count,
757				GFP_KERNEL);
758		if (err) {
759			mutex_unlock(&ei->truncate_mutex);
760			goto cleanup;
761		}
762	}
763	*new = true;
764
765	ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
766	mutex_unlock(&ei->truncate_mutex);
767got_it:
768	if (count > blocks_to_boundary)
769		*boundary = true;
770	err = count;
771	/* Clean up and exit */
772	partial = chain + depth - 1;	/* the whole chain */
773cleanup:
774	while (partial > chain) {
775		brelse(partial->bh);
776		partial--;
777	}
778	if (err > 0)
779		*bno = le32_to_cpu(chain[depth-1].key);
780	return err;
781}
782
783int ext2_get_block(struct inode *inode, sector_t iblock,
784		struct buffer_head *bh_result, int create)
785{
786	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
787	bool new = false, boundary = false;
788	u32 bno;
789	int ret;
790
791	ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
792			create);
793	if (ret <= 0)
794		return ret;
795
796	map_bh(bh_result, inode->i_sb, bno);
797	bh_result->b_size = (ret << inode->i_blkbits);
798	if (new)
799		set_buffer_new(bh_result);
800	if (boundary)
801		set_buffer_boundary(bh_result);
802	return 0;
803
804}
805
806static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
807		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
808{
809	unsigned int blkbits = inode->i_blkbits;
810	unsigned long first_block = offset >> blkbits;
811	unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
812	struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
813	bool new = false, boundary = false;
814	u32 bno;
815	int ret;
816	bool create = flags & IOMAP_WRITE;
817
818	/*
819	 * For writes that could fill holes inside i_size on a
820	 * DIO_SKIP_HOLES filesystem we forbid block creations: only
821	 * overwrites are permitted.
822	 */
823	if ((flags & IOMAP_DIRECT) &&
824	    (first_block << blkbits) < i_size_read(inode))
825		create = 0;
826
827	/*
828	 * Writes that span EOF might trigger an IO size update on completion,
829	 * so consider them to be dirty for the purposes of O_DSYNC even if
830	 * there is no other metadata changes pending or have been made here.
831	 */
832	if ((flags & IOMAP_WRITE) && offset + length > i_size_read(inode))
833		iomap->flags |= IOMAP_F_DIRTY;
834
835	ret = ext2_get_blocks(inode, first_block, max_blocks,
836			&bno, &new, &boundary, create);
837	if (ret < 0)
838		return ret;
839
840	iomap->flags = 0;
841	iomap->offset = (u64)first_block << blkbits;
842	if (flags & IOMAP_DAX)
843		iomap->dax_dev = sbi->s_daxdev;
844	else
845		iomap->bdev = inode->i_sb->s_bdev;
846
847	if (ret == 0) {
848		/*
849		 * Switch to buffered-io for writing to holes in a non-extent
850		 * based filesystem to avoid stale data exposure problem.
851		 */
852		if (!create && (flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT))
853			return -ENOTBLK;
854		iomap->type = IOMAP_HOLE;
855		iomap->addr = IOMAP_NULL_ADDR;
856		iomap->length = 1 << blkbits;
857	} else {
858		iomap->type = IOMAP_MAPPED;
859		iomap->addr = (u64)bno << blkbits;
860		if (flags & IOMAP_DAX)
861			iomap->addr += sbi->s_dax_part_off;
862		iomap->length = (u64)ret << blkbits;
863		iomap->flags |= IOMAP_F_MERGED;
864	}
865
866	if (new)
867		iomap->flags |= IOMAP_F_NEW;
868	return 0;
869}
870
871static int
872ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
873		ssize_t written, unsigned flags, struct iomap *iomap)
874{
875	/*
876	 * Switch to buffered-io in case of any error.
877	 * Blocks allocated can be used by the buffered-io path.
878	 */
879	if ((flags & IOMAP_DIRECT) && (flags & IOMAP_WRITE) && written == 0)
880		return -ENOTBLK;
881
882	if (iomap->type == IOMAP_MAPPED &&
883	    written < length &&
884	    (flags & IOMAP_WRITE))
885		ext2_write_failed(inode->i_mapping, offset + length);
886	return 0;
887}
888
889const struct iomap_ops ext2_iomap_ops = {
890	.iomap_begin		= ext2_iomap_begin,
891	.iomap_end		= ext2_iomap_end,
892};
893
894int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
895		u64 start, u64 len)
896{
897	int ret;
898
899	inode_lock(inode);
900	len = min_t(u64, len, i_size_read(inode));
901	ret = iomap_fiemap(inode, fieinfo, start, len, &ext2_iomap_ops);
902	inode_unlock(inode);
903
904	return ret;
905}
906
907static int ext2_read_folio(struct file *file, struct folio *folio)
908{
909	return mpage_read_folio(folio, ext2_get_block);
910}
911
912static void ext2_readahead(struct readahead_control *rac)
913{
914	mpage_readahead(rac, ext2_get_block);
915}
916
917static int
918ext2_write_begin(struct file *file, struct address_space *mapping,
919		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
920{
921	int ret;
922
923	ret = block_write_begin(mapping, pos, len, pagep, ext2_get_block);
924	if (ret < 0)
925		ext2_write_failed(mapping, pos + len);
926	return ret;
927}
928
929static int ext2_write_end(struct file *file, struct address_space *mapping,
930			loff_t pos, unsigned len, unsigned copied,
931			struct page *page, void *fsdata)
932{
933	int ret;
934
935	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
936	if (ret < len)
937		ext2_write_failed(mapping, pos + len);
938	return ret;
939}
940
941static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
942{
943	return generic_block_bmap(mapping,block,ext2_get_block);
944}
945
946static int
947ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
948{
949	return mpage_writepages(mapping, wbc, ext2_get_block);
950}
951
952static int
953ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
954{
955	struct ext2_sb_info *sbi = EXT2_SB(mapping->host->i_sb);
956
957	return dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
958}
959
960const struct address_space_operations ext2_aops = {
961	.dirty_folio		= block_dirty_folio,
962	.invalidate_folio	= block_invalidate_folio,
963	.read_folio		= ext2_read_folio,
964	.readahead		= ext2_readahead,
965	.write_begin		= ext2_write_begin,
966	.write_end		= ext2_write_end,
967	.bmap			= ext2_bmap,
968	.direct_IO		= noop_direct_IO,
969	.writepages		= ext2_writepages,
970	.migrate_folio		= buffer_migrate_folio,
971	.is_partially_uptodate	= block_is_partially_uptodate,
972	.error_remove_folio	= generic_error_remove_folio,
973};
974
975static const struct address_space_operations ext2_dax_aops = {
976	.writepages		= ext2_dax_writepages,
977	.direct_IO		= noop_direct_IO,
978	.dirty_folio		= noop_dirty_folio,
979};
980
981/*
982 * Probably it should be a library function... search for first non-zero word
983 * or memcmp with zero_page, whatever is better for particular architecture.
984 * Linus?
985 */
986static inline int all_zeroes(__le32 *p, __le32 *q)
987{
988	while (p < q)
989		if (*p++)
990			return 0;
991	return 1;
992}
993
994/**
995 *	ext2_find_shared - find the indirect blocks for partial truncation.
996 *	@inode:	  inode in question
997 *	@depth:	  depth of the affected branch
998 *	@offsets: offsets of pointers in that branch (see ext2_block_to_path)
999 *	@chain:	  place to store the pointers to partial indirect blocks
1000 *	@top:	  place to the (detached) top of branch
1001 *
1002 *	This is a helper function used by ext2_truncate().
1003 *
1004 *	When we do truncate() we may have to clean the ends of several indirect
1005 *	blocks but leave the blocks themselves alive. Block is partially
1006 *	truncated if some data below the new i_size is referred from it (and
1007 *	it is on the path to the first completely truncated data block, indeed).
1008 *	We have to free the top of that path along with everything to the right
1009 *	of the path. Since no allocation past the truncation point is possible
1010 *	until ext2_truncate() finishes, we may safely do the latter, but top
1011 *	of branch may require special attention - pageout below the truncation
1012 *	point might try to populate it.
1013 *
1014 *	We atomically detach the top of branch from the tree, store the block
1015 *	number of its root in *@top, pointers to buffer_heads of partially
1016 *	truncated blocks - in @chain[].bh and pointers to their last elements
1017 *	that should not be removed - in @chain[].p. Return value is the pointer
1018 *	to last filled element of @chain.
1019 *
1020 *	The work left to caller to do the actual freeing of subtrees:
1021 *		a) free the subtree starting from *@top
1022 *		b) free the subtrees whose roots are stored in
1023 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
1024 *		c) free the subtrees growing from the inode past the @chain[0].p
1025 *			(no partially truncated stuff there).
1026 */
1027
1028static Indirect *ext2_find_shared(struct inode *inode,
1029				int depth,
1030				int offsets[4],
1031				Indirect chain[4],
1032				__le32 *top)
1033{
1034	Indirect *partial, *p;
1035	int k, err;
1036
1037	*top = 0;
1038	for (k = depth; k > 1 && !offsets[k-1]; k--)
1039		;
1040	partial = ext2_get_branch(inode, k, offsets, chain, &err);
1041	if (!partial)
1042		partial = chain + k-1;
1043	/*
1044	 * If the branch acquired continuation since we've looked at it -
1045	 * fine, it should all survive and (new) top doesn't belong to us.
1046	 */
1047	write_lock(&EXT2_I(inode)->i_meta_lock);
1048	if (!partial->key && *partial->p) {
1049		write_unlock(&EXT2_I(inode)->i_meta_lock);
1050		goto no_top;
1051	}
1052	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1053		;
1054	/*
1055	 * OK, we've found the last block that must survive. The rest of our
1056	 * branch should be detached before unlocking. However, if that rest
1057	 * of branch is all ours and does not grow immediately from the inode
1058	 * it's easier to cheat and just decrement partial->p.
1059	 */
1060	if (p == chain + k - 1 && p > chain) {
1061		p->p--;
1062	} else {
1063		*top = *p->p;
1064		*p->p = 0;
1065	}
1066	write_unlock(&EXT2_I(inode)->i_meta_lock);
1067
1068	while(partial > p)
1069	{
1070		brelse(partial->bh);
1071		partial--;
1072	}
1073no_top:
1074	return partial;
1075}
1076
1077/**
1078 *	ext2_free_data - free a list of data blocks
1079 *	@inode:	inode we are dealing with
1080 *	@p:	array of block numbers
1081 *	@q:	points immediately past the end of array
1082 *
1083 *	We are freeing all blocks referred from that array (numbers are
1084 *	stored as little-endian 32-bit) and updating @inode->i_blocks
1085 *	appropriately.
1086 */
1087static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1088{
1089	ext2_fsblk_t block_to_free = 0, count = 0;
1090	ext2_fsblk_t nr;
1091
1092	for ( ; p < q ; p++) {
1093		nr = le32_to_cpu(*p);
1094		if (nr) {
1095			*p = 0;
1096			/* accumulate blocks to free if they're contiguous */
1097			if (count == 0)
1098				goto free_this;
1099			else if (block_to_free == nr - count)
1100				count++;
1101			else {
1102				ext2_free_blocks (inode, block_to_free, count);
1103				mark_inode_dirty(inode);
1104			free_this:
1105				block_to_free = nr;
1106				count = 1;
1107			}
1108		}
1109	}
1110	if (count > 0) {
1111		ext2_free_blocks (inode, block_to_free, count);
1112		mark_inode_dirty(inode);
1113	}
1114}
1115
1116/**
1117 *	ext2_free_branches - free an array of branches
1118 *	@inode:	inode we are dealing with
1119 *	@p:	array of block numbers
1120 *	@q:	pointer immediately past the end of array
1121 *	@depth:	depth of the branches to free
1122 *
1123 *	We are freeing all blocks referred from these branches (numbers are
1124 *	stored as little-endian 32-bit) and updating @inode->i_blocks
1125 *	appropriately.
1126 */
1127static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1128{
1129	struct buffer_head * bh;
1130	ext2_fsblk_t nr;
1131
1132	if (depth--) {
1133		int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1134		for ( ; p < q ; p++) {
1135			nr = le32_to_cpu(*p);
1136			if (!nr)
1137				continue;
1138			*p = 0;
1139			bh = sb_bread(inode->i_sb, nr);
1140			/*
1141			 * A read failure? Report error and clear slot
1142			 * (should be rare).
1143			 */
1144			if (!bh) {
1145				ext2_error(inode->i_sb, "ext2_free_branches",
1146					"Read failure, inode=%ld, block=%ld",
1147					inode->i_ino, nr);
1148				continue;
1149			}
1150			ext2_free_branches(inode,
1151					   (__le32*)bh->b_data,
1152					   (__le32*)bh->b_data + addr_per_block,
1153					   depth);
1154			bforget(bh);
1155			ext2_free_blocks(inode, nr, 1);
1156			mark_inode_dirty(inode);
1157		}
1158	} else
1159		ext2_free_data(inode, p, q);
1160}
1161
1162/* mapping->invalidate_lock must be held when calling this function */
1163static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1164{
1165	__le32 *i_data = EXT2_I(inode)->i_data;
1166	struct ext2_inode_info *ei = EXT2_I(inode);
1167	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1168	int offsets[4];
1169	Indirect chain[4];
1170	Indirect *partial;
1171	__le32 nr = 0;
1172	int n;
1173	long iblock;
1174	unsigned blocksize;
1175	blocksize = inode->i_sb->s_blocksize;
1176	iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1177
1178#ifdef CONFIG_FS_DAX
1179	WARN_ON(!rwsem_is_locked(&inode->i_mapping->invalidate_lock));
1180#endif
1181
1182	n = ext2_block_to_path(inode, iblock, offsets, NULL);
1183	if (n == 0)
1184		return;
1185
1186	/*
1187	 * From here we block out all ext2_get_block() callers who want to
1188	 * modify the block allocation tree.
1189	 */
1190	mutex_lock(&ei->truncate_mutex);
1191
1192	if (n == 1) {
1193		ext2_free_data(inode, i_data+offsets[0],
1194					i_data + EXT2_NDIR_BLOCKS);
1195		goto do_indirects;
1196	}
1197
1198	partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1199	/* Kill the top of shared branch (already detached) */
1200	if (nr) {
1201		if (partial == chain)
1202			mark_inode_dirty(inode);
1203		else
1204			mark_buffer_dirty_inode(partial->bh, inode);
1205		ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1206	}
1207	/* Clear the ends of indirect blocks on the shared branch */
1208	while (partial > chain) {
1209		ext2_free_branches(inode,
1210				   partial->p + 1,
1211				   (__le32*)partial->bh->b_data+addr_per_block,
1212				   (chain+n-1) - partial);
1213		mark_buffer_dirty_inode(partial->bh, inode);
1214		brelse (partial->bh);
1215		partial--;
1216	}
1217do_indirects:
1218	/* Kill the remaining (whole) subtrees */
1219	switch (offsets[0]) {
1220		default:
1221			nr = i_data[EXT2_IND_BLOCK];
1222			if (nr) {
1223				i_data[EXT2_IND_BLOCK] = 0;
1224				mark_inode_dirty(inode);
1225				ext2_free_branches(inode, &nr, &nr+1, 1);
1226			}
1227			fallthrough;
1228		case EXT2_IND_BLOCK:
1229			nr = i_data[EXT2_DIND_BLOCK];
1230			if (nr) {
1231				i_data[EXT2_DIND_BLOCK] = 0;
1232				mark_inode_dirty(inode);
1233				ext2_free_branches(inode, &nr, &nr+1, 2);
1234			}
1235			fallthrough;
1236		case EXT2_DIND_BLOCK:
1237			nr = i_data[EXT2_TIND_BLOCK];
1238			if (nr) {
1239				i_data[EXT2_TIND_BLOCK] = 0;
1240				mark_inode_dirty(inode);
1241				ext2_free_branches(inode, &nr, &nr+1, 3);
1242			}
1243			break;
1244		case EXT2_TIND_BLOCK:
1245			;
1246	}
1247
1248	ext2_discard_reservation(inode);
1249
1250	mutex_unlock(&ei->truncate_mutex);
1251}
1252
1253static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1254{
1255	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1256	    S_ISLNK(inode->i_mode)))
1257		return;
1258	if (ext2_inode_is_fast_symlink(inode))
1259		return;
1260
1261	filemap_invalidate_lock(inode->i_mapping);
1262	__ext2_truncate_blocks(inode, offset);
1263	filemap_invalidate_unlock(inode->i_mapping);
1264}
1265
1266static int ext2_setsize(struct inode *inode, loff_t newsize)
1267{
1268	int error;
1269
1270	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1271	    S_ISLNK(inode->i_mode)))
1272		return -EINVAL;
1273	if (ext2_inode_is_fast_symlink(inode))
1274		return -EINVAL;
1275	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1276		return -EPERM;
1277
1278	inode_dio_wait(inode);
1279
1280	if (IS_DAX(inode))
1281		error = dax_truncate_page(inode, newsize, NULL,
1282					  &ext2_iomap_ops);
1283	else
1284		error = block_truncate_page(inode->i_mapping,
1285				newsize, ext2_get_block);
1286	if (error)
1287		return error;
1288
1289	filemap_invalidate_lock(inode->i_mapping);
1290	truncate_setsize(inode, newsize);
1291	__ext2_truncate_blocks(inode, newsize);
1292	filemap_invalidate_unlock(inode->i_mapping);
1293
1294	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1295	if (inode_needs_sync(inode)) {
1296		sync_mapping_buffers(inode->i_mapping);
1297		sync_inode_metadata(inode, 1);
1298	} else {
1299		mark_inode_dirty(inode);
1300	}
1301
1302	return 0;
1303}
1304
1305static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1306					struct buffer_head **p)
1307{
1308	struct buffer_head * bh;
1309	unsigned long block_group;
1310	unsigned long block;
1311	unsigned long offset;
1312	struct ext2_group_desc * gdp;
1313
1314	*p = NULL;
1315	if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1316	    ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1317		goto Einval;
1318
1319	block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1320	gdp = ext2_get_group_desc(sb, block_group, NULL);
1321	if (!gdp)
1322		goto Egdp;
1323	/*
1324	 * Figure out the offset within the block group inode table
1325	 */
1326	offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1327	block = le32_to_cpu(gdp->bg_inode_table) +
1328		(offset >> EXT2_BLOCK_SIZE_BITS(sb));
1329	if (!(bh = sb_bread(sb, block)))
1330		goto Eio;
1331
1332	*p = bh;
1333	offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1334	return (struct ext2_inode *) (bh->b_data + offset);
1335
1336Einval:
1337	ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1338		   (unsigned long) ino);
1339	return ERR_PTR(-EINVAL);
1340Eio:
1341	ext2_error(sb, "ext2_get_inode",
1342		   "unable to read inode block - inode=%lu, block=%lu",
1343		   (unsigned long) ino, block);
1344Egdp:
1345	return ERR_PTR(-EIO);
1346}
1347
1348void ext2_set_inode_flags(struct inode *inode)
1349{
1350	unsigned int flags = EXT2_I(inode)->i_flags;
1351
1352	inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1353				S_DIRSYNC | S_DAX);
1354	if (flags & EXT2_SYNC_FL)
1355		inode->i_flags |= S_SYNC;
1356	if (flags & EXT2_APPEND_FL)
1357		inode->i_flags |= S_APPEND;
1358	if (flags & EXT2_IMMUTABLE_FL)
1359		inode->i_flags |= S_IMMUTABLE;
1360	if (flags & EXT2_NOATIME_FL)
1361		inode->i_flags |= S_NOATIME;
1362	if (flags & EXT2_DIRSYNC_FL)
1363		inode->i_flags |= S_DIRSYNC;
1364	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1365		inode->i_flags |= S_DAX;
1366}
1367
1368void ext2_set_file_ops(struct inode *inode)
1369{
1370	inode->i_op = &ext2_file_inode_operations;
1371	inode->i_fop = &ext2_file_operations;
1372	if (IS_DAX(inode))
1373		inode->i_mapping->a_ops = &ext2_dax_aops;
1374	else
1375		inode->i_mapping->a_ops = &ext2_aops;
1376}
1377
1378struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1379{
1380	struct ext2_inode_info *ei;
1381	struct buffer_head * bh = NULL;
1382	struct ext2_inode *raw_inode;
1383	struct inode *inode;
1384	long ret = -EIO;
1385	int n;
1386	uid_t i_uid;
1387	gid_t i_gid;
1388
1389	inode = iget_locked(sb, ino);
1390	if (!inode)
1391		return ERR_PTR(-ENOMEM);
1392	if (!(inode->i_state & I_NEW))
1393		return inode;
1394
1395	ei = EXT2_I(inode);
1396	ei->i_block_alloc_info = NULL;
1397
1398	raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1399	if (IS_ERR(raw_inode)) {
1400		ret = PTR_ERR(raw_inode);
1401 		goto bad_inode;
1402	}
1403
1404	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1405	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1406	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1407	if (!(test_opt (inode->i_sb, NO_UID32))) {
1408		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1409		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1410	}
1411	i_uid_write(inode, i_uid);
1412	i_gid_write(inode, i_gid);
1413	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1414	inode->i_size = le32_to_cpu(raw_inode->i_size);
1415	inode_set_atime(inode, (signed)le32_to_cpu(raw_inode->i_atime), 0);
1416	inode_set_ctime(inode, (signed)le32_to_cpu(raw_inode->i_ctime), 0);
1417	inode_set_mtime(inode, (signed)le32_to_cpu(raw_inode->i_mtime), 0);
1418	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1419	/* We now have enough fields to check if the inode was active or not.
1420	 * This is needed because nfsd might try to access dead inodes
1421	 * the test is that same one that e2fsck uses
1422	 * NeilBrown 1999oct15
1423	 */
1424	if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1425		/* this inode is deleted */
1426		ret = -ESTALE;
1427		goto bad_inode;
1428	}
1429	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1430	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1431	ext2_set_inode_flags(inode);
1432	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1433	ei->i_frag_no = raw_inode->i_frag;
1434	ei->i_frag_size = raw_inode->i_fsize;
1435	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1436	ei->i_dir_acl = 0;
1437
1438	if (ei->i_file_acl &&
1439	    !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1440		ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1441			   ei->i_file_acl);
1442		ret = -EFSCORRUPTED;
1443		goto bad_inode;
1444	}
1445
1446	if (S_ISREG(inode->i_mode))
1447		inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1448	else
1449		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1450	if (i_size_read(inode) < 0) {
1451		ret = -EFSCORRUPTED;
1452		goto bad_inode;
1453	}
1454	ei->i_dtime = 0;
1455	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1456	ei->i_state = 0;
1457	ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1458	ei->i_dir_start_lookup = 0;
1459
1460	/*
1461	 * NOTE! The in-memory inode i_data array is in little-endian order
1462	 * even on big-endian machines: we do NOT byteswap the block numbers!
1463	 */
1464	for (n = 0; n < EXT2_N_BLOCKS; n++)
1465		ei->i_data[n] = raw_inode->i_block[n];
1466
1467	if (S_ISREG(inode->i_mode)) {
1468		ext2_set_file_ops(inode);
1469	} else if (S_ISDIR(inode->i_mode)) {
1470		inode->i_op = &ext2_dir_inode_operations;
1471		inode->i_fop = &ext2_dir_operations;
1472		inode->i_mapping->a_ops = &ext2_aops;
1473	} else if (S_ISLNK(inode->i_mode)) {
1474		if (ext2_inode_is_fast_symlink(inode)) {
1475			inode->i_link = (char *)ei->i_data;
1476			inode->i_op = &ext2_fast_symlink_inode_operations;
1477			nd_terminate_link(ei->i_data, inode->i_size,
1478				sizeof(ei->i_data) - 1);
1479		} else {
1480			inode->i_op = &ext2_symlink_inode_operations;
1481			inode_nohighmem(inode);
1482			inode->i_mapping->a_ops = &ext2_aops;
1483		}
1484	} else {
1485		inode->i_op = &ext2_special_inode_operations;
1486		if (raw_inode->i_block[0])
1487			init_special_inode(inode, inode->i_mode,
1488			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1489		else
1490			init_special_inode(inode, inode->i_mode,
1491			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1492	}
1493	brelse (bh);
1494	unlock_new_inode(inode);
1495	return inode;
1496
1497bad_inode:
1498	brelse(bh);
1499	iget_failed(inode);
1500	return ERR_PTR(ret);
1501}
1502
1503static int __ext2_write_inode(struct inode *inode, int do_sync)
1504{
1505	struct ext2_inode_info *ei = EXT2_I(inode);
1506	struct super_block *sb = inode->i_sb;
1507	ino_t ino = inode->i_ino;
1508	uid_t uid = i_uid_read(inode);
1509	gid_t gid = i_gid_read(inode);
1510	struct buffer_head * bh;
1511	struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1512	int n;
1513	int err = 0;
1514
1515	if (IS_ERR(raw_inode))
1516 		return -EIO;
1517
1518	/* For fields not tracking in the in-memory inode,
1519	 * initialise them to zero for new inodes. */
1520	if (ei->i_state & EXT2_STATE_NEW)
1521		memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1522
1523	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1524	if (!(test_opt(sb, NO_UID32))) {
1525		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1526		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1527/*
1528 * Fix up interoperability with old kernels. Otherwise, old inodes get
1529 * re-used with the upper 16 bits of the uid/gid intact
1530 */
1531		if (!ei->i_dtime) {
1532			raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1533			raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1534		} else {
1535			raw_inode->i_uid_high = 0;
1536			raw_inode->i_gid_high = 0;
1537		}
1538	} else {
1539		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1540		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1541		raw_inode->i_uid_high = 0;
1542		raw_inode->i_gid_high = 0;
1543	}
1544	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1545	raw_inode->i_size = cpu_to_le32(inode->i_size);
1546	raw_inode->i_atime = cpu_to_le32(inode_get_atime_sec(inode));
1547	raw_inode->i_ctime = cpu_to_le32(inode_get_ctime_sec(inode));
1548	raw_inode->i_mtime = cpu_to_le32(inode_get_mtime_sec(inode));
1549
1550	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1551	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1552	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1553	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1554	raw_inode->i_frag = ei->i_frag_no;
1555	raw_inode->i_fsize = ei->i_frag_size;
1556	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1557	if (!S_ISREG(inode->i_mode))
1558		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1559	else {
1560		raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1561		if (inode->i_size > 0x7fffffffULL) {
1562			if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1563					EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1564			    EXT2_SB(sb)->s_es->s_rev_level ==
1565					cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1566			       /* If this is the first large file
1567				* created, add a flag to the superblock.
1568				*/
1569				spin_lock(&EXT2_SB(sb)->s_lock);
1570				ext2_update_dynamic_rev(sb);
1571				EXT2_SET_RO_COMPAT_FEATURE(sb,
1572					EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1573				spin_unlock(&EXT2_SB(sb)->s_lock);
1574				ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1575			}
1576		}
1577	}
1578
1579	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1580	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1581		if (old_valid_dev(inode->i_rdev)) {
1582			raw_inode->i_block[0] =
1583				cpu_to_le32(old_encode_dev(inode->i_rdev));
1584			raw_inode->i_block[1] = 0;
1585		} else {
1586			raw_inode->i_block[0] = 0;
1587			raw_inode->i_block[1] =
1588				cpu_to_le32(new_encode_dev(inode->i_rdev));
1589			raw_inode->i_block[2] = 0;
1590		}
1591	} else for (n = 0; n < EXT2_N_BLOCKS; n++)
1592		raw_inode->i_block[n] = ei->i_data[n];
1593	mark_buffer_dirty(bh);
1594	if (do_sync) {
1595		sync_dirty_buffer(bh);
1596		if (buffer_req(bh) && !buffer_uptodate(bh)) {
1597			printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1598				sb->s_id, (unsigned long) ino);
1599			err = -EIO;
1600		}
1601	}
1602	ei->i_state &= ~EXT2_STATE_NEW;
1603	brelse (bh);
1604	return err;
1605}
1606
1607int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1608{
1609	return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1610}
1611
1612int ext2_getattr(struct mnt_idmap *idmap, const struct path *path,
1613		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
1614{
1615	struct inode *inode = d_inode(path->dentry);
1616	struct ext2_inode_info *ei = EXT2_I(inode);
1617	unsigned int flags;
1618
1619	flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
1620	if (flags & EXT2_APPEND_FL)
1621		stat->attributes |= STATX_ATTR_APPEND;
1622	if (flags & EXT2_COMPR_FL)
1623		stat->attributes |= STATX_ATTR_COMPRESSED;
1624	if (flags & EXT2_IMMUTABLE_FL)
1625		stat->attributes |= STATX_ATTR_IMMUTABLE;
1626	if (flags & EXT2_NODUMP_FL)
1627		stat->attributes |= STATX_ATTR_NODUMP;
1628	stat->attributes_mask |= (STATX_ATTR_APPEND |
1629			STATX_ATTR_COMPRESSED |
1630			STATX_ATTR_ENCRYPTED |
1631			STATX_ATTR_IMMUTABLE |
1632			STATX_ATTR_NODUMP);
1633
1634	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1635	return 0;
1636}
1637
1638int ext2_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1639		 struct iattr *iattr)
1640{
1641	struct inode *inode = d_inode(dentry);
1642	int error;
1643
1644	error = setattr_prepare(&nop_mnt_idmap, dentry, iattr);
1645	if (error)
1646		return error;
1647
1648	if (is_quota_modification(&nop_mnt_idmap, inode, iattr)) {
1649		error = dquot_initialize(inode);
1650		if (error)
1651			return error;
1652	}
1653	if (i_uid_needs_update(&nop_mnt_idmap, iattr, inode) ||
1654	    i_gid_needs_update(&nop_mnt_idmap, iattr, inode)) {
1655		error = dquot_transfer(&nop_mnt_idmap, inode, iattr);
1656		if (error)
1657			return error;
1658	}
1659	if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1660		error = ext2_setsize(inode, iattr->ia_size);
1661		if (error)
1662			return error;
1663	}
1664	setattr_copy(&nop_mnt_idmap, inode, iattr);
1665	if (iattr->ia_valid & ATTR_MODE)
1666		error = posix_acl_chmod(&nop_mnt_idmap, dentry, inode->i_mode);
1667	mark_inode_dirty(inode);
1668
1669	return error;
1670}
1671