1// SPDX-License-Identifier: GPL-2.0-only
2/******************************************************************************
3*******************************************************************************
4**
5**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6**  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7**
8**
9*******************************************************************************
10******************************************************************************/
11
12/*
13 * lowcomms.c
14 *
15 * This is the "low-level" comms layer.
16 *
17 * It is responsible for sending/receiving messages
18 * from other nodes in the cluster.
19 *
20 * Cluster nodes are referred to by their nodeids. nodeids are
21 * simply 32 bit numbers to the locking module - if they need to
22 * be expanded for the cluster infrastructure then that is its
23 * responsibility. It is this layer's
24 * responsibility to resolve these into IP address or
25 * whatever it needs for inter-node communication.
26 *
27 * The comms level is two kernel threads that deal mainly with
28 * the receiving of messages from other nodes and passing them
29 * up to the mid-level comms layer (which understands the
30 * message format) for execution by the locking core, and
31 * a send thread which does all the setting up of connections
32 * to remote nodes and the sending of data. Threads are not allowed
33 * to send their own data because it may cause them to wait in times
34 * of high load. Also, this way, the sending thread can collect together
35 * messages bound for one node and send them in one block.
36 *
37 * lowcomms will choose to use either TCP or SCTP as its transport layer
38 * depending on the configuration variable 'protocol'. This should be set
39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40 * cluster-wide mechanism as it must be the same on all nodes of the cluster
41 * for the DLM to function.
42 *
43 */
44
45#include <asm/ioctls.h>
46#include <net/sock.h>
47#include <net/tcp.h>
48#include <linux/pagemap.h>
49#include <linux/file.h>
50#include <linux/mutex.h>
51#include <linux/sctp.h>
52#include <linux/slab.h>
53#include <net/sctp/sctp.h>
54#include <net/ipv6.h>
55
56#include <trace/events/dlm.h>
57#include <trace/events/sock.h>
58
59#include "dlm_internal.h"
60#include "lowcomms.h"
61#include "midcomms.h"
62#include "memory.h"
63#include "config.h"
64
65#define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000)
66#define DLM_MAX_PROCESS_BUFFERS 24
67#define NEEDED_RMEM (4*1024*1024)
68
69struct connection {
70	struct socket *sock;	/* NULL if not connected */
71	uint32_t nodeid;	/* So we know who we are in the list */
72	/* this semaphore is used to allow parallel recv/send in read
73	 * lock mode. When we release a sock we need to held the write lock.
74	 *
75	 * However this is locking code and not nice. When we remove the
76	 * othercon handling we can look into other mechanism to synchronize
77	 * io handling to call sock_release() at the right time.
78	 */
79	struct rw_semaphore sock_lock;
80	unsigned long flags;
81#define CF_APP_LIMITED 0
82#define CF_RECV_PENDING 1
83#define CF_SEND_PENDING 2
84#define CF_RECV_INTR 3
85#define CF_IO_STOP 4
86#define CF_IS_OTHERCON 5
87	struct list_head writequeue;  /* List of outgoing writequeue_entries */
88	spinlock_t writequeue_lock;
89	int retries;
90	struct hlist_node list;
91	/* due some connect()/accept() races we currently have this cross over
92	 * connection attempt second connection for one node.
93	 *
94	 * There is a solution to avoid the race by introducing a connect
95	 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
96	 * connect. Otherside can connect but will only be considered that
97	 * the other side wants to have a reconnect.
98	 *
99	 * However changing to this behaviour will break backwards compatible.
100	 * In a DLM protocol major version upgrade we should remove this!
101	 */
102	struct connection *othercon;
103	struct work_struct rwork; /* receive worker */
104	struct work_struct swork; /* send worker */
105	wait_queue_head_t shutdown_wait;
106	unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
107	int rx_leftover;
108	int mark;
109	int addr_count;
110	int curr_addr_index;
111	struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
112	spinlock_t addrs_lock;
113	struct rcu_head rcu;
114};
115#define sock2con(x) ((struct connection *)(x)->sk_user_data)
116
117struct listen_connection {
118	struct socket *sock;
119	struct work_struct rwork;
120};
121
122#define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
123#define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
124
125/* An entry waiting to be sent */
126struct writequeue_entry {
127	struct list_head list;
128	struct page *page;
129	int offset;
130	int len;
131	int end;
132	int users;
133	bool dirty;
134	struct connection *con;
135	struct list_head msgs;
136	struct kref ref;
137};
138
139struct dlm_msg {
140	struct writequeue_entry *entry;
141	struct dlm_msg *orig_msg;
142	bool retransmit;
143	void *ppc;
144	int len;
145	int idx; /* new()/commit() idx exchange */
146
147	struct list_head list;
148	struct kref ref;
149};
150
151struct processqueue_entry {
152	unsigned char *buf;
153	int nodeid;
154	int buflen;
155
156	struct list_head list;
157};
158
159struct dlm_proto_ops {
160	bool try_new_addr;
161	const char *name;
162	int proto;
163
164	int (*connect)(struct connection *con, struct socket *sock,
165		       struct sockaddr *addr, int addr_len);
166	void (*sockopts)(struct socket *sock);
167	int (*bind)(struct socket *sock);
168	int (*listen_validate)(void);
169	void (*listen_sockopts)(struct socket *sock);
170	int (*listen_bind)(struct socket *sock);
171};
172
173static struct listen_sock_callbacks {
174	void (*sk_error_report)(struct sock *);
175	void (*sk_data_ready)(struct sock *);
176	void (*sk_state_change)(struct sock *);
177	void (*sk_write_space)(struct sock *);
178} listen_sock;
179
180static struct listen_connection listen_con;
181static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
182static int dlm_local_count;
183
184/* Work queues */
185static struct workqueue_struct *io_workqueue;
186static struct workqueue_struct *process_workqueue;
187
188static struct hlist_head connection_hash[CONN_HASH_SIZE];
189static DEFINE_SPINLOCK(connections_lock);
190DEFINE_STATIC_SRCU(connections_srcu);
191
192static const struct dlm_proto_ops *dlm_proto_ops;
193
194#define DLM_IO_SUCCESS 0
195#define DLM_IO_END 1
196#define DLM_IO_EOF 2
197#define DLM_IO_RESCHED 3
198#define DLM_IO_FLUSH 4
199
200static void process_recv_sockets(struct work_struct *work);
201static void process_send_sockets(struct work_struct *work);
202static void process_dlm_messages(struct work_struct *work);
203
204static DECLARE_WORK(process_work, process_dlm_messages);
205static DEFINE_SPINLOCK(processqueue_lock);
206static bool process_dlm_messages_pending;
207static atomic_t processqueue_count;
208static LIST_HEAD(processqueue);
209
210bool dlm_lowcomms_is_running(void)
211{
212	return !!listen_con.sock;
213}
214
215static void lowcomms_queue_swork(struct connection *con)
216{
217	assert_spin_locked(&con->writequeue_lock);
218
219	if (!test_bit(CF_IO_STOP, &con->flags) &&
220	    !test_bit(CF_APP_LIMITED, &con->flags) &&
221	    !test_and_set_bit(CF_SEND_PENDING, &con->flags))
222		queue_work(io_workqueue, &con->swork);
223}
224
225static void lowcomms_queue_rwork(struct connection *con)
226{
227#ifdef CONFIG_LOCKDEP
228	WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
229#endif
230
231	if (!test_bit(CF_IO_STOP, &con->flags) &&
232	    !test_and_set_bit(CF_RECV_PENDING, &con->flags))
233		queue_work(io_workqueue, &con->rwork);
234}
235
236static void writequeue_entry_ctor(void *data)
237{
238	struct writequeue_entry *entry = data;
239
240	INIT_LIST_HEAD(&entry->msgs);
241}
242
243struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
244{
245	return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
246				 0, 0, writequeue_entry_ctor);
247}
248
249struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
250{
251	return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL);
252}
253
254/* need to held writequeue_lock */
255static struct writequeue_entry *con_next_wq(struct connection *con)
256{
257	struct writequeue_entry *e;
258
259	e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
260				     list);
261	/* if len is zero nothing is to send, if there are users filling
262	 * buffers we wait until the users are done so we can send more.
263	 */
264	if (!e || e->users || e->len == 0)
265		return NULL;
266
267	return e;
268}
269
270static struct connection *__find_con(int nodeid, int r)
271{
272	struct connection *con;
273
274	hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
275		if (con->nodeid == nodeid)
276			return con;
277	}
278
279	return NULL;
280}
281
282static void dlm_con_init(struct connection *con, int nodeid)
283{
284	con->nodeid = nodeid;
285	init_rwsem(&con->sock_lock);
286	INIT_LIST_HEAD(&con->writequeue);
287	spin_lock_init(&con->writequeue_lock);
288	INIT_WORK(&con->swork, process_send_sockets);
289	INIT_WORK(&con->rwork, process_recv_sockets);
290	spin_lock_init(&con->addrs_lock);
291	init_waitqueue_head(&con->shutdown_wait);
292}
293
294/*
295 * If 'allocation' is zero then we don't attempt to create a new
296 * connection structure for this node.
297 */
298static struct connection *nodeid2con(int nodeid, gfp_t alloc)
299{
300	struct connection *con, *tmp;
301	int r;
302
303	r = nodeid_hash(nodeid);
304	con = __find_con(nodeid, r);
305	if (con || !alloc)
306		return con;
307
308	con = kzalloc(sizeof(*con), alloc);
309	if (!con)
310		return NULL;
311
312	dlm_con_init(con, nodeid);
313
314	spin_lock(&connections_lock);
315	/* Because multiple workqueues/threads calls this function it can
316	 * race on multiple cpu's. Instead of locking hot path __find_con()
317	 * we just check in rare cases of recently added nodes again
318	 * under protection of connections_lock. If this is the case we
319	 * abort our connection creation and return the existing connection.
320	 */
321	tmp = __find_con(nodeid, r);
322	if (tmp) {
323		spin_unlock(&connections_lock);
324		kfree(con);
325		return tmp;
326	}
327
328	hlist_add_head_rcu(&con->list, &connection_hash[r]);
329	spin_unlock(&connections_lock);
330
331	return con;
332}
333
334static int addr_compare(const struct sockaddr_storage *x,
335			const struct sockaddr_storage *y)
336{
337	switch (x->ss_family) {
338	case AF_INET: {
339		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
340		struct sockaddr_in *siny = (struct sockaddr_in *)y;
341		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
342			return 0;
343		if (sinx->sin_port != siny->sin_port)
344			return 0;
345		break;
346	}
347	case AF_INET6: {
348		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
349		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
350		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
351			return 0;
352		if (sinx->sin6_port != siny->sin6_port)
353			return 0;
354		break;
355	}
356	default:
357		return 0;
358	}
359	return 1;
360}
361
362static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
363			  struct sockaddr *sa_out, bool try_new_addr,
364			  unsigned int *mark)
365{
366	struct sockaddr_storage sas;
367	struct connection *con;
368	int idx;
369
370	if (!dlm_local_count)
371		return -1;
372
373	idx = srcu_read_lock(&connections_srcu);
374	con = nodeid2con(nodeid, 0);
375	if (!con) {
376		srcu_read_unlock(&connections_srcu, idx);
377		return -ENOENT;
378	}
379
380	spin_lock(&con->addrs_lock);
381	if (!con->addr_count) {
382		spin_unlock(&con->addrs_lock);
383		srcu_read_unlock(&connections_srcu, idx);
384		return -ENOENT;
385	}
386
387	memcpy(&sas, &con->addr[con->curr_addr_index],
388	       sizeof(struct sockaddr_storage));
389
390	if (try_new_addr) {
391		con->curr_addr_index++;
392		if (con->curr_addr_index == con->addr_count)
393			con->curr_addr_index = 0;
394	}
395
396	*mark = con->mark;
397	spin_unlock(&con->addrs_lock);
398
399	if (sas_out)
400		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
401
402	if (!sa_out) {
403		srcu_read_unlock(&connections_srcu, idx);
404		return 0;
405	}
406
407	if (dlm_local_addr[0].ss_family == AF_INET) {
408		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
409		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
410		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
411	} else {
412		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
413		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
414		ret6->sin6_addr = in6->sin6_addr;
415	}
416
417	srcu_read_unlock(&connections_srcu, idx);
418	return 0;
419}
420
421static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
422			  unsigned int *mark)
423{
424	struct connection *con;
425	int i, idx, addr_i;
426
427	idx = srcu_read_lock(&connections_srcu);
428	for (i = 0; i < CONN_HASH_SIZE; i++) {
429		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
430			WARN_ON_ONCE(!con->addr_count);
431
432			spin_lock(&con->addrs_lock);
433			for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
434				if (addr_compare(&con->addr[addr_i], addr)) {
435					*nodeid = con->nodeid;
436					*mark = con->mark;
437					spin_unlock(&con->addrs_lock);
438					srcu_read_unlock(&connections_srcu, idx);
439					return 0;
440				}
441			}
442			spin_unlock(&con->addrs_lock);
443		}
444	}
445	srcu_read_unlock(&connections_srcu, idx);
446
447	return -ENOENT;
448}
449
450static bool dlm_lowcomms_con_has_addr(const struct connection *con,
451				      const struct sockaddr_storage *addr)
452{
453	int i;
454
455	for (i = 0; i < con->addr_count; i++) {
456		if (addr_compare(&con->addr[i], addr))
457			return true;
458	}
459
460	return false;
461}
462
463int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
464{
465	struct connection *con;
466	bool ret, idx;
467
468	idx = srcu_read_lock(&connections_srcu);
469	con = nodeid2con(nodeid, GFP_NOFS);
470	if (!con) {
471		srcu_read_unlock(&connections_srcu, idx);
472		return -ENOMEM;
473	}
474
475	spin_lock(&con->addrs_lock);
476	if (!con->addr_count) {
477		memcpy(&con->addr[0], addr, sizeof(*addr));
478		con->addr_count = 1;
479		con->mark = dlm_config.ci_mark;
480		spin_unlock(&con->addrs_lock);
481		srcu_read_unlock(&connections_srcu, idx);
482		return 0;
483	}
484
485	ret = dlm_lowcomms_con_has_addr(con, addr);
486	if (ret) {
487		spin_unlock(&con->addrs_lock);
488		srcu_read_unlock(&connections_srcu, idx);
489		return -EEXIST;
490	}
491
492	if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
493		spin_unlock(&con->addrs_lock);
494		srcu_read_unlock(&connections_srcu, idx);
495		return -ENOSPC;
496	}
497
498	memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
499	srcu_read_unlock(&connections_srcu, idx);
500	spin_unlock(&con->addrs_lock);
501	return 0;
502}
503
504/* Data available on socket or listen socket received a connect */
505static void lowcomms_data_ready(struct sock *sk)
506{
507	struct connection *con = sock2con(sk);
508
509	trace_sk_data_ready(sk);
510
511	set_bit(CF_RECV_INTR, &con->flags);
512	lowcomms_queue_rwork(con);
513}
514
515static void lowcomms_write_space(struct sock *sk)
516{
517	struct connection *con = sock2con(sk);
518
519	clear_bit(SOCK_NOSPACE, &con->sock->flags);
520
521	spin_lock_bh(&con->writequeue_lock);
522	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
523		con->sock->sk->sk_write_pending--;
524		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
525	}
526
527	lowcomms_queue_swork(con);
528	spin_unlock_bh(&con->writequeue_lock);
529}
530
531static void lowcomms_state_change(struct sock *sk)
532{
533	/* SCTP layer is not calling sk_data_ready when the connection
534	 * is done, so we catch the signal through here.
535	 */
536	if (sk->sk_shutdown == RCV_SHUTDOWN)
537		lowcomms_data_ready(sk);
538}
539
540static void lowcomms_listen_data_ready(struct sock *sk)
541{
542	trace_sk_data_ready(sk);
543
544	queue_work(io_workqueue, &listen_con.rwork);
545}
546
547int dlm_lowcomms_connect_node(int nodeid)
548{
549	struct connection *con;
550	int idx;
551
552	idx = srcu_read_lock(&connections_srcu);
553	con = nodeid2con(nodeid, 0);
554	if (WARN_ON_ONCE(!con)) {
555		srcu_read_unlock(&connections_srcu, idx);
556		return -ENOENT;
557	}
558
559	down_read(&con->sock_lock);
560	if (!con->sock) {
561		spin_lock_bh(&con->writequeue_lock);
562		lowcomms_queue_swork(con);
563		spin_unlock_bh(&con->writequeue_lock);
564	}
565	up_read(&con->sock_lock);
566	srcu_read_unlock(&connections_srcu, idx);
567
568	cond_resched();
569	return 0;
570}
571
572int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
573{
574	struct connection *con;
575	int idx;
576
577	idx = srcu_read_lock(&connections_srcu);
578	con = nodeid2con(nodeid, 0);
579	if (!con) {
580		srcu_read_unlock(&connections_srcu, idx);
581		return -ENOENT;
582	}
583
584	spin_lock(&con->addrs_lock);
585	con->mark = mark;
586	spin_unlock(&con->addrs_lock);
587	srcu_read_unlock(&connections_srcu, idx);
588	return 0;
589}
590
591static void lowcomms_error_report(struct sock *sk)
592{
593	struct connection *con = sock2con(sk);
594	struct inet_sock *inet;
595
596	inet = inet_sk(sk);
597	switch (sk->sk_family) {
598	case AF_INET:
599		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
600				   "sending to node %d at %pI4, dport %d, "
601				   "sk_err=%d/%d\n", dlm_our_nodeid(),
602				   con->nodeid, &inet->inet_daddr,
603				   ntohs(inet->inet_dport), sk->sk_err,
604				   READ_ONCE(sk->sk_err_soft));
605		break;
606#if IS_ENABLED(CONFIG_IPV6)
607	case AF_INET6:
608		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
609				   "sending to node %d at %pI6c, "
610				   "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
611				   con->nodeid, &sk->sk_v6_daddr,
612				   ntohs(inet->inet_dport), sk->sk_err,
613				   READ_ONCE(sk->sk_err_soft));
614		break;
615#endif
616	default:
617		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
618				   "invalid socket family %d set, "
619				   "sk_err=%d/%d\n", dlm_our_nodeid(),
620				   sk->sk_family, sk->sk_err,
621				   READ_ONCE(sk->sk_err_soft));
622		break;
623	}
624
625	dlm_midcomms_unack_msg_resend(con->nodeid);
626
627	listen_sock.sk_error_report(sk);
628}
629
630static void restore_callbacks(struct sock *sk)
631{
632#ifdef CONFIG_LOCKDEP
633	WARN_ON_ONCE(!lockdep_sock_is_held(sk));
634#endif
635
636	sk->sk_user_data = NULL;
637	sk->sk_data_ready = listen_sock.sk_data_ready;
638	sk->sk_state_change = listen_sock.sk_state_change;
639	sk->sk_write_space = listen_sock.sk_write_space;
640	sk->sk_error_report = listen_sock.sk_error_report;
641}
642
643/* Make a socket active */
644static void add_sock(struct socket *sock, struct connection *con)
645{
646	struct sock *sk = sock->sk;
647
648	lock_sock(sk);
649	con->sock = sock;
650
651	sk->sk_user_data = con;
652	sk->sk_data_ready = lowcomms_data_ready;
653	sk->sk_write_space = lowcomms_write_space;
654	if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
655		sk->sk_state_change = lowcomms_state_change;
656	sk->sk_allocation = GFP_NOFS;
657	sk->sk_use_task_frag = false;
658	sk->sk_error_report = lowcomms_error_report;
659	release_sock(sk);
660}
661
662/* Add the port number to an IPv6 or 4 sockaddr and return the address
663   length */
664static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
665			  int *addr_len)
666{
667	saddr->ss_family =  dlm_local_addr[0].ss_family;
668	if (saddr->ss_family == AF_INET) {
669		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
670		in4_addr->sin_port = cpu_to_be16(port);
671		*addr_len = sizeof(struct sockaddr_in);
672		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
673	} else {
674		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
675		in6_addr->sin6_port = cpu_to_be16(port);
676		*addr_len = sizeof(struct sockaddr_in6);
677	}
678	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
679}
680
681static void dlm_page_release(struct kref *kref)
682{
683	struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
684						  ref);
685
686	__free_page(e->page);
687	dlm_free_writequeue(e);
688}
689
690static void dlm_msg_release(struct kref *kref)
691{
692	struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
693
694	kref_put(&msg->entry->ref, dlm_page_release);
695	dlm_free_msg(msg);
696}
697
698static void free_entry(struct writequeue_entry *e)
699{
700	struct dlm_msg *msg, *tmp;
701
702	list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
703		if (msg->orig_msg) {
704			msg->orig_msg->retransmit = false;
705			kref_put(&msg->orig_msg->ref, dlm_msg_release);
706		}
707
708		list_del(&msg->list);
709		kref_put(&msg->ref, dlm_msg_release);
710	}
711
712	list_del(&e->list);
713	kref_put(&e->ref, dlm_page_release);
714}
715
716static void dlm_close_sock(struct socket **sock)
717{
718	lock_sock((*sock)->sk);
719	restore_callbacks((*sock)->sk);
720	release_sock((*sock)->sk);
721
722	sock_release(*sock);
723	*sock = NULL;
724}
725
726static void allow_connection_io(struct connection *con)
727{
728	if (con->othercon)
729		clear_bit(CF_IO_STOP, &con->othercon->flags);
730	clear_bit(CF_IO_STOP, &con->flags);
731}
732
733static void stop_connection_io(struct connection *con)
734{
735	if (con->othercon)
736		stop_connection_io(con->othercon);
737
738	spin_lock_bh(&con->writequeue_lock);
739	set_bit(CF_IO_STOP, &con->flags);
740	spin_unlock_bh(&con->writequeue_lock);
741
742	down_write(&con->sock_lock);
743	if (con->sock) {
744		lock_sock(con->sock->sk);
745		restore_callbacks(con->sock->sk);
746		release_sock(con->sock->sk);
747	}
748	up_write(&con->sock_lock);
749
750	cancel_work_sync(&con->swork);
751	cancel_work_sync(&con->rwork);
752}
753
754/* Close a remote connection and tidy up */
755static void close_connection(struct connection *con, bool and_other)
756{
757	struct writequeue_entry *e;
758
759	if (con->othercon && and_other)
760		close_connection(con->othercon, false);
761
762	down_write(&con->sock_lock);
763	if (!con->sock) {
764		up_write(&con->sock_lock);
765		return;
766	}
767
768	dlm_close_sock(&con->sock);
769
770	/* if we send a writequeue entry only a half way, we drop the
771	 * whole entry because reconnection and that we not start of the
772	 * middle of a msg which will confuse the other end.
773	 *
774	 * we can always drop messages because retransmits, but what we
775	 * cannot allow is to transmit half messages which may be processed
776	 * at the other side.
777	 *
778	 * our policy is to start on a clean state when disconnects, we don't
779	 * know what's send/received on transport layer in this case.
780	 */
781	spin_lock_bh(&con->writequeue_lock);
782	if (!list_empty(&con->writequeue)) {
783		e = list_first_entry(&con->writequeue, struct writequeue_entry,
784				     list);
785		if (e->dirty)
786			free_entry(e);
787	}
788	spin_unlock_bh(&con->writequeue_lock);
789
790	con->rx_leftover = 0;
791	con->retries = 0;
792	clear_bit(CF_APP_LIMITED, &con->flags);
793	clear_bit(CF_RECV_PENDING, &con->flags);
794	clear_bit(CF_SEND_PENDING, &con->flags);
795	up_write(&con->sock_lock);
796}
797
798static void shutdown_connection(struct connection *con, bool and_other)
799{
800	int ret;
801
802	if (con->othercon && and_other)
803		shutdown_connection(con->othercon, false);
804
805	flush_workqueue(io_workqueue);
806	down_read(&con->sock_lock);
807	/* nothing to shutdown */
808	if (!con->sock) {
809		up_read(&con->sock_lock);
810		return;
811	}
812
813	ret = kernel_sock_shutdown(con->sock, SHUT_WR);
814	up_read(&con->sock_lock);
815	if (ret) {
816		log_print("Connection %p failed to shutdown: %d will force close",
817			  con, ret);
818		goto force_close;
819	} else {
820		ret = wait_event_timeout(con->shutdown_wait, !con->sock,
821					 DLM_SHUTDOWN_WAIT_TIMEOUT);
822		if (ret == 0) {
823			log_print("Connection %p shutdown timed out, will force close",
824				  con);
825			goto force_close;
826		}
827	}
828
829	return;
830
831force_close:
832	close_connection(con, false);
833}
834
835static struct processqueue_entry *new_processqueue_entry(int nodeid,
836							 int buflen)
837{
838	struct processqueue_entry *pentry;
839
840	pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
841	if (!pentry)
842		return NULL;
843
844	pentry->buf = kmalloc(buflen, GFP_NOFS);
845	if (!pentry->buf) {
846		kfree(pentry);
847		return NULL;
848	}
849
850	pentry->nodeid = nodeid;
851	return pentry;
852}
853
854static void free_processqueue_entry(struct processqueue_entry *pentry)
855{
856	kfree(pentry->buf);
857	kfree(pentry);
858}
859
860struct dlm_processed_nodes {
861	int nodeid;
862
863	struct list_head list;
864};
865
866static void process_dlm_messages(struct work_struct *work)
867{
868	struct processqueue_entry *pentry;
869
870	spin_lock(&processqueue_lock);
871	pentry = list_first_entry_or_null(&processqueue,
872					  struct processqueue_entry, list);
873	if (WARN_ON_ONCE(!pentry)) {
874		process_dlm_messages_pending = false;
875		spin_unlock(&processqueue_lock);
876		return;
877	}
878
879	list_del(&pentry->list);
880	atomic_dec(&processqueue_count);
881	spin_unlock(&processqueue_lock);
882
883	for (;;) {
884		dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
885					    pentry->buflen);
886		free_processqueue_entry(pentry);
887
888		spin_lock(&processqueue_lock);
889		pentry = list_first_entry_or_null(&processqueue,
890						  struct processqueue_entry, list);
891		if (!pentry) {
892			process_dlm_messages_pending = false;
893			spin_unlock(&processqueue_lock);
894			break;
895		}
896
897		list_del(&pentry->list);
898		atomic_dec(&processqueue_count);
899		spin_unlock(&processqueue_lock);
900	}
901}
902
903/* Data received from remote end */
904static int receive_from_sock(struct connection *con, int buflen)
905{
906	struct processqueue_entry *pentry;
907	int ret, buflen_real;
908	struct msghdr msg;
909	struct kvec iov;
910
911	pentry = new_processqueue_entry(con->nodeid, buflen);
912	if (!pentry)
913		return DLM_IO_RESCHED;
914
915	memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
916
917	/* calculate new buffer parameter regarding last receive and
918	 * possible leftover bytes
919	 */
920	iov.iov_base = pentry->buf + con->rx_leftover;
921	iov.iov_len = buflen - con->rx_leftover;
922
923	memset(&msg, 0, sizeof(msg));
924	msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
925	clear_bit(CF_RECV_INTR, &con->flags);
926again:
927	ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
928			     msg.msg_flags);
929	trace_dlm_recv(con->nodeid, ret);
930	if (ret == -EAGAIN) {
931		lock_sock(con->sock->sk);
932		if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
933			release_sock(con->sock->sk);
934			goto again;
935		}
936
937		clear_bit(CF_RECV_PENDING, &con->flags);
938		release_sock(con->sock->sk);
939		free_processqueue_entry(pentry);
940		return DLM_IO_END;
941	} else if (ret == 0) {
942		/* close will clear CF_RECV_PENDING */
943		free_processqueue_entry(pentry);
944		return DLM_IO_EOF;
945	} else if (ret < 0) {
946		free_processqueue_entry(pentry);
947		return ret;
948	}
949
950	/* new buflen according readed bytes and leftover from last receive */
951	buflen_real = ret + con->rx_leftover;
952	ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
953					   buflen_real);
954	if (ret < 0) {
955		free_processqueue_entry(pentry);
956		return ret;
957	}
958
959	pentry->buflen = ret;
960
961	/* calculate leftover bytes from process and put it into begin of
962	 * the receive buffer, so next receive we have the full message
963	 * at the start address of the receive buffer.
964	 */
965	con->rx_leftover = buflen_real - ret;
966	memmove(con->rx_leftover_buf, pentry->buf + ret,
967		con->rx_leftover);
968
969	spin_lock(&processqueue_lock);
970	ret = atomic_inc_return(&processqueue_count);
971	list_add_tail(&pentry->list, &processqueue);
972	if (!process_dlm_messages_pending) {
973		process_dlm_messages_pending = true;
974		queue_work(process_workqueue, &process_work);
975	}
976	spin_unlock(&processqueue_lock);
977
978	if (ret > DLM_MAX_PROCESS_BUFFERS)
979		return DLM_IO_FLUSH;
980
981	return DLM_IO_SUCCESS;
982}
983
984/* Listening socket is busy, accept a connection */
985static int accept_from_sock(void)
986{
987	struct sockaddr_storage peeraddr;
988	int len, idx, result, nodeid;
989	struct connection *newcon;
990	struct socket *newsock;
991	unsigned int mark;
992
993	result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
994	if (result == -EAGAIN)
995		return DLM_IO_END;
996	else if (result < 0)
997		goto accept_err;
998
999	/* Get the connected socket's peer */
1000	memset(&peeraddr, 0, sizeof(peeraddr));
1001	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
1002	if (len < 0) {
1003		result = -ECONNABORTED;
1004		goto accept_err;
1005	}
1006
1007	/* Get the new node's NODEID */
1008	make_sockaddr(&peeraddr, 0, &len);
1009	if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1010		switch (peeraddr.ss_family) {
1011		case AF_INET: {
1012			struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1013
1014			log_print("connect from non cluster IPv4 node %pI4",
1015				  &sin->sin_addr);
1016			break;
1017		}
1018#if IS_ENABLED(CONFIG_IPV6)
1019		case AF_INET6: {
1020			struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1021
1022			log_print("connect from non cluster IPv6 node %pI6c",
1023				  &sin6->sin6_addr);
1024			break;
1025		}
1026#endif
1027		default:
1028			log_print("invalid family from non cluster node");
1029			break;
1030		}
1031
1032		sock_release(newsock);
1033		return -1;
1034	}
1035
1036	log_print("got connection from %d", nodeid);
1037
1038	/*  Check to see if we already have a connection to this node. This
1039	 *  could happen if the two nodes initiate a connection at roughly
1040	 *  the same time and the connections cross on the wire.
1041	 *  In this case we store the incoming one in "othercon"
1042	 */
1043	idx = srcu_read_lock(&connections_srcu);
1044	newcon = nodeid2con(nodeid, 0);
1045	if (WARN_ON_ONCE(!newcon)) {
1046		srcu_read_unlock(&connections_srcu, idx);
1047		result = -ENOENT;
1048		goto accept_err;
1049	}
1050
1051	sock_set_mark(newsock->sk, mark);
1052
1053	down_write(&newcon->sock_lock);
1054	if (newcon->sock) {
1055		struct connection *othercon = newcon->othercon;
1056
1057		if (!othercon) {
1058			othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1059			if (!othercon) {
1060				log_print("failed to allocate incoming socket");
1061				up_write(&newcon->sock_lock);
1062				srcu_read_unlock(&connections_srcu, idx);
1063				result = -ENOMEM;
1064				goto accept_err;
1065			}
1066
1067			dlm_con_init(othercon, nodeid);
1068			lockdep_set_subclass(&othercon->sock_lock, 1);
1069			newcon->othercon = othercon;
1070			set_bit(CF_IS_OTHERCON, &othercon->flags);
1071		} else {
1072			/* close other sock con if we have something new */
1073			close_connection(othercon, false);
1074		}
1075
1076		down_write(&othercon->sock_lock);
1077		add_sock(newsock, othercon);
1078
1079		/* check if we receved something while adding */
1080		lock_sock(othercon->sock->sk);
1081		lowcomms_queue_rwork(othercon);
1082		release_sock(othercon->sock->sk);
1083		up_write(&othercon->sock_lock);
1084	}
1085	else {
1086		/* accept copies the sk after we've saved the callbacks, so we
1087		   don't want to save them a second time or comm errors will
1088		   result in calling sk_error_report recursively. */
1089		add_sock(newsock, newcon);
1090
1091		/* check if we receved something while adding */
1092		lock_sock(newcon->sock->sk);
1093		lowcomms_queue_rwork(newcon);
1094		release_sock(newcon->sock->sk);
1095	}
1096	up_write(&newcon->sock_lock);
1097	srcu_read_unlock(&connections_srcu, idx);
1098
1099	return DLM_IO_SUCCESS;
1100
1101accept_err:
1102	if (newsock)
1103		sock_release(newsock);
1104
1105	return result;
1106}
1107
1108/*
1109 * writequeue_entry_complete - try to delete and free write queue entry
1110 * @e: write queue entry to try to delete
1111 * @completed: bytes completed
1112 *
1113 * writequeue_lock must be held.
1114 */
1115static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1116{
1117	e->offset += completed;
1118	e->len -= completed;
1119	/* signal that page was half way transmitted */
1120	e->dirty = true;
1121
1122	if (e->len == 0 && e->users == 0)
1123		free_entry(e);
1124}
1125
1126/*
1127 * sctp_bind_addrs - bind a SCTP socket to all our addresses
1128 */
1129static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1130{
1131	struct sockaddr_storage localaddr;
1132	struct sockaddr *addr = (struct sockaddr *)&localaddr;
1133	int i, addr_len, result = 0;
1134
1135	for (i = 0; i < dlm_local_count; i++) {
1136		memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1137		make_sockaddr(&localaddr, port, &addr_len);
1138
1139		if (!i)
1140			result = kernel_bind(sock, addr, addr_len);
1141		else
1142			result = sock_bind_add(sock->sk, addr, addr_len);
1143
1144		if (result < 0) {
1145			log_print("Can't bind to %d addr number %d, %d.\n",
1146				  port, i + 1, result);
1147			break;
1148		}
1149	}
1150	return result;
1151}
1152
1153/* Get local addresses */
1154static void init_local(void)
1155{
1156	struct sockaddr_storage sas;
1157	int i;
1158
1159	dlm_local_count = 0;
1160	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1161		if (dlm_our_addr(&sas, i))
1162			break;
1163
1164		memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1165	}
1166}
1167
1168static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1169{
1170	struct writequeue_entry *entry;
1171
1172	entry = dlm_allocate_writequeue();
1173	if (!entry)
1174		return NULL;
1175
1176	entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1177	if (!entry->page) {
1178		dlm_free_writequeue(entry);
1179		return NULL;
1180	}
1181
1182	entry->offset = 0;
1183	entry->len = 0;
1184	entry->end = 0;
1185	entry->dirty = false;
1186	entry->con = con;
1187	entry->users = 1;
1188	kref_init(&entry->ref);
1189	return entry;
1190}
1191
1192static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1193					     char **ppc, void (*cb)(void *data),
1194					     void *data)
1195{
1196	struct writequeue_entry *e;
1197
1198	spin_lock_bh(&con->writequeue_lock);
1199	if (!list_empty(&con->writequeue)) {
1200		e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1201		if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1202			kref_get(&e->ref);
1203
1204			*ppc = page_address(e->page) + e->end;
1205			if (cb)
1206				cb(data);
1207
1208			e->end += len;
1209			e->users++;
1210			goto out;
1211		}
1212	}
1213
1214	e = new_writequeue_entry(con);
1215	if (!e)
1216		goto out;
1217
1218	kref_get(&e->ref);
1219	*ppc = page_address(e->page);
1220	e->end += len;
1221	if (cb)
1222		cb(data);
1223
1224	list_add_tail(&e->list, &con->writequeue);
1225
1226out:
1227	spin_unlock_bh(&con->writequeue_lock);
1228	return e;
1229};
1230
1231static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1232						gfp_t allocation, char **ppc,
1233						void (*cb)(void *data),
1234						void *data)
1235{
1236	struct writequeue_entry *e;
1237	struct dlm_msg *msg;
1238
1239	msg = dlm_allocate_msg(allocation);
1240	if (!msg)
1241		return NULL;
1242
1243	kref_init(&msg->ref);
1244
1245	e = new_wq_entry(con, len, ppc, cb, data);
1246	if (!e) {
1247		dlm_free_msg(msg);
1248		return NULL;
1249	}
1250
1251	msg->retransmit = false;
1252	msg->orig_msg = NULL;
1253	msg->ppc = *ppc;
1254	msg->len = len;
1255	msg->entry = e;
1256
1257	return msg;
1258}
1259
1260/* avoid false positive for nodes_srcu, unlock happens in
1261 * dlm_lowcomms_commit_msg which is a must call if success
1262 */
1263#ifndef __CHECKER__
1264struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1265				     char **ppc, void (*cb)(void *data),
1266				     void *data)
1267{
1268	struct connection *con;
1269	struct dlm_msg *msg;
1270	int idx;
1271
1272	if (len > DLM_MAX_SOCKET_BUFSIZE ||
1273	    len < sizeof(struct dlm_header)) {
1274		BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1275		log_print("failed to allocate a buffer of size %d", len);
1276		WARN_ON_ONCE(1);
1277		return NULL;
1278	}
1279
1280	idx = srcu_read_lock(&connections_srcu);
1281	con = nodeid2con(nodeid, 0);
1282	if (WARN_ON_ONCE(!con)) {
1283		srcu_read_unlock(&connections_srcu, idx);
1284		return NULL;
1285	}
1286
1287	msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data);
1288	if (!msg) {
1289		srcu_read_unlock(&connections_srcu, idx);
1290		return NULL;
1291	}
1292
1293	/* for dlm_lowcomms_commit_msg() */
1294	kref_get(&msg->ref);
1295	/* we assume if successful commit must called */
1296	msg->idx = idx;
1297	return msg;
1298}
1299#endif
1300
1301static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1302{
1303	struct writequeue_entry *e = msg->entry;
1304	struct connection *con = e->con;
1305	int users;
1306
1307	spin_lock_bh(&con->writequeue_lock);
1308	kref_get(&msg->ref);
1309	list_add(&msg->list, &e->msgs);
1310
1311	users = --e->users;
1312	if (users)
1313		goto out;
1314
1315	e->len = DLM_WQ_LENGTH_BYTES(e);
1316
1317	lowcomms_queue_swork(con);
1318
1319out:
1320	spin_unlock_bh(&con->writequeue_lock);
1321	return;
1322}
1323
1324/* avoid false positive for nodes_srcu, lock was happen in
1325 * dlm_lowcomms_new_msg
1326 */
1327#ifndef __CHECKER__
1328void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1329{
1330	_dlm_lowcomms_commit_msg(msg);
1331	srcu_read_unlock(&connections_srcu, msg->idx);
1332	/* because dlm_lowcomms_new_msg() */
1333	kref_put(&msg->ref, dlm_msg_release);
1334}
1335#endif
1336
1337void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1338{
1339	kref_put(&msg->ref, dlm_msg_release);
1340}
1341
1342/* does not held connections_srcu, usage lowcomms_error_report only */
1343int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1344{
1345	struct dlm_msg *msg_resend;
1346	char *ppc;
1347
1348	if (msg->retransmit)
1349		return 1;
1350
1351	msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1352					      GFP_ATOMIC, &ppc, NULL, NULL);
1353	if (!msg_resend)
1354		return -ENOMEM;
1355
1356	msg->retransmit = true;
1357	kref_get(&msg->ref);
1358	msg_resend->orig_msg = msg;
1359
1360	memcpy(ppc, msg->ppc, msg->len);
1361	_dlm_lowcomms_commit_msg(msg_resend);
1362	dlm_lowcomms_put_msg(msg_resend);
1363
1364	return 0;
1365}
1366
1367/* Send a message */
1368static int send_to_sock(struct connection *con)
1369{
1370	struct writequeue_entry *e;
1371	struct bio_vec bvec;
1372	struct msghdr msg = {
1373		.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL,
1374	};
1375	int len, offset, ret;
1376
1377	spin_lock_bh(&con->writequeue_lock);
1378	e = con_next_wq(con);
1379	if (!e) {
1380		clear_bit(CF_SEND_PENDING, &con->flags);
1381		spin_unlock_bh(&con->writequeue_lock);
1382		return DLM_IO_END;
1383	}
1384
1385	len = e->len;
1386	offset = e->offset;
1387	WARN_ON_ONCE(len == 0 && e->users == 0);
1388	spin_unlock_bh(&con->writequeue_lock);
1389
1390	bvec_set_page(&bvec, e->page, len, offset);
1391	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1392	ret = sock_sendmsg(con->sock, &msg);
1393	trace_dlm_send(con->nodeid, ret);
1394	if (ret == -EAGAIN || ret == 0) {
1395		lock_sock(con->sock->sk);
1396		spin_lock_bh(&con->writequeue_lock);
1397		if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1398		    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1399			/* Notify TCP that we're limited by the
1400			 * application window size.
1401			 */
1402			set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1403			con->sock->sk->sk_write_pending++;
1404
1405			clear_bit(CF_SEND_PENDING, &con->flags);
1406			spin_unlock_bh(&con->writequeue_lock);
1407			release_sock(con->sock->sk);
1408
1409			/* wait for write_space() event */
1410			return DLM_IO_END;
1411		}
1412		spin_unlock_bh(&con->writequeue_lock);
1413		release_sock(con->sock->sk);
1414
1415		return DLM_IO_RESCHED;
1416	} else if (ret < 0) {
1417		return ret;
1418	}
1419
1420	spin_lock_bh(&con->writequeue_lock);
1421	writequeue_entry_complete(e, ret);
1422	spin_unlock_bh(&con->writequeue_lock);
1423
1424	return DLM_IO_SUCCESS;
1425}
1426
1427static void clean_one_writequeue(struct connection *con)
1428{
1429	struct writequeue_entry *e, *safe;
1430
1431	spin_lock_bh(&con->writequeue_lock);
1432	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1433		free_entry(e);
1434	}
1435	spin_unlock_bh(&con->writequeue_lock);
1436}
1437
1438static void connection_release(struct rcu_head *rcu)
1439{
1440	struct connection *con = container_of(rcu, struct connection, rcu);
1441
1442	WARN_ON_ONCE(!list_empty(&con->writequeue));
1443	WARN_ON_ONCE(con->sock);
1444	kfree(con);
1445}
1446
1447/* Called from recovery when it knows that a node has
1448   left the cluster */
1449int dlm_lowcomms_close(int nodeid)
1450{
1451	struct connection *con;
1452	int idx;
1453
1454	log_print("closing connection to node %d", nodeid);
1455
1456	idx = srcu_read_lock(&connections_srcu);
1457	con = nodeid2con(nodeid, 0);
1458	if (WARN_ON_ONCE(!con)) {
1459		srcu_read_unlock(&connections_srcu, idx);
1460		return -ENOENT;
1461	}
1462
1463	stop_connection_io(con);
1464	log_print("io handling for node: %d stopped", nodeid);
1465	close_connection(con, true);
1466
1467	spin_lock(&connections_lock);
1468	hlist_del_rcu(&con->list);
1469	spin_unlock(&connections_lock);
1470
1471	clean_one_writequeue(con);
1472	call_srcu(&connections_srcu, &con->rcu, connection_release);
1473	if (con->othercon) {
1474		clean_one_writequeue(con->othercon);
1475		call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1476	}
1477	srcu_read_unlock(&connections_srcu, idx);
1478
1479	/* for debugging we print when we are done to compare with other
1480	 * messages in between. This function need to be correctly synchronized
1481	 * with io handling
1482	 */
1483	log_print("closing connection to node %d done", nodeid);
1484
1485	return 0;
1486}
1487
1488/* Receive worker function */
1489static void process_recv_sockets(struct work_struct *work)
1490{
1491	struct connection *con = container_of(work, struct connection, rwork);
1492	int ret, buflen;
1493
1494	down_read(&con->sock_lock);
1495	if (!con->sock) {
1496		up_read(&con->sock_lock);
1497		return;
1498	}
1499
1500	buflen = READ_ONCE(dlm_config.ci_buffer_size);
1501	do {
1502		ret = receive_from_sock(con, buflen);
1503	} while (ret == DLM_IO_SUCCESS);
1504	up_read(&con->sock_lock);
1505
1506	switch (ret) {
1507	case DLM_IO_END:
1508		/* CF_RECV_PENDING cleared */
1509		break;
1510	case DLM_IO_EOF:
1511		close_connection(con, false);
1512		wake_up(&con->shutdown_wait);
1513		/* CF_RECV_PENDING cleared */
1514		break;
1515	case DLM_IO_FLUSH:
1516		flush_workqueue(process_workqueue);
1517		fallthrough;
1518	case DLM_IO_RESCHED:
1519		cond_resched();
1520		queue_work(io_workqueue, &con->rwork);
1521		/* CF_RECV_PENDING not cleared */
1522		break;
1523	default:
1524		if (ret < 0) {
1525			if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1526				close_connection(con, false);
1527			} else {
1528				spin_lock_bh(&con->writequeue_lock);
1529				lowcomms_queue_swork(con);
1530				spin_unlock_bh(&con->writequeue_lock);
1531			}
1532
1533			/* CF_RECV_PENDING cleared for othercon
1534			 * we trigger send queue if not already done
1535			 * and process_send_sockets will handle it
1536			 */
1537			break;
1538		}
1539
1540		WARN_ON_ONCE(1);
1541		break;
1542	}
1543}
1544
1545static void process_listen_recv_socket(struct work_struct *work)
1546{
1547	int ret;
1548
1549	if (WARN_ON_ONCE(!listen_con.sock))
1550		return;
1551
1552	do {
1553		ret = accept_from_sock();
1554	} while (ret == DLM_IO_SUCCESS);
1555
1556	if (ret < 0)
1557		log_print("critical error accepting connection: %d", ret);
1558}
1559
1560static int dlm_connect(struct connection *con)
1561{
1562	struct sockaddr_storage addr;
1563	int result, addr_len;
1564	struct socket *sock;
1565	unsigned int mark;
1566
1567	memset(&addr, 0, sizeof(addr));
1568	result = nodeid_to_addr(con->nodeid, &addr, NULL,
1569				dlm_proto_ops->try_new_addr, &mark);
1570	if (result < 0) {
1571		log_print("no address for nodeid %d", con->nodeid);
1572		return result;
1573	}
1574
1575	/* Create a socket to communicate with */
1576	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1577				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1578	if (result < 0)
1579		return result;
1580
1581	sock_set_mark(sock->sk, mark);
1582	dlm_proto_ops->sockopts(sock);
1583
1584	result = dlm_proto_ops->bind(sock);
1585	if (result < 0) {
1586		sock_release(sock);
1587		return result;
1588	}
1589
1590	add_sock(sock, con);
1591
1592	log_print_ratelimited("connecting to %d", con->nodeid);
1593	make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1594	result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr,
1595					addr_len);
1596	switch (result) {
1597	case -EINPROGRESS:
1598		/* not an error */
1599		fallthrough;
1600	case 0:
1601		break;
1602	default:
1603		if (result < 0)
1604			dlm_close_sock(&con->sock);
1605
1606		break;
1607	}
1608
1609	return result;
1610}
1611
1612/* Send worker function */
1613static void process_send_sockets(struct work_struct *work)
1614{
1615	struct connection *con = container_of(work, struct connection, swork);
1616	int ret;
1617
1618	WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1619
1620	down_read(&con->sock_lock);
1621	if (!con->sock) {
1622		up_read(&con->sock_lock);
1623		down_write(&con->sock_lock);
1624		if (!con->sock) {
1625			ret = dlm_connect(con);
1626			switch (ret) {
1627			case 0:
1628				break;
1629			case -EINPROGRESS:
1630				/* avoid spamming resched on connection
1631				 * we might can switch to a state_change
1632				 * event based mechanism if established
1633				 */
1634				msleep(100);
1635				break;
1636			default:
1637				/* CF_SEND_PENDING not cleared */
1638				up_write(&con->sock_lock);
1639				log_print("connect to node %d try %d error %d",
1640					  con->nodeid, con->retries++, ret);
1641				msleep(1000);
1642				/* For now we try forever to reconnect. In
1643				 * future we should send a event to cluster
1644				 * manager to fence itself after certain amount
1645				 * of retries.
1646				 */
1647				queue_work(io_workqueue, &con->swork);
1648				return;
1649			}
1650		}
1651		downgrade_write(&con->sock_lock);
1652	}
1653
1654	do {
1655		ret = send_to_sock(con);
1656	} while (ret == DLM_IO_SUCCESS);
1657	up_read(&con->sock_lock);
1658
1659	switch (ret) {
1660	case DLM_IO_END:
1661		/* CF_SEND_PENDING cleared */
1662		break;
1663	case DLM_IO_RESCHED:
1664		/* CF_SEND_PENDING not cleared */
1665		cond_resched();
1666		queue_work(io_workqueue, &con->swork);
1667		break;
1668	default:
1669		if (ret < 0) {
1670			close_connection(con, false);
1671
1672			/* CF_SEND_PENDING cleared */
1673			spin_lock_bh(&con->writequeue_lock);
1674			lowcomms_queue_swork(con);
1675			spin_unlock_bh(&con->writequeue_lock);
1676			break;
1677		}
1678
1679		WARN_ON_ONCE(1);
1680		break;
1681	}
1682}
1683
1684static void work_stop(void)
1685{
1686	if (io_workqueue) {
1687		destroy_workqueue(io_workqueue);
1688		io_workqueue = NULL;
1689	}
1690
1691	if (process_workqueue) {
1692		destroy_workqueue(process_workqueue);
1693		process_workqueue = NULL;
1694	}
1695}
1696
1697static int work_start(void)
1698{
1699	io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM |
1700				       WQ_UNBOUND, 0);
1701	if (!io_workqueue) {
1702		log_print("can't start dlm_io");
1703		return -ENOMEM;
1704	}
1705
1706	/* ordered dlm message process queue,
1707	 * should be converted to a tasklet
1708	 */
1709	process_workqueue = alloc_ordered_workqueue("dlm_process",
1710						    WQ_HIGHPRI | WQ_MEM_RECLAIM);
1711	if (!process_workqueue) {
1712		log_print("can't start dlm_process");
1713		destroy_workqueue(io_workqueue);
1714		io_workqueue = NULL;
1715		return -ENOMEM;
1716	}
1717
1718	return 0;
1719}
1720
1721void dlm_lowcomms_shutdown(void)
1722{
1723	struct connection *con;
1724	int i, idx;
1725
1726	/* stop lowcomms_listen_data_ready calls */
1727	lock_sock(listen_con.sock->sk);
1728	listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1729	release_sock(listen_con.sock->sk);
1730
1731	cancel_work_sync(&listen_con.rwork);
1732	dlm_close_sock(&listen_con.sock);
1733
1734	idx = srcu_read_lock(&connections_srcu);
1735	for (i = 0; i < CONN_HASH_SIZE; i++) {
1736		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1737			shutdown_connection(con, true);
1738			stop_connection_io(con);
1739			flush_workqueue(process_workqueue);
1740			close_connection(con, true);
1741
1742			clean_one_writequeue(con);
1743			if (con->othercon)
1744				clean_one_writequeue(con->othercon);
1745			allow_connection_io(con);
1746		}
1747	}
1748	srcu_read_unlock(&connections_srcu, idx);
1749}
1750
1751void dlm_lowcomms_stop(void)
1752{
1753	work_stop();
1754	dlm_proto_ops = NULL;
1755}
1756
1757static int dlm_listen_for_all(void)
1758{
1759	struct socket *sock;
1760	int result;
1761
1762	log_print("Using %s for communications",
1763		  dlm_proto_ops->name);
1764
1765	result = dlm_proto_ops->listen_validate();
1766	if (result < 0)
1767		return result;
1768
1769	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1770				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1771	if (result < 0) {
1772		log_print("Can't create comms socket: %d", result);
1773		return result;
1774	}
1775
1776	sock_set_mark(sock->sk, dlm_config.ci_mark);
1777	dlm_proto_ops->listen_sockopts(sock);
1778
1779	result = dlm_proto_ops->listen_bind(sock);
1780	if (result < 0)
1781		goto out;
1782
1783	lock_sock(sock->sk);
1784	listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1785	listen_sock.sk_write_space = sock->sk->sk_write_space;
1786	listen_sock.sk_error_report = sock->sk->sk_error_report;
1787	listen_sock.sk_state_change = sock->sk->sk_state_change;
1788
1789	listen_con.sock = sock;
1790
1791	sock->sk->sk_allocation = GFP_NOFS;
1792	sock->sk->sk_use_task_frag = false;
1793	sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1794	release_sock(sock->sk);
1795
1796	result = sock->ops->listen(sock, 128);
1797	if (result < 0) {
1798		dlm_close_sock(&listen_con.sock);
1799		return result;
1800	}
1801
1802	return 0;
1803
1804out:
1805	sock_release(sock);
1806	return result;
1807}
1808
1809static int dlm_tcp_bind(struct socket *sock)
1810{
1811	struct sockaddr_storage src_addr;
1812	int result, addr_len;
1813
1814	/* Bind to our cluster-known address connecting to avoid
1815	 * routing problems.
1816	 */
1817	memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1818	make_sockaddr(&src_addr, 0, &addr_len);
1819
1820	result = kernel_bind(sock, (struct sockaddr *)&src_addr,
1821			     addr_len);
1822	if (result < 0) {
1823		/* This *may* not indicate a critical error */
1824		log_print("could not bind for connect: %d", result);
1825	}
1826
1827	return 0;
1828}
1829
1830static int dlm_tcp_connect(struct connection *con, struct socket *sock,
1831			   struct sockaddr *addr, int addr_len)
1832{
1833	return kernel_connect(sock, addr, addr_len, O_NONBLOCK);
1834}
1835
1836static int dlm_tcp_listen_validate(void)
1837{
1838	/* We don't support multi-homed hosts */
1839	if (dlm_local_count > 1) {
1840		log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1841		return -EINVAL;
1842	}
1843
1844	return 0;
1845}
1846
1847static void dlm_tcp_sockopts(struct socket *sock)
1848{
1849	/* Turn off Nagle's algorithm */
1850	tcp_sock_set_nodelay(sock->sk);
1851}
1852
1853static void dlm_tcp_listen_sockopts(struct socket *sock)
1854{
1855	dlm_tcp_sockopts(sock);
1856	sock_set_reuseaddr(sock->sk);
1857}
1858
1859static int dlm_tcp_listen_bind(struct socket *sock)
1860{
1861	int addr_len;
1862
1863	/* Bind to our port */
1864	make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1865	return kernel_bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1866			   addr_len);
1867}
1868
1869static const struct dlm_proto_ops dlm_tcp_ops = {
1870	.name = "TCP",
1871	.proto = IPPROTO_TCP,
1872	.connect = dlm_tcp_connect,
1873	.sockopts = dlm_tcp_sockopts,
1874	.bind = dlm_tcp_bind,
1875	.listen_validate = dlm_tcp_listen_validate,
1876	.listen_sockopts = dlm_tcp_listen_sockopts,
1877	.listen_bind = dlm_tcp_listen_bind,
1878};
1879
1880static int dlm_sctp_bind(struct socket *sock)
1881{
1882	return sctp_bind_addrs(sock, 0);
1883}
1884
1885static int dlm_sctp_connect(struct connection *con, struct socket *sock,
1886			    struct sockaddr *addr, int addr_len)
1887{
1888	int ret;
1889
1890	/*
1891	 * Make kernel_connect() function return in specified time,
1892	 * since O_NONBLOCK argument in connect() function does not work here,
1893	 * then, we should restore the default value of this attribute.
1894	 */
1895	sock_set_sndtimeo(sock->sk, 5);
1896	ret = kernel_connect(sock, addr, addr_len, 0);
1897	sock_set_sndtimeo(sock->sk, 0);
1898	return ret;
1899}
1900
1901static int dlm_sctp_listen_validate(void)
1902{
1903	if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1904		log_print("SCTP is not enabled by this kernel");
1905		return -EOPNOTSUPP;
1906	}
1907
1908	request_module("sctp");
1909	return 0;
1910}
1911
1912static int dlm_sctp_bind_listen(struct socket *sock)
1913{
1914	return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1915}
1916
1917static void dlm_sctp_sockopts(struct socket *sock)
1918{
1919	/* Turn off Nagle's algorithm */
1920	sctp_sock_set_nodelay(sock->sk);
1921	sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1922}
1923
1924static const struct dlm_proto_ops dlm_sctp_ops = {
1925	.name = "SCTP",
1926	.proto = IPPROTO_SCTP,
1927	.try_new_addr = true,
1928	.connect = dlm_sctp_connect,
1929	.sockopts = dlm_sctp_sockopts,
1930	.bind = dlm_sctp_bind,
1931	.listen_validate = dlm_sctp_listen_validate,
1932	.listen_sockopts = dlm_sctp_sockopts,
1933	.listen_bind = dlm_sctp_bind_listen,
1934};
1935
1936int dlm_lowcomms_start(void)
1937{
1938	int error;
1939
1940	init_local();
1941	if (!dlm_local_count) {
1942		error = -ENOTCONN;
1943		log_print("no local IP address has been set");
1944		goto fail;
1945	}
1946
1947	error = work_start();
1948	if (error)
1949		goto fail;
1950
1951	/* Start listening */
1952	switch (dlm_config.ci_protocol) {
1953	case DLM_PROTO_TCP:
1954		dlm_proto_ops = &dlm_tcp_ops;
1955		break;
1956	case DLM_PROTO_SCTP:
1957		dlm_proto_ops = &dlm_sctp_ops;
1958		break;
1959	default:
1960		log_print("Invalid protocol identifier %d set",
1961			  dlm_config.ci_protocol);
1962		error = -EINVAL;
1963		goto fail_proto_ops;
1964	}
1965
1966	error = dlm_listen_for_all();
1967	if (error)
1968		goto fail_listen;
1969
1970	return 0;
1971
1972fail_listen:
1973	dlm_proto_ops = NULL;
1974fail_proto_ops:
1975	work_stop();
1976fail:
1977	return error;
1978}
1979
1980void dlm_lowcomms_init(void)
1981{
1982	int i;
1983
1984	for (i = 0; i < CONN_HASH_SIZE; i++)
1985		INIT_HLIST_HEAD(&connection_hash[i]);
1986
1987	INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1988}
1989
1990void dlm_lowcomms_exit(void)
1991{
1992	struct connection *con;
1993	int i, idx;
1994
1995	idx = srcu_read_lock(&connections_srcu);
1996	for (i = 0; i < CONN_HASH_SIZE; i++) {
1997		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1998			spin_lock(&connections_lock);
1999			hlist_del_rcu(&con->list);
2000			spin_unlock(&connections_lock);
2001
2002			if (con->othercon)
2003				call_srcu(&connections_srcu, &con->othercon->rcu,
2004					  connection_release);
2005			call_srcu(&connections_srcu, &con->rcu, connection_release);
2006		}
2007	}
2008	srcu_read_unlock(&connections_srcu, idx);
2009}
2010