1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Filesystem-level keyring for fscrypt
4 *
5 * Copyright 2019 Google LLC
6 */
7
8/*
9 * This file implements management of fscrypt master keys in the
10 * filesystem-level keyring, including the ioctls:
11 *
12 * - FS_IOC_ADD_ENCRYPTION_KEY
13 * - FS_IOC_REMOVE_ENCRYPTION_KEY
14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16 *
17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18 * information about these ioctls.
19 */
20
21#include <asm/unaligned.h>
22#include <crypto/skcipher.h>
23#include <linux/key-type.h>
24#include <linux/random.h>
25#include <linux/seq_file.h>
26
27#include "fscrypt_private.h"
28
29/* The master encryption keys for a filesystem (->s_master_keys) */
30struct fscrypt_keyring {
31	/*
32	 * Lock that protects ->key_hashtable.  It does *not* protect the
33	 * fscrypt_master_key structs themselves.
34	 */
35	spinlock_t lock;
36
37	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
38	struct hlist_head key_hashtable[128];
39};
40
41static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
42{
43	fscrypt_destroy_hkdf(&secret->hkdf);
44	memzero_explicit(secret, sizeof(*secret));
45}
46
47static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
48				   struct fscrypt_master_key_secret *src)
49{
50	memcpy(dst, src, sizeof(*dst));
51	memzero_explicit(src, sizeof(*src));
52}
53
54static void fscrypt_free_master_key(struct rcu_head *head)
55{
56	struct fscrypt_master_key *mk =
57		container_of(head, struct fscrypt_master_key, mk_rcu_head);
58	/*
59	 * The master key secret and any embedded subkeys should have already
60	 * been wiped when the last active reference to the fscrypt_master_key
61	 * struct was dropped; doing it here would be unnecessarily late.
62	 * Nevertheless, use kfree_sensitive() in case anything was missed.
63	 */
64	kfree_sensitive(mk);
65}
66
67void fscrypt_put_master_key(struct fscrypt_master_key *mk)
68{
69	if (!refcount_dec_and_test(&mk->mk_struct_refs))
70		return;
71	/*
72	 * No structural references left, so free ->mk_users, and also free the
73	 * fscrypt_master_key struct itself after an RCU grace period ensures
74	 * that concurrent keyring lookups can no longer find it.
75	 */
76	WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0);
77	if (mk->mk_users) {
78		/* Clear the keyring so the quota gets released right away. */
79		keyring_clear(mk->mk_users);
80		key_put(mk->mk_users);
81		mk->mk_users = NULL;
82	}
83	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
84}
85
86void fscrypt_put_master_key_activeref(struct super_block *sb,
87				      struct fscrypt_master_key *mk)
88{
89	size_t i;
90
91	if (!refcount_dec_and_test(&mk->mk_active_refs))
92		return;
93	/*
94	 * No active references left, so complete the full removal of this
95	 * fscrypt_master_key struct by removing it from the keyring and
96	 * destroying any subkeys embedded in it.
97	 */
98
99	if (WARN_ON_ONCE(!sb->s_master_keys))
100		return;
101	spin_lock(&sb->s_master_keys->lock);
102	hlist_del_rcu(&mk->mk_node);
103	spin_unlock(&sb->s_master_keys->lock);
104
105	/*
106	 * ->mk_active_refs == 0 implies that ->mk_present is false and
107	 * ->mk_decrypted_inodes is empty.
108	 */
109	WARN_ON_ONCE(mk->mk_present);
110	WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes));
111
112	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
113		fscrypt_destroy_prepared_key(
114				sb, &mk->mk_direct_keys[i]);
115		fscrypt_destroy_prepared_key(
116				sb, &mk->mk_iv_ino_lblk_64_keys[i]);
117		fscrypt_destroy_prepared_key(
118				sb, &mk->mk_iv_ino_lblk_32_keys[i]);
119	}
120	memzero_explicit(&mk->mk_ino_hash_key,
121			 sizeof(mk->mk_ino_hash_key));
122	mk->mk_ino_hash_key_initialized = false;
123
124	/* Drop the structural ref associated with the active refs. */
125	fscrypt_put_master_key(mk);
126}
127
128/*
129 * This transitions the key state from present to incompletely removed, and then
130 * potentially to absent (depending on whether inodes remain).
131 */
132static void fscrypt_initiate_key_removal(struct super_block *sb,
133					 struct fscrypt_master_key *mk)
134{
135	WRITE_ONCE(mk->mk_present, false);
136	wipe_master_key_secret(&mk->mk_secret);
137	fscrypt_put_master_key_activeref(sb, mk);
138}
139
140static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
141{
142	if (spec->__reserved)
143		return false;
144	return master_key_spec_len(spec) != 0;
145}
146
147static int fscrypt_user_key_instantiate(struct key *key,
148					struct key_preparsed_payload *prep)
149{
150	/*
151	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
152	 * each key, regardless of the exact key size.  The amount of memory
153	 * actually used is greater than the size of the raw key anyway.
154	 */
155	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
156}
157
158static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
159{
160	seq_puts(m, key->description);
161}
162
163/*
164 * Type of key in ->mk_users.  Each key of this type represents a particular
165 * user who has added a particular master key.
166 *
167 * Note that the name of this key type really should be something like
168 * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
169 * mainly for simplicity of presentation in /proc/keys when read by a non-root
170 * user.  And it is expected to be rare that a key is actually added by multiple
171 * users, since users should keep their encryption keys confidential.
172 */
173static struct key_type key_type_fscrypt_user = {
174	.name			= ".fscrypt",
175	.instantiate		= fscrypt_user_key_instantiate,
176	.describe		= fscrypt_user_key_describe,
177};
178
179#define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
180	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
181	 CONST_STRLEN("-users") + 1)
182
183#define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
184	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
185
186static void format_mk_users_keyring_description(
187			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
188			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
189{
190	sprintf(description, "fscrypt-%*phN-users",
191		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
192}
193
194static void format_mk_user_description(
195			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
196			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
197{
198
199	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
200		mk_identifier, __kuid_val(current_fsuid()));
201}
202
203/* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
204static int allocate_filesystem_keyring(struct super_block *sb)
205{
206	struct fscrypt_keyring *keyring;
207
208	if (sb->s_master_keys)
209		return 0;
210
211	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
212	if (!keyring)
213		return -ENOMEM;
214	spin_lock_init(&keyring->lock);
215	/*
216	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
217	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
218	 * concurrent tasks can ACQUIRE it.
219	 */
220	smp_store_release(&sb->s_master_keys, keyring);
221	return 0;
222}
223
224/*
225 * Release all encryption keys that have been added to the filesystem, along
226 * with the keyring that contains them.
227 *
228 * This is called at unmount time, after all potentially-encrypted inodes have
229 * been evicted.  The filesystem's underlying block device(s) are still
230 * available at this time; this is important because after user file accesses
231 * have been allowed, this function may need to evict keys from the keyslots of
232 * an inline crypto engine, which requires the block device(s).
233 */
234void fscrypt_destroy_keyring(struct super_block *sb)
235{
236	struct fscrypt_keyring *keyring = sb->s_master_keys;
237	size_t i;
238
239	if (!keyring)
240		return;
241
242	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
243		struct hlist_head *bucket = &keyring->key_hashtable[i];
244		struct fscrypt_master_key *mk;
245		struct hlist_node *tmp;
246
247		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
248			/*
249			 * Since all potentially-encrypted inodes were already
250			 * evicted, every key remaining in the keyring should
251			 * have an empty inode list, and should only still be in
252			 * the keyring due to the single active ref associated
253			 * with ->mk_present.  There should be no structural
254			 * refs beyond the one associated with the active ref.
255			 */
256			WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1);
257			WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1);
258			WARN_ON_ONCE(!mk->mk_present);
259			fscrypt_initiate_key_removal(sb, mk);
260		}
261	}
262	kfree_sensitive(keyring);
263	sb->s_master_keys = NULL;
264}
265
266static struct hlist_head *
267fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
268		       const struct fscrypt_key_specifier *mk_spec)
269{
270	/*
271	 * Since key specifiers should be "random" values, it is sufficient to
272	 * use a trivial hash function that just takes the first several bits of
273	 * the key specifier.
274	 */
275	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
276
277	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
278}
279
280/*
281 * Find the specified master key struct in ->s_master_keys and take a structural
282 * ref to it.  The structural ref guarantees that the key struct continues to
283 * exist, but it does *not* guarantee that ->s_master_keys continues to contain
284 * the key struct.  The structural ref needs to be dropped by
285 * fscrypt_put_master_key().  Returns NULL if the key struct is not found.
286 */
287struct fscrypt_master_key *
288fscrypt_find_master_key(struct super_block *sb,
289			const struct fscrypt_key_specifier *mk_spec)
290{
291	struct fscrypt_keyring *keyring;
292	struct hlist_head *bucket;
293	struct fscrypt_master_key *mk;
294
295	/*
296	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
297	 * I.e., another task can publish ->s_master_keys concurrently,
298	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
299	 * to safely ACQUIRE the memory the other task published.
300	 */
301	keyring = smp_load_acquire(&sb->s_master_keys);
302	if (keyring == NULL)
303		return NULL; /* No keyring yet, so no keys yet. */
304
305	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
306	rcu_read_lock();
307	switch (mk_spec->type) {
308	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
309		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
310			if (mk->mk_spec.type ==
311				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
312			    memcmp(mk->mk_spec.u.descriptor,
313				   mk_spec->u.descriptor,
314				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
315			    refcount_inc_not_zero(&mk->mk_struct_refs))
316				goto out;
317		}
318		break;
319	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
320		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
321			if (mk->mk_spec.type ==
322				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
323			    memcmp(mk->mk_spec.u.identifier,
324				   mk_spec->u.identifier,
325				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
326			    refcount_inc_not_zero(&mk->mk_struct_refs))
327				goto out;
328		}
329		break;
330	}
331	mk = NULL;
332out:
333	rcu_read_unlock();
334	return mk;
335}
336
337static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
338{
339	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
340	struct key *keyring;
341
342	format_mk_users_keyring_description(description,
343					    mk->mk_spec.u.identifier);
344	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
345				current_cred(), KEY_POS_SEARCH |
346				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
347				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
348	if (IS_ERR(keyring))
349		return PTR_ERR(keyring);
350
351	mk->mk_users = keyring;
352	return 0;
353}
354
355/*
356 * Find the current user's "key" in the master key's ->mk_users.
357 * Returns ERR_PTR(-ENOKEY) if not found.
358 */
359static struct key *find_master_key_user(struct fscrypt_master_key *mk)
360{
361	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
362	key_ref_t keyref;
363
364	format_mk_user_description(description, mk->mk_spec.u.identifier);
365
366	/*
367	 * We need to mark the keyring reference as "possessed" so that we
368	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
369	 */
370	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
371				&key_type_fscrypt_user, description, false);
372	if (IS_ERR(keyref)) {
373		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
374		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
375			keyref = ERR_PTR(-ENOKEY);
376		return ERR_CAST(keyref);
377	}
378	return key_ref_to_ptr(keyref);
379}
380
381/*
382 * Give the current user a "key" in ->mk_users.  This charges the user's quota
383 * and marks the master key as added by the current user, so that it cannot be
384 * removed by another user with the key.  Either ->mk_sem must be held for
385 * write, or the master key must be still undergoing initialization.
386 */
387static int add_master_key_user(struct fscrypt_master_key *mk)
388{
389	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
390	struct key *mk_user;
391	int err;
392
393	format_mk_user_description(description, mk->mk_spec.u.identifier);
394	mk_user = key_alloc(&key_type_fscrypt_user, description,
395			    current_fsuid(), current_gid(), current_cred(),
396			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
397	if (IS_ERR(mk_user))
398		return PTR_ERR(mk_user);
399
400	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
401	key_put(mk_user);
402	return err;
403}
404
405/*
406 * Remove the current user's "key" from ->mk_users.
407 * ->mk_sem must be held for write.
408 *
409 * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
410 */
411static int remove_master_key_user(struct fscrypt_master_key *mk)
412{
413	struct key *mk_user;
414	int err;
415
416	mk_user = find_master_key_user(mk);
417	if (IS_ERR(mk_user))
418		return PTR_ERR(mk_user);
419	err = key_unlink(mk->mk_users, mk_user);
420	key_put(mk_user);
421	return err;
422}
423
424/*
425 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
426 * insert it into sb->s_master_keys.
427 */
428static int add_new_master_key(struct super_block *sb,
429			      struct fscrypt_master_key_secret *secret,
430			      const struct fscrypt_key_specifier *mk_spec)
431{
432	struct fscrypt_keyring *keyring = sb->s_master_keys;
433	struct fscrypt_master_key *mk;
434	int err;
435
436	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
437	if (!mk)
438		return -ENOMEM;
439
440	init_rwsem(&mk->mk_sem);
441	refcount_set(&mk->mk_struct_refs, 1);
442	mk->mk_spec = *mk_spec;
443
444	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
445	spin_lock_init(&mk->mk_decrypted_inodes_lock);
446
447	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
448		err = allocate_master_key_users_keyring(mk);
449		if (err)
450			goto out_put;
451		err = add_master_key_user(mk);
452		if (err)
453			goto out_put;
454	}
455
456	move_master_key_secret(&mk->mk_secret, secret);
457	mk->mk_present = true;
458	refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */
459
460	spin_lock(&keyring->lock);
461	hlist_add_head_rcu(&mk->mk_node,
462			   fscrypt_mk_hash_bucket(keyring, mk_spec));
463	spin_unlock(&keyring->lock);
464	return 0;
465
466out_put:
467	fscrypt_put_master_key(mk);
468	return err;
469}
470
471#define KEY_DEAD	1
472
473static int add_existing_master_key(struct fscrypt_master_key *mk,
474				   struct fscrypt_master_key_secret *secret)
475{
476	int err;
477
478	/*
479	 * If the current user is already in ->mk_users, then there's nothing to
480	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is
481	 * applicable for v1 policy keys, which have NULL ->mk_users.)
482	 */
483	if (mk->mk_users) {
484		struct key *mk_user = find_master_key_user(mk);
485
486		if (mk_user != ERR_PTR(-ENOKEY)) {
487			if (IS_ERR(mk_user))
488				return PTR_ERR(mk_user);
489			key_put(mk_user);
490			return 0;
491		}
492		err = add_master_key_user(mk);
493		if (err)
494			return err;
495	}
496
497	/* If the key is incompletely removed, make it present again. */
498	if (!mk->mk_present) {
499		if (!refcount_inc_not_zero(&mk->mk_active_refs)) {
500			/*
501			 * Raced with the last active ref being dropped, so the
502			 * key has become, or is about to become, "absent".
503			 * Therefore, we need to allocate a new key struct.
504			 */
505			return KEY_DEAD;
506		}
507		move_master_key_secret(&mk->mk_secret, secret);
508		WRITE_ONCE(mk->mk_present, true);
509	}
510
511	return 0;
512}
513
514static int do_add_master_key(struct super_block *sb,
515			     struct fscrypt_master_key_secret *secret,
516			     const struct fscrypt_key_specifier *mk_spec)
517{
518	static DEFINE_MUTEX(fscrypt_add_key_mutex);
519	struct fscrypt_master_key *mk;
520	int err;
521
522	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
523
524	mk = fscrypt_find_master_key(sb, mk_spec);
525	if (!mk) {
526		/* Didn't find the key in ->s_master_keys.  Add it. */
527		err = allocate_filesystem_keyring(sb);
528		if (!err)
529			err = add_new_master_key(sb, secret, mk_spec);
530	} else {
531		/*
532		 * Found the key in ->s_master_keys.  Add the user to ->mk_users
533		 * if needed, and make the key "present" again if possible.
534		 */
535		down_write(&mk->mk_sem);
536		err = add_existing_master_key(mk, secret);
537		up_write(&mk->mk_sem);
538		if (err == KEY_DEAD) {
539			/*
540			 * We found a key struct, but it's already been fully
541			 * removed.  Ignore the old struct and add a new one.
542			 * fscrypt_add_key_mutex means we don't need to worry
543			 * about concurrent adds.
544			 */
545			err = add_new_master_key(sb, secret, mk_spec);
546		}
547		fscrypt_put_master_key(mk);
548	}
549	mutex_unlock(&fscrypt_add_key_mutex);
550	return err;
551}
552
553static int add_master_key(struct super_block *sb,
554			  struct fscrypt_master_key_secret *secret,
555			  struct fscrypt_key_specifier *key_spec)
556{
557	int err;
558
559	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
560		err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
561					secret->size);
562		if (err)
563			return err;
564
565		/*
566		 * Now that the HKDF context is initialized, the raw key is no
567		 * longer needed.
568		 */
569		memzero_explicit(secret->raw, secret->size);
570
571		/* Calculate the key identifier */
572		err = fscrypt_hkdf_expand(&secret->hkdf,
573					  HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
574					  key_spec->u.identifier,
575					  FSCRYPT_KEY_IDENTIFIER_SIZE);
576		if (err)
577			return err;
578	}
579	return do_add_master_key(sb, secret, key_spec);
580}
581
582static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
583{
584	const struct fscrypt_provisioning_key_payload *payload = prep->data;
585
586	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
587	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
588		return -EINVAL;
589
590	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
591	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
592		return -EINVAL;
593
594	if (payload->__reserved)
595		return -EINVAL;
596
597	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
598	if (!prep->payload.data[0])
599		return -ENOMEM;
600
601	prep->quotalen = prep->datalen;
602	return 0;
603}
604
605static void fscrypt_provisioning_key_free_preparse(
606					struct key_preparsed_payload *prep)
607{
608	kfree_sensitive(prep->payload.data[0]);
609}
610
611static void fscrypt_provisioning_key_describe(const struct key *key,
612					      struct seq_file *m)
613{
614	seq_puts(m, key->description);
615	if (key_is_positive(key)) {
616		const struct fscrypt_provisioning_key_payload *payload =
617			key->payload.data[0];
618
619		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
620	}
621}
622
623static void fscrypt_provisioning_key_destroy(struct key *key)
624{
625	kfree_sensitive(key->payload.data[0]);
626}
627
628static struct key_type key_type_fscrypt_provisioning = {
629	.name			= "fscrypt-provisioning",
630	.preparse		= fscrypt_provisioning_key_preparse,
631	.free_preparse		= fscrypt_provisioning_key_free_preparse,
632	.instantiate		= generic_key_instantiate,
633	.describe		= fscrypt_provisioning_key_describe,
634	.destroy		= fscrypt_provisioning_key_destroy,
635};
636
637/*
638 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
639 * store it into 'secret'.
640 *
641 * The key must be of type "fscrypt-provisioning" and must have the field
642 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
643 * only usable with fscrypt with the particular KDF version identified by
644 * 'type'.  We don't use the "logon" key type because there's no way to
645 * completely restrict the use of such keys; they can be used by any kernel API
646 * that accepts "logon" keys and doesn't require a specific service prefix.
647 *
648 * The ability to specify the key via Linux keyring key is intended for cases
649 * where userspace needs to re-add keys after the filesystem is unmounted and
650 * re-mounted.  Most users should just provide the raw key directly instead.
651 */
652static int get_keyring_key(u32 key_id, u32 type,
653			   struct fscrypt_master_key_secret *secret)
654{
655	key_ref_t ref;
656	struct key *key;
657	const struct fscrypt_provisioning_key_payload *payload;
658	int err;
659
660	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
661	if (IS_ERR(ref))
662		return PTR_ERR(ref);
663	key = key_ref_to_ptr(ref);
664
665	if (key->type != &key_type_fscrypt_provisioning)
666		goto bad_key;
667	payload = key->payload.data[0];
668
669	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
670	if (payload->type != type)
671		goto bad_key;
672
673	secret->size = key->datalen - sizeof(*payload);
674	memcpy(secret->raw, payload->raw, secret->size);
675	err = 0;
676	goto out_put;
677
678bad_key:
679	err = -EKEYREJECTED;
680out_put:
681	key_ref_put(ref);
682	return err;
683}
684
685/*
686 * Add a master encryption key to the filesystem, causing all files which were
687 * encrypted with it to appear "unlocked" (decrypted) when accessed.
688 *
689 * When adding a key for use by v1 encryption policies, this ioctl is
690 * privileged, and userspace must provide the 'key_descriptor'.
691 *
692 * When adding a key for use by v2+ encryption policies, this ioctl is
693 * unprivileged.  This is needed, in general, to allow non-root users to use
694 * encryption without encountering the visibility problems of process-subscribed
695 * keyrings and the inability to properly remove keys.  This works by having
696 * each key identified by its cryptographically secure hash --- the
697 * 'key_identifier'.  The cryptographic hash ensures that a malicious user
698 * cannot add the wrong key for a given identifier.  Furthermore, each added key
699 * is charged to the appropriate user's quota for the keyrings service, which
700 * prevents a malicious user from adding too many keys.  Finally, we forbid a
701 * user from removing a key while other users have added it too, which prevents
702 * a user who knows another user's key from causing a denial-of-service by
703 * removing it at an inopportune time.  (We tolerate that a user who knows a key
704 * can prevent other users from removing it.)
705 *
706 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
707 * Documentation/filesystems/fscrypt.rst.
708 */
709int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
710{
711	struct super_block *sb = file_inode(filp)->i_sb;
712	struct fscrypt_add_key_arg __user *uarg = _uarg;
713	struct fscrypt_add_key_arg arg;
714	struct fscrypt_master_key_secret secret;
715	int err;
716
717	if (copy_from_user(&arg, uarg, sizeof(arg)))
718		return -EFAULT;
719
720	if (!valid_key_spec(&arg.key_spec))
721		return -EINVAL;
722
723	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
724		return -EINVAL;
725
726	/*
727	 * Only root can add keys that are identified by an arbitrary descriptor
728	 * rather than by a cryptographic hash --- since otherwise a malicious
729	 * user could add the wrong key.
730	 */
731	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
732	    !capable(CAP_SYS_ADMIN))
733		return -EACCES;
734
735	memset(&secret, 0, sizeof(secret));
736	if (arg.key_id) {
737		if (arg.raw_size != 0)
738			return -EINVAL;
739		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
740		if (err)
741			goto out_wipe_secret;
742	} else {
743		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
744		    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
745			return -EINVAL;
746		secret.size = arg.raw_size;
747		err = -EFAULT;
748		if (copy_from_user(secret.raw, uarg->raw, secret.size))
749			goto out_wipe_secret;
750	}
751
752	err = add_master_key(sb, &secret, &arg.key_spec);
753	if (err)
754		goto out_wipe_secret;
755
756	/* Return the key identifier to userspace, if applicable */
757	err = -EFAULT;
758	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
759	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
760			 FSCRYPT_KEY_IDENTIFIER_SIZE))
761		goto out_wipe_secret;
762	err = 0;
763out_wipe_secret:
764	wipe_master_key_secret(&secret);
765	return err;
766}
767EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
768
769static void
770fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
771{
772	static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
773
774	get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
775
776	memset(secret, 0, sizeof(*secret));
777	secret->size = FSCRYPT_MAX_KEY_SIZE;
778	memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE);
779}
780
781int fscrypt_get_test_dummy_key_identifier(
782				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
783{
784	struct fscrypt_master_key_secret secret;
785	int err;
786
787	fscrypt_get_test_dummy_secret(&secret);
788
789	err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
790	if (err)
791		goto out;
792	err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
793				  NULL, 0, key_identifier,
794				  FSCRYPT_KEY_IDENTIFIER_SIZE);
795out:
796	wipe_master_key_secret(&secret);
797	return err;
798}
799
800/**
801 * fscrypt_add_test_dummy_key() - add the test dummy encryption key
802 * @sb: the filesystem instance to add the key to
803 * @key_spec: the key specifier of the test dummy encryption key
804 *
805 * Add the key for the test_dummy_encryption mount option to the filesystem.  To
806 * prevent misuse of this mount option, a per-boot random key is used instead of
807 * a hardcoded one.  This makes it so that any encrypted files created using
808 * this option won't be accessible after a reboot.
809 *
810 * Return: 0 on success, -errno on failure
811 */
812int fscrypt_add_test_dummy_key(struct super_block *sb,
813			       struct fscrypt_key_specifier *key_spec)
814{
815	struct fscrypt_master_key_secret secret;
816	int err;
817
818	fscrypt_get_test_dummy_secret(&secret);
819	err = add_master_key(sb, &secret, key_spec);
820	wipe_master_key_secret(&secret);
821	return err;
822}
823
824/*
825 * Verify that the current user has added a master key with the given identifier
826 * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
827 * their files using some other user's key which they don't actually know.
828 * Cryptographically this isn't much of a problem, but the semantics of this
829 * would be a bit weird, so it's best to just forbid it.
830 *
831 * The system administrator (CAP_FOWNER) can override this, which should be
832 * enough for any use cases where encryption policies are being set using keys
833 * that were chosen ahead of time but aren't available at the moment.
834 *
835 * Note that the key may have already removed by the time this returns, but
836 * that's okay; we just care whether the key was there at some point.
837 *
838 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
839 */
840int fscrypt_verify_key_added(struct super_block *sb,
841			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
842{
843	struct fscrypt_key_specifier mk_spec;
844	struct fscrypt_master_key *mk;
845	struct key *mk_user;
846	int err;
847
848	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
849	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
850
851	mk = fscrypt_find_master_key(sb, &mk_spec);
852	if (!mk) {
853		err = -ENOKEY;
854		goto out;
855	}
856	down_read(&mk->mk_sem);
857	mk_user = find_master_key_user(mk);
858	if (IS_ERR(mk_user)) {
859		err = PTR_ERR(mk_user);
860	} else {
861		key_put(mk_user);
862		err = 0;
863	}
864	up_read(&mk->mk_sem);
865	fscrypt_put_master_key(mk);
866out:
867	if (err == -ENOKEY && capable(CAP_FOWNER))
868		err = 0;
869	return err;
870}
871
872/*
873 * Try to evict the inode's dentries from the dentry cache.  If the inode is a
874 * directory, then it can have at most one dentry; however, that dentry may be
875 * pinned by child dentries, so first try to evict the children too.
876 */
877static void shrink_dcache_inode(struct inode *inode)
878{
879	struct dentry *dentry;
880
881	if (S_ISDIR(inode->i_mode)) {
882		dentry = d_find_any_alias(inode);
883		if (dentry) {
884			shrink_dcache_parent(dentry);
885			dput(dentry);
886		}
887	}
888	d_prune_aliases(inode);
889}
890
891static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
892{
893	struct fscrypt_inode_info *ci;
894	struct inode *inode;
895	struct inode *toput_inode = NULL;
896
897	spin_lock(&mk->mk_decrypted_inodes_lock);
898
899	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
900		inode = ci->ci_inode;
901		spin_lock(&inode->i_lock);
902		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
903			spin_unlock(&inode->i_lock);
904			continue;
905		}
906		__iget(inode);
907		spin_unlock(&inode->i_lock);
908		spin_unlock(&mk->mk_decrypted_inodes_lock);
909
910		shrink_dcache_inode(inode);
911		iput(toput_inode);
912		toput_inode = inode;
913
914		spin_lock(&mk->mk_decrypted_inodes_lock);
915	}
916
917	spin_unlock(&mk->mk_decrypted_inodes_lock);
918	iput(toput_inode);
919}
920
921static int check_for_busy_inodes(struct super_block *sb,
922				 struct fscrypt_master_key *mk)
923{
924	struct list_head *pos;
925	size_t busy_count = 0;
926	unsigned long ino;
927	char ino_str[50] = "";
928
929	spin_lock(&mk->mk_decrypted_inodes_lock);
930
931	list_for_each(pos, &mk->mk_decrypted_inodes)
932		busy_count++;
933
934	if (busy_count == 0) {
935		spin_unlock(&mk->mk_decrypted_inodes_lock);
936		return 0;
937	}
938
939	{
940		/* select an example file to show for debugging purposes */
941		struct inode *inode =
942			list_first_entry(&mk->mk_decrypted_inodes,
943					 struct fscrypt_inode_info,
944					 ci_master_key_link)->ci_inode;
945		ino = inode->i_ino;
946	}
947	spin_unlock(&mk->mk_decrypted_inodes_lock);
948
949	/* If the inode is currently being created, ino may still be 0. */
950	if (ino)
951		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
952
953	fscrypt_warn(NULL,
954		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
955		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
956		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
957		     ino_str);
958	return -EBUSY;
959}
960
961static int try_to_lock_encrypted_files(struct super_block *sb,
962				       struct fscrypt_master_key *mk)
963{
964	int err1;
965	int err2;
966
967	/*
968	 * An inode can't be evicted while it is dirty or has dirty pages.
969	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
970	 *
971	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
972	 * it works, and it's more important to minimize the amount of caches we
973	 * drop than the amount of data we sync.  Also, unprivileged users can
974	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
975	 */
976	down_read(&sb->s_umount);
977	err1 = sync_filesystem(sb);
978	up_read(&sb->s_umount);
979	/* If a sync error occurs, still try to evict as much as possible. */
980
981	/*
982	 * Inodes are pinned by their dentries, so we have to evict their
983	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
984	 * and inappropriate for use by unprivileged users.  So instead go
985	 * through the inodes' alias lists and try to evict each dentry.
986	 */
987	evict_dentries_for_decrypted_inodes(mk);
988
989	/*
990	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
991	 * the list; any inodes for which that dropped the last reference will
992	 * have been evicted due to fscrypt_drop_inode() detecting the key
993	 * removal and telling the VFS to evict the inode.  So to finish, we
994	 * just need to check whether any inodes couldn't be evicted.
995	 */
996	err2 = check_for_busy_inodes(sb, mk);
997
998	return err1 ?: err2;
999}
1000
1001/*
1002 * Try to remove an fscrypt master encryption key.
1003 *
1004 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
1005 * claim to the key, then removes the key itself if no other users have claims.
1006 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
1007 * key itself.
1008 *
1009 * To "remove the key itself", first we transition the key to the "incompletely
1010 * removed" state, so that no more inodes can be unlocked with it.  Then we try
1011 * to evict all cached inodes that had been unlocked with the key.
1012 *
1013 * If all inodes were evicted, then we unlink the fscrypt_master_key from the
1014 * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
1015 * state where it tracks the list of remaining inodes.  Userspace can execute
1016 * the ioctl again later to retry eviction, or alternatively can re-add the key.
1017 *
1018 * For more details, see the "Removing keys" section of
1019 * Documentation/filesystems/fscrypt.rst.
1020 */
1021static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1022{
1023	struct super_block *sb = file_inode(filp)->i_sb;
1024	struct fscrypt_remove_key_arg __user *uarg = _uarg;
1025	struct fscrypt_remove_key_arg arg;
1026	struct fscrypt_master_key *mk;
1027	u32 status_flags = 0;
1028	int err;
1029	bool inodes_remain;
1030
1031	if (copy_from_user(&arg, uarg, sizeof(arg)))
1032		return -EFAULT;
1033
1034	if (!valid_key_spec(&arg.key_spec))
1035		return -EINVAL;
1036
1037	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1038		return -EINVAL;
1039
1040	/*
1041	 * Only root can add and remove keys that are identified by an arbitrary
1042	 * descriptor rather than by a cryptographic hash.
1043	 */
1044	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1045	    !capable(CAP_SYS_ADMIN))
1046		return -EACCES;
1047
1048	/* Find the key being removed. */
1049	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1050	if (!mk)
1051		return -ENOKEY;
1052	down_write(&mk->mk_sem);
1053
1054	/* If relevant, remove current user's (or all users) claim to the key */
1055	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1056		if (all_users)
1057			err = keyring_clear(mk->mk_users);
1058		else
1059			err = remove_master_key_user(mk);
1060		if (err) {
1061			up_write(&mk->mk_sem);
1062			goto out_put_key;
1063		}
1064		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1065			/*
1066			 * Other users have still added the key too.  We removed
1067			 * the current user's claim to the key, but we still
1068			 * can't remove the key itself.
1069			 */
1070			status_flags |=
1071				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1072			err = 0;
1073			up_write(&mk->mk_sem);
1074			goto out_put_key;
1075		}
1076	}
1077
1078	/* No user claims remaining.  Initiate removal of the key. */
1079	err = -ENOKEY;
1080	if (mk->mk_present) {
1081		fscrypt_initiate_key_removal(sb, mk);
1082		err = 0;
1083	}
1084	inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1085	up_write(&mk->mk_sem);
1086
1087	if (inodes_remain) {
1088		/* Some inodes still reference this key; try to evict them. */
1089		err = try_to_lock_encrypted_files(sb, mk);
1090		if (err == -EBUSY) {
1091			status_flags |=
1092				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1093			err = 0;
1094		}
1095	}
1096	/*
1097	 * We return 0 if we successfully did something: removed a claim to the
1098	 * key, initiated removal of the key, or tried locking the files again.
1099	 * Users need to check the informational status flags if they care
1100	 * whether the key has been fully removed including all files locked.
1101	 */
1102out_put_key:
1103	fscrypt_put_master_key(mk);
1104	if (err == 0)
1105		err = put_user(status_flags, &uarg->removal_status_flags);
1106	return err;
1107}
1108
1109int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1110{
1111	return do_remove_key(filp, uarg, false);
1112}
1113EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1114
1115int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1116{
1117	if (!capable(CAP_SYS_ADMIN))
1118		return -EACCES;
1119	return do_remove_key(filp, uarg, true);
1120}
1121EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1122
1123/*
1124 * Retrieve the status of an fscrypt master encryption key.
1125 *
1126 * We set ->status to indicate whether the key is absent, present, or
1127 * incompletely removed.  (For an explanation of what these statuses mean and
1128 * how they are represented internally, see struct fscrypt_master_key.)  This
1129 * field allows applications to easily determine the status of an encrypted
1130 * directory without using a hack such as trying to open a regular file in it
1131 * (which can confuse the "incompletely removed" status with absent or present).
1132 *
1133 * In addition, for v2 policy keys we allow applications to determine, via
1134 * ->status_flags and ->user_count, whether the key has been added by the
1135 * current user, by other users, or by both.  Most applications should not need
1136 * this, since ordinarily only one user should know a given key.  However, if a
1137 * secret key is shared by multiple users, applications may wish to add an
1138 * already-present key to prevent other users from removing it.  This ioctl can
1139 * be used to check whether that really is the case before the work is done to
1140 * add the key --- which might e.g. require prompting the user for a passphrase.
1141 *
1142 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1143 * Documentation/filesystems/fscrypt.rst.
1144 */
1145int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1146{
1147	struct super_block *sb = file_inode(filp)->i_sb;
1148	struct fscrypt_get_key_status_arg arg;
1149	struct fscrypt_master_key *mk;
1150	int err;
1151
1152	if (copy_from_user(&arg, uarg, sizeof(arg)))
1153		return -EFAULT;
1154
1155	if (!valid_key_spec(&arg.key_spec))
1156		return -EINVAL;
1157
1158	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1159		return -EINVAL;
1160
1161	arg.status_flags = 0;
1162	arg.user_count = 0;
1163	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1164
1165	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1166	if (!mk) {
1167		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1168		err = 0;
1169		goto out;
1170	}
1171	down_read(&mk->mk_sem);
1172
1173	if (!mk->mk_present) {
1174		arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1175			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1176			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1177		err = 0;
1178		goto out_release_key;
1179	}
1180
1181	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1182	if (mk->mk_users) {
1183		struct key *mk_user;
1184
1185		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1186		mk_user = find_master_key_user(mk);
1187		if (!IS_ERR(mk_user)) {
1188			arg.status_flags |=
1189				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1190			key_put(mk_user);
1191		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1192			err = PTR_ERR(mk_user);
1193			goto out_release_key;
1194		}
1195	}
1196	err = 0;
1197out_release_key:
1198	up_read(&mk->mk_sem);
1199	fscrypt_put_master_key(mk);
1200out:
1201	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1202		err = -EFAULT;
1203	return err;
1204}
1205EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1206
1207int __init fscrypt_init_keyring(void)
1208{
1209	int err;
1210
1211	err = register_key_type(&key_type_fscrypt_user);
1212	if (err)
1213		return err;
1214
1215	err = register_key_type(&key_type_fscrypt_provisioning);
1216	if (err)
1217		goto err_unregister_fscrypt_user;
1218
1219	return 0;
1220
1221err_unregister_fscrypt_user:
1222	unregister_key_type(&key_type_fscrypt_user);
1223	return err;
1224}
1225