1// SPDX-License-Identifier: GPL-2.0
2
3#include "bcachefs.h"
4#include "btree_cache.h"
5#include "btree_iter.h"
6#include "btree_key_cache.h"
7#include "btree_locking.h"
8#include "btree_update.h"
9#include "errcode.h"
10#include "error.h"
11#include "journal.h"
12#include "journal_reclaim.h"
13#include "trace.h"
14
15#include <linux/sched/mm.h>
16
17static inline bool btree_uses_pcpu_readers(enum btree_id id)
18{
19	return id == BTREE_ID_subvolumes;
20}
21
22static struct kmem_cache *bch2_key_cache;
23
24static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
25				       const void *obj)
26{
27	const struct bkey_cached *ck = obj;
28	const struct bkey_cached_key *key = arg->key;
29
30	return ck->key.btree_id != key->btree_id ||
31		!bpos_eq(ck->key.pos, key->pos);
32}
33
34static const struct rhashtable_params bch2_btree_key_cache_params = {
35	.head_offset	= offsetof(struct bkey_cached, hash),
36	.key_offset	= offsetof(struct bkey_cached, key),
37	.key_len	= sizeof(struct bkey_cached_key),
38	.obj_cmpfn	= bch2_btree_key_cache_cmp_fn,
39};
40
41__flatten
42inline struct bkey_cached *
43bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
44{
45	struct bkey_cached_key key = {
46		.btree_id	= btree_id,
47		.pos		= pos,
48	};
49
50	return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
51				      bch2_btree_key_cache_params);
52}
53
54static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
55{
56	if (!six_trylock_intent(&ck->c.lock))
57		return false;
58
59	if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
60		six_unlock_intent(&ck->c.lock);
61		return false;
62	}
63
64	if (!six_trylock_write(&ck->c.lock)) {
65		six_unlock_intent(&ck->c.lock);
66		return false;
67	}
68
69	return true;
70}
71
72static void bkey_cached_evict(struct btree_key_cache *c,
73			      struct bkey_cached *ck)
74{
75	BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash,
76				      bch2_btree_key_cache_params));
77	memset(&ck->key, ~0, sizeof(ck->key));
78
79	atomic_long_dec(&c->nr_keys);
80}
81
82static void bkey_cached_free(struct btree_key_cache *bc,
83			     struct bkey_cached *ck)
84{
85	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
86
87	BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
88
89	ck->btree_trans_barrier_seq =
90		start_poll_synchronize_srcu(&c->btree_trans_barrier);
91
92	if (ck->c.lock.readers) {
93		list_move_tail(&ck->list, &bc->freed_pcpu);
94		bc->nr_freed_pcpu++;
95	} else {
96		list_move_tail(&ck->list, &bc->freed_nonpcpu);
97		bc->nr_freed_nonpcpu++;
98	}
99	atomic_long_inc(&bc->nr_freed);
100
101	kfree(ck->k);
102	ck->k		= NULL;
103	ck->u64s	= 0;
104
105	six_unlock_write(&ck->c.lock);
106	six_unlock_intent(&ck->c.lock);
107}
108
109#ifdef __KERNEL__
110static void __bkey_cached_move_to_freelist_ordered(struct btree_key_cache *bc,
111						   struct bkey_cached *ck)
112{
113	struct bkey_cached *pos;
114
115	bc->nr_freed_nonpcpu++;
116
117	list_for_each_entry_reverse(pos, &bc->freed_nonpcpu, list) {
118		if (ULONG_CMP_GE(ck->btree_trans_barrier_seq,
119				 pos->btree_trans_barrier_seq)) {
120			list_move(&ck->list, &pos->list);
121			return;
122		}
123	}
124
125	list_move(&ck->list, &bc->freed_nonpcpu);
126}
127#endif
128
129static void bkey_cached_move_to_freelist(struct btree_key_cache *bc,
130					 struct bkey_cached *ck)
131{
132	BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
133
134	if (!ck->c.lock.readers) {
135#ifdef __KERNEL__
136		struct btree_key_cache_freelist *f;
137		bool freed = false;
138
139		preempt_disable();
140		f = this_cpu_ptr(bc->pcpu_freed);
141
142		if (f->nr < ARRAY_SIZE(f->objs)) {
143			f->objs[f->nr++] = ck;
144			freed = true;
145		}
146		preempt_enable();
147
148		if (!freed) {
149			mutex_lock(&bc->lock);
150			preempt_disable();
151			f = this_cpu_ptr(bc->pcpu_freed);
152
153			while (f->nr > ARRAY_SIZE(f->objs) / 2) {
154				struct bkey_cached *ck2 = f->objs[--f->nr];
155
156				__bkey_cached_move_to_freelist_ordered(bc, ck2);
157			}
158			preempt_enable();
159
160			__bkey_cached_move_to_freelist_ordered(bc, ck);
161			mutex_unlock(&bc->lock);
162		}
163#else
164		mutex_lock(&bc->lock);
165		list_move_tail(&ck->list, &bc->freed_nonpcpu);
166		bc->nr_freed_nonpcpu++;
167		mutex_unlock(&bc->lock);
168#endif
169	} else {
170		mutex_lock(&bc->lock);
171		list_move_tail(&ck->list, &bc->freed_pcpu);
172		bc->nr_freed_pcpu++;
173		mutex_unlock(&bc->lock);
174	}
175}
176
177static void bkey_cached_free_fast(struct btree_key_cache *bc,
178				  struct bkey_cached *ck)
179{
180	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
181
182	ck->btree_trans_barrier_seq =
183		start_poll_synchronize_srcu(&c->btree_trans_barrier);
184
185	list_del_init(&ck->list);
186	atomic_long_inc(&bc->nr_freed);
187
188	kfree(ck->k);
189	ck->k		= NULL;
190	ck->u64s	= 0;
191
192	bkey_cached_move_to_freelist(bc, ck);
193
194	six_unlock_write(&ck->c.lock);
195	six_unlock_intent(&ck->c.lock);
196}
197
198static struct bkey_cached *
199bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path,
200		  bool *was_new)
201{
202	struct bch_fs *c = trans->c;
203	struct btree_key_cache *bc = &c->btree_key_cache;
204	struct bkey_cached *ck = NULL;
205	bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
206	int ret;
207
208	if (!pcpu_readers) {
209#ifdef __KERNEL__
210		struct btree_key_cache_freelist *f;
211
212		preempt_disable();
213		f = this_cpu_ptr(bc->pcpu_freed);
214		if (f->nr)
215			ck = f->objs[--f->nr];
216		preempt_enable();
217
218		if (!ck) {
219			mutex_lock(&bc->lock);
220			preempt_disable();
221			f = this_cpu_ptr(bc->pcpu_freed);
222
223			while (!list_empty(&bc->freed_nonpcpu) &&
224			       f->nr < ARRAY_SIZE(f->objs) / 2) {
225				ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
226				list_del_init(&ck->list);
227				bc->nr_freed_nonpcpu--;
228				f->objs[f->nr++] = ck;
229			}
230
231			ck = f->nr ? f->objs[--f->nr] : NULL;
232			preempt_enable();
233			mutex_unlock(&bc->lock);
234		}
235#else
236		mutex_lock(&bc->lock);
237		if (!list_empty(&bc->freed_nonpcpu)) {
238			ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
239			list_del_init(&ck->list);
240			bc->nr_freed_nonpcpu--;
241		}
242		mutex_unlock(&bc->lock);
243#endif
244	} else {
245		mutex_lock(&bc->lock);
246		if (!list_empty(&bc->freed_pcpu)) {
247			ck = list_last_entry(&bc->freed_pcpu, struct bkey_cached, list);
248			list_del_init(&ck->list);
249			bc->nr_freed_pcpu--;
250		}
251		mutex_unlock(&bc->lock);
252	}
253
254	if (ck) {
255		ret = btree_node_lock_nopath(trans, &ck->c, SIX_LOCK_intent, _THIS_IP_);
256		if (unlikely(ret)) {
257			bkey_cached_move_to_freelist(bc, ck);
258			return ERR_PTR(ret);
259		}
260
261		path->l[0].b = (void *) ck;
262		path->l[0].lock_seq = six_lock_seq(&ck->c.lock);
263		mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
264
265		ret = bch2_btree_node_lock_write(trans, path, &ck->c);
266		if (unlikely(ret)) {
267			btree_node_unlock(trans, path, 0);
268			bkey_cached_move_to_freelist(bc, ck);
269			return ERR_PTR(ret);
270		}
271
272		return ck;
273	}
274
275	ck = allocate_dropping_locks(trans, ret,
276			kmem_cache_zalloc(bch2_key_cache, _gfp));
277	if (ret) {
278		kmem_cache_free(bch2_key_cache, ck);
279		return ERR_PTR(ret);
280	}
281
282	if (!ck)
283		return NULL;
284
285	INIT_LIST_HEAD(&ck->list);
286	bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0);
287
288	ck->c.cached = true;
289	BUG_ON(!six_trylock_intent(&ck->c.lock));
290	BUG_ON(!six_trylock_write(&ck->c.lock));
291	*was_new = true;
292	return ck;
293}
294
295static struct bkey_cached *
296bkey_cached_reuse(struct btree_key_cache *c)
297{
298	struct bucket_table *tbl;
299	struct rhash_head *pos;
300	struct bkey_cached *ck;
301	unsigned i;
302
303	mutex_lock(&c->lock);
304	rcu_read_lock();
305	tbl = rht_dereference_rcu(c->table.tbl, &c->table);
306	for (i = 0; i < tbl->size; i++)
307		rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
308			if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
309			    bkey_cached_lock_for_evict(ck)) {
310				bkey_cached_evict(c, ck);
311				goto out;
312			}
313		}
314	ck = NULL;
315out:
316	rcu_read_unlock();
317	mutex_unlock(&c->lock);
318	return ck;
319}
320
321static struct bkey_cached *
322btree_key_cache_create(struct btree_trans *trans, struct btree_path *path)
323{
324	struct bch_fs *c = trans->c;
325	struct btree_key_cache *bc = &c->btree_key_cache;
326	struct bkey_cached *ck;
327	bool was_new = false;
328
329	ck = bkey_cached_alloc(trans, path, &was_new);
330	if (IS_ERR(ck))
331		return ck;
332
333	if (unlikely(!ck)) {
334		ck = bkey_cached_reuse(bc);
335		if (unlikely(!ck)) {
336			bch_err(c, "error allocating memory for key cache item, btree %s",
337				bch2_btree_id_str(path->btree_id));
338			return ERR_PTR(-BCH_ERR_ENOMEM_btree_key_cache_create);
339		}
340
341		mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
342	}
343
344	ck->c.level		= 0;
345	ck->c.btree_id		= path->btree_id;
346	ck->key.btree_id	= path->btree_id;
347	ck->key.pos		= path->pos;
348	ck->valid		= false;
349	ck->flags		= 1U << BKEY_CACHED_ACCESSED;
350
351	if (unlikely(rhashtable_lookup_insert_fast(&bc->table,
352					  &ck->hash,
353					  bch2_btree_key_cache_params))) {
354		/* We raced with another fill: */
355
356		if (likely(was_new)) {
357			six_unlock_write(&ck->c.lock);
358			six_unlock_intent(&ck->c.lock);
359			kfree(ck);
360		} else {
361			bkey_cached_free_fast(bc, ck);
362		}
363
364		mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
365		return NULL;
366	}
367
368	atomic_long_inc(&bc->nr_keys);
369
370	six_unlock_write(&ck->c.lock);
371
372	return ck;
373}
374
375static int btree_key_cache_fill(struct btree_trans *trans,
376				struct btree_path *ck_path,
377				struct bkey_cached *ck)
378{
379	struct btree_iter iter;
380	struct bkey_s_c k;
381	unsigned new_u64s = 0;
382	struct bkey_i *new_k = NULL;
383	int ret;
384
385	bch2_trans_iter_init(trans, &iter, ck->key.btree_id, ck->key.pos,
386			     BTREE_ITER_KEY_CACHE_FILL|
387			     BTREE_ITER_CACHED_NOFILL);
388	iter.flags &= ~BTREE_ITER_WITH_JOURNAL;
389	k = bch2_btree_iter_peek_slot(&iter);
390	ret = bkey_err(k);
391	if (ret)
392		goto err;
393
394	if (!bch2_btree_node_relock(trans, ck_path, 0)) {
395		trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
396		ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
397		goto err;
398	}
399
400	/*
401	 * bch2_varint_decode can read past the end of the buffer by at
402	 * most 7 bytes (it won't be used):
403	 */
404	new_u64s = k.k->u64s + 1;
405
406	/*
407	 * Allocate some extra space so that the transaction commit path is less
408	 * likely to have to reallocate, since that requires a transaction
409	 * restart:
410	 */
411	new_u64s = min(256U, (new_u64s * 3) / 2);
412
413	if (new_u64s > ck->u64s) {
414		new_u64s = roundup_pow_of_two(new_u64s);
415		new_k = kmalloc(new_u64s * sizeof(u64), GFP_NOWAIT|__GFP_NOWARN);
416		if (!new_k) {
417			bch2_trans_unlock(trans);
418
419			new_k = kmalloc(new_u64s * sizeof(u64), GFP_KERNEL);
420			if (!new_k) {
421				bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
422					bch2_btree_id_str(ck->key.btree_id), new_u64s);
423				ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
424				goto err;
425			}
426
427			if (!bch2_btree_node_relock(trans, ck_path, 0)) {
428				kfree(new_k);
429				trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
430				ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
431				goto err;
432			}
433
434			ret = bch2_trans_relock(trans);
435			if (ret) {
436				kfree(new_k);
437				goto err;
438			}
439		}
440	}
441
442	ret = bch2_btree_node_lock_write(trans, ck_path, &ck_path->l[0].b->c);
443	if (ret) {
444		kfree(new_k);
445		goto err;
446	}
447
448	if (new_k) {
449		kfree(ck->k);
450		ck->u64s = new_u64s;
451		ck->k = new_k;
452	}
453
454	bkey_reassemble(ck->k, k);
455	ck->valid = true;
456	bch2_btree_node_unlock_write(trans, ck_path, ck_path->l[0].b);
457
458	/* We're not likely to need this iterator again: */
459	set_btree_iter_dontneed(&iter);
460err:
461	bch2_trans_iter_exit(trans, &iter);
462	return ret;
463}
464
465static noinline int
466bch2_btree_path_traverse_cached_slowpath(struct btree_trans *trans, struct btree_path *path,
467					 unsigned flags)
468{
469	struct bch_fs *c = trans->c;
470	struct bkey_cached *ck;
471	int ret = 0;
472
473	BUG_ON(path->level);
474
475	path->l[1].b = NULL;
476
477	if (bch2_btree_node_relock_notrace(trans, path, 0)) {
478		ck = (void *) path->l[0].b;
479		goto fill;
480	}
481retry:
482	ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
483	if (!ck) {
484		ck = btree_key_cache_create(trans, path);
485		ret = PTR_ERR_OR_ZERO(ck);
486		if (ret)
487			goto err;
488		if (!ck)
489			goto retry;
490
491		mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
492		path->locks_want = 1;
493	} else {
494		enum six_lock_type lock_want = __btree_lock_want(path, 0);
495
496		ret = btree_node_lock(trans, path, (void *) ck, 0,
497				      lock_want, _THIS_IP_);
498		if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
499			goto err;
500
501		BUG_ON(ret);
502
503		if (ck->key.btree_id != path->btree_id ||
504		    !bpos_eq(ck->key.pos, path->pos)) {
505			six_unlock_type(&ck->c.lock, lock_want);
506			goto retry;
507		}
508
509		mark_btree_node_locked(trans, path, 0,
510				       (enum btree_node_locked_type) lock_want);
511	}
512
513	path->l[0].lock_seq	= six_lock_seq(&ck->c.lock);
514	path->l[0].b		= (void *) ck;
515fill:
516	path->uptodate = BTREE_ITER_UPTODATE;
517
518	if (!ck->valid && !(flags & BTREE_ITER_CACHED_NOFILL)) {
519		/*
520		 * Using the underscore version because we haven't set
521		 * path->uptodate yet:
522		 */
523		if (!path->locks_want &&
524		    !__bch2_btree_path_upgrade(trans, path, 1, NULL)) {
525			trace_and_count(trans->c, trans_restart_key_cache_upgrade, trans, _THIS_IP_);
526			ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_upgrade);
527			goto err;
528		}
529
530		ret = btree_key_cache_fill(trans, path, ck);
531		if (ret)
532			goto err;
533
534		ret = bch2_btree_path_relock(trans, path, _THIS_IP_);
535		if (ret)
536			goto err;
537
538		path->uptodate = BTREE_ITER_UPTODATE;
539	}
540
541	if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
542		set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
543
544	BUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
545	BUG_ON(path->uptodate);
546
547	return ret;
548err:
549	path->uptodate = BTREE_ITER_NEED_TRAVERSE;
550	if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
551		btree_node_unlock(trans, path, 0);
552		path->l[0].b = ERR_PTR(ret);
553	}
554	return ret;
555}
556
557int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
558				    unsigned flags)
559{
560	struct bch_fs *c = trans->c;
561	struct bkey_cached *ck;
562	int ret = 0;
563
564	EBUG_ON(path->level);
565
566	path->l[1].b = NULL;
567
568	if (bch2_btree_node_relock_notrace(trans, path, 0)) {
569		ck = (void *) path->l[0].b;
570		goto fill;
571	}
572retry:
573	ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
574	if (!ck) {
575		return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
576	} else {
577		enum six_lock_type lock_want = __btree_lock_want(path, 0);
578
579		ret = btree_node_lock(trans, path, (void *) ck, 0,
580				      lock_want, _THIS_IP_);
581		EBUG_ON(ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart));
582
583		if (ret)
584			return ret;
585
586		if (ck->key.btree_id != path->btree_id ||
587		    !bpos_eq(ck->key.pos, path->pos)) {
588			six_unlock_type(&ck->c.lock, lock_want);
589			goto retry;
590		}
591
592		mark_btree_node_locked(trans, path, 0,
593				       (enum btree_node_locked_type) lock_want);
594	}
595
596	path->l[0].lock_seq	= six_lock_seq(&ck->c.lock);
597	path->l[0].b		= (void *) ck;
598fill:
599	if (!ck->valid)
600		return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
601
602	if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
603		set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
604
605	path->uptodate = BTREE_ITER_UPTODATE;
606	EBUG_ON(!ck->valid);
607	EBUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
608
609	return ret;
610}
611
612static int btree_key_cache_flush_pos(struct btree_trans *trans,
613				     struct bkey_cached_key key,
614				     u64 journal_seq,
615				     unsigned commit_flags,
616				     bool evict)
617{
618	struct bch_fs *c = trans->c;
619	struct journal *j = &c->journal;
620	struct btree_iter c_iter, b_iter;
621	struct bkey_cached *ck = NULL;
622	int ret;
623
624	bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
625			     BTREE_ITER_SLOTS|
626			     BTREE_ITER_INTENT|
627			     BTREE_ITER_ALL_SNAPSHOTS);
628	bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
629			     BTREE_ITER_CACHED|
630			     BTREE_ITER_INTENT);
631	b_iter.flags &= ~BTREE_ITER_WITH_KEY_CACHE;
632
633	ret = bch2_btree_iter_traverse(&c_iter);
634	if (ret)
635		goto out;
636
637	ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
638	if (!ck)
639		goto out;
640
641	if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
642		if (evict)
643			goto evict;
644		goto out;
645	}
646
647	BUG_ON(!ck->valid);
648
649	if (journal_seq && ck->journal.seq != journal_seq)
650		goto out;
651
652	trans->journal_res.seq = ck->journal.seq;
653
654	/*
655	 * If we're at the end of the journal, we really want to free up space
656	 * in the journal right away - we don't want to pin that old journal
657	 * sequence number with a new btree node write, we want to re-journal
658	 * the update
659	 */
660	if (ck->journal.seq == journal_last_seq(j))
661		commit_flags |= BCH_WATERMARK_reclaim;
662
663	if (ck->journal.seq != journal_last_seq(j) ||
664	    !test_bit(JOURNAL_SPACE_LOW, &c->journal.flags))
665		commit_flags |= BCH_TRANS_COMMIT_no_journal_res;
666
667	ret   = bch2_btree_iter_traverse(&b_iter) ?:
668		bch2_trans_update(trans, &b_iter, ck->k,
669				  BTREE_UPDATE_KEY_CACHE_RECLAIM|
670				  BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
671				  BTREE_TRIGGER_NORUN) ?:
672		bch2_trans_commit(trans, NULL, NULL,
673				  BCH_TRANS_COMMIT_no_check_rw|
674				  BCH_TRANS_COMMIT_no_enospc|
675				  commit_flags);
676
677	bch2_fs_fatal_err_on(ret &&
678			     !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
679			     !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
680			     !bch2_journal_error(j), c,
681			     "flushing key cache: %s", bch2_err_str(ret));
682	if (ret)
683		goto out;
684
685	bch2_journal_pin_drop(j, &ck->journal);
686
687	struct btree_path *path = btree_iter_path(trans, &c_iter);
688	BUG_ON(!btree_node_locked(path, 0));
689
690	if (!evict) {
691		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
692			clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
693			atomic_long_dec(&c->btree_key_cache.nr_dirty);
694		}
695	} else {
696		struct btree_path *path2;
697		unsigned i;
698evict:
699		trans_for_each_path(trans, path2, i)
700			if (path2 != path)
701				__bch2_btree_path_unlock(trans, path2);
702
703		bch2_btree_node_lock_write_nofail(trans, path, &ck->c);
704
705		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
706			clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
707			atomic_long_dec(&c->btree_key_cache.nr_dirty);
708		}
709
710		mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
711		bkey_cached_evict(&c->btree_key_cache, ck);
712		bkey_cached_free_fast(&c->btree_key_cache, ck);
713	}
714out:
715	bch2_trans_iter_exit(trans, &b_iter);
716	bch2_trans_iter_exit(trans, &c_iter);
717	return ret;
718}
719
720int bch2_btree_key_cache_journal_flush(struct journal *j,
721				struct journal_entry_pin *pin, u64 seq)
722{
723	struct bch_fs *c = container_of(j, struct bch_fs, journal);
724	struct bkey_cached *ck =
725		container_of(pin, struct bkey_cached, journal);
726	struct bkey_cached_key key;
727	struct btree_trans *trans = bch2_trans_get(c);
728	int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
729	int ret = 0;
730
731	btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
732	key = ck->key;
733
734	if (ck->journal.seq != seq ||
735	    !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
736		six_unlock_read(&ck->c.lock);
737		goto unlock;
738	}
739
740	if (ck->seq != seq) {
741		bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
742					bch2_btree_key_cache_journal_flush);
743		six_unlock_read(&ck->c.lock);
744		goto unlock;
745	}
746	six_unlock_read(&ck->c.lock);
747
748	ret = lockrestart_do(trans,
749		btree_key_cache_flush_pos(trans, key, seq,
750				BCH_TRANS_COMMIT_journal_reclaim, false));
751unlock:
752	srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
753
754	bch2_trans_put(trans);
755	return ret;
756}
757
758bool bch2_btree_insert_key_cached(struct btree_trans *trans,
759				  unsigned flags,
760				  struct btree_insert_entry *insert_entry)
761{
762	struct bch_fs *c = trans->c;
763	struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
764	struct bkey_i *insert = insert_entry->k;
765	bool kick_reclaim = false;
766
767	BUG_ON(insert->k.u64s > ck->u64s);
768
769	bkey_copy(ck->k, insert);
770	ck->valid = true;
771
772	if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
773		EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
774		set_bit(BKEY_CACHED_DIRTY, &ck->flags);
775		atomic_long_inc(&c->btree_key_cache.nr_dirty);
776
777		if (bch2_nr_btree_keys_need_flush(c))
778			kick_reclaim = true;
779	}
780
781	/*
782	 * To minimize lock contention, we only add the journal pin here and
783	 * defer pin updates to the flush callback via ->seq. Be careful not to
784	 * update ->seq on nojournal commits because we don't want to update the
785	 * pin to a seq that doesn't include journal updates on disk. Otherwise
786	 * we risk losing the update after a crash.
787	 *
788	 * The only exception is if the pin is not active in the first place. We
789	 * have to add the pin because journal reclaim drives key cache
790	 * flushing. The flush callback will not proceed unless ->seq matches
791	 * the latest pin, so make sure it starts with a consistent value.
792	 */
793	if (!(insert_entry->flags & BTREE_UPDATE_NOJOURNAL) ||
794	    !journal_pin_active(&ck->journal)) {
795		ck->seq = trans->journal_res.seq;
796	}
797	bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
798			     &ck->journal, bch2_btree_key_cache_journal_flush);
799
800	if (kick_reclaim)
801		journal_reclaim_kick(&c->journal);
802	return true;
803}
804
805void bch2_btree_key_cache_drop(struct btree_trans *trans,
806			       struct btree_path *path)
807{
808	struct bch_fs *c = trans->c;
809	struct bkey_cached *ck = (void *) path->l[0].b;
810
811	BUG_ON(!ck->valid);
812
813	/*
814	 * We just did an update to the btree, bypassing the key cache: the key
815	 * cache key is now stale and must be dropped, even if dirty:
816	 */
817	if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
818		clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
819		atomic_long_dec(&c->btree_key_cache.nr_dirty);
820		bch2_journal_pin_drop(&c->journal, &ck->journal);
821	}
822
823	ck->valid = false;
824}
825
826static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
827					   struct shrink_control *sc)
828{
829	struct bch_fs *c = shrink->private_data;
830	struct btree_key_cache *bc = &c->btree_key_cache;
831	struct bucket_table *tbl;
832	struct bkey_cached *ck, *t;
833	size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
834	unsigned start, flags;
835	int srcu_idx;
836
837	mutex_lock(&bc->lock);
838	srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
839	flags = memalloc_nofs_save();
840
841	/*
842	 * Newest freed entries are at the end of the list - once we hit one
843	 * that's too new to be freed, we can bail out:
844	 */
845	list_for_each_entry_safe(ck, t, &bc->freed_nonpcpu, list) {
846		if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
847						 ck->btree_trans_barrier_seq))
848			break;
849
850		list_del(&ck->list);
851		six_lock_exit(&ck->c.lock);
852		kmem_cache_free(bch2_key_cache, ck);
853		atomic_long_dec(&bc->nr_freed);
854		freed++;
855		bc->nr_freed_nonpcpu--;
856	}
857
858	list_for_each_entry_safe(ck, t, &bc->freed_pcpu, list) {
859		if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
860						 ck->btree_trans_barrier_seq))
861			break;
862
863		list_del(&ck->list);
864		six_lock_exit(&ck->c.lock);
865		kmem_cache_free(bch2_key_cache, ck);
866		atomic_long_dec(&bc->nr_freed);
867		freed++;
868		bc->nr_freed_pcpu--;
869	}
870
871	rcu_read_lock();
872	tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
873	if (bc->shrink_iter >= tbl->size)
874		bc->shrink_iter = 0;
875	start = bc->shrink_iter;
876
877	do {
878		struct rhash_head *pos, *next;
879
880		pos = rht_ptr_rcu(rht_bucket(tbl, bc->shrink_iter));
881
882		while (!rht_is_a_nulls(pos)) {
883			next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter);
884			ck = container_of(pos, struct bkey_cached, hash);
885
886			if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
887				goto next;
888			} else if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) {
889				clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
890				goto next;
891			} else if (bkey_cached_lock_for_evict(ck)) {
892				bkey_cached_evict(bc, ck);
893				bkey_cached_free(bc, ck);
894			}
895
896			scanned++;
897			if (scanned >= nr)
898				break;
899next:
900			pos = next;
901		}
902
903		bc->shrink_iter++;
904		if (bc->shrink_iter >= tbl->size)
905			bc->shrink_iter = 0;
906	} while (scanned < nr && bc->shrink_iter != start);
907
908	rcu_read_unlock();
909	memalloc_nofs_restore(flags);
910	srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
911	mutex_unlock(&bc->lock);
912
913	return freed;
914}
915
916static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
917					    struct shrink_control *sc)
918{
919	struct bch_fs *c = shrink->private_data;
920	struct btree_key_cache *bc = &c->btree_key_cache;
921	long nr = atomic_long_read(&bc->nr_keys) -
922		atomic_long_read(&bc->nr_dirty);
923
924	return max(0L, nr);
925}
926
927void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
928{
929	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
930	struct bucket_table *tbl;
931	struct bkey_cached *ck, *n;
932	struct rhash_head *pos;
933	LIST_HEAD(items);
934	unsigned i;
935#ifdef __KERNEL__
936	int cpu;
937#endif
938
939	shrinker_free(bc->shrink);
940
941	mutex_lock(&bc->lock);
942
943	/*
944	 * The loop is needed to guard against racing with rehash:
945	 */
946	while (atomic_long_read(&bc->nr_keys)) {
947		rcu_read_lock();
948		tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
949		if (tbl)
950			for (i = 0; i < tbl->size; i++)
951				rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
952					bkey_cached_evict(bc, ck);
953					list_add(&ck->list, &items);
954				}
955		rcu_read_unlock();
956	}
957
958#ifdef __KERNEL__
959	for_each_possible_cpu(cpu) {
960		struct btree_key_cache_freelist *f =
961			per_cpu_ptr(bc->pcpu_freed, cpu);
962
963		for (i = 0; i < f->nr; i++) {
964			ck = f->objs[i];
965			list_add(&ck->list, &items);
966		}
967	}
968#endif
969
970	BUG_ON(list_count_nodes(&bc->freed_pcpu) != bc->nr_freed_pcpu);
971	BUG_ON(list_count_nodes(&bc->freed_nonpcpu) != bc->nr_freed_nonpcpu);
972
973	list_splice(&bc->freed_pcpu,	&items);
974	list_splice(&bc->freed_nonpcpu,	&items);
975
976	mutex_unlock(&bc->lock);
977
978	list_for_each_entry_safe(ck, n, &items, list) {
979		cond_resched();
980
981		list_del(&ck->list);
982		kfree(ck->k);
983		six_lock_exit(&ck->c.lock);
984		kmem_cache_free(bch2_key_cache, ck);
985	}
986
987	if (atomic_long_read(&bc->nr_dirty) &&
988	    !bch2_journal_error(&c->journal) &&
989	    test_bit(BCH_FS_was_rw, &c->flags))
990		panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
991		      atomic_long_read(&bc->nr_dirty));
992
993	if (atomic_long_read(&bc->nr_keys))
994		panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
995		      atomic_long_read(&bc->nr_keys));
996
997	if (bc->table_init_done)
998		rhashtable_destroy(&bc->table);
999
1000	free_percpu(bc->pcpu_freed);
1001}
1002
1003void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
1004{
1005	mutex_init(&c->lock);
1006	INIT_LIST_HEAD(&c->freed_pcpu);
1007	INIT_LIST_HEAD(&c->freed_nonpcpu);
1008}
1009
1010int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
1011{
1012	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
1013	struct shrinker *shrink;
1014
1015#ifdef __KERNEL__
1016	bc->pcpu_freed = alloc_percpu(struct btree_key_cache_freelist);
1017	if (!bc->pcpu_freed)
1018		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1019#endif
1020
1021	if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
1022		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1023
1024	bc->table_init_done = true;
1025
1026	shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
1027	if (!shrink)
1028		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1029	bc->shrink = shrink;
1030	shrink->seeks		= 0;
1031	shrink->count_objects	= bch2_btree_key_cache_count;
1032	shrink->scan_objects	= bch2_btree_key_cache_scan;
1033	shrink->private_data	= c;
1034	shrinker_register(shrink);
1035	return 0;
1036}
1037
1038void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *c)
1039{
1040	prt_printf(out, "nr_freed:\t%lu",	atomic_long_read(&c->nr_freed));
1041	prt_newline(out);
1042	prt_printf(out, "nr_keys:\t%lu",	atomic_long_read(&c->nr_keys));
1043	prt_newline(out);
1044	prt_printf(out, "nr_dirty:\t%lu",	atomic_long_read(&c->nr_dirty));
1045	prt_newline(out);
1046}
1047
1048void bch2_btree_key_cache_exit(void)
1049{
1050	kmem_cache_destroy(bch2_key_cache);
1051}
1052
1053int __init bch2_btree_key_cache_init(void)
1054{
1055	bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
1056	if (!bch2_key_cache)
1057		return -ENOMEM;
1058
1059	return 0;
1060}
1061