1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _BCACHEFS_BSET_H
3#define _BCACHEFS_BSET_H
4
5#include <linux/kernel.h>
6#include <linux/types.h>
7
8#include "bcachefs.h"
9#include "bkey.h"
10#include "bkey_methods.h"
11#include "btree_types.h"
12#include "util.h" /* for time_stats */
13#include "vstructs.h"
14
15/*
16 * BKEYS:
17 *
18 * A bkey contains a key, a size field, a variable number of pointers, and some
19 * ancillary flag bits.
20 *
21 * We use two different functions for validating bkeys, bkey_invalid and
22 * bkey_deleted().
23 *
24 * The one exception to the rule that ptr_invalid() filters out invalid keys is
25 * that it also filters out keys of size 0 - these are keys that have been
26 * completely overwritten. It'd be safe to delete these in memory while leaving
27 * them on disk, just unnecessary work - so we filter them out when resorting
28 * instead.
29 *
30 * We can't filter out stale keys when we're resorting, because garbage
31 * collection needs to find them to ensure bucket gens don't wrap around -
32 * unless we're rewriting the btree node those stale keys still exist on disk.
33 *
34 * We also implement functions here for removing some number of sectors from the
35 * front or the back of a bkey - this is mainly used for fixing overlapping
36 * extents, by removing the overlapping sectors from the older key.
37 *
38 * BSETS:
39 *
40 * A bset is an array of bkeys laid out contiguously in memory in sorted order,
41 * along with a header. A btree node is made up of a number of these, written at
42 * different times.
43 *
44 * There could be many of them on disk, but we never allow there to be more than
45 * 4 in memory - we lazily resort as needed.
46 *
47 * We implement code here for creating and maintaining auxiliary search trees
48 * (described below) for searching an individial bset, and on top of that we
49 * implement a btree iterator.
50 *
51 * BTREE ITERATOR:
52 *
53 * Most of the code in bcache doesn't care about an individual bset - it needs
54 * to search entire btree nodes and iterate over them in sorted order.
55 *
56 * The btree iterator code serves both functions; it iterates through the keys
57 * in a btree node in sorted order, starting from either keys after a specific
58 * point (if you pass it a search key) or the start of the btree node.
59 *
60 * AUXILIARY SEARCH TREES:
61 *
62 * Since keys are variable length, we can't use a binary search on a bset - we
63 * wouldn't be able to find the start of the next key. But binary searches are
64 * slow anyways, due to terrible cache behaviour; bcache originally used binary
65 * searches and that code topped out at under 50k lookups/second.
66 *
67 * So we need to construct some sort of lookup table. Since we only insert keys
68 * into the last (unwritten) set, most of the keys within a given btree node are
69 * usually in sets that are mostly constant. We use two different types of
70 * lookup tables to take advantage of this.
71 *
72 * Both lookup tables share in common that they don't index every key in the
73 * set; they index one key every BSET_CACHELINE bytes, and then a linear search
74 * is used for the rest.
75 *
76 * For sets that have been written to disk and are no longer being inserted
77 * into, we construct a binary search tree in an array - traversing a binary
78 * search tree in an array gives excellent locality of reference and is very
79 * fast, since both children of any node are adjacent to each other in memory
80 * (and their grandchildren, and great grandchildren...) - this means
81 * prefetching can be used to great effect.
82 *
83 * It's quite useful performance wise to keep these nodes small - not just
84 * because they're more likely to be in L2, but also because we can prefetch
85 * more nodes on a single cacheline and thus prefetch more iterations in advance
86 * when traversing this tree.
87 *
88 * Nodes in the auxiliary search tree must contain both a key to compare against
89 * (we don't want to fetch the key from the set, that would defeat the purpose),
90 * and a pointer to the key. We use a few tricks to compress both of these.
91 *
92 * To compress the pointer, we take advantage of the fact that one node in the
93 * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
94 * a function (to_inorder()) that takes the index of a node in a binary tree and
95 * returns what its index would be in an inorder traversal, so we only have to
96 * store the low bits of the offset.
97 *
98 * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
99 * compress that,  we take advantage of the fact that when we're traversing the
100 * search tree at every iteration we know that both our search key and the key
101 * we're looking for lie within some range - bounded by our previous
102 * comparisons. (We special case the start of a search so that this is true even
103 * at the root of the tree).
104 *
105 * So we know the key we're looking for is between a and b, and a and b don't
106 * differ higher than bit 50, we don't need to check anything higher than bit
107 * 50.
108 *
109 * We don't usually need the rest of the bits, either; we only need enough bits
110 * to partition the key range we're currently checking.  Consider key n - the
111 * key our auxiliary search tree node corresponds to, and key p, the key
112 * immediately preceding n.  The lowest bit we need to store in the auxiliary
113 * search tree is the highest bit that differs between n and p.
114 *
115 * Note that this could be bit 0 - we might sometimes need all 80 bits to do the
116 * comparison. But we'd really like our nodes in the auxiliary search tree to be
117 * of fixed size.
118 *
119 * The solution is to make them fixed size, and when we're constructing a node
120 * check if p and n differed in the bits we needed them to. If they don't we
121 * flag that node, and when doing lookups we fallback to comparing against the
122 * real key. As long as this doesn't happen to often (and it seems to reliably
123 * happen a bit less than 1% of the time), we win - even on failures, that key
124 * is then more likely to be in cache than if we were doing binary searches all
125 * the way, since we're touching so much less memory.
126 *
127 * The keys in the auxiliary search tree are stored in (software) floating
128 * point, with an exponent and a mantissa. The exponent needs to be big enough
129 * to address all the bits in the original key, but the number of bits in the
130 * mantissa is somewhat arbitrary; more bits just gets us fewer failures.
131 *
132 * We need 7 bits for the exponent and 3 bits for the key's offset (since keys
133 * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
134 * We need one node per 128 bytes in the btree node, which means the auxiliary
135 * search trees take up 3% as much memory as the btree itself.
136 *
137 * Constructing these auxiliary search trees is moderately expensive, and we
138 * don't want to be constantly rebuilding the search tree for the last set
139 * whenever we insert another key into it. For the unwritten set, we use a much
140 * simpler lookup table - it's just a flat array, so index i in the lookup table
141 * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
142 * within each byte range works the same as with the auxiliary search trees.
143 *
144 * These are much easier to keep up to date when we insert a key - we do it
145 * somewhat lazily; when we shift a key up we usually just increment the pointer
146 * to it, only when it would overflow do we go to the trouble of finding the
147 * first key in that range of bytes again.
148 */
149
150enum bset_aux_tree_type {
151	BSET_NO_AUX_TREE,
152	BSET_RO_AUX_TREE,
153	BSET_RW_AUX_TREE,
154};
155
156#define BSET_TREE_NR_TYPES	3
157
158#define BSET_NO_AUX_TREE_VAL	(U16_MAX)
159#define BSET_RW_AUX_TREE_VAL	(U16_MAX - 1)
160
161static inline enum bset_aux_tree_type bset_aux_tree_type(const struct bset_tree *t)
162{
163	switch (t->extra) {
164	case BSET_NO_AUX_TREE_VAL:
165		EBUG_ON(t->size);
166		return BSET_NO_AUX_TREE;
167	case BSET_RW_AUX_TREE_VAL:
168		EBUG_ON(!t->size);
169		return BSET_RW_AUX_TREE;
170	default:
171		EBUG_ON(!t->size);
172		return BSET_RO_AUX_TREE;
173	}
174}
175
176/*
177 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
178 * it used to be 64, but I realized the lookup code would touch slightly less
179 * memory if it was 128.
180 *
181 * It definites the number of bytes (in struct bset) per struct bkey_float in
182 * the auxiliar search tree - when we're done searching the bset_float tree we
183 * have this many bytes left that we do a linear search over.
184 *
185 * Since (after level 5) every level of the bset_tree is on a new cacheline,
186 * we're touching one fewer cacheline in the bset tree in exchange for one more
187 * cacheline in the linear search - but the linear search might stop before it
188 * gets to the second cacheline.
189 */
190
191#define BSET_CACHELINE		256
192
193static inline size_t btree_keys_cachelines(const struct btree *b)
194{
195	return (1U << b->byte_order) / BSET_CACHELINE;
196}
197
198static inline size_t btree_aux_data_bytes(const struct btree *b)
199{
200	return btree_keys_cachelines(b) * 8;
201}
202
203static inline size_t btree_aux_data_u64s(const struct btree *b)
204{
205	return btree_aux_data_bytes(b) / sizeof(u64);
206}
207
208#define for_each_bset(_b, _t)						\
209	for (_t = (_b)->set; _t < (_b)->set + (_b)->nsets; _t++)
210
211#define bset_tree_for_each_key(_b, _t, _k)				\
212	for (_k = btree_bkey_first(_b, _t);				\
213	     _k != btree_bkey_last(_b, _t);				\
214	     _k = bkey_p_next(_k))
215
216static inline bool bset_has_ro_aux_tree(const struct bset_tree *t)
217{
218	return bset_aux_tree_type(t) == BSET_RO_AUX_TREE;
219}
220
221static inline bool bset_has_rw_aux_tree(struct bset_tree *t)
222{
223	return bset_aux_tree_type(t) == BSET_RW_AUX_TREE;
224}
225
226static inline void bch2_bset_set_no_aux_tree(struct btree *b,
227					    struct bset_tree *t)
228{
229	BUG_ON(t < b->set);
230
231	for (; t < b->set + ARRAY_SIZE(b->set); t++) {
232		t->size = 0;
233		t->extra = BSET_NO_AUX_TREE_VAL;
234		t->aux_data_offset = U16_MAX;
235	}
236}
237
238static inline void btree_node_set_format(struct btree *b,
239					 struct bkey_format f)
240{
241	int len;
242
243	b->format	= f;
244	b->nr_key_bits	= bkey_format_key_bits(&f);
245
246	len = bch2_compile_bkey_format(&b->format, b->aux_data);
247	BUG_ON(len < 0 || len > U8_MAX);
248
249	b->unpack_fn_len = len;
250
251	bch2_bset_set_no_aux_tree(b, b->set);
252}
253
254static inline struct bset *bset_next_set(struct btree *b,
255					 unsigned block_bytes)
256{
257	struct bset *i = btree_bset_last(b);
258
259	EBUG_ON(!is_power_of_2(block_bytes));
260
261	return ((void *) i) + round_up(vstruct_bytes(i), block_bytes);
262}
263
264void bch2_btree_keys_init(struct btree *);
265
266void bch2_bset_init_first(struct btree *, struct bset *);
267void bch2_bset_init_next(struct btree *, struct btree_node_entry *);
268void bch2_bset_build_aux_tree(struct btree *, struct bset_tree *, bool);
269
270void bch2_bset_insert(struct btree *, struct btree_node_iter *,
271		     struct bkey_packed *, struct bkey_i *, unsigned);
272void bch2_bset_delete(struct btree *, struct bkey_packed *, unsigned);
273
274/* Bkey utility code */
275
276/* packed or unpacked */
277static inline int bkey_cmp_p_or_unp(const struct btree *b,
278				    const struct bkey_packed *l,
279				    const struct bkey_packed *r_packed,
280				    const struct bpos *r)
281{
282	EBUG_ON(r_packed && !bkey_packed(r_packed));
283
284	if (unlikely(!bkey_packed(l)))
285		return bpos_cmp(packed_to_bkey_c(l)->p, *r);
286
287	if (likely(r_packed))
288		return __bch2_bkey_cmp_packed_format_checked(l, r_packed, b);
289
290	return __bch2_bkey_cmp_left_packed_format_checked(b, l, r);
291}
292
293static inline struct bset_tree *
294bch2_bkey_to_bset_inlined(struct btree *b, struct bkey_packed *k)
295{
296	unsigned offset = __btree_node_key_to_offset(b, k);
297	struct bset_tree *t;
298
299	for_each_bset(b, t)
300		if (offset <= t->end_offset) {
301			EBUG_ON(offset < btree_bkey_first_offset(t));
302			return t;
303		}
304
305	BUG();
306}
307
308struct bset_tree *bch2_bkey_to_bset(struct btree *, struct bkey_packed *);
309
310struct bkey_packed *bch2_bkey_prev_filter(struct btree *, struct bset_tree *,
311					  struct bkey_packed *, unsigned);
312
313static inline struct bkey_packed *
314bch2_bkey_prev_all(struct btree *b, struct bset_tree *t, struct bkey_packed *k)
315{
316	return bch2_bkey_prev_filter(b, t, k, 0);
317}
318
319static inline struct bkey_packed *
320bch2_bkey_prev(struct btree *b, struct bset_tree *t, struct bkey_packed *k)
321{
322	return bch2_bkey_prev_filter(b, t, k, 1);
323}
324
325/* Btree key iteration */
326
327void bch2_btree_node_iter_push(struct btree_node_iter *, struct btree *,
328			      const struct bkey_packed *,
329			      const struct bkey_packed *);
330void bch2_btree_node_iter_init(struct btree_node_iter *, struct btree *,
331			       struct bpos *);
332void bch2_btree_node_iter_init_from_start(struct btree_node_iter *,
333					  struct btree *);
334struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *,
335						 struct btree *,
336						 struct bset_tree *);
337
338void bch2_btree_node_iter_sort(struct btree_node_iter *, struct btree *);
339void bch2_btree_node_iter_set_drop(struct btree_node_iter *,
340				   struct btree_node_iter_set *);
341void bch2_btree_node_iter_advance(struct btree_node_iter *, struct btree *);
342
343#define btree_node_iter_for_each(_iter, _set)				\
344	for (_set = (_iter)->data;					\
345	     _set < (_iter)->data + ARRAY_SIZE((_iter)->data) &&	\
346	     (_set)->k != (_set)->end;					\
347	     _set++)
348
349static inline bool __btree_node_iter_set_end(struct btree_node_iter *iter,
350					     unsigned i)
351{
352	return iter->data[i].k == iter->data[i].end;
353}
354
355static inline bool bch2_btree_node_iter_end(struct btree_node_iter *iter)
356{
357	return __btree_node_iter_set_end(iter, 0);
358}
359
360/*
361 * When keys compare equal, deleted keys compare first:
362 *
363 * XXX: only need to compare pointers for keys that are both within a
364 * btree_node_iterator - we need to break ties for prev() to work correctly
365 */
366static inline int bkey_iter_cmp(const struct btree *b,
367				const struct bkey_packed *l,
368				const struct bkey_packed *r)
369{
370	return bch2_bkey_cmp_packed(b, l, r)
371		?: (int) bkey_deleted(r) - (int) bkey_deleted(l)
372		?: cmp_int(l, r);
373}
374
375static inline int btree_node_iter_cmp(const struct btree *b,
376				      struct btree_node_iter_set l,
377				      struct btree_node_iter_set r)
378{
379	return bkey_iter_cmp(b,
380			__btree_node_offset_to_key(b, l.k),
381			__btree_node_offset_to_key(b, r.k));
382}
383
384/* These assume r (the search key) is not a deleted key: */
385static inline int bkey_iter_pos_cmp(const struct btree *b,
386			const struct bkey_packed *l,
387			const struct bpos *r)
388{
389	return bkey_cmp_left_packed(b, l, r)
390		?: -((int) bkey_deleted(l));
391}
392
393static inline int bkey_iter_cmp_p_or_unp(const struct btree *b,
394				    const struct bkey_packed *l,
395				    const struct bkey_packed *r_packed,
396				    const struct bpos *r)
397{
398	return bkey_cmp_p_or_unp(b, l, r_packed, r)
399		?: -((int) bkey_deleted(l));
400}
401
402static inline struct bkey_packed *
403__bch2_btree_node_iter_peek_all(struct btree_node_iter *iter,
404				struct btree *b)
405{
406	return __btree_node_offset_to_key(b, iter->data->k);
407}
408
409static inline struct bkey_packed *
410bch2_btree_node_iter_peek_all(struct btree_node_iter *iter, struct btree *b)
411{
412	return !bch2_btree_node_iter_end(iter)
413		? __btree_node_offset_to_key(b, iter->data->k)
414		: NULL;
415}
416
417static inline struct bkey_packed *
418bch2_btree_node_iter_peek(struct btree_node_iter *iter, struct btree *b)
419{
420	struct bkey_packed *k;
421
422	while ((k = bch2_btree_node_iter_peek_all(iter, b)) &&
423	       bkey_deleted(k))
424		bch2_btree_node_iter_advance(iter, b);
425
426	return k;
427}
428
429static inline struct bkey_packed *
430bch2_btree_node_iter_next_all(struct btree_node_iter *iter, struct btree *b)
431{
432	struct bkey_packed *ret = bch2_btree_node_iter_peek_all(iter, b);
433
434	if (ret)
435		bch2_btree_node_iter_advance(iter, b);
436
437	return ret;
438}
439
440struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *,
441						  struct btree *);
442struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *,
443					      struct btree *);
444
445struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *,
446						struct btree *,
447						struct bkey *);
448
449#define for_each_btree_node_key(b, k, iter)				\
450	for (bch2_btree_node_iter_init_from_start((iter), (b));		\
451	     (k = bch2_btree_node_iter_peek((iter), (b)));		\
452	     bch2_btree_node_iter_advance(iter, b))
453
454#define for_each_btree_node_key_unpack(b, k, iter, unpacked)		\
455	for (bch2_btree_node_iter_init_from_start((iter), (b));		\
456	     (k = bch2_btree_node_iter_peek_unpack((iter), (b), (unpacked))).k;\
457	     bch2_btree_node_iter_advance(iter, b))
458
459/* Accounting: */
460
461struct btree_nr_keys bch2_btree_node_count_keys(struct btree *);
462
463static inline void btree_keys_account_key(struct btree_nr_keys *n,
464					  unsigned bset,
465					  struct bkey_packed *k,
466					  int sign)
467{
468	n->live_u64s		+= k->u64s * sign;
469	n->bset_u64s[bset]	+= k->u64s * sign;
470
471	if (bkey_packed(k))
472		n->packed_keys	+= sign;
473	else
474		n->unpacked_keys += sign;
475}
476
477static inline void btree_keys_account_val_delta(struct btree *b,
478						struct bkey_packed *k,
479						int delta)
480{
481	struct bset_tree *t = bch2_bkey_to_bset(b, k);
482
483	b->nr.live_u64s			+= delta;
484	b->nr.bset_u64s[t - b->set]	+= delta;
485}
486
487#define btree_keys_account_key_add(_nr, _bset_idx, _k)		\
488	btree_keys_account_key(_nr, _bset_idx, _k, 1)
489#define btree_keys_account_key_drop(_nr, _bset_idx, _k)	\
490	btree_keys_account_key(_nr, _bset_idx, _k, -1)
491
492#define btree_account_key_add(_b, _k)				\
493	btree_keys_account_key(&(_b)->nr,			\
494		bch2_bkey_to_bset(_b, _k) - (_b)->set, _k, 1)
495#define btree_account_key_drop(_b, _k)				\
496	btree_keys_account_key(&(_b)->nr,			\
497		bch2_bkey_to_bset(_b, _k) - (_b)->set, _k, -1)
498
499struct bset_stats {
500	struct {
501		size_t nr, bytes;
502	} sets[BSET_TREE_NR_TYPES];
503
504	size_t floats;
505	size_t failed;
506};
507
508void bch2_btree_keys_stats(const struct btree *, struct bset_stats *);
509void bch2_bfloat_to_text(struct printbuf *, struct btree *,
510			 struct bkey_packed *);
511
512/* Debug stuff */
513
514void bch2_dump_bset(struct bch_fs *, struct btree *, struct bset *, unsigned);
515void bch2_dump_btree_node(struct bch_fs *, struct btree *);
516void bch2_dump_btree_node_iter(struct btree *, struct btree_node_iter *);
517
518#ifdef CONFIG_BCACHEFS_DEBUG
519
520void __bch2_verify_btree_nr_keys(struct btree *);
521void bch2_btree_node_iter_verify(struct btree_node_iter *, struct btree *);
522void bch2_verify_insert_pos(struct btree *, struct bkey_packed *,
523			    struct bkey_packed *, unsigned);
524
525#else
526
527static inline void __bch2_verify_btree_nr_keys(struct btree *b) {}
528static inline void bch2_btree_node_iter_verify(struct btree_node_iter *iter,
529					      struct btree *b) {}
530static inline void bch2_verify_insert_pos(struct btree *b,
531					  struct bkey_packed *where,
532					  struct bkey_packed *insert,
533					  unsigned clobber_u64s) {}
534#endif
535
536static inline void bch2_verify_btree_nr_keys(struct btree *b)
537{
538	if (bch2_debug_check_btree_accounting)
539		__bch2_verify_btree_nr_keys(b);
540}
541
542#endif /* _BCACHEFS_BSET_H */
543