1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
4 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
5 *
6 * This code is *strongly* based on EHCI-HCD code by David Brownell since
7 * the chip is a quasi-EHCI compatible.
8 */
9
10#include <linux/module.h>
11#include <linux/pci.h>
12#include <linux/dmapool.h>
13#include <linux/kernel.h>
14#include <linux/delay.h>
15#include <linux/ioport.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/errno.h>
19#include <linux/timer.h>
20#include <linux/list.h>
21#include <linux/interrupt.h>
22#include <linux/usb.h>
23#include <linux/usb/hcd.h>
24#include <linux/moduleparam.h>
25#include <linux/dma-mapping.h>
26#include <linux/io.h>
27#include <linux/iopoll.h>
28
29#include <asm/irq.h>
30#include <asm/unaligned.h>
31
32#include <linux/irq.h>
33#include <linux/platform_device.h>
34
35#define DRIVER_VERSION "0.0.50"
36
37#define OXU_DEVICEID			0x00
38	#define OXU_REV_MASK		0xffff0000
39	#define OXU_REV_SHIFT		16
40	#define OXU_REV_2100		0x2100
41	#define OXU_BO_SHIFT		8
42	#define OXU_BO_MASK		(0x3 << OXU_BO_SHIFT)
43	#define OXU_MAJ_REV_SHIFT	4
44	#define OXU_MAJ_REV_MASK	(0xf << OXU_MAJ_REV_SHIFT)
45	#define OXU_MIN_REV_SHIFT	0
46	#define OXU_MIN_REV_MASK	(0xf << OXU_MIN_REV_SHIFT)
47#define OXU_HOSTIFCONFIG		0x04
48#define OXU_SOFTRESET			0x08
49	#define OXU_SRESET		(1 << 0)
50
51#define OXU_PIOBURSTREADCTRL		0x0C
52
53#define OXU_CHIPIRQSTATUS		0x10
54#define OXU_CHIPIRQEN_SET		0x14
55#define OXU_CHIPIRQEN_CLR		0x18
56	#define OXU_USBSPHLPWUI		0x00000080
57	#define OXU_USBOTGLPWUI		0x00000040
58	#define OXU_USBSPHI		0x00000002
59	#define OXU_USBOTGI		0x00000001
60
61#define OXU_CLKCTRL_SET			0x1C
62	#define OXU_SYSCLKEN		0x00000008
63	#define OXU_USBSPHCLKEN		0x00000002
64	#define OXU_USBOTGCLKEN		0x00000001
65
66#define OXU_ASO				0x68
67	#define OXU_SPHPOEN		0x00000100
68	#define OXU_OVRCCURPUPDEN	0x00000800
69	#define OXU_ASO_OP		(1 << 10)
70	#define OXU_COMPARATOR		0x000004000
71
72#define OXU_USBMODE			0x1A8
73	#define OXU_VBPS		0x00000020
74	#define OXU_ES_LITTLE		0x00000000
75	#define OXU_CM_HOST_ONLY	0x00000003
76
77/*
78 * Proper EHCI structs & defines
79 */
80
81/* Magic numbers that can affect system performance */
82#define EHCI_TUNE_CERR		3	/* 0-3 qtd retries; 0 == don't stop */
83#define EHCI_TUNE_RL_HS		4	/* nak throttle; see 4.9 */
84#define EHCI_TUNE_RL_TT		0
85#define EHCI_TUNE_MULT_HS	1	/* 1-3 transactions/uframe; 4.10.3 */
86#define EHCI_TUNE_MULT_TT	1
87#define EHCI_TUNE_FLS		2	/* (small) 256 frame schedule */
88
89struct oxu_hcd;
90
91/* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
92
93/* Section 2.2 Host Controller Capability Registers */
94struct ehci_caps {
95	/* these fields are specified as 8 and 16 bit registers,
96	 * but some hosts can't perform 8 or 16 bit PCI accesses.
97	 */
98	u32		hc_capbase;
99#define HC_LENGTH(p)		(((p)>>00)&0x00ff)	/* bits 7:0 */
100#define HC_VERSION(p)		(((p)>>16)&0xffff)	/* bits 31:16 */
101	u32		hcs_params;     /* HCSPARAMS - offset 0x4 */
102#define HCS_DEBUG_PORT(p)	(((p)>>20)&0xf)	/* bits 23:20, debug port? */
103#define HCS_INDICATOR(p)	((p)&(1 << 16))	/* true: has port indicators */
104#define HCS_N_CC(p)		(((p)>>12)&0xf)	/* bits 15:12, #companion HCs */
105#define HCS_N_PCC(p)		(((p)>>8)&0xf)	/* bits 11:8, ports per CC */
106#define HCS_PORTROUTED(p)	((p)&(1 << 7))	/* true: port routing */
107#define HCS_PPC(p)		((p)&(1 << 4))	/* true: port power control */
108#define HCS_N_PORTS(p)		(((p)>>0)&0xf)	/* bits 3:0, ports on HC */
109
110	u32		hcc_params;      /* HCCPARAMS - offset 0x8 */
111#define HCC_EXT_CAPS(p)		(((p)>>8)&0xff)	/* for pci extended caps */
112#define HCC_ISOC_CACHE(p)       ((p)&(1 << 7))  /* true: can cache isoc frame */
113#define HCC_ISOC_THRES(p)       (((p)>>4)&0x7)  /* bits 6:4, uframes cached */
114#define HCC_CANPARK(p)		((p)&(1 << 2))  /* true: can park on async qh */
115#define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1))  /* true: periodic_size changes*/
116#define HCC_64BIT_ADDR(p)       ((p)&(1))       /* true: can use 64-bit addr */
117	u8		portroute[8];	 /* nibbles for routing - offset 0xC */
118} __packed;
119
120
121/* Section 2.3 Host Controller Operational Registers */
122struct ehci_regs {
123	/* USBCMD: offset 0x00 */
124	u32		command;
125/* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
126#define CMD_PARK	(1<<11)		/* enable "park" on async qh */
127#define CMD_PARK_CNT(c)	(((c)>>8)&3)	/* how many transfers to park for */
128#define CMD_LRESET	(1<<7)		/* partial reset (no ports, etc) */
129#define CMD_IAAD	(1<<6)		/* "doorbell" interrupt async advance */
130#define CMD_ASE		(1<<5)		/* async schedule enable */
131#define CMD_PSE		(1<<4)		/* periodic schedule enable */
132/* 3:2 is periodic frame list size */
133#define CMD_RESET	(1<<1)		/* reset HC not bus */
134#define CMD_RUN		(1<<0)		/* start/stop HC */
135
136	/* USBSTS: offset 0x04 */
137	u32		status;
138#define STS_ASS		(1<<15)		/* Async Schedule Status */
139#define STS_PSS		(1<<14)		/* Periodic Schedule Status */
140#define STS_RECL	(1<<13)		/* Reclamation */
141#define STS_HALT	(1<<12)		/* Not running (any reason) */
142/* some bits reserved */
143	/* these STS_* flags are also intr_enable bits (USBINTR) */
144#define STS_IAA		(1<<5)		/* Interrupted on async advance */
145#define STS_FATAL	(1<<4)		/* such as some PCI access errors */
146#define STS_FLR		(1<<3)		/* frame list rolled over */
147#define STS_PCD		(1<<2)		/* port change detect */
148#define STS_ERR		(1<<1)		/* "error" completion (overflow, ...) */
149#define STS_INT		(1<<0)		/* "normal" completion (short, ...) */
150
151#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
152
153	/* USBINTR: offset 0x08 */
154	u32		intr_enable;
155
156	/* FRINDEX: offset 0x0C */
157	u32		frame_index;	/* current microframe number */
158	/* CTRLDSSEGMENT: offset 0x10 */
159	u32		segment;	/* address bits 63:32 if needed */
160	/* PERIODICLISTBASE: offset 0x14 */
161	u32		frame_list;	/* points to periodic list */
162	/* ASYNCLISTADDR: offset 0x18 */
163	u32		async_next;	/* address of next async queue head */
164
165	u32		reserved[9];
166
167	/* CONFIGFLAG: offset 0x40 */
168	u32		configured_flag;
169#define FLAG_CF		(1<<0)		/* true: we'll support "high speed" */
170
171	/* PORTSC: offset 0x44 */
172	u32		port_status[];	/* up to N_PORTS */
173/* 31:23 reserved */
174#define PORT_WKOC_E	(1<<22)		/* wake on overcurrent (enable) */
175#define PORT_WKDISC_E	(1<<21)		/* wake on disconnect (enable) */
176#define PORT_WKCONN_E	(1<<20)		/* wake on connect (enable) */
177/* 19:16 for port testing */
178#define PORT_LED_OFF	(0<<14)
179#define PORT_LED_AMBER	(1<<14)
180#define PORT_LED_GREEN	(2<<14)
181#define PORT_LED_MASK	(3<<14)
182#define PORT_OWNER	(1<<13)		/* true: companion hc owns this port */
183#define PORT_POWER	(1<<12)		/* true: has power (see PPC) */
184#define PORT_USB11(x) (((x)&(3<<10)) == (1<<10))	/* USB 1.1 device */
185/* 11:10 for detecting lowspeed devices (reset vs release ownership) */
186/* 9 reserved */
187#define PORT_RESET	(1<<8)		/* reset port */
188#define PORT_SUSPEND	(1<<7)		/* suspend port */
189#define PORT_RESUME	(1<<6)		/* resume it */
190#define PORT_OCC	(1<<5)		/* over current change */
191#define PORT_OC		(1<<4)		/* over current active */
192#define PORT_PEC	(1<<3)		/* port enable change */
193#define PORT_PE		(1<<2)		/* port enable */
194#define PORT_CSC	(1<<1)		/* connect status change */
195#define PORT_CONNECT	(1<<0)		/* device connected */
196#define PORT_RWC_BITS   (PORT_CSC | PORT_PEC | PORT_OCC)
197} __packed;
198
199/* Appendix C, Debug port ... intended for use with special "debug devices"
200 * that can help if there's no serial console.  (nonstandard enumeration.)
201 */
202struct ehci_dbg_port {
203	u32	control;
204#define DBGP_OWNER	(1<<30)
205#define DBGP_ENABLED	(1<<28)
206#define DBGP_DONE	(1<<16)
207#define DBGP_INUSE	(1<<10)
208#define DBGP_ERRCODE(x)	(((x)>>7)&0x07)
209#	define DBGP_ERR_BAD	1
210#	define DBGP_ERR_SIGNAL	2
211#define DBGP_ERROR	(1<<6)
212#define DBGP_GO		(1<<5)
213#define DBGP_OUT	(1<<4)
214#define DBGP_LEN(x)	(((x)>>0)&0x0f)
215	u32	pids;
216#define DBGP_PID_GET(x)		(((x)>>16)&0xff)
217#define DBGP_PID_SET(data, tok)	(((data)<<8)|(tok))
218	u32	data03;
219	u32	data47;
220	u32	address;
221#define DBGP_EPADDR(dev, ep)	(((dev)<<8)|(ep))
222} __packed;
223
224#define	QTD_NEXT(dma)	cpu_to_le32((u32)dma)
225
226/*
227 * EHCI Specification 0.95 Section 3.5
228 * QTD: describe data transfer components (buffer, direction, ...)
229 * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
230 *
231 * These are associated only with "QH" (Queue Head) structures,
232 * used with control, bulk, and interrupt transfers.
233 */
234struct ehci_qtd {
235	/* first part defined by EHCI spec */
236	__le32			hw_next;		/* see EHCI 3.5.1 */
237	__le32			hw_alt_next;		/* see EHCI 3.5.2 */
238	__le32			hw_token;		/* see EHCI 3.5.3 */
239#define	QTD_TOGGLE	(1 << 31)	/* data toggle */
240#define	QTD_LENGTH(tok)	(((tok)>>16) & 0x7fff)
241#define	QTD_IOC		(1 << 15)	/* interrupt on complete */
242#define	QTD_CERR(tok)	(((tok)>>10) & 0x3)
243#define	QTD_PID(tok)	(((tok)>>8) & 0x3)
244#define	QTD_STS_ACTIVE	(1 << 7)	/* HC may execute this */
245#define	QTD_STS_HALT	(1 << 6)	/* halted on error */
246#define	QTD_STS_DBE	(1 << 5)	/* data buffer error (in HC) */
247#define	QTD_STS_BABBLE	(1 << 4)	/* device was babbling (qtd halted) */
248#define	QTD_STS_XACT	(1 << 3)	/* device gave illegal response */
249#define	QTD_STS_MMF	(1 << 2)	/* incomplete split transaction */
250#define	QTD_STS_STS	(1 << 1)	/* split transaction state */
251#define	QTD_STS_PING	(1 << 0)	/* issue PING? */
252	__le32			hw_buf[5];		/* see EHCI 3.5.4 */
253	__le32			hw_buf_hi[5];		/* Appendix B */
254
255	/* the rest is HCD-private */
256	dma_addr_t		qtd_dma;		/* qtd address */
257	struct list_head	qtd_list;		/* sw qtd list */
258	struct urb		*urb;			/* qtd's urb */
259	size_t			length;			/* length of buffer */
260
261	u32			qtd_buffer_len;
262	void			*buffer;
263	dma_addr_t		buffer_dma;
264	void			*transfer_buffer;
265	void			*transfer_dma;
266} __aligned(32);
267
268/* mask NakCnt+T in qh->hw_alt_next */
269#define QTD_MASK cpu_to_le32 (~0x1f)
270
271#define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
272
273/* Type tag from {qh, itd, sitd, fstn}->hw_next */
274#define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
275
276/* values for that type tag */
277#define Q_TYPE_QH	cpu_to_le32 (1 << 1)
278
279/* next async queue entry, or pointer to interrupt/periodic QH */
280#define	QH_NEXT(dma)	(cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
281
282/* for periodic/async schedules and qtd lists, mark end of list */
283#define	EHCI_LIST_END	cpu_to_le32(1) /* "null pointer" to hw */
284
285/*
286 * Entries in periodic shadow table are pointers to one of four kinds
287 * of data structure.  That's dictated by the hardware; a type tag is
288 * encoded in the low bits of the hardware's periodic schedule.  Use
289 * Q_NEXT_TYPE to get the tag.
290 *
291 * For entries in the async schedule, the type tag always says "qh".
292 */
293union ehci_shadow {
294	struct ehci_qh		*qh;		/* Q_TYPE_QH */
295	__le32			*hw_next;	/* (all types) */
296	void			*ptr;
297};
298
299/*
300 * EHCI Specification 0.95 Section 3.6
301 * QH: describes control/bulk/interrupt endpoints
302 * See Fig 3-7 "Queue Head Structure Layout".
303 *
304 * These appear in both the async and (for interrupt) periodic schedules.
305 */
306
307struct ehci_qh {
308	/* first part defined by EHCI spec */
309	__le32			hw_next;	 /* see EHCI 3.6.1 */
310	__le32			hw_info1;	/* see EHCI 3.6.2 */
311#define	QH_HEAD		0x00008000
312	__le32			hw_info2;	/* see EHCI 3.6.2 */
313#define	QH_SMASK	0x000000ff
314#define	QH_CMASK	0x0000ff00
315#define	QH_HUBADDR	0x007f0000
316#define	QH_HUBPORT	0x3f800000
317#define	QH_MULT		0xc0000000
318	__le32			hw_current;	 /* qtd list - see EHCI 3.6.4 */
319
320	/* qtd overlay (hardware parts of a struct ehci_qtd) */
321	__le32			hw_qtd_next;
322	__le32			hw_alt_next;
323	__le32			hw_token;
324	__le32			hw_buf[5];
325	__le32			hw_buf_hi[5];
326
327	/* the rest is HCD-private */
328	dma_addr_t		qh_dma;		/* address of qh */
329	union ehci_shadow	qh_next;	/* ptr to qh; or periodic */
330	struct list_head	qtd_list;	/* sw qtd list */
331	struct ehci_qtd		*dummy;
332	struct ehci_qh		*reclaim;	/* next to reclaim */
333
334	struct oxu_hcd		*oxu;
335	struct kref		kref;
336	unsigned int		stamp;
337
338	u8			qh_state;
339#define	QH_STATE_LINKED		1		/* HC sees this */
340#define	QH_STATE_UNLINK		2		/* HC may still see this */
341#define	QH_STATE_IDLE		3		/* HC doesn't see this */
342#define	QH_STATE_UNLINK_WAIT	4		/* LINKED and on reclaim q */
343#define	QH_STATE_COMPLETING	5		/* don't touch token.HALT */
344
345	/* periodic schedule info */
346	u8			usecs;		/* intr bandwidth */
347	u8			gap_uf;		/* uframes split/csplit gap */
348	u8			c_usecs;	/* ... split completion bw */
349	u16			tt_usecs;	/* tt downstream bandwidth */
350	unsigned short		period;		/* polling interval */
351	unsigned short		start;		/* where polling starts */
352#define NO_FRAME ((unsigned short)~0)			/* pick new start */
353	struct usb_device	*dev;		/* access to TT */
354} __aligned(32);
355
356/*
357 * Proper OXU210HP structs
358 */
359
360#define OXU_OTG_CORE_OFFSET	0x00400
361#define OXU_OTG_CAP_OFFSET	(OXU_OTG_CORE_OFFSET + 0x100)
362#define OXU_SPH_CORE_OFFSET	0x00800
363#define OXU_SPH_CAP_OFFSET	(OXU_SPH_CORE_OFFSET + 0x100)
364
365#define OXU_OTG_MEM		0xE000
366#define OXU_SPH_MEM		0x16000
367
368/* Only how many elements & element structure are specifies here. */
369/* 2 host controllers are enabled - total size <= 28 kbytes */
370#define	DEFAULT_I_TDPS		1024
371#define QHEAD_NUM		16
372#define QTD_NUM			32
373#define SITD_NUM		8
374#define MURB_NUM		8
375
376#define BUFFER_NUM		8
377#define BUFFER_SIZE		512
378
379struct oxu_info {
380	struct usb_hcd *hcd[2];
381};
382
383struct oxu_buf {
384	u8			buffer[BUFFER_SIZE];
385} __aligned(BUFFER_SIZE);
386
387struct oxu_onchip_mem {
388	struct oxu_buf		db_pool[BUFFER_NUM];
389
390	u32			frame_list[DEFAULT_I_TDPS];
391	struct ehci_qh		qh_pool[QHEAD_NUM];
392	struct ehci_qtd		qtd_pool[QTD_NUM];
393} __aligned(4 << 10);
394
395#define	EHCI_MAX_ROOT_PORTS	15		/* see HCS_N_PORTS */
396
397struct oxu_murb {
398	struct urb		urb;
399	struct urb		*main;
400	u8			last;
401};
402
403struct oxu_hcd {				/* one per controller */
404	unsigned int		is_otg:1;
405
406	u8			qh_used[QHEAD_NUM];
407	u8			qtd_used[QTD_NUM];
408	u8			db_used[BUFFER_NUM];
409	u8			murb_used[MURB_NUM];
410
411	struct oxu_onchip_mem	__iomem *mem;
412	spinlock_t		mem_lock;
413
414	struct timer_list	urb_timer;
415
416	struct ehci_caps __iomem *caps;
417	struct ehci_regs __iomem *regs;
418
419	u32			hcs_params;	/* cached register copy */
420	spinlock_t		lock;
421
422	/* async schedule support */
423	struct ehci_qh		*async;
424	struct ehci_qh		*reclaim;
425	unsigned int		reclaim_ready:1;
426	unsigned int		scanning:1;
427
428	/* periodic schedule support */
429	unsigned int		periodic_size;
430	__le32			*periodic;	/* hw periodic table */
431	dma_addr_t		periodic_dma;
432	unsigned int		i_thresh;	/* uframes HC might cache */
433
434	union ehci_shadow	*pshadow;	/* mirror hw periodic table */
435	int			next_uframe;	/* scan periodic, start here */
436	unsigned int		periodic_sched;	/* periodic activity count */
437
438	/* per root hub port */
439	unsigned long		reset_done[EHCI_MAX_ROOT_PORTS];
440	/* bit vectors (one bit per port) */
441	unsigned long		bus_suspended;	/* which ports were
442						 * already suspended at the
443						 * start of a bus suspend
444						 */
445	unsigned long		companion_ports;/* which ports are dedicated
446						 * to the companion controller
447						 */
448
449	struct timer_list	watchdog;
450	unsigned long		actions;
451	unsigned int		stamp;
452	unsigned long		next_statechange;
453	u32			command;
454
455	/* SILICON QUIRKS */
456	struct list_head	urb_list;	/* this is the head to urb
457						 * queue that didn't get enough
458						 * resources
459						 */
460	struct oxu_murb		*murb_pool;	/* murb per split big urb */
461	unsigned int		urb_len;
462
463	u8			sbrn;		/* packed release number */
464};
465
466#define EHCI_IAA_JIFFIES	(HZ/100)	/* arbitrary; ~10 msec */
467#define EHCI_IO_JIFFIES		(HZ/10)		/* io watchdog > irq_thresh */
468#define EHCI_ASYNC_JIFFIES      (HZ/20)		/* async idle timeout */
469#define EHCI_SHRINK_JIFFIES     (HZ/200)	/* async qh unlink delay */
470
471enum ehci_timer_action {
472	TIMER_IO_WATCHDOG,
473	TIMER_IAA_WATCHDOG,
474	TIMER_ASYNC_SHRINK,
475	TIMER_ASYNC_OFF,
476};
477
478/*
479 * Main defines
480 */
481
482#define oxu_dbg(oxu, fmt, args...) \
483		dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
484#define oxu_err(oxu, fmt, args...) \
485		dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
486#define oxu_info(oxu, fmt, args...) \
487		dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
488
489#ifdef CONFIG_DYNAMIC_DEBUG
490#define DEBUG
491#endif
492
493static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
494{
495	return container_of((void *) oxu, struct usb_hcd, hcd_priv);
496}
497
498static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
499{
500	return (struct oxu_hcd *) (hcd->hcd_priv);
501}
502
503/*
504 * Debug stuff
505 */
506
507#undef OXU_URB_TRACE
508#undef OXU_VERBOSE_DEBUG
509
510#ifdef OXU_VERBOSE_DEBUG
511#define oxu_vdbg			oxu_dbg
512#else
513#define oxu_vdbg(oxu, fmt, args...)	/* Nop */
514#endif
515
516#ifdef DEBUG
517
518static int __attribute__((__unused__))
519dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
520{
521	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
522		label, label[0] ? " " : "", status,
523		(status & STS_ASS) ? " Async" : "",
524		(status & STS_PSS) ? " Periodic" : "",
525		(status & STS_RECL) ? " Recl" : "",
526		(status & STS_HALT) ? " Halt" : "",
527		(status & STS_IAA) ? " IAA" : "",
528		(status & STS_FATAL) ? " FATAL" : "",
529		(status & STS_FLR) ? " FLR" : "",
530		(status & STS_PCD) ? " PCD" : "",
531		(status & STS_ERR) ? " ERR" : "",
532		(status & STS_INT) ? " INT" : ""
533		);
534}
535
536static int __attribute__((__unused__))
537dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
538{
539	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
540		label, label[0] ? " " : "", enable,
541		(enable & STS_IAA) ? " IAA" : "",
542		(enable & STS_FATAL) ? " FATAL" : "",
543		(enable & STS_FLR) ? " FLR" : "",
544		(enable & STS_PCD) ? " PCD" : "",
545		(enable & STS_ERR) ? " ERR" : "",
546		(enable & STS_INT) ? " INT" : ""
547		);
548}
549
550static const char *const fls_strings[] =
551    { "1024", "512", "256", "??" };
552
553static int dbg_command_buf(char *buf, unsigned len,
554				const char *label, u32 command)
555{
556	return scnprintf(buf, len,
557		"%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
558		label, label[0] ? " " : "", command,
559		(command & CMD_PARK) ? "park" : "(park)",
560		CMD_PARK_CNT(command),
561		(command >> 16) & 0x3f,
562		(command & CMD_LRESET) ? " LReset" : "",
563		(command & CMD_IAAD) ? " IAAD" : "",
564		(command & CMD_ASE) ? " Async" : "",
565		(command & CMD_PSE) ? " Periodic" : "",
566		fls_strings[(command >> 2) & 0x3],
567		(command & CMD_RESET) ? " Reset" : "",
568		(command & CMD_RUN) ? "RUN" : "HALT"
569		);
570}
571
572static int dbg_port_buf(char *buf, unsigned len, const char *label,
573				int port, u32 status)
574{
575	char	*sig;
576
577	/* signaling state */
578	switch (status & (3 << 10)) {
579	case 0 << 10:
580		sig = "se0";
581		break;
582	case 1 << 10:
583		sig = "k";	/* low speed */
584		break;
585	case 2 << 10:
586		sig = "j";
587		break;
588	default:
589		sig = "?";
590		break;
591	}
592
593	return scnprintf(buf, len,
594		"%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
595		label, label[0] ? " " : "", port, status,
596		(status & PORT_POWER) ? " POWER" : "",
597		(status & PORT_OWNER) ? " OWNER" : "",
598		sig,
599		(status & PORT_RESET) ? " RESET" : "",
600		(status & PORT_SUSPEND) ? " SUSPEND" : "",
601		(status & PORT_RESUME) ? " RESUME" : "",
602		(status & PORT_OCC) ? " OCC" : "",
603		(status & PORT_OC) ? " OC" : "",
604		(status & PORT_PEC) ? " PEC" : "",
605		(status & PORT_PE) ? " PE" : "",
606		(status & PORT_CSC) ? " CSC" : "",
607		(status & PORT_CONNECT) ? " CONNECT" : ""
608	    );
609}
610
611#else
612
613static inline int __attribute__((__unused__))
614dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
615{ return 0; }
616
617static inline int __attribute__((__unused__))
618dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
619{ return 0; }
620
621static inline int __attribute__((__unused__))
622dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
623{ return 0; }
624
625static inline int __attribute__((__unused__))
626dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
627{ return 0; }
628
629#endif /* DEBUG */
630
631/* functions have the "wrong" filename when they're output... */
632#define dbg_status(oxu, label, status) { \
633	char _buf[80]; \
634	dbg_status_buf(_buf, sizeof _buf, label, status); \
635	oxu_dbg(oxu, "%s\n", _buf); \
636}
637
638#define dbg_cmd(oxu, label, command) { \
639	char _buf[80]; \
640	dbg_command_buf(_buf, sizeof _buf, label, command); \
641	oxu_dbg(oxu, "%s\n", _buf); \
642}
643
644#define dbg_port(oxu, label, port, status) { \
645	char _buf[80]; \
646	dbg_port_buf(_buf, sizeof _buf, label, port, status); \
647	oxu_dbg(oxu, "%s\n", _buf); \
648}
649
650/*
651 * Module parameters
652 */
653
654/* Initial IRQ latency: faster than hw default */
655static int log2_irq_thresh;			/* 0 to 6 */
656module_param(log2_irq_thresh, int, S_IRUGO);
657MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
658
659/* Initial park setting: slower than hw default */
660static unsigned park;
661module_param(park, uint, S_IRUGO);
662MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
663
664/* For flakey hardware, ignore overcurrent indicators */
665static bool ignore_oc;
666module_param(ignore_oc, bool, S_IRUGO);
667MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
668
669
670static void ehci_work(struct oxu_hcd *oxu);
671static int oxu_hub_control(struct usb_hcd *hcd,
672				u16 typeReq, u16 wValue, u16 wIndex,
673				char *buf, u16 wLength);
674
675/*
676 * Local functions
677 */
678
679/* Low level read/write registers functions */
680static inline u32 oxu_readl(void __iomem *base, u32 reg)
681{
682	return readl(base + reg);
683}
684
685static inline void oxu_writel(void __iomem *base, u32 reg, u32 val)
686{
687	writel(val, base + reg);
688}
689
690static inline void timer_action_done(struct oxu_hcd *oxu,
691					enum ehci_timer_action action)
692{
693	clear_bit(action, &oxu->actions);
694}
695
696static inline void timer_action(struct oxu_hcd *oxu,
697					enum ehci_timer_action action)
698{
699	if (!test_and_set_bit(action, &oxu->actions)) {
700		unsigned long t;
701
702		switch (action) {
703		case TIMER_IAA_WATCHDOG:
704			t = EHCI_IAA_JIFFIES;
705			break;
706		case TIMER_IO_WATCHDOG:
707			t = EHCI_IO_JIFFIES;
708			break;
709		case TIMER_ASYNC_OFF:
710			t = EHCI_ASYNC_JIFFIES;
711			break;
712		case TIMER_ASYNC_SHRINK:
713		default:
714			t = EHCI_SHRINK_JIFFIES;
715			break;
716		}
717		t += jiffies;
718		/* all timings except IAA watchdog can be overridden.
719		 * async queue SHRINK often precedes IAA.  while it's ready
720		 * to go OFF neither can matter, and afterwards the IO
721		 * watchdog stops unless there's still periodic traffic.
722		 */
723		if (action != TIMER_IAA_WATCHDOG
724				&& t > oxu->watchdog.expires
725				&& timer_pending(&oxu->watchdog))
726			return;
727		mod_timer(&oxu->watchdog, t);
728	}
729}
730
731/*
732 * handshake - spin reading hc until handshake completes or fails
733 * @ptr: address of hc register to be read
734 * @mask: bits to look at in result of read
735 * @done: value of those bits when handshake succeeds
736 * @usec: timeout in microseconds
737 *
738 * Returns negative errno, or zero on success
739 *
740 * Success happens when the "mask" bits have the specified value (hardware
741 * handshake done).  There are two failure modes:  "usec" have passed (major
742 * hardware flakeout), or the register reads as all-ones (hardware removed).
743 *
744 * That last failure should_only happen in cases like physical cardbus eject
745 * before driver shutdown. But it also seems to be caused by bugs in cardbus
746 * bridge shutdown:  shutting down the bridge before the devices using it.
747 */
748static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
749					u32 mask, u32 done, int usec)
750{
751	u32 result;
752	int ret;
753
754	ret = readl_poll_timeout_atomic(ptr, result,
755					((result & mask) == done ||
756					 result == U32_MAX),
757					1, usec);
758	if (result == U32_MAX)		/* card removed */
759		return -ENODEV;
760
761	return ret;
762}
763
764/* Force HC to halt state from unknown (EHCI spec section 2.3) */
765static int ehci_halt(struct oxu_hcd *oxu)
766{
767	u32	temp = readl(&oxu->regs->status);
768
769	/* disable any irqs left enabled by previous code */
770	writel(0, &oxu->regs->intr_enable);
771
772	if ((temp & STS_HALT) != 0)
773		return 0;
774
775	temp = readl(&oxu->regs->command);
776	temp &= ~CMD_RUN;
777	writel(temp, &oxu->regs->command);
778	return handshake(oxu, &oxu->regs->status,
779			  STS_HALT, STS_HALT, 16 * 125);
780}
781
782/* Put TDI/ARC silicon into EHCI mode */
783static void tdi_reset(struct oxu_hcd *oxu)
784{
785	u32 __iomem *reg_ptr;
786	u32 tmp;
787
788	reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
789	tmp = readl(reg_ptr);
790	tmp |= 0x3;
791	writel(tmp, reg_ptr);
792}
793
794/* Reset a non-running (STS_HALT == 1) controller */
795static int ehci_reset(struct oxu_hcd *oxu)
796{
797	int	retval;
798	u32	command = readl(&oxu->regs->command);
799
800	command |= CMD_RESET;
801	dbg_cmd(oxu, "reset", command);
802	writel(command, &oxu->regs->command);
803	oxu_to_hcd(oxu)->state = HC_STATE_HALT;
804	oxu->next_statechange = jiffies;
805	retval = handshake(oxu, &oxu->regs->command,
806			    CMD_RESET, 0, 250 * 1000);
807
808	if (retval)
809		return retval;
810
811	tdi_reset(oxu);
812
813	return retval;
814}
815
816/* Idle the controller (from running) */
817static void ehci_quiesce(struct oxu_hcd *oxu)
818{
819	u32	temp;
820
821#ifdef DEBUG
822	BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
823#endif
824
825	/* wait for any schedule enables/disables to take effect */
826	temp = readl(&oxu->regs->command) << 10;
827	temp &= STS_ASS | STS_PSS;
828	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
829				temp, 16 * 125) != 0) {
830		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
831		return;
832	}
833
834	/* then disable anything that's still active */
835	temp = readl(&oxu->regs->command);
836	temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
837	writel(temp, &oxu->regs->command);
838
839	/* hardware can take 16 microframes to turn off ... */
840	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
841				0, 16 * 125) != 0) {
842		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
843		return;
844	}
845}
846
847static int check_reset_complete(struct oxu_hcd *oxu, int index,
848				u32 __iomem *status_reg, int port_status)
849{
850	if (!(port_status & PORT_CONNECT)) {
851		oxu->reset_done[index] = 0;
852		return port_status;
853	}
854
855	/* if reset finished and it's still not enabled -- handoff */
856	if (!(port_status & PORT_PE)) {
857		oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
858				index+1);
859		return port_status;
860	} else
861		oxu_dbg(oxu, "port %d high speed\n", index + 1);
862
863	return port_status;
864}
865
866static void ehci_hub_descriptor(struct oxu_hcd *oxu,
867				struct usb_hub_descriptor *desc)
868{
869	int ports = HCS_N_PORTS(oxu->hcs_params);
870	u16 temp;
871
872	desc->bDescriptorType = USB_DT_HUB;
873	desc->bPwrOn2PwrGood = 10;	/* oxu 1.0, 2.3.9 says 20ms max */
874	desc->bHubContrCurrent = 0;
875
876	desc->bNbrPorts = ports;
877	temp = 1 + (ports / 8);
878	desc->bDescLength = 7 + 2 * temp;
879
880	/* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
881	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
882	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
883
884	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
885	if (HCS_PPC(oxu->hcs_params))
886		temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
887	else
888		temp |= HUB_CHAR_NO_LPSM; /* no power switching */
889	desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
890}
891
892
893/* Allocate an OXU210HP on-chip memory data buffer
894 *
895 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
896 * Each transfer descriptor has one or more on-chip memory data buffers.
897 *
898 * Data buffers are allocated from a fix sized pool of data blocks.
899 * To minimise fragmentation and give reasonable memory utlisation,
900 * data buffers are allocated with sizes the power of 2 multiples of
901 * the block size, starting on an address a multiple of the allocated size.
902 *
903 * FIXME: callers of this function require a buffer to be allocated for
904 * len=0. This is a waste of on-chip memory and should be fix. Then this
905 * function should be changed to not allocate a buffer for len=0.
906 */
907static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
908{
909	int n_blocks;	/* minium blocks needed to hold len */
910	int a_blocks;	/* blocks allocated */
911	int i, j;
912
913	/* Don't allocte bigger than supported */
914	if (len > BUFFER_SIZE * BUFFER_NUM) {
915		oxu_err(oxu, "buffer too big (%d)\n", len);
916		return -ENOMEM;
917	}
918
919	spin_lock(&oxu->mem_lock);
920
921	/* Number of blocks needed to hold len */
922	n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
923
924	/* Round the number of blocks up to the power of 2 */
925	for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
926		;
927
928	/* Find a suitable available data buffer */
929	for (i = 0; i < BUFFER_NUM;
930			i += max(a_blocks, (int)oxu->db_used[i])) {
931
932		/* Check all the required blocks are available */
933		for (j = 0; j < a_blocks; j++)
934			if (oxu->db_used[i + j])
935				break;
936
937		if (j != a_blocks)
938			continue;
939
940		/* Allocate blocks found! */
941		qtd->buffer = (void *) &oxu->mem->db_pool[i];
942		qtd->buffer_dma = virt_to_phys(qtd->buffer);
943
944		qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
945		oxu->db_used[i] = a_blocks;
946
947		spin_unlock(&oxu->mem_lock);
948
949		return 0;
950	}
951
952	/* Failed */
953
954	spin_unlock(&oxu->mem_lock);
955
956	return -ENOMEM;
957}
958
959static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
960{
961	int index;
962
963	spin_lock(&oxu->mem_lock);
964
965	index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
966							 / BUFFER_SIZE;
967	oxu->db_used[index] = 0;
968	qtd->qtd_buffer_len = 0;
969	qtd->buffer_dma = 0;
970	qtd->buffer = NULL;
971
972	spin_unlock(&oxu->mem_lock);
973}
974
975static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
976{
977	memset(qtd, 0, sizeof *qtd);
978	qtd->qtd_dma = dma;
979	qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
980	qtd->hw_next = EHCI_LIST_END;
981	qtd->hw_alt_next = EHCI_LIST_END;
982	INIT_LIST_HEAD(&qtd->qtd_list);
983}
984
985static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
986{
987	int index;
988
989	if (qtd->buffer)
990		oxu_buf_free(oxu, qtd);
991
992	spin_lock(&oxu->mem_lock);
993
994	index = qtd - &oxu->mem->qtd_pool[0];
995	oxu->qtd_used[index] = 0;
996
997	spin_unlock(&oxu->mem_lock);
998}
999
1000static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
1001{
1002	int i;
1003	struct ehci_qtd *qtd = NULL;
1004
1005	spin_lock(&oxu->mem_lock);
1006
1007	for (i = 0; i < QTD_NUM; i++)
1008		if (!oxu->qtd_used[i])
1009			break;
1010
1011	if (i < QTD_NUM) {
1012		qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
1013		memset(qtd, 0, sizeof *qtd);
1014
1015		qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
1016		qtd->hw_next = EHCI_LIST_END;
1017		qtd->hw_alt_next = EHCI_LIST_END;
1018		INIT_LIST_HEAD(&qtd->qtd_list);
1019
1020		qtd->qtd_dma = virt_to_phys(qtd);
1021
1022		oxu->qtd_used[i] = 1;
1023	}
1024
1025	spin_unlock(&oxu->mem_lock);
1026
1027	return qtd;
1028}
1029
1030static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
1031{
1032	int index;
1033
1034	spin_lock(&oxu->mem_lock);
1035
1036	index = qh - &oxu->mem->qh_pool[0];
1037	oxu->qh_used[index] = 0;
1038
1039	spin_unlock(&oxu->mem_lock);
1040}
1041
1042static void qh_destroy(struct kref *kref)
1043{
1044	struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
1045	struct oxu_hcd *oxu = qh->oxu;
1046
1047	/* clean qtds first, and know this is not linked */
1048	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1049		oxu_dbg(oxu, "unused qh not empty!\n");
1050		BUG();
1051	}
1052	if (qh->dummy)
1053		oxu_qtd_free(oxu, qh->dummy);
1054	oxu_qh_free(oxu, qh);
1055}
1056
1057static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
1058{
1059	int i;
1060	struct ehci_qh *qh = NULL;
1061
1062	spin_lock(&oxu->mem_lock);
1063
1064	for (i = 0; i < QHEAD_NUM; i++)
1065		if (!oxu->qh_used[i])
1066			break;
1067
1068	if (i < QHEAD_NUM) {
1069		qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
1070		memset(qh, 0, sizeof *qh);
1071
1072		kref_init(&qh->kref);
1073		qh->oxu = oxu;
1074		qh->qh_dma = virt_to_phys(qh);
1075		INIT_LIST_HEAD(&qh->qtd_list);
1076
1077		/* dummy td enables safe urb queuing */
1078		qh->dummy = ehci_qtd_alloc(oxu);
1079		if (qh->dummy == NULL) {
1080			oxu_dbg(oxu, "no dummy td\n");
1081			oxu->qh_used[i] = 0;
1082			qh = NULL;
1083			goto unlock;
1084		}
1085
1086		oxu->qh_used[i] = 1;
1087	}
1088unlock:
1089	spin_unlock(&oxu->mem_lock);
1090
1091	return qh;
1092}
1093
1094/* to share a qh (cpu threads, or hc) */
1095static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
1096{
1097	kref_get(&qh->kref);
1098	return qh;
1099}
1100
1101static inline void qh_put(struct ehci_qh *qh)
1102{
1103	kref_put(&qh->kref, qh_destroy);
1104}
1105
1106static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
1107{
1108	int index;
1109
1110	spin_lock(&oxu->mem_lock);
1111
1112	index = murb - &oxu->murb_pool[0];
1113	oxu->murb_used[index] = 0;
1114
1115	spin_unlock(&oxu->mem_lock);
1116}
1117
1118static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
1119
1120{
1121	int i;
1122	struct oxu_murb *murb = NULL;
1123
1124	spin_lock(&oxu->mem_lock);
1125
1126	for (i = 0; i < MURB_NUM; i++)
1127		if (!oxu->murb_used[i])
1128			break;
1129
1130	if (i < MURB_NUM) {
1131		murb = &(oxu->murb_pool)[i];
1132
1133		oxu->murb_used[i] = 1;
1134	}
1135
1136	spin_unlock(&oxu->mem_lock);
1137
1138	return murb;
1139}
1140
1141/* The queue heads and transfer descriptors are managed from pools tied
1142 * to each of the "per device" structures.
1143 * This is the initialisation and cleanup code.
1144 */
1145static void ehci_mem_cleanup(struct oxu_hcd *oxu)
1146{
1147	kfree(oxu->murb_pool);
1148	oxu->murb_pool = NULL;
1149
1150	if (oxu->async)
1151		qh_put(oxu->async);
1152	oxu->async = NULL;
1153
1154	del_timer(&oxu->urb_timer);
1155
1156	oxu->periodic = NULL;
1157
1158	/* shadow periodic table */
1159	kfree(oxu->pshadow);
1160	oxu->pshadow = NULL;
1161}
1162
1163/* Remember to add cleanup code (above) if you add anything here.
1164 */
1165static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
1166{
1167	int i;
1168
1169	for (i = 0; i < oxu->periodic_size; i++)
1170		oxu->mem->frame_list[i] = EHCI_LIST_END;
1171	for (i = 0; i < QHEAD_NUM; i++)
1172		oxu->qh_used[i] = 0;
1173	for (i = 0; i < QTD_NUM; i++)
1174		oxu->qtd_used[i] = 0;
1175
1176	oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
1177	if (!oxu->murb_pool)
1178		goto fail;
1179
1180	for (i = 0; i < MURB_NUM; i++)
1181		oxu->murb_used[i] = 0;
1182
1183	oxu->async = oxu_qh_alloc(oxu);
1184	if (!oxu->async)
1185		goto fail;
1186
1187	oxu->periodic = (__le32 *) &oxu->mem->frame_list;
1188	oxu->periodic_dma = virt_to_phys(oxu->periodic);
1189
1190	for (i = 0; i < oxu->periodic_size; i++)
1191		oxu->periodic[i] = EHCI_LIST_END;
1192
1193	/* software shadow of hardware table */
1194	oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
1195	if (oxu->pshadow != NULL)
1196		return 0;
1197
1198fail:
1199	oxu_dbg(oxu, "couldn't init memory\n");
1200	ehci_mem_cleanup(oxu);
1201	return -ENOMEM;
1202}
1203
1204/* Fill a qtd, returning how much of the buffer we were able to queue up.
1205 */
1206static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
1207				int token, int maxpacket)
1208{
1209	int i, count;
1210	u64 addr = buf;
1211
1212	/* one buffer entry per 4K ... first might be short or unaligned */
1213	qtd->hw_buf[0] = cpu_to_le32((u32)addr);
1214	qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
1215	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
1216	if (likely(len < count))		/* ... iff needed */
1217		count = len;
1218	else {
1219		buf +=  0x1000;
1220		buf &= ~0x0fff;
1221
1222		/* per-qtd limit: from 16K to 20K (best alignment) */
1223		for (i = 1; count < len && i < 5; i++) {
1224			addr = buf;
1225			qtd->hw_buf[i] = cpu_to_le32((u32)addr);
1226			qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
1227			buf += 0x1000;
1228			if ((count + 0x1000) < len)
1229				count += 0x1000;
1230			else
1231				count = len;
1232		}
1233
1234		/* short packets may only terminate transfers */
1235		if (count != len)
1236			count -= (count % maxpacket);
1237	}
1238	qtd->hw_token = cpu_to_le32((count << 16) | token);
1239	qtd->length = count;
1240
1241	return count;
1242}
1243
1244static inline void qh_update(struct oxu_hcd *oxu,
1245				struct ehci_qh *qh, struct ehci_qtd *qtd)
1246{
1247	/* writes to an active overlay are unsafe */
1248	BUG_ON(qh->qh_state != QH_STATE_IDLE);
1249
1250	qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
1251	qh->hw_alt_next = EHCI_LIST_END;
1252
1253	/* Except for control endpoints, we make hardware maintain data
1254	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
1255	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
1256	 * ever clear it.
1257	 */
1258	if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
1259		unsigned	is_out, epnum;
1260
1261		is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
1262		epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
1263		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
1264			qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
1265			usb_settoggle(qh->dev, epnum, is_out, 1);
1266		}
1267	}
1268
1269	/* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
1270	wmb();
1271	qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
1272}
1273
1274/* If it weren't for a common silicon quirk (writing the dummy into the qh
1275 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
1276 * recovery (including urb dequeue) would need software changes to a QH...
1277 */
1278static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
1279{
1280	struct ehci_qtd *qtd;
1281
1282	if (list_empty(&qh->qtd_list))
1283		qtd = qh->dummy;
1284	else {
1285		qtd = list_entry(qh->qtd_list.next,
1286				struct ehci_qtd, qtd_list);
1287		/* first qtd may already be partially processed */
1288		if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
1289			qtd = NULL;
1290	}
1291
1292	if (qtd)
1293		qh_update(oxu, qh, qtd);
1294}
1295
1296static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
1297				size_t length, u32 token)
1298{
1299	/* count IN/OUT bytes, not SETUP (even short packets) */
1300	if (likely(QTD_PID(token) != 2))
1301		urb->actual_length += length - QTD_LENGTH(token);
1302
1303	/* don't modify error codes */
1304	if (unlikely(urb->status != -EINPROGRESS))
1305		return;
1306
1307	/* force cleanup after short read; not always an error */
1308	if (unlikely(IS_SHORT_READ(token)))
1309		urb->status = -EREMOTEIO;
1310
1311	/* serious "can't proceed" faults reported by the hardware */
1312	if (token & QTD_STS_HALT) {
1313		if (token & QTD_STS_BABBLE) {
1314			/* FIXME "must" disable babbling device's port too */
1315			urb->status = -EOVERFLOW;
1316		} else if (token & QTD_STS_MMF) {
1317			/* fs/ls interrupt xfer missed the complete-split */
1318			urb->status = -EPROTO;
1319		} else if (token & QTD_STS_DBE) {
1320			urb->status = (QTD_PID(token) == 1) /* IN ? */
1321				? -ENOSR  /* hc couldn't read data */
1322				: -ECOMM; /* hc couldn't write data */
1323		} else if (token & QTD_STS_XACT) {
1324			/* timeout, bad crc, wrong PID, etc; retried */
1325			if (QTD_CERR(token))
1326				urb->status = -EPIPE;
1327			else {
1328				oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
1329					urb->dev->devpath,
1330					usb_pipeendpoint(urb->pipe),
1331					usb_pipein(urb->pipe) ? "in" : "out");
1332				urb->status = -EPROTO;
1333			}
1334		/* CERR nonzero + no errors + halt --> stall */
1335		} else if (QTD_CERR(token))
1336			urb->status = -EPIPE;
1337		else	/* unknown */
1338			urb->status = -EPROTO;
1339
1340		oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
1341			usb_pipedevice(urb->pipe),
1342			usb_pipeendpoint(urb->pipe),
1343			usb_pipein(urb->pipe) ? "in" : "out",
1344			token, urb->status);
1345	}
1346}
1347
1348static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
1349__releases(oxu->lock)
1350__acquires(oxu->lock)
1351{
1352	if (likely(urb->hcpriv != NULL)) {
1353		struct ehci_qh	*qh = (struct ehci_qh *) urb->hcpriv;
1354
1355		/* S-mask in a QH means it's an interrupt urb */
1356		if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
1357
1358			/* ... update hc-wide periodic stats (for usbfs) */
1359			oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
1360		}
1361		qh_put(qh);
1362	}
1363
1364	urb->hcpriv = NULL;
1365	switch (urb->status) {
1366	case -EINPROGRESS:		/* success */
1367		urb->status = 0;
1368		break;
1369	default:			/* fault */
1370		break;
1371	case -EREMOTEIO:		/* fault or normal */
1372		if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
1373			urb->status = 0;
1374		break;
1375	case -ECONNRESET:		/* canceled */
1376	case -ENOENT:
1377		break;
1378	}
1379
1380#ifdef OXU_URB_TRACE
1381	oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
1382		__func__, urb->dev->devpath, urb,
1383		usb_pipeendpoint(urb->pipe),
1384		usb_pipein(urb->pipe) ? "in" : "out",
1385		urb->status,
1386		urb->actual_length, urb->transfer_buffer_length);
1387#endif
1388
1389	/* complete() can reenter this HCD */
1390	spin_unlock(&oxu->lock);
1391	usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
1392	spin_lock(&oxu->lock);
1393}
1394
1395static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1396static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1397
1398static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1399static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1400
1401#define HALT_BIT cpu_to_le32(QTD_STS_HALT)
1402
1403/* Process and free completed qtds for a qh, returning URBs to drivers.
1404 * Chases up to qh->hw_current.  Returns number of completions called,
1405 * indicating how much "real" work we did.
1406 */
1407static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
1408{
1409	struct ehci_qtd *last = NULL, *end = qh->dummy;
1410	struct ehci_qtd	*qtd, *tmp;
1411	int stopped;
1412	unsigned count = 0;
1413	int do_status = 0;
1414	u8 state;
1415	struct oxu_murb *murb = NULL;
1416
1417	if (unlikely(list_empty(&qh->qtd_list)))
1418		return count;
1419
1420	/* completions (or tasks on other cpus) must never clobber HALT
1421	 * till we've gone through and cleaned everything up, even when
1422	 * they add urbs to this qh's queue or mark them for unlinking.
1423	 *
1424	 * NOTE:  unlinking expects to be done in queue order.
1425	 */
1426	state = qh->qh_state;
1427	qh->qh_state = QH_STATE_COMPLETING;
1428	stopped = (state == QH_STATE_IDLE);
1429
1430	/* remove de-activated QTDs from front of queue.
1431	 * after faults (including short reads), cleanup this urb
1432	 * then let the queue advance.
1433	 * if queue is stopped, handles unlinks.
1434	 */
1435	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
1436		struct urb *urb;
1437		u32 token = 0;
1438
1439		urb = qtd->urb;
1440
1441		/* Clean up any state from previous QTD ...*/
1442		if (last) {
1443			if (likely(last->urb != urb)) {
1444				if (last->urb->complete == NULL) {
1445					murb = (struct oxu_murb *) last->urb;
1446					last->urb = murb->main;
1447					if (murb->last) {
1448						ehci_urb_done(oxu, last->urb);
1449						count++;
1450					}
1451					oxu_murb_free(oxu, murb);
1452				} else {
1453					ehci_urb_done(oxu, last->urb);
1454					count++;
1455				}
1456			}
1457			oxu_qtd_free(oxu, last);
1458			last = NULL;
1459		}
1460
1461		/* ignore urbs submitted during completions we reported */
1462		if (qtd == end)
1463			break;
1464
1465		/* hardware copies qtd out of qh overlay */
1466		rmb();
1467		token = le32_to_cpu(qtd->hw_token);
1468
1469		/* always clean up qtds the hc de-activated */
1470		if ((token & QTD_STS_ACTIVE) == 0) {
1471
1472			if ((token & QTD_STS_HALT) != 0) {
1473				stopped = 1;
1474
1475			/* magic dummy for some short reads; qh won't advance.
1476			 * that silicon quirk can kick in with this dummy too.
1477			 */
1478			} else if (IS_SHORT_READ(token) &&
1479					!(qtd->hw_alt_next & EHCI_LIST_END)) {
1480				stopped = 1;
1481				goto halt;
1482			}
1483
1484		/* stop scanning when we reach qtds the hc is using */
1485		} else if (likely(!stopped &&
1486				HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1487			break;
1488
1489		} else {
1490			stopped = 1;
1491
1492			if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1493				urb->status = -ESHUTDOWN;
1494
1495			/* ignore active urbs unless some previous qtd
1496			 * for the urb faulted (including short read) or
1497			 * its urb was canceled.  we may patch qh or qtds.
1498			 */
1499			if (likely(urb->status == -EINPROGRESS))
1500				continue;
1501
1502			/* issue status after short control reads */
1503			if (unlikely(do_status != 0)
1504					&& QTD_PID(token) == 0 /* OUT */) {
1505				do_status = 0;
1506				continue;
1507			}
1508
1509			/* token in overlay may be most current */
1510			if (state == QH_STATE_IDLE
1511					&& cpu_to_le32(qtd->qtd_dma)
1512						== qh->hw_current)
1513				token = le32_to_cpu(qh->hw_token);
1514
1515			/* force halt for unlinked or blocked qh, so we'll
1516			 * patch the qh later and so that completions can't
1517			 * activate it while we "know" it's stopped.
1518			 */
1519			if ((HALT_BIT & qh->hw_token) == 0) {
1520halt:
1521				qh->hw_token |= HALT_BIT;
1522				wmb();
1523			}
1524		}
1525
1526		/* Remove it from the queue */
1527		qtd_copy_status(oxu, urb->complete ?
1528					urb : ((struct oxu_murb *) urb)->main,
1529				qtd->length, token);
1530		if ((usb_pipein(qtd->urb->pipe)) &&
1531				(NULL != qtd->transfer_buffer))
1532			memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1533		do_status = (urb->status == -EREMOTEIO)
1534				&& usb_pipecontrol(urb->pipe);
1535
1536		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1537			last = list_entry(qtd->qtd_list.prev,
1538					struct ehci_qtd, qtd_list);
1539			last->hw_next = qtd->hw_next;
1540		}
1541		list_del(&qtd->qtd_list);
1542		last = qtd;
1543	}
1544
1545	/* last urb's completion might still need calling */
1546	if (likely(last != NULL)) {
1547		if (last->urb->complete == NULL) {
1548			murb = (struct oxu_murb *) last->urb;
1549			last->urb = murb->main;
1550			if (murb->last) {
1551				ehci_urb_done(oxu, last->urb);
1552				count++;
1553			}
1554			oxu_murb_free(oxu, murb);
1555		} else {
1556			ehci_urb_done(oxu, last->urb);
1557			count++;
1558		}
1559		oxu_qtd_free(oxu, last);
1560	}
1561
1562	/* restore original state; caller must unlink or relink */
1563	qh->qh_state = state;
1564
1565	/* be sure the hardware's done with the qh before refreshing
1566	 * it after fault cleanup, or recovering from silicon wrongly
1567	 * overlaying the dummy qtd (which reduces DMA chatter).
1568	 */
1569	if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1570		switch (state) {
1571		case QH_STATE_IDLE:
1572			qh_refresh(oxu, qh);
1573			break;
1574		case QH_STATE_LINKED:
1575			/* should be rare for periodic transfers,
1576			 * except maybe high bandwidth ...
1577			 */
1578			if ((cpu_to_le32(QH_SMASK)
1579					& qh->hw_info2) != 0) {
1580				intr_deschedule(oxu, qh);
1581				(void) qh_schedule(oxu, qh);
1582			} else
1583				unlink_async(oxu, qh);
1584			break;
1585		/* otherwise, unlink already started */
1586		}
1587	}
1588
1589	return count;
1590}
1591
1592/* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1593#define hb_mult(wMaxPacketSize)		(1 + (((wMaxPacketSize) >> 11) & 0x03))
1594/* ... and packet size, for any kind of endpoint descriptor */
1595#define max_packet(wMaxPacketSize)	((wMaxPacketSize) & 0x07ff)
1596
1597/* Reverse of qh_urb_transaction: free a list of TDs.
1598 * used for cleanup after errors, before HC sees an URB's TDs.
1599 */
1600static void qtd_list_free(struct oxu_hcd *oxu,
1601				struct urb *urb, struct list_head *head)
1602{
1603	struct ehci_qtd	*qtd, *temp;
1604
1605	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
1606		list_del(&qtd->qtd_list);
1607		oxu_qtd_free(oxu, qtd);
1608	}
1609}
1610
1611/* Create a list of filled qtds for this URB; won't link into qh.
1612 */
1613static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1614						struct urb *urb,
1615						struct list_head *head,
1616						gfp_t flags)
1617{
1618	struct ehci_qtd	*qtd, *qtd_prev;
1619	dma_addr_t buf;
1620	int len, maxpacket;
1621	int is_input;
1622	u32 token;
1623	void *transfer_buf = NULL;
1624	int ret;
1625
1626	/*
1627	 * URBs map to sequences of QTDs: one logical transaction
1628	 */
1629	qtd = ehci_qtd_alloc(oxu);
1630	if (unlikely(!qtd))
1631		return NULL;
1632	list_add_tail(&qtd->qtd_list, head);
1633	qtd->urb = urb;
1634
1635	token = QTD_STS_ACTIVE;
1636	token |= (EHCI_TUNE_CERR << 10);
1637	/* for split transactions, SplitXState initialized to zero */
1638
1639	len = urb->transfer_buffer_length;
1640	is_input = usb_pipein(urb->pipe);
1641	if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1642		urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1643
1644	if (usb_pipecontrol(urb->pipe)) {
1645		/* SETUP pid */
1646		ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1647		if (ret)
1648			goto cleanup;
1649
1650		qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1651				token | (2 /* "setup" */ << 8), 8);
1652		memcpy(qtd->buffer, qtd->urb->setup_packet,
1653				sizeof(struct usb_ctrlrequest));
1654
1655		/* ... and always at least one more pid */
1656		token ^= QTD_TOGGLE;
1657		qtd_prev = qtd;
1658		qtd = ehci_qtd_alloc(oxu);
1659		if (unlikely(!qtd))
1660			goto cleanup;
1661		qtd->urb = urb;
1662		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1663		list_add_tail(&qtd->qtd_list, head);
1664
1665		/* for zero length DATA stages, STATUS is always IN */
1666		if (len == 0)
1667			token |= (1 /* "in" */ << 8);
1668	}
1669
1670	/*
1671	 * Data transfer stage: buffer setup
1672	 */
1673
1674	ret = oxu_buf_alloc(oxu, qtd, len);
1675	if (ret)
1676		goto cleanup;
1677
1678	buf = qtd->buffer_dma;
1679	transfer_buf = urb->transfer_buffer;
1680
1681	if (!is_input)
1682		memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1683
1684	if (is_input)
1685		token |= (1 /* "in" */ << 8);
1686	/* else it's already initted to "out" pid (0 << 8) */
1687
1688	maxpacket = usb_maxpacket(urb->dev, urb->pipe);
1689
1690	/*
1691	 * buffer gets wrapped in one or more qtds;
1692	 * last one may be "short" (including zero len)
1693	 * and may serve as a control status ack
1694	 */
1695	for (;;) {
1696		int this_qtd_len;
1697
1698		this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1699		qtd->transfer_buffer = transfer_buf;
1700		len -= this_qtd_len;
1701		buf += this_qtd_len;
1702		transfer_buf += this_qtd_len;
1703		if (is_input)
1704			qtd->hw_alt_next = oxu->async->hw_alt_next;
1705
1706		/* qh makes control packets use qtd toggle; maybe switch it */
1707		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1708			token ^= QTD_TOGGLE;
1709
1710		if (likely(len <= 0))
1711			break;
1712
1713		qtd_prev = qtd;
1714		qtd = ehci_qtd_alloc(oxu);
1715		if (unlikely(!qtd))
1716			goto cleanup;
1717		if (likely(len > 0)) {
1718			ret = oxu_buf_alloc(oxu, qtd, len);
1719			if (ret)
1720				goto cleanup;
1721		}
1722		qtd->urb = urb;
1723		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1724		list_add_tail(&qtd->qtd_list, head);
1725	}
1726
1727	/* unless the bulk/interrupt caller wants a chance to clean
1728	 * up after short reads, hc should advance qh past this urb
1729	 */
1730	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1731				|| usb_pipecontrol(urb->pipe)))
1732		qtd->hw_alt_next = EHCI_LIST_END;
1733
1734	/*
1735	 * control requests may need a terminating data "status" ack;
1736	 * bulk ones may need a terminating short packet (zero length).
1737	 */
1738	if (likely(urb->transfer_buffer_length != 0)) {
1739		int	one_more = 0;
1740
1741		if (usb_pipecontrol(urb->pipe)) {
1742			one_more = 1;
1743			token ^= 0x0100;	/* "in" <--> "out"  */
1744			token |= QTD_TOGGLE;	/* force DATA1 */
1745		} else if (usb_pipebulk(urb->pipe)
1746				&& (urb->transfer_flags & URB_ZERO_PACKET)
1747				&& !(urb->transfer_buffer_length % maxpacket)) {
1748			one_more = 1;
1749		}
1750		if (one_more) {
1751			qtd_prev = qtd;
1752			qtd = ehci_qtd_alloc(oxu);
1753			if (unlikely(!qtd))
1754				goto cleanup;
1755			qtd->urb = urb;
1756			qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1757			list_add_tail(&qtd->qtd_list, head);
1758
1759			/* never any data in such packets */
1760			qtd_fill(qtd, 0, 0, token, 0);
1761		}
1762	}
1763
1764	/* by default, enable interrupt on urb completion */
1765	qtd->hw_token |= cpu_to_le32(QTD_IOC);
1766	return head;
1767
1768cleanup:
1769	qtd_list_free(oxu, urb, head);
1770	return NULL;
1771}
1772
1773/* Each QH holds a qtd list; a QH is used for everything except iso.
1774 *
1775 * For interrupt urbs, the scheduler must set the microframe scheduling
1776 * mask(s) each time the QH gets scheduled.  For highspeed, that's
1777 * just one microframe in the s-mask.  For split interrupt transactions
1778 * there are additional complications: c-mask, maybe FSTNs.
1779 */
1780static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1781				struct urb *urb, gfp_t flags)
1782{
1783	struct ehci_qh *qh = oxu_qh_alloc(oxu);
1784	u32 info1 = 0, info2 = 0;
1785	int is_input, type;
1786	int maxp = 0;
1787
1788	if (!qh)
1789		return qh;
1790
1791	/*
1792	 * init endpoint/device data for this QH
1793	 */
1794	info1 |= usb_pipeendpoint(urb->pipe) << 8;
1795	info1 |= usb_pipedevice(urb->pipe) << 0;
1796
1797	is_input = usb_pipein(urb->pipe);
1798	type = usb_pipetype(urb->pipe);
1799	maxp = usb_maxpacket(urb->dev, urb->pipe);
1800
1801	/* Compute interrupt scheduling parameters just once, and save.
1802	 * - allowing for high bandwidth, how many nsec/uframe are used?
1803	 * - split transactions need a second CSPLIT uframe; same question
1804	 * - splits also need a schedule gap (for full/low speed I/O)
1805	 * - qh has a polling interval
1806	 *
1807	 * For control/bulk requests, the HC or TT handles these.
1808	 */
1809	if (type == PIPE_INTERRUPT) {
1810		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1811								is_input, 0,
1812				hb_mult(maxp) * max_packet(maxp)));
1813		qh->start = NO_FRAME;
1814
1815		if (urb->dev->speed == USB_SPEED_HIGH) {
1816			qh->c_usecs = 0;
1817			qh->gap_uf = 0;
1818
1819			qh->period = urb->interval >> 3;
1820			if (qh->period == 0 && urb->interval != 1) {
1821				/* NOTE interval 2 or 4 uframes could work.
1822				 * But interval 1 scheduling is simpler, and
1823				 * includes high bandwidth.
1824				 */
1825				oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1826					urb->interval);
1827				goto done;
1828			}
1829		} else {
1830			struct usb_tt	*tt = urb->dev->tt;
1831			int		think_time;
1832
1833			/* gap is f(FS/LS transfer times) */
1834			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1835					is_input, 0, maxp) / (125 * 1000);
1836
1837			/* FIXME this just approximates SPLIT/CSPLIT times */
1838			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
1839				qh->c_usecs = qh->usecs + HS_USECS(0);
1840				qh->usecs = HS_USECS(1);
1841			} else {		/* SPLIT+DATA, gap, CSPLIT */
1842				qh->usecs += HS_USECS(1);
1843				qh->c_usecs = HS_USECS(0);
1844			}
1845
1846			think_time = tt ? tt->think_time : 0;
1847			qh->tt_usecs = NS_TO_US(think_time +
1848					usb_calc_bus_time(urb->dev->speed,
1849					is_input, 0, max_packet(maxp)));
1850			qh->period = urb->interval;
1851		}
1852	}
1853
1854	/* support for tt scheduling, and access to toggles */
1855	qh->dev = urb->dev;
1856
1857	/* using TT? */
1858	switch (urb->dev->speed) {
1859	case USB_SPEED_LOW:
1860		info1 |= (1 << 12);	/* EPS "low" */
1861		fallthrough;
1862
1863	case USB_SPEED_FULL:
1864		/* EPS 0 means "full" */
1865		if (type != PIPE_INTERRUPT)
1866			info1 |= (EHCI_TUNE_RL_TT << 28);
1867		if (type == PIPE_CONTROL) {
1868			info1 |= (1 << 27);	/* for TT */
1869			info1 |= 1 << 14;	/* toggle from qtd */
1870		}
1871		info1 |= maxp << 16;
1872
1873		info2 |= (EHCI_TUNE_MULT_TT << 30);
1874		info2 |= urb->dev->ttport << 23;
1875
1876		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1877
1878		break;
1879
1880	case USB_SPEED_HIGH:		/* no TT involved */
1881		info1 |= (2 << 12);	/* EPS "high" */
1882		if (type == PIPE_CONTROL) {
1883			info1 |= (EHCI_TUNE_RL_HS << 28);
1884			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
1885			info1 |= 1 << 14;	/* toggle from qtd */
1886			info2 |= (EHCI_TUNE_MULT_HS << 30);
1887		} else if (type == PIPE_BULK) {
1888			info1 |= (EHCI_TUNE_RL_HS << 28);
1889			info1 |= 512 << 16;	/* usb2 fixed maxpacket */
1890			info2 |= (EHCI_TUNE_MULT_HS << 30);
1891		} else {		/* PIPE_INTERRUPT */
1892			info1 |= max_packet(maxp) << 16;
1893			info2 |= hb_mult(maxp) << 30;
1894		}
1895		break;
1896	default:
1897		oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1898done:
1899		qh_put(qh);
1900		return NULL;
1901	}
1902
1903	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1904
1905	/* init as live, toggle clear, advance to dummy */
1906	qh->qh_state = QH_STATE_IDLE;
1907	qh->hw_info1 = cpu_to_le32(info1);
1908	qh->hw_info2 = cpu_to_le32(info2);
1909	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1910	qh_refresh(oxu, qh);
1911	return qh;
1912}
1913
1914/* Move qh (and its qtds) onto async queue; maybe enable queue.
1915 */
1916static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1917{
1918	__le32 dma = QH_NEXT(qh->qh_dma);
1919	struct ehci_qh *head;
1920
1921	/* (re)start the async schedule? */
1922	head = oxu->async;
1923	timer_action_done(oxu, TIMER_ASYNC_OFF);
1924	if (!head->qh_next.qh) {
1925		u32	cmd = readl(&oxu->regs->command);
1926
1927		if (!(cmd & CMD_ASE)) {
1928			/* in case a clear of CMD_ASE didn't take yet */
1929			(void)handshake(oxu, &oxu->regs->status,
1930					STS_ASS, 0, 150);
1931			cmd |= CMD_ASE | CMD_RUN;
1932			writel(cmd, &oxu->regs->command);
1933			oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1934			/* posted write need not be known to HC yet ... */
1935		}
1936	}
1937
1938	/* clear halt and/or toggle; and maybe recover from silicon quirk */
1939	if (qh->qh_state == QH_STATE_IDLE)
1940		qh_refresh(oxu, qh);
1941
1942	/* splice right after start */
1943	qh->qh_next = head->qh_next;
1944	qh->hw_next = head->hw_next;
1945	wmb();
1946
1947	head->qh_next.qh = qh;
1948	head->hw_next = dma;
1949
1950	qh->qh_state = QH_STATE_LINKED;
1951	/* qtd completions reported later by interrupt */
1952}
1953
1954#define	QH_ADDR_MASK	cpu_to_le32(0x7f)
1955
1956/*
1957 * For control/bulk/interrupt, return QH with these TDs appended.
1958 * Allocates and initializes the QH if necessary.
1959 * Returns null if it can't allocate a QH it needs to.
1960 * If the QH has TDs (urbs) already, that's great.
1961 */
1962static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1963				struct urb *urb, struct list_head *qtd_list,
1964				int epnum, void	**ptr)
1965{
1966	struct ehci_qh *qh = NULL;
1967
1968	qh = (struct ehci_qh *) *ptr;
1969	if (unlikely(qh == NULL)) {
1970		/* can't sleep here, we have oxu->lock... */
1971		qh = qh_make(oxu, urb, GFP_ATOMIC);
1972		*ptr = qh;
1973	}
1974	if (likely(qh != NULL)) {
1975		struct ehci_qtd	*qtd;
1976
1977		if (unlikely(list_empty(qtd_list)))
1978			qtd = NULL;
1979		else
1980			qtd = list_entry(qtd_list->next, struct ehci_qtd,
1981					qtd_list);
1982
1983		/* control qh may need patching ... */
1984		if (unlikely(epnum == 0)) {
1985
1986			/* usb_reset_device() briefly reverts to address 0 */
1987			if (usb_pipedevice(urb->pipe) == 0)
1988				qh->hw_info1 &= ~QH_ADDR_MASK;
1989		}
1990
1991		/* just one way to queue requests: swap with the dummy qtd.
1992		 * only hc or qh_refresh() ever modify the overlay.
1993		 */
1994		if (likely(qtd != NULL)) {
1995			struct ehci_qtd	*dummy;
1996			dma_addr_t dma;
1997			__le32 token;
1998
1999			/* to avoid racing the HC, use the dummy td instead of
2000			 * the first td of our list (becomes new dummy).  both
2001			 * tds stay deactivated until we're done, when the
2002			 * HC is allowed to fetch the old dummy (4.10.2).
2003			 */
2004			token = qtd->hw_token;
2005			qtd->hw_token = HALT_BIT;
2006			wmb();
2007			dummy = qh->dummy;
2008
2009			dma = dummy->qtd_dma;
2010			*dummy = *qtd;
2011			dummy->qtd_dma = dma;
2012
2013			list_del(&qtd->qtd_list);
2014			list_add(&dummy->qtd_list, qtd_list);
2015			list_splice(qtd_list, qh->qtd_list.prev);
2016
2017			ehci_qtd_init(qtd, qtd->qtd_dma);
2018			qh->dummy = qtd;
2019
2020			/* hc must see the new dummy at list end */
2021			dma = qtd->qtd_dma;
2022			qtd = list_entry(qh->qtd_list.prev,
2023					struct ehci_qtd, qtd_list);
2024			qtd->hw_next = QTD_NEXT(dma);
2025
2026			/* let the hc process these next qtds */
2027			dummy->hw_token = (token & ~(0x80));
2028			wmb();
2029			dummy->hw_token = token;
2030
2031			urb->hcpriv = qh_get(qh);
2032		}
2033	}
2034	return qh;
2035}
2036
2037static int submit_async(struct oxu_hcd	*oxu, struct urb *urb,
2038			struct list_head *qtd_list, gfp_t mem_flags)
2039{
2040	int epnum = urb->ep->desc.bEndpointAddress;
2041	unsigned long flags;
2042	struct ehci_qh *qh = NULL;
2043	int rc = 0;
2044#ifdef OXU_URB_TRACE
2045	struct ehci_qtd	*qtd;
2046
2047	qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
2048
2049	oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2050		__func__, urb->dev->devpath, urb,
2051		epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
2052		urb->transfer_buffer_length,
2053		qtd, urb->ep->hcpriv);
2054#endif
2055
2056	spin_lock_irqsave(&oxu->lock, flags);
2057	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2058		rc = -ESHUTDOWN;
2059		goto done;
2060	}
2061
2062	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2063	if (unlikely(qh == NULL)) {
2064		rc = -ENOMEM;
2065		goto done;
2066	}
2067
2068	/* Control/bulk operations through TTs don't need scheduling,
2069	 * the HC and TT handle it when the TT has a buffer ready.
2070	 */
2071	if (likely(qh->qh_state == QH_STATE_IDLE))
2072		qh_link_async(oxu, qh_get(qh));
2073done:
2074	spin_unlock_irqrestore(&oxu->lock, flags);
2075	if (unlikely(qh == NULL))
2076		qtd_list_free(oxu, urb, qtd_list);
2077	return rc;
2078}
2079
2080/* The async qh for the qtds being reclaimed are now unlinked from the HC */
2081
2082static void end_unlink_async(struct oxu_hcd *oxu)
2083{
2084	struct ehci_qh *qh = oxu->reclaim;
2085	struct ehci_qh *next;
2086
2087	timer_action_done(oxu, TIMER_IAA_WATCHDOG);
2088
2089	qh->qh_state = QH_STATE_IDLE;
2090	qh->qh_next.qh = NULL;
2091	qh_put(qh);			/* refcount from reclaim */
2092
2093	/* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
2094	next = qh->reclaim;
2095	oxu->reclaim = next;
2096	oxu->reclaim_ready = 0;
2097	qh->reclaim = NULL;
2098
2099	qh_completions(oxu, qh);
2100
2101	if (!list_empty(&qh->qtd_list)
2102			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2103		qh_link_async(oxu, qh);
2104	else {
2105		qh_put(qh);		/* refcount from async list */
2106
2107		/* it's not free to turn the async schedule on/off; leave it
2108		 * active but idle for a while once it empties.
2109		 */
2110		if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
2111				&& oxu->async->qh_next.qh == NULL)
2112			timer_action(oxu, TIMER_ASYNC_OFF);
2113	}
2114
2115	if (next) {
2116		oxu->reclaim = NULL;
2117		start_unlink_async(oxu, next);
2118	}
2119}
2120
2121/* makes sure the async qh will become idle */
2122/* caller must own oxu->lock */
2123
2124static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2125{
2126	int cmd = readl(&oxu->regs->command);
2127	struct ehci_qh *prev;
2128
2129#ifdef DEBUG
2130	assert_spin_locked(&oxu->lock);
2131	BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
2132				&& qh->qh_state != QH_STATE_UNLINK_WAIT));
2133#endif
2134
2135	/* stop async schedule right now? */
2136	if (unlikely(qh == oxu->async)) {
2137		/* can't get here without STS_ASS set */
2138		if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
2139				&& !oxu->reclaim) {
2140			/* ... and CMD_IAAD clear */
2141			writel(cmd & ~CMD_ASE, &oxu->regs->command);
2142			wmb();
2143			/* handshake later, if we need to */
2144			timer_action_done(oxu, TIMER_ASYNC_OFF);
2145		}
2146		return;
2147	}
2148
2149	qh->qh_state = QH_STATE_UNLINK;
2150	oxu->reclaim = qh = qh_get(qh);
2151
2152	prev = oxu->async;
2153	while (prev->qh_next.qh != qh)
2154		prev = prev->qh_next.qh;
2155
2156	prev->hw_next = qh->hw_next;
2157	prev->qh_next = qh->qh_next;
2158	wmb();
2159
2160	if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
2161		/* if (unlikely(qh->reclaim != 0))
2162		 *	this will recurse, probably not much
2163		 */
2164		end_unlink_async(oxu);
2165		return;
2166	}
2167
2168	oxu->reclaim_ready = 0;
2169	cmd |= CMD_IAAD;
2170	writel(cmd, &oxu->regs->command);
2171	(void) readl(&oxu->regs->command);
2172	timer_action(oxu, TIMER_IAA_WATCHDOG);
2173}
2174
2175static void scan_async(struct oxu_hcd *oxu)
2176{
2177	struct ehci_qh *qh;
2178	enum ehci_timer_action action = TIMER_IO_WATCHDOG;
2179
2180	if (!++(oxu->stamp))
2181		oxu->stamp++;
2182	timer_action_done(oxu, TIMER_ASYNC_SHRINK);
2183rescan:
2184	qh = oxu->async->qh_next.qh;
2185	if (likely(qh != NULL)) {
2186		do {
2187			/* clean any finished work for this qh */
2188			if (!list_empty(&qh->qtd_list)
2189					&& qh->stamp != oxu->stamp) {
2190				int temp;
2191
2192				/* unlinks could happen here; completion
2193				 * reporting drops the lock.  rescan using
2194				 * the latest schedule, but don't rescan
2195				 * qhs we already finished (no looping).
2196				 */
2197				qh = qh_get(qh);
2198				qh->stamp = oxu->stamp;
2199				temp = qh_completions(oxu, qh);
2200				qh_put(qh);
2201				if (temp != 0)
2202					goto rescan;
2203			}
2204
2205			/* unlink idle entries, reducing HC PCI usage as well
2206			 * as HCD schedule-scanning costs.  delay for any qh
2207			 * we just scanned, there's a not-unusual case that it
2208			 * doesn't stay idle for long.
2209			 * (plus, avoids some kind of re-activation race.)
2210			 */
2211			if (list_empty(&qh->qtd_list)) {
2212				if (qh->stamp == oxu->stamp)
2213					action = TIMER_ASYNC_SHRINK;
2214				else if (!oxu->reclaim
2215					    && qh->qh_state == QH_STATE_LINKED)
2216					start_unlink_async(oxu, qh);
2217			}
2218
2219			qh = qh->qh_next.qh;
2220		} while (qh);
2221	}
2222	if (action == TIMER_ASYNC_SHRINK)
2223		timer_action(oxu, TIMER_ASYNC_SHRINK);
2224}
2225
2226/*
2227 * periodic_next_shadow - return "next" pointer on shadow list
2228 * @periodic: host pointer to qh/itd/sitd
2229 * @tag: hardware tag for type of this record
2230 */
2231static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
2232						__le32 tag)
2233{
2234	switch (tag) {
2235	default:
2236	case Q_TYPE_QH:
2237		return &periodic->qh->qh_next;
2238	}
2239}
2240
2241/* caller must hold oxu->lock */
2242static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
2243{
2244	union ehci_shadow *prev_p = &oxu->pshadow[frame];
2245	__le32 *hw_p = &oxu->periodic[frame];
2246	union ehci_shadow here = *prev_p;
2247
2248	/* find predecessor of "ptr"; hw and shadow lists are in sync */
2249	while (here.ptr && here.ptr != ptr) {
2250		prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
2251		hw_p = here.hw_next;
2252		here = *prev_p;
2253	}
2254	/* an interrupt entry (at list end) could have been shared */
2255	if (!here.ptr)
2256		return;
2257
2258	/* update shadow and hardware lists ... the old "next" pointers
2259	 * from ptr may still be in use, the caller updates them.
2260	 */
2261	*prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
2262	*hw_p = *here.hw_next;
2263}
2264
2265/* how many of the uframe's 125 usecs are allocated? */
2266static unsigned short periodic_usecs(struct oxu_hcd *oxu,
2267					unsigned frame, unsigned uframe)
2268{
2269	__le32 *hw_p = &oxu->periodic[frame];
2270	union ehci_shadow *q = &oxu->pshadow[frame];
2271	unsigned usecs = 0;
2272
2273	while (q->ptr) {
2274		switch (Q_NEXT_TYPE(*hw_p)) {
2275		case Q_TYPE_QH:
2276		default:
2277			/* is it in the S-mask? */
2278			if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
2279				usecs += q->qh->usecs;
2280			/* ... or C-mask? */
2281			if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
2282				usecs += q->qh->c_usecs;
2283			hw_p = &q->qh->hw_next;
2284			q = &q->qh->qh_next;
2285			break;
2286		}
2287	}
2288#ifdef DEBUG
2289	if (usecs > 100)
2290		oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
2291						frame * 8 + uframe, usecs);
2292#endif
2293	return usecs;
2294}
2295
2296static int enable_periodic(struct oxu_hcd *oxu)
2297{
2298	u32 cmd;
2299	int status;
2300
2301	/* did clearing PSE did take effect yet?
2302	 * takes effect only at frame boundaries...
2303	 */
2304	status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
2305	if (status != 0) {
2306		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2307		usb_hc_died(oxu_to_hcd(oxu));
2308		return status;
2309	}
2310
2311	cmd = readl(&oxu->regs->command) | CMD_PSE;
2312	writel(cmd, &oxu->regs->command);
2313	/* posted write ... PSS happens later */
2314	oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
2315
2316	/* make sure ehci_work scans these */
2317	oxu->next_uframe = readl(&oxu->regs->frame_index)
2318		% (oxu->periodic_size << 3);
2319	return 0;
2320}
2321
2322static int disable_periodic(struct oxu_hcd *oxu)
2323{
2324	u32 cmd;
2325	int status;
2326
2327	/* did setting PSE not take effect yet?
2328	 * takes effect only at frame boundaries...
2329	 */
2330	status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
2331	if (status != 0) {
2332		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2333		usb_hc_died(oxu_to_hcd(oxu));
2334		return status;
2335	}
2336
2337	cmd = readl(&oxu->regs->command) & ~CMD_PSE;
2338	writel(cmd, &oxu->regs->command);
2339	/* posted write ... */
2340
2341	oxu->next_uframe = -1;
2342	return 0;
2343}
2344
2345/* periodic schedule slots have iso tds (normal or split) first, then a
2346 * sparse tree for active interrupt transfers.
2347 *
2348 * this just links in a qh; caller guarantees uframe masks are set right.
2349 * no FSTN support (yet; oxu 0.96+)
2350 */
2351static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2352{
2353	unsigned i;
2354	unsigned period = qh->period;
2355
2356	dev_dbg(&qh->dev->dev,
2357		"link qh%d-%04x/%p start %d [%d/%d us]\n",
2358		period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2359		qh, qh->start, qh->usecs, qh->c_usecs);
2360
2361	/* high bandwidth, or otherwise every microframe */
2362	if (period == 0)
2363		period = 1;
2364
2365	for (i = qh->start; i < oxu->periodic_size; i += period) {
2366		union ehci_shadow	*prev = &oxu->pshadow[i];
2367		__le32			*hw_p = &oxu->periodic[i];
2368		union ehci_shadow	here = *prev;
2369		__le32			type = 0;
2370
2371		/* skip the iso nodes at list head */
2372		while (here.ptr) {
2373			type = Q_NEXT_TYPE(*hw_p);
2374			if (type == Q_TYPE_QH)
2375				break;
2376			prev = periodic_next_shadow(prev, type);
2377			hw_p = &here.qh->hw_next;
2378			here = *prev;
2379		}
2380
2381		/* sorting each branch by period (slow-->fast)
2382		 * enables sharing interior tree nodes
2383		 */
2384		while (here.ptr && qh != here.qh) {
2385			if (qh->period > here.qh->period)
2386				break;
2387			prev = &here.qh->qh_next;
2388			hw_p = &here.qh->hw_next;
2389			here = *prev;
2390		}
2391		/* link in this qh, unless some earlier pass did that */
2392		if (qh != here.qh) {
2393			qh->qh_next = here;
2394			if (here.qh)
2395				qh->hw_next = *hw_p;
2396			wmb();
2397			prev->qh = qh;
2398			*hw_p = QH_NEXT(qh->qh_dma);
2399		}
2400	}
2401	qh->qh_state = QH_STATE_LINKED;
2402	qh_get(qh);
2403
2404	/* update per-qh bandwidth for usbfs */
2405	oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
2406		? ((qh->usecs + qh->c_usecs) / qh->period)
2407		: (qh->usecs * 8);
2408
2409	/* maybe enable periodic schedule processing */
2410	if (!oxu->periodic_sched++)
2411		return enable_periodic(oxu);
2412
2413	return 0;
2414}
2415
2416static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2417{
2418	unsigned i;
2419	unsigned period;
2420
2421	/* FIXME:
2422	 *   IF this isn't high speed
2423	 *   and this qh is active in the current uframe
2424	 *   (and overlay token SplitXstate is false?)
2425	 * THEN
2426	 *   qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2427	 */
2428
2429	/* high bandwidth, or otherwise part of every microframe */
2430	period = qh->period;
2431	if (period == 0)
2432		period = 1;
2433
2434	for (i = qh->start; i < oxu->periodic_size; i += period)
2435		periodic_unlink(oxu, i, qh);
2436
2437	/* update per-qh bandwidth for usbfs */
2438	oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2439		? ((qh->usecs + qh->c_usecs) / qh->period)
2440		: (qh->usecs * 8);
2441
2442	dev_dbg(&qh->dev->dev,
2443		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2444		qh->period,
2445		le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2446		qh, qh->start, qh->usecs, qh->c_usecs);
2447
2448	/* qh->qh_next still "live" to HC */
2449	qh->qh_state = QH_STATE_UNLINK;
2450	qh->qh_next.ptr = NULL;
2451	qh_put(qh);
2452
2453	/* maybe turn off periodic schedule */
2454	oxu->periodic_sched--;
2455	if (!oxu->periodic_sched)
2456		(void) disable_periodic(oxu);
2457}
2458
2459static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2460{
2461	unsigned wait;
2462
2463	qh_unlink_periodic(oxu, qh);
2464
2465	/* simple/paranoid:  always delay, expecting the HC needs to read
2466	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2467	 * expect hub_wq to clean up after any CSPLITs we won't issue.
2468	 * active high speed queues may need bigger delays...
2469	 */
2470	if (list_empty(&qh->qtd_list)
2471		|| (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2472		wait = 2;
2473	else
2474		wait = 55;	/* worst case: 3 * 1024 */
2475
2476	udelay(wait);
2477	qh->qh_state = QH_STATE_IDLE;
2478	qh->hw_next = EHCI_LIST_END;
2479	wmb();
2480}
2481
2482static int check_period(struct oxu_hcd *oxu,
2483			unsigned frame, unsigned uframe,
2484			unsigned period, unsigned usecs)
2485{
2486	int claimed;
2487
2488	/* complete split running into next frame?
2489	 * given FSTN support, we could sometimes check...
2490	 */
2491	if (uframe >= 8)
2492		return 0;
2493
2494	/*
2495	 * 80% periodic == 100 usec/uframe available
2496	 * convert "usecs we need" to "max already claimed"
2497	 */
2498	usecs = 100 - usecs;
2499
2500	/* we "know" 2 and 4 uframe intervals were rejected; so
2501	 * for period 0, check _every_ microframe in the schedule.
2502	 */
2503	if (unlikely(period == 0)) {
2504		do {
2505			for (uframe = 0; uframe < 7; uframe++) {
2506				claimed = periodic_usecs(oxu, frame, uframe);
2507				if (claimed > usecs)
2508					return 0;
2509			}
2510		} while ((frame += 1) < oxu->periodic_size);
2511
2512	/* just check the specified uframe, at that period */
2513	} else {
2514		do {
2515			claimed = periodic_usecs(oxu, frame, uframe);
2516			if (claimed > usecs)
2517				return 0;
2518		} while ((frame += period) < oxu->periodic_size);
2519	}
2520
2521	return 1;
2522}
2523
2524static int check_intr_schedule(struct oxu_hcd	*oxu,
2525				unsigned frame, unsigned uframe,
2526				const struct ehci_qh *qh, __le32 *c_maskp)
2527{
2528	int retval = -ENOSPC;
2529
2530	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
2531		goto done;
2532
2533	if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2534		goto done;
2535	if (!qh->c_usecs) {
2536		retval = 0;
2537		*c_maskp = 0;
2538		goto done;
2539	}
2540
2541done:
2542	return retval;
2543}
2544
2545/* "first fit" scheduling policy used the first time through,
2546 * or when the previous schedule slot can't be re-used.
2547 */
2548static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2549{
2550	int		status;
2551	unsigned	uframe;
2552	__le32		c_mask;
2553	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
2554
2555	qh_refresh(oxu, qh);
2556	qh->hw_next = EHCI_LIST_END;
2557	frame = qh->start;
2558
2559	/* reuse the previous schedule slots, if we can */
2560	if (frame < qh->period) {
2561		uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2562		status = check_intr_schedule(oxu, frame, --uframe,
2563				qh, &c_mask);
2564	} else {
2565		uframe = 0;
2566		c_mask = 0;
2567		status = -ENOSPC;
2568	}
2569
2570	/* else scan the schedule to find a group of slots such that all
2571	 * uframes have enough periodic bandwidth available.
2572	 */
2573	if (status) {
2574		/* "normal" case, uframing flexible except with splits */
2575		if (qh->period) {
2576			frame = qh->period - 1;
2577			do {
2578				for (uframe = 0; uframe < 8; uframe++) {
2579					status = check_intr_schedule(oxu,
2580							frame, uframe, qh,
2581							&c_mask);
2582					if (status == 0)
2583						break;
2584				}
2585			} while (status && frame--);
2586
2587		/* qh->period == 0 means every uframe */
2588		} else {
2589			frame = 0;
2590			status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2591		}
2592		if (status)
2593			goto done;
2594		qh->start = frame;
2595
2596		/* reset S-frame and (maybe) C-frame masks */
2597		qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2598		qh->hw_info2 |= qh->period
2599			? cpu_to_le32(1 << uframe)
2600			: cpu_to_le32(QH_SMASK);
2601		qh->hw_info2 |= c_mask;
2602	} else
2603		oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2604
2605	/* stuff into the periodic schedule */
2606	status = qh_link_periodic(oxu, qh);
2607done:
2608	return status;
2609}
2610
2611static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2612			struct list_head *qtd_list, gfp_t mem_flags)
2613{
2614	unsigned epnum;
2615	unsigned long flags;
2616	struct ehci_qh *qh;
2617	int status = 0;
2618	struct list_head	empty;
2619
2620	/* get endpoint and transfer/schedule data */
2621	epnum = urb->ep->desc.bEndpointAddress;
2622
2623	spin_lock_irqsave(&oxu->lock, flags);
2624
2625	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2626		status = -ESHUTDOWN;
2627		goto done;
2628	}
2629
2630	/* get qh and force any scheduling errors */
2631	INIT_LIST_HEAD(&empty);
2632	qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2633	if (qh == NULL) {
2634		status = -ENOMEM;
2635		goto done;
2636	}
2637	if (qh->qh_state == QH_STATE_IDLE) {
2638		status = qh_schedule(oxu, qh);
2639		if (status != 0)
2640			goto done;
2641	}
2642
2643	/* then queue the urb's tds to the qh */
2644	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2645	BUG_ON(qh == NULL);
2646
2647	/* ... update usbfs periodic stats */
2648	oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2649
2650done:
2651	spin_unlock_irqrestore(&oxu->lock, flags);
2652	if (status)
2653		qtd_list_free(oxu, urb, qtd_list);
2654
2655	return status;
2656}
2657
2658static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2659						gfp_t mem_flags)
2660{
2661	oxu_dbg(oxu, "iso support is missing!\n");
2662	return -ENOSYS;
2663}
2664
2665static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2666						gfp_t mem_flags)
2667{
2668	oxu_dbg(oxu, "split iso support is missing!\n");
2669	return -ENOSYS;
2670}
2671
2672static void scan_periodic(struct oxu_hcd *oxu)
2673{
2674	unsigned frame, clock, now_uframe, mod;
2675	unsigned modified;
2676
2677	mod = oxu->periodic_size << 3;
2678
2679	/*
2680	 * When running, scan from last scan point up to "now"
2681	 * else clean up by scanning everything that's left.
2682	 * Touches as few pages as possible:  cache-friendly.
2683	 */
2684	now_uframe = oxu->next_uframe;
2685	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2686		clock = readl(&oxu->regs->frame_index);
2687	else
2688		clock = now_uframe + mod - 1;
2689	clock %= mod;
2690
2691	for (;;) {
2692		union ehci_shadow	q, *q_p;
2693		__le32			type, *hw_p;
2694
2695		/* don't scan past the live uframe */
2696		frame = now_uframe >> 3;
2697		if (frame != (clock >> 3)) {
2698			/* safe to scan the whole frame at once */
2699			now_uframe |= 0x07;
2700		}
2701
2702restart:
2703		/* scan each element in frame's queue for completions */
2704		q_p = &oxu->pshadow[frame];
2705		hw_p = &oxu->periodic[frame];
2706		q.ptr = q_p->ptr;
2707		type = Q_NEXT_TYPE(*hw_p);
2708		modified = 0;
2709
2710		while (q.ptr != NULL) {
2711			union ehci_shadow temp;
2712
2713			switch (type) {
2714			case Q_TYPE_QH:
2715				/* handle any completions */
2716				temp.qh = qh_get(q.qh);
2717				type = Q_NEXT_TYPE(q.qh->hw_next);
2718				q = q.qh->qh_next;
2719				modified = qh_completions(oxu, temp.qh);
2720				if (unlikely(list_empty(&temp.qh->qtd_list)))
2721					intr_deschedule(oxu, temp.qh);
2722				qh_put(temp.qh);
2723				break;
2724			default:
2725				oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2726					type, frame, q.ptr);
2727				q.ptr = NULL;
2728			}
2729
2730			/* assume completion callbacks modify the queue */
2731			if (unlikely(modified))
2732				goto restart;
2733		}
2734
2735		/* Stop when we catch up to the HC */
2736
2737		/* FIXME:  this assumes we won't get lapped when
2738		 * latencies climb; that should be rare, but...
2739		 * detect it, and just go all the way around.
2740		 * FLR might help detect this case, so long as latencies
2741		 * don't exceed periodic_size msec (default 1.024 sec).
2742		 */
2743
2744		/* FIXME: likewise assumes HC doesn't halt mid-scan */
2745
2746		if (now_uframe == clock) {
2747			unsigned	now;
2748
2749			if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2750				break;
2751			oxu->next_uframe = now_uframe;
2752			now = readl(&oxu->regs->frame_index) % mod;
2753			if (now_uframe == now)
2754				break;
2755
2756			/* rescan the rest of this frame, then ... */
2757			clock = now;
2758		} else {
2759			now_uframe++;
2760			now_uframe %= mod;
2761		}
2762	}
2763}
2764
2765/* On some systems, leaving remote wakeup enabled prevents system shutdown.
2766 * The firmware seems to think that powering off is a wakeup event!
2767 * This routine turns off remote wakeup and everything else, on all ports.
2768 */
2769static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2770{
2771	int port = HCS_N_PORTS(oxu->hcs_params);
2772
2773	while (port--)
2774		writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2775}
2776
2777static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2778{
2779	unsigned port;
2780
2781	if (!HCS_PPC(oxu->hcs_params))
2782		return;
2783
2784	oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2785	for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) {
2786		if (is_on)
2787			oxu_hub_control(oxu_to_hcd(oxu), SetPortFeature,
2788				USB_PORT_FEAT_POWER, port--, NULL, 0);
2789		else
2790			oxu_hub_control(oxu_to_hcd(oxu), ClearPortFeature,
2791				USB_PORT_FEAT_POWER, port--, NULL, 0);
2792	}
2793
2794	msleep(20);
2795}
2796
2797/* Called from some interrupts, timers, and so on.
2798 * It calls driver completion functions, after dropping oxu->lock.
2799 */
2800static void ehci_work(struct oxu_hcd *oxu)
2801{
2802	timer_action_done(oxu, TIMER_IO_WATCHDOG);
2803	if (oxu->reclaim_ready)
2804		end_unlink_async(oxu);
2805
2806	/* another CPU may drop oxu->lock during a schedule scan while
2807	 * it reports urb completions.  this flag guards against bogus
2808	 * attempts at re-entrant schedule scanning.
2809	 */
2810	if (oxu->scanning)
2811		return;
2812	oxu->scanning = 1;
2813	scan_async(oxu);
2814	if (oxu->next_uframe != -1)
2815		scan_periodic(oxu);
2816	oxu->scanning = 0;
2817
2818	/* the IO watchdog guards against hardware or driver bugs that
2819	 * misplace IRQs, and should let us run completely without IRQs.
2820	 * such lossage has been observed on both VT6202 and VT8235.
2821	 */
2822	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2823			(oxu->async->qh_next.ptr != NULL ||
2824			 oxu->periodic_sched != 0))
2825		timer_action(oxu, TIMER_IO_WATCHDOG);
2826}
2827
2828static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2829{
2830	/* if we need to use IAA and it's busy, defer */
2831	if (qh->qh_state == QH_STATE_LINKED
2832			&& oxu->reclaim
2833			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2834		struct ehci_qh		*last;
2835
2836		for (last = oxu->reclaim;
2837				last->reclaim;
2838				last = last->reclaim)
2839			continue;
2840		qh->qh_state = QH_STATE_UNLINK_WAIT;
2841		last->reclaim = qh;
2842
2843	/* bypass IAA if the hc can't care */
2844	} else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2845		end_unlink_async(oxu);
2846
2847	/* something else might have unlinked the qh by now */
2848	if (qh->qh_state == QH_STATE_LINKED)
2849		start_unlink_async(oxu, qh);
2850}
2851
2852/*
2853 * USB host controller methods
2854 */
2855
2856static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2857{
2858	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2859	u32 status, pcd_status = 0;
2860	int bh;
2861
2862	spin_lock(&oxu->lock);
2863
2864	status = readl(&oxu->regs->status);
2865
2866	/* e.g. cardbus physical eject */
2867	if (status == ~(u32) 0) {
2868		oxu_dbg(oxu, "device removed\n");
2869		goto dead;
2870	}
2871
2872	/* Shared IRQ? */
2873	status &= INTR_MASK;
2874	if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2875		spin_unlock(&oxu->lock);
2876		return IRQ_NONE;
2877	}
2878
2879	/* clear (just) interrupts */
2880	writel(status, &oxu->regs->status);
2881	readl(&oxu->regs->command);	/* unblock posted write */
2882	bh = 0;
2883
2884#ifdef OXU_VERBOSE_DEBUG
2885	/* unrequested/ignored: Frame List Rollover */
2886	dbg_status(oxu, "irq", status);
2887#endif
2888
2889	/* INT, ERR, and IAA interrupt rates can be throttled */
2890
2891	/* normal [4.15.1.2] or error [4.15.1.1] completion */
2892	if (likely((status & (STS_INT|STS_ERR)) != 0))
2893		bh = 1;
2894
2895	/* complete the unlinking of some qh [4.15.2.3] */
2896	if (status & STS_IAA) {
2897		oxu->reclaim_ready = 1;
2898		bh = 1;
2899	}
2900
2901	/* remote wakeup [4.3.1] */
2902	if (status & STS_PCD) {
2903		unsigned i = HCS_N_PORTS(oxu->hcs_params);
2904		pcd_status = status;
2905
2906		/* resume root hub? */
2907		if (!(readl(&oxu->regs->command) & CMD_RUN))
2908			usb_hcd_resume_root_hub(hcd);
2909
2910		while (i--) {
2911			int pstatus = readl(&oxu->regs->port_status[i]);
2912
2913			if (pstatus & PORT_OWNER)
2914				continue;
2915			if (!(pstatus & PORT_RESUME)
2916					|| oxu->reset_done[i] != 0)
2917				continue;
2918
2919			/* start USB_RESUME_TIMEOUT resume signaling from this
2920			 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2921			 * stop that signaling.
2922			 */
2923			oxu->reset_done[i] = jiffies +
2924				msecs_to_jiffies(USB_RESUME_TIMEOUT);
2925			oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2926			mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2927		}
2928	}
2929
2930	/* PCI errors [4.15.2.4] */
2931	if (unlikely((status & STS_FATAL) != 0)) {
2932		/* bogus "fatal" IRQs appear on some chips... why?  */
2933		status = readl(&oxu->regs->status);
2934		dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2935		dbg_status(oxu, "fatal", status);
2936		if (status & STS_HALT) {
2937			oxu_err(oxu, "fatal error\n");
2938dead:
2939			ehci_reset(oxu);
2940			writel(0, &oxu->regs->configured_flag);
2941			usb_hc_died(hcd);
2942			/* generic layer kills/unlinks all urbs, then
2943			 * uses oxu_stop to clean up the rest
2944			 */
2945			bh = 1;
2946		}
2947	}
2948
2949	if (bh)
2950		ehci_work(oxu);
2951	spin_unlock(&oxu->lock);
2952	if (pcd_status & STS_PCD)
2953		usb_hcd_poll_rh_status(hcd);
2954	return IRQ_HANDLED;
2955}
2956
2957static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2958{
2959	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2960	int ret = IRQ_HANDLED;
2961
2962	u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2963	u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2964
2965	/* Disable all interrupt */
2966	oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2967
2968	if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2969		(!oxu->is_otg && (status & OXU_USBSPHI)))
2970		oxu210_hcd_irq(hcd);
2971	else
2972		ret = IRQ_NONE;
2973
2974	/* Enable all interrupt back */
2975	oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2976
2977	return ret;
2978}
2979
2980static void oxu_watchdog(struct timer_list *t)
2981{
2982	struct oxu_hcd	*oxu = from_timer(oxu, t, watchdog);
2983	unsigned long flags;
2984
2985	spin_lock_irqsave(&oxu->lock, flags);
2986
2987	/* lost IAA irqs wedge things badly; seen with a vt8235 */
2988	if (oxu->reclaim) {
2989		u32 status = readl(&oxu->regs->status);
2990		if (status & STS_IAA) {
2991			oxu_vdbg(oxu, "lost IAA\n");
2992			writel(STS_IAA, &oxu->regs->status);
2993			oxu->reclaim_ready = 1;
2994		}
2995	}
2996
2997	/* stop async processing after it's idled a bit */
2998	if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2999		start_unlink_async(oxu, oxu->async);
3000
3001	/* oxu could run by timer, without IRQs ... */
3002	ehci_work(oxu);
3003
3004	spin_unlock_irqrestore(&oxu->lock, flags);
3005}
3006
3007/* One-time init, only for memory state.
3008 */
3009static int oxu_hcd_init(struct usb_hcd *hcd)
3010{
3011	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3012	u32 temp;
3013	int retval;
3014	u32 hcc_params;
3015
3016	spin_lock_init(&oxu->lock);
3017
3018	timer_setup(&oxu->watchdog, oxu_watchdog, 0);
3019
3020	/*
3021	 * hw default: 1K periodic list heads, one per frame.
3022	 * periodic_size can shrink by USBCMD update if hcc_params allows.
3023	 */
3024	oxu->periodic_size = DEFAULT_I_TDPS;
3025	retval = ehci_mem_init(oxu, GFP_KERNEL);
3026	if (retval < 0)
3027		return retval;
3028
3029	/* controllers may cache some of the periodic schedule ... */
3030	hcc_params = readl(&oxu->caps->hcc_params);
3031	if (HCC_ISOC_CACHE(hcc_params))		/* full frame cache */
3032		oxu->i_thresh = 8;
3033	else					/* N microframes cached */
3034		oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
3035
3036	oxu->reclaim = NULL;
3037	oxu->reclaim_ready = 0;
3038	oxu->next_uframe = -1;
3039
3040	/*
3041	 * dedicate a qh for the async ring head, since we couldn't unlink
3042	 * a 'real' qh without stopping the async schedule [4.8].  use it
3043	 * as the 'reclamation list head' too.
3044	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
3045	 * from automatically advancing to the next td after short reads.
3046	 */
3047	oxu->async->qh_next.qh = NULL;
3048	oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
3049	oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
3050	oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
3051	oxu->async->hw_qtd_next = EHCI_LIST_END;
3052	oxu->async->qh_state = QH_STATE_LINKED;
3053	oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
3054
3055	/* clear interrupt enables, set irq latency */
3056	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
3057		log2_irq_thresh = 0;
3058	temp = 1 << (16 + log2_irq_thresh);
3059	if (HCC_CANPARK(hcc_params)) {
3060		/* HW default park == 3, on hardware that supports it (like
3061		 * NVidia and ALI silicon), maximizes throughput on the async
3062		 * schedule by avoiding QH fetches between transfers.
3063		 *
3064		 * With fast usb storage devices and NForce2, "park" seems to
3065		 * make problems:  throughput reduction (!), data errors...
3066		 */
3067		if (park) {
3068			park = min(park, (unsigned) 3);
3069			temp |= CMD_PARK;
3070			temp |= park << 8;
3071		}
3072		oxu_dbg(oxu, "park %d\n", park);
3073	}
3074	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
3075		/* periodic schedule size can be smaller than default */
3076		temp &= ~(3 << 2);
3077		temp |= (EHCI_TUNE_FLS << 2);
3078	}
3079	oxu->command = temp;
3080
3081	return 0;
3082}
3083
3084/* Called during probe() after chip reset completes.
3085 */
3086static int oxu_reset(struct usb_hcd *hcd)
3087{
3088	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3089
3090	spin_lock_init(&oxu->mem_lock);
3091	INIT_LIST_HEAD(&oxu->urb_list);
3092	oxu->urb_len = 0;
3093
3094	if (oxu->is_otg) {
3095		oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
3096		oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
3097			HC_LENGTH(readl(&oxu->caps->hc_capbase));
3098
3099		oxu->mem = hcd->regs + OXU_SPH_MEM;
3100	} else {
3101		oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
3102		oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
3103			HC_LENGTH(readl(&oxu->caps->hc_capbase));
3104
3105		oxu->mem = hcd->regs + OXU_OTG_MEM;
3106	}
3107
3108	oxu->hcs_params = readl(&oxu->caps->hcs_params);
3109	oxu->sbrn = 0x20;
3110
3111	return oxu_hcd_init(hcd);
3112}
3113
3114static int oxu_run(struct usb_hcd *hcd)
3115{
3116	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3117	int retval;
3118	u32 temp, hcc_params;
3119
3120	hcd->uses_new_polling = 1;
3121
3122	/* EHCI spec section 4.1 */
3123	retval = ehci_reset(oxu);
3124	if (retval != 0) {
3125		ehci_mem_cleanup(oxu);
3126		return retval;
3127	}
3128	writel(oxu->periodic_dma, &oxu->regs->frame_list);
3129	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3130
3131	/* hcc_params controls whether oxu->regs->segment must (!!!)
3132	 * be used; it constrains QH/ITD/SITD and QTD locations.
3133	 * dma_pool consistent memory always uses segment zero.
3134	 * streaming mappings for I/O buffers, like dma_map_single(),
3135	 * can return segments above 4GB, if the device allows.
3136	 *
3137	 * NOTE:  the dma mask is visible through dev->dma_mask, so
3138	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
3139	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
3140	 * host side drivers though.
3141	 */
3142	hcc_params = readl(&oxu->caps->hcc_params);
3143	if (HCC_64BIT_ADDR(hcc_params))
3144		writel(0, &oxu->regs->segment);
3145
3146	oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
3147				CMD_ASE | CMD_RESET);
3148	oxu->command |= CMD_RUN;
3149	writel(oxu->command, &oxu->regs->command);
3150	dbg_cmd(oxu, "init", oxu->command);
3151
3152	/*
3153	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
3154	 * are explicitly handed to companion controller(s), so no TT is
3155	 * involved with the root hub.  (Except where one is integrated,
3156	 * and there's no companion controller unless maybe for USB OTG.)
3157	 */
3158	hcd->state = HC_STATE_RUNNING;
3159	writel(FLAG_CF, &oxu->regs->configured_flag);
3160	readl(&oxu->regs->command);	/* unblock posted writes */
3161
3162	temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
3163	oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
3164		((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
3165		temp >> 8, temp & 0xff, DRIVER_VERSION,
3166		ignore_oc ? ", overcurrent ignored" : "");
3167
3168	writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
3169
3170	return 0;
3171}
3172
3173static void oxu_stop(struct usb_hcd *hcd)
3174{
3175	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3176
3177	/* Turn off port power on all root hub ports. */
3178	ehci_port_power(oxu, 0);
3179
3180	/* no more interrupts ... */
3181	del_timer_sync(&oxu->watchdog);
3182
3183	spin_lock_irq(&oxu->lock);
3184	if (HC_IS_RUNNING(hcd->state))
3185		ehci_quiesce(oxu);
3186
3187	ehci_reset(oxu);
3188	writel(0, &oxu->regs->intr_enable);
3189	spin_unlock_irq(&oxu->lock);
3190
3191	/* let companion controllers work when we aren't */
3192	writel(0, &oxu->regs->configured_flag);
3193
3194	/* root hub is shut down separately (first, when possible) */
3195	spin_lock_irq(&oxu->lock);
3196	if (oxu->async)
3197		ehci_work(oxu);
3198	spin_unlock_irq(&oxu->lock);
3199	ehci_mem_cleanup(oxu);
3200
3201	dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
3202}
3203
3204/* Kick in for silicon on any bus (not just pci, etc).
3205 * This forcibly disables dma and IRQs, helping kexec and other cases
3206 * where the next system software may expect clean state.
3207 */
3208static void oxu_shutdown(struct usb_hcd *hcd)
3209{
3210	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3211
3212	(void) ehci_halt(oxu);
3213	ehci_turn_off_all_ports(oxu);
3214
3215	/* make BIOS/etc use companion controller during reboot */
3216	writel(0, &oxu->regs->configured_flag);
3217
3218	/* unblock posted writes */
3219	readl(&oxu->regs->configured_flag);
3220}
3221
3222/* Non-error returns are a promise to giveback() the urb later
3223 * we drop ownership so next owner (or urb unlink) can get it
3224 *
3225 * urb + dev is in hcd.self.controller.urb_list
3226 * we're queueing TDs onto software and hardware lists
3227 *
3228 * hcd-specific init for hcpriv hasn't been done yet
3229 *
3230 * NOTE:  control, bulk, and interrupt share the same code to append TDs
3231 * to a (possibly active) QH, and the same QH scanning code.
3232 */
3233static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3234				gfp_t mem_flags)
3235{
3236	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3237	struct list_head qtd_list;
3238
3239	INIT_LIST_HEAD(&qtd_list);
3240
3241	switch (usb_pipetype(urb->pipe)) {
3242	case PIPE_CONTROL:
3243	case PIPE_BULK:
3244	default:
3245		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3246			return -ENOMEM;
3247		return submit_async(oxu, urb, &qtd_list, mem_flags);
3248
3249	case PIPE_INTERRUPT:
3250		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3251			return -ENOMEM;
3252		return intr_submit(oxu, urb, &qtd_list, mem_flags);
3253
3254	case PIPE_ISOCHRONOUS:
3255		if (urb->dev->speed == USB_SPEED_HIGH)
3256			return itd_submit(oxu, urb, mem_flags);
3257		else
3258			return sitd_submit(oxu, urb, mem_flags);
3259	}
3260}
3261
3262/* This function is responsible for breaking URBs with big data size
3263 * into smaller size and processing small urbs in sequence.
3264 */
3265static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3266				gfp_t mem_flags)
3267{
3268	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3269	int num, rem;
3270	void *transfer_buffer;
3271	struct urb *murb;
3272	int i, ret;
3273
3274	/* If not bulk pipe just enqueue the URB */
3275	if (!usb_pipebulk(urb->pipe))
3276		return __oxu_urb_enqueue(hcd, urb, mem_flags);
3277
3278	/* Otherwise we should verify the USB transfer buffer size! */
3279	transfer_buffer = urb->transfer_buffer;
3280
3281	num = urb->transfer_buffer_length / 4096;
3282	rem = urb->transfer_buffer_length % 4096;
3283	if (rem != 0)
3284		num++;
3285
3286	/* If URB is smaller than 4096 bytes just enqueue it! */
3287	if (num == 1)
3288		return __oxu_urb_enqueue(hcd, urb, mem_flags);
3289
3290	/* Ok, we have more job to do! :) */
3291
3292	for (i = 0; i < num - 1; i++) {
3293		/* Get free micro URB poll till a free urb is received */
3294
3295		do {
3296			murb = (struct urb *) oxu_murb_alloc(oxu);
3297			if (!murb)
3298				schedule();
3299		} while (!murb);
3300
3301		/* Coping the urb */
3302		memcpy(murb, urb, sizeof(struct urb));
3303
3304		murb->transfer_buffer_length = 4096;
3305		murb->transfer_buffer = transfer_buffer + i * 4096;
3306
3307		/* Null pointer for the encodes that this is a micro urb */
3308		murb->complete = NULL;
3309
3310		((struct oxu_murb *) murb)->main = urb;
3311		((struct oxu_murb *) murb)->last = 0;
3312
3313		/* This loop is to guarantee urb to be processed when there's
3314		 * not enough resources at a particular time by retrying.
3315		 */
3316		do {
3317			ret  = __oxu_urb_enqueue(hcd, murb, mem_flags);
3318			if (ret)
3319				schedule();
3320		} while (ret);
3321	}
3322
3323	/* Last urb requires special handling  */
3324
3325	/* Get free micro URB poll till a free urb is received */
3326	do {
3327		murb = (struct urb *) oxu_murb_alloc(oxu);
3328		if (!murb)
3329			schedule();
3330	} while (!murb);
3331
3332	/* Coping the urb */
3333	memcpy(murb, urb, sizeof(struct urb));
3334
3335	murb->transfer_buffer_length = rem > 0 ? rem : 4096;
3336	murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
3337
3338	/* Null pointer for the encodes that this is a micro urb */
3339	murb->complete = NULL;
3340
3341	((struct oxu_murb *) murb)->main = urb;
3342	((struct oxu_murb *) murb)->last = 1;
3343
3344	do {
3345		ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3346		if (ret)
3347			schedule();
3348	} while (ret);
3349
3350	return ret;
3351}
3352
3353/* Remove from hardware lists.
3354 * Completions normally happen asynchronously
3355 */
3356static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
3357{
3358	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3359	struct ehci_qh *qh;
3360	unsigned long flags;
3361
3362	spin_lock_irqsave(&oxu->lock, flags);
3363	switch (usb_pipetype(urb->pipe)) {
3364	case PIPE_CONTROL:
3365	case PIPE_BULK:
3366	default:
3367		qh = (struct ehci_qh *) urb->hcpriv;
3368		if (!qh)
3369			break;
3370		unlink_async(oxu, qh);
3371		break;
3372
3373	case PIPE_INTERRUPT:
3374		qh = (struct ehci_qh *) urb->hcpriv;
3375		if (!qh)
3376			break;
3377		switch (qh->qh_state) {
3378		case QH_STATE_LINKED:
3379			intr_deschedule(oxu, qh);
3380			fallthrough;
3381		case QH_STATE_IDLE:
3382			qh_completions(oxu, qh);
3383			break;
3384		default:
3385			oxu_dbg(oxu, "bogus qh %p state %d\n",
3386					qh, qh->qh_state);
3387			goto done;
3388		}
3389
3390		/* reschedule QH iff another request is queued */
3391		if (!list_empty(&qh->qtd_list)
3392				&& HC_IS_RUNNING(hcd->state)) {
3393			int status;
3394
3395			status = qh_schedule(oxu, qh);
3396			spin_unlock_irqrestore(&oxu->lock, flags);
3397
3398			if (status != 0) {
3399				/* shouldn't happen often, but ...
3400				 * FIXME kill those tds' urbs
3401				 */
3402				dev_err(hcd->self.controller,
3403					"can't reschedule qh %p, err %d\n", qh,
3404					status);
3405			}
3406			return status;
3407		}
3408		break;
3409	}
3410done:
3411	spin_unlock_irqrestore(&oxu->lock, flags);
3412	return 0;
3413}
3414
3415/* Bulk qh holds the data toggle */
3416static void oxu_endpoint_disable(struct usb_hcd *hcd,
3417					struct usb_host_endpoint *ep)
3418{
3419	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3420	unsigned long		flags;
3421	struct ehci_qh		*qh, *tmp;
3422
3423	/* ASSERT:  any requests/urbs are being unlinked */
3424	/* ASSERT:  nobody can be submitting urbs for this any more */
3425
3426rescan:
3427	spin_lock_irqsave(&oxu->lock, flags);
3428	qh = ep->hcpriv;
3429	if (!qh)
3430		goto done;
3431
3432	/* endpoints can be iso streams.  for now, we don't
3433	 * accelerate iso completions ... so spin a while.
3434	 */
3435	if (qh->hw_info1 == 0) {
3436		oxu_vdbg(oxu, "iso delay\n");
3437		goto idle_timeout;
3438	}
3439
3440	if (!HC_IS_RUNNING(hcd->state))
3441		qh->qh_state = QH_STATE_IDLE;
3442	switch (qh->qh_state) {
3443	case QH_STATE_LINKED:
3444		for (tmp = oxu->async->qh_next.qh;
3445				tmp && tmp != qh;
3446				tmp = tmp->qh_next.qh)
3447			continue;
3448		/* periodic qh self-unlinks on empty */
3449		if (!tmp)
3450			goto nogood;
3451		unlink_async(oxu, qh);
3452		fallthrough;
3453	case QH_STATE_UNLINK:		/* wait for hw to finish? */
3454idle_timeout:
3455		spin_unlock_irqrestore(&oxu->lock, flags);
3456		schedule_timeout_uninterruptible(1);
3457		goto rescan;
3458	case QH_STATE_IDLE:		/* fully unlinked */
3459		if (list_empty(&qh->qtd_list)) {
3460			qh_put(qh);
3461			break;
3462		}
3463		fallthrough;
3464	default:
3465nogood:
3466		/* caller was supposed to have unlinked any requests;
3467		 * that's not our job.  just leak this memory.
3468		 */
3469		oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3470			qh, ep->desc.bEndpointAddress, qh->qh_state,
3471			list_empty(&qh->qtd_list) ? "" : "(has tds)");
3472		break;
3473	}
3474	ep->hcpriv = NULL;
3475done:
3476	spin_unlock_irqrestore(&oxu->lock, flags);
3477}
3478
3479static int oxu_get_frame(struct usb_hcd *hcd)
3480{
3481	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3482
3483	return (readl(&oxu->regs->frame_index) >> 3) %
3484		oxu->periodic_size;
3485}
3486
3487/* Build "status change" packet (one or two bytes) from HC registers */
3488static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3489{
3490	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3491	u32 temp, mask, status = 0;
3492	int ports, i, retval = 1;
3493	unsigned long flags;
3494
3495	/* if !PM, root hub timers won't get shut down ... */
3496	if (!HC_IS_RUNNING(hcd->state))
3497		return 0;
3498
3499	/* init status to no-changes */
3500	buf[0] = 0;
3501	ports = HCS_N_PORTS(oxu->hcs_params);
3502	if (ports > 7) {
3503		buf[1] = 0;
3504		retval++;
3505	}
3506
3507	/* Some boards (mostly VIA?) report bogus overcurrent indications,
3508	 * causing massive log spam unless we completely ignore them.  It
3509	 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3510	 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3511	 * PORT_POWER; that's surprising, but maybe within-spec.
3512	 */
3513	if (!ignore_oc)
3514		mask = PORT_CSC | PORT_PEC | PORT_OCC;
3515	else
3516		mask = PORT_CSC | PORT_PEC;
3517
3518	/* no hub change reports (bit 0) for now (power, ...) */
3519
3520	/* port N changes (bit N)? */
3521	spin_lock_irqsave(&oxu->lock, flags);
3522	for (i = 0; i < ports; i++) {
3523		temp = readl(&oxu->regs->port_status[i]);
3524
3525		/*
3526		 * Return status information even for ports with OWNER set.
3527		 * Otherwise hub_wq wouldn't see the disconnect event when a
3528		 * high-speed device is switched over to the companion
3529		 * controller by the user.
3530		 */
3531
3532		if (!(temp & PORT_CONNECT))
3533			oxu->reset_done[i] = 0;
3534		if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3535				time_after_eq(jiffies, oxu->reset_done[i]))) {
3536			if (i < 7)
3537				buf[0] |= 1 << (i + 1);
3538			else
3539				buf[1] |= 1 << (i - 7);
3540			status = STS_PCD;
3541		}
3542	}
3543	/* FIXME autosuspend idle root hubs */
3544	spin_unlock_irqrestore(&oxu->lock, flags);
3545	return status ? retval : 0;
3546}
3547
3548/* Returns the speed of a device attached to a port on the root hub. */
3549static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3550						unsigned int portsc)
3551{
3552	switch ((portsc >> 26) & 3) {
3553	case 0:
3554		return 0;
3555	case 1:
3556		return USB_PORT_STAT_LOW_SPEED;
3557	case 2:
3558	default:
3559		return USB_PORT_STAT_HIGH_SPEED;
3560	}
3561}
3562
3563#define	PORT_WAKE_BITS	(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3564static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3565				u16 wValue, u16 wIndex, char *buf, u16 wLength)
3566{
3567	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3568	int ports = HCS_N_PORTS(oxu->hcs_params);
3569	u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3570	u32 temp, status;
3571	unsigned long	flags;
3572	int retval = 0;
3573	unsigned selector;
3574
3575	/*
3576	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3577	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3578	 * (track current state ourselves) ... blink for diagnostics,
3579	 * power, "this is the one", etc.  EHCI spec supports this.
3580	 */
3581
3582	spin_lock_irqsave(&oxu->lock, flags);
3583	switch (typeReq) {
3584	case ClearHubFeature:
3585		switch (wValue) {
3586		case C_HUB_LOCAL_POWER:
3587		case C_HUB_OVER_CURRENT:
3588			/* no hub-wide feature/status flags */
3589			break;
3590		default:
3591			goto error;
3592		}
3593		break;
3594	case ClearPortFeature:
3595		if (!wIndex || wIndex > ports)
3596			goto error;
3597		wIndex--;
3598		temp = readl(status_reg);
3599
3600		/*
3601		 * Even if OWNER is set, so the port is owned by the
3602		 * companion controller, hub_wq needs to be able to clear
3603		 * the port-change status bits (especially
3604		 * USB_PORT_STAT_C_CONNECTION).
3605		 */
3606
3607		switch (wValue) {
3608		case USB_PORT_FEAT_ENABLE:
3609			writel(temp & ~PORT_PE, status_reg);
3610			break;
3611		case USB_PORT_FEAT_C_ENABLE:
3612			writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3613			break;
3614		case USB_PORT_FEAT_SUSPEND:
3615			if (temp & PORT_RESET)
3616				goto error;
3617			if (temp & PORT_SUSPEND) {
3618				if ((temp & PORT_PE) == 0)
3619					goto error;
3620				/* resume signaling for 20 msec */
3621				temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3622				writel(temp | PORT_RESUME, status_reg);
3623				oxu->reset_done[wIndex] = jiffies
3624						+ msecs_to_jiffies(20);
3625			}
3626			break;
3627		case USB_PORT_FEAT_C_SUSPEND:
3628			/* we auto-clear this feature */
3629			break;
3630		case USB_PORT_FEAT_POWER:
3631			if (HCS_PPC(oxu->hcs_params))
3632				writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3633					  status_reg);
3634			break;
3635		case USB_PORT_FEAT_C_CONNECTION:
3636			writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3637			break;
3638		case USB_PORT_FEAT_C_OVER_CURRENT:
3639			writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3640			break;
3641		case USB_PORT_FEAT_C_RESET:
3642			/* GetPortStatus clears reset */
3643			break;
3644		default:
3645			goto error;
3646		}
3647		readl(&oxu->regs->command);	/* unblock posted write */
3648		break;
3649	case GetHubDescriptor:
3650		ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3651			buf);
3652		break;
3653	case GetHubStatus:
3654		/* no hub-wide feature/status flags */
3655		memset(buf, 0, 4);
3656		break;
3657	case GetPortStatus:
3658		if (!wIndex || wIndex > ports)
3659			goto error;
3660		wIndex--;
3661		status = 0;
3662		temp = readl(status_reg);
3663
3664		/* wPortChange bits */
3665		if (temp & PORT_CSC)
3666			status |= USB_PORT_STAT_C_CONNECTION << 16;
3667		if (temp & PORT_PEC)
3668			status |= USB_PORT_STAT_C_ENABLE << 16;
3669		if ((temp & PORT_OCC) && !ignore_oc)
3670			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3671
3672		/* whoever resumes must GetPortStatus to complete it!! */
3673		if (temp & PORT_RESUME) {
3674
3675			/* Remote Wakeup received? */
3676			if (!oxu->reset_done[wIndex]) {
3677				/* resume signaling for 20 msec */
3678				oxu->reset_done[wIndex] = jiffies
3679						+ msecs_to_jiffies(20);
3680				/* check the port again */
3681				mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3682						oxu->reset_done[wIndex]);
3683			}
3684
3685			/* resume completed? */
3686			else if (time_after_eq(jiffies,
3687					oxu->reset_done[wIndex])) {
3688				status |= USB_PORT_STAT_C_SUSPEND << 16;
3689				oxu->reset_done[wIndex] = 0;
3690
3691				/* stop resume signaling */
3692				temp = readl(status_reg);
3693				writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3694					status_reg);
3695				retval = handshake(oxu, status_reg,
3696					   PORT_RESUME, 0, 2000 /* 2msec */);
3697				if (retval != 0) {
3698					oxu_err(oxu,
3699						"port %d resume error %d\n",
3700						wIndex + 1, retval);
3701					goto error;
3702				}
3703				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3704			}
3705		}
3706
3707		/* whoever resets must GetPortStatus to complete it!! */
3708		if ((temp & PORT_RESET)
3709				&& time_after_eq(jiffies,
3710					oxu->reset_done[wIndex])) {
3711			status |= USB_PORT_STAT_C_RESET << 16;
3712			oxu->reset_done[wIndex] = 0;
3713
3714			/* force reset to complete */
3715			writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3716					status_reg);
3717			/* REVISIT:  some hardware needs 550+ usec to clear
3718			 * this bit; seems too long to spin routinely...
3719			 */
3720			retval = handshake(oxu, status_reg,
3721					PORT_RESET, 0, 750);
3722			if (retval != 0) {
3723				oxu_err(oxu, "port %d reset error %d\n",
3724					wIndex + 1, retval);
3725				goto error;
3726			}
3727
3728			/* see what we found out */
3729			temp = check_reset_complete(oxu, wIndex, status_reg,
3730					readl(status_reg));
3731		}
3732
3733		/* transfer dedicated ports to the companion hc */
3734		if ((temp & PORT_CONNECT) &&
3735				test_bit(wIndex, &oxu->companion_ports)) {
3736			temp &= ~PORT_RWC_BITS;
3737			temp |= PORT_OWNER;
3738			writel(temp, status_reg);
3739			oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3740			temp = readl(status_reg);
3741		}
3742
3743		/*
3744		 * Even if OWNER is set, there's no harm letting hub_wq
3745		 * see the wPortStatus values (they should all be 0 except
3746		 * for PORT_POWER anyway).
3747		 */
3748
3749		if (temp & PORT_CONNECT) {
3750			status |= USB_PORT_STAT_CONNECTION;
3751			/* status may be from integrated TT */
3752			status |= oxu_port_speed(oxu, temp);
3753		}
3754		if (temp & PORT_PE)
3755			status |= USB_PORT_STAT_ENABLE;
3756		if (temp & (PORT_SUSPEND|PORT_RESUME))
3757			status |= USB_PORT_STAT_SUSPEND;
3758		if (temp & PORT_OC)
3759			status |= USB_PORT_STAT_OVERCURRENT;
3760		if (temp & PORT_RESET)
3761			status |= USB_PORT_STAT_RESET;
3762		if (temp & PORT_POWER)
3763			status |= USB_PORT_STAT_POWER;
3764
3765#ifndef	OXU_VERBOSE_DEBUG
3766	if (status & ~0xffff)	/* only if wPortChange is interesting */
3767#endif
3768		dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3769		put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3770		break;
3771	case SetHubFeature:
3772		switch (wValue) {
3773		case C_HUB_LOCAL_POWER:
3774		case C_HUB_OVER_CURRENT:
3775			/* no hub-wide feature/status flags */
3776			break;
3777		default:
3778			goto error;
3779		}
3780		break;
3781	case SetPortFeature:
3782		selector = wIndex >> 8;
3783		wIndex &= 0xff;
3784		if (!wIndex || wIndex > ports)
3785			goto error;
3786		wIndex--;
3787		temp = readl(status_reg);
3788		if (temp & PORT_OWNER)
3789			break;
3790
3791		temp &= ~PORT_RWC_BITS;
3792		switch (wValue) {
3793		case USB_PORT_FEAT_SUSPEND:
3794			if ((temp & PORT_PE) == 0
3795					|| (temp & PORT_RESET) != 0)
3796				goto error;
3797			if (device_may_wakeup(&hcd->self.root_hub->dev))
3798				temp |= PORT_WAKE_BITS;
3799			writel(temp | PORT_SUSPEND, status_reg);
3800			break;
3801		case USB_PORT_FEAT_POWER:
3802			if (HCS_PPC(oxu->hcs_params))
3803				writel(temp | PORT_POWER, status_reg);
3804			break;
3805		case USB_PORT_FEAT_RESET:
3806			if (temp & PORT_RESUME)
3807				goto error;
3808			/* line status bits may report this as low speed,
3809			 * which can be fine if this root hub has a
3810			 * transaction translator built in.
3811			 */
3812			oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3813			temp |= PORT_RESET;
3814			temp &= ~PORT_PE;
3815
3816			/*
3817			 * caller must wait, then call GetPortStatus
3818			 * usb 2.0 spec says 50 ms resets on root
3819			 */
3820			oxu->reset_done[wIndex] = jiffies
3821					+ msecs_to_jiffies(50);
3822			writel(temp, status_reg);
3823			break;
3824
3825		/* For downstream facing ports (these):  one hub port is put
3826		 * into test mode according to USB2 11.24.2.13, then the hub
3827		 * must be reset (which for root hub now means rmmod+modprobe,
3828		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
3829		 * about the EHCI-specific stuff.
3830		 */
3831		case USB_PORT_FEAT_TEST:
3832			if (!selector || selector > 5)
3833				goto error;
3834			ehci_quiesce(oxu);
3835			ehci_halt(oxu);
3836			temp |= selector << 16;
3837			writel(temp, status_reg);
3838			break;
3839
3840		default:
3841			goto error;
3842		}
3843		readl(&oxu->regs->command);	/* unblock posted writes */
3844		break;
3845
3846	default:
3847error:
3848		/* "stall" on error */
3849		retval = -EPIPE;
3850	}
3851	spin_unlock_irqrestore(&oxu->lock, flags);
3852	return retval;
3853}
3854
3855#ifdef CONFIG_PM
3856
3857static int oxu_bus_suspend(struct usb_hcd *hcd)
3858{
3859	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3860	int port;
3861	int mask;
3862
3863	oxu_dbg(oxu, "suspend root hub\n");
3864
3865	if (time_before(jiffies, oxu->next_statechange))
3866		msleep(5);
3867
3868	port = HCS_N_PORTS(oxu->hcs_params);
3869	spin_lock_irq(&oxu->lock);
3870
3871	/* stop schedules, clean any completed work */
3872	if (HC_IS_RUNNING(hcd->state)) {
3873		ehci_quiesce(oxu);
3874		hcd->state = HC_STATE_QUIESCING;
3875	}
3876	oxu->command = readl(&oxu->regs->command);
3877	if (oxu->reclaim)
3878		oxu->reclaim_ready = 1;
3879	ehci_work(oxu);
3880
3881	/* Unlike other USB host controller types, EHCI doesn't have
3882	 * any notion of "global" or bus-wide suspend.  The driver has
3883	 * to manually suspend all the active unsuspended ports, and
3884	 * then manually resume them in the bus_resume() routine.
3885	 */
3886	oxu->bus_suspended = 0;
3887	while (port--) {
3888		u32 __iomem *reg = &oxu->regs->port_status[port];
3889		u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3890		u32 t2 = t1;
3891
3892		/* keep track of which ports we suspend */
3893		if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3894				!(t1 & PORT_SUSPEND)) {
3895			t2 |= PORT_SUSPEND;
3896			set_bit(port, &oxu->bus_suspended);
3897		}
3898
3899		/* enable remote wakeup on all ports */
3900		if (device_may_wakeup(&hcd->self.root_hub->dev))
3901			t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3902		else
3903			t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3904
3905		if (t1 != t2) {
3906			oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3907				port + 1, t1, t2);
3908			writel(t2, reg);
3909		}
3910	}
3911
3912	spin_unlock_irq(&oxu->lock);
3913	/* turn off now-idle HC */
3914	del_timer_sync(&oxu->watchdog);
3915	spin_lock_irq(&oxu->lock);
3916	ehci_halt(oxu);
3917	hcd->state = HC_STATE_SUSPENDED;
3918
3919	/* allow remote wakeup */
3920	mask = INTR_MASK;
3921	if (!device_may_wakeup(&hcd->self.root_hub->dev))
3922		mask &= ~STS_PCD;
3923	writel(mask, &oxu->regs->intr_enable);
3924	readl(&oxu->regs->intr_enable);
3925
3926	oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3927	spin_unlock_irq(&oxu->lock);
3928	return 0;
3929}
3930
3931/* Caller has locked the root hub, and should reset/reinit on error */
3932static int oxu_bus_resume(struct usb_hcd *hcd)
3933{
3934	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3935	u32 temp;
3936	int i;
3937
3938	if (time_before(jiffies, oxu->next_statechange))
3939		msleep(5);
3940	spin_lock_irq(&oxu->lock);
3941
3942	/* Ideally and we've got a real resume here, and no port's power
3943	 * was lost.  (For PCI, that means Vaux was maintained.)  But we
3944	 * could instead be restoring a swsusp snapshot -- so that BIOS was
3945	 * the last user of the controller, not reset/pm hardware keeping
3946	 * state we gave to it.
3947	 */
3948	temp = readl(&oxu->regs->intr_enable);
3949	oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3950
3951	/* at least some APM implementations will try to deliver
3952	 * IRQs right away, so delay them until we're ready.
3953	 */
3954	writel(0, &oxu->regs->intr_enable);
3955
3956	/* re-init operational registers */
3957	writel(0, &oxu->regs->segment);
3958	writel(oxu->periodic_dma, &oxu->regs->frame_list);
3959	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3960
3961	/* restore CMD_RUN, framelist size, and irq threshold */
3962	writel(oxu->command, &oxu->regs->command);
3963
3964	/* Some controller/firmware combinations need a delay during which
3965	 * they set up the port statuses.  See Bugzilla #8190. */
3966	mdelay(8);
3967
3968	/* manually resume the ports we suspended during bus_suspend() */
3969	i = HCS_N_PORTS(oxu->hcs_params);
3970	while (i--) {
3971		temp = readl(&oxu->regs->port_status[i]);
3972		temp &= ~(PORT_RWC_BITS
3973			| PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3974		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3975			oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3976			temp |= PORT_RESUME;
3977		}
3978		writel(temp, &oxu->regs->port_status[i]);
3979	}
3980	i = HCS_N_PORTS(oxu->hcs_params);
3981	mdelay(20);
3982	while (i--) {
3983		temp = readl(&oxu->regs->port_status[i]);
3984		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3985			temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3986			writel(temp, &oxu->regs->port_status[i]);
3987			oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3988		}
3989	}
3990	(void) readl(&oxu->regs->command);
3991
3992	/* maybe re-activate the schedule(s) */
3993	temp = 0;
3994	if (oxu->async->qh_next.qh)
3995		temp |= CMD_ASE;
3996	if (oxu->periodic_sched)
3997		temp |= CMD_PSE;
3998	if (temp) {
3999		oxu->command |= temp;
4000		writel(oxu->command, &oxu->regs->command);
4001	}
4002
4003	oxu->next_statechange = jiffies + msecs_to_jiffies(5);
4004	hcd->state = HC_STATE_RUNNING;
4005
4006	/* Now we can safely re-enable irqs */
4007	writel(INTR_MASK, &oxu->regs->intr_enable);
4008
4009	spin_unlock_irq(&oxu->lock);
4010	return 0;
4011}
4012
4013#else
4014
4015static int oxu_bus_suspend(struct usb_hcd *hcd)
4016{
4017	return 0;
4018}
4019
4020static int oxu_bus_resume(struct usb_hcd *hcd)
4021{
4022	return 0;
4023}
4024
4025#endif	/* CONFIG_PM */
4026
4027static const struct hc_driver oxu_hc_driver = {
4028	.description =		"oxu210hp_hcd",
4029	.product_desc =		"oxu210hp HCD",
4030	.hcd_priv_size =	sizeof(struct oxu_hcd),
4031
4032	/*
4033	 * Generic hardware linkage
4034	 */
4035	.irq =			oxu_irq,
4036	.flags =		HCD_MEMORY | HCD_USB2,
4037
4038	/*
4039	 * Basic lifecycle operations
4040	 */
4041	.reset =		oxu_reset,
4042	.start =		oxu_run,
4043	.stop =			oxu_stop,
4044	.shutdown =		oxu_shutdown,
4045
4046	/*
4047	 * Managing i/o requests and associated device resources
4048	 */
4049	.urb_enqueue =		oxu_urb_enqueue,
4050	.urb_dequeue =		oxu_urb_dequeue,
4051	.endpoint_disable =	oxu_endpoint_disable,
4052
4053	/*
4054	 * Scheduling support
4055	 */
4056	.get_frame_number =	oxu_get_frame,
4057
4058	/*
4059	 * Root hub support
4060	 */
4061	.hub_status_data =	oxu_hub_status_data,
4062	.hub_control =		oxu_hub_control,
4063	.bus_suspend =		oxu_bus_suspend,
4064	.bus_resume =		oxu_bus_resume,
4065};
4066
4067/*
4068 * Module stuff
4069 */
4070
4071static void oxu_configuration(struct platform_device *pdev, void __iomem *base)
4072{
4073	u32 tmp;
4074
4075	/* Initialize top level registers.
4076	 * First write ever
4077	 */
4078	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4079	oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
4080	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4081
4082	tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
4083	oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
4084
4085	oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
4086					OXU_COMPARATOR | OXU_ASO_OP);
4087
4088	tmp = oxu_readl(base, OXU_CLKCTRL_SET);
4089	oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
4090
4091	/* Clear all top interrupt enable */
4092	oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
4093
4094	/* Clear all top interrupt status */
4095	oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
4096
4097	/* Enable all needed top interrupt except OTG SPH core */
4098	oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
4099}
4100
4101static int oxu_verify_id(struct platform_device *pdev, void __iomem *base)
4102{
4103	u32 id;
4104	static const char * const bo[] = {
4105		"reserved",
4106		"128-pin LQFP",
4107		"84-pin TFBGA",
4108		"reserved",
4109	};
4110
4111	/* Read controller signature register to find a match */
4112	id = oxu_readl(base, OXU_DEVICEID);
4113	dev_info(&pdev->dev, "device ID %x\n", id);
4114	if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
4115		return -1;
4116
4117	dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
4118		id >> OXU_REV_SHIFT,
4119		bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
4120		(id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
4121		(id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
4122
4123	return 0;
4124}
4125
4126static const struct hc_driver oxu_hc_driver;
4127static struct usb_hcd *oxu_create(struct platform_device *pdev,
4128				unsigned long memstart, unsigned long memlen,
4129				void __iomem *base, int irq, int otg)
4130{
4131	struct device *dev = &pdev->dev;
4132
4133	struct usb_hcd *hcd;
4134	struct oxu_hcd *oxu;
4135	int ret;
4136
4137	/* Set endian mode and host mode */
4138	oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
4139				OXU_USBMODE,
4140				OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
4141
4142	hcd = usb_create_hcd(&oxu_hc_driver, dev,
4143				otg ? "oxu210hp_otg" : "oxu210hp_sph");
4144	if (!hcd)
4145		return ERR_PTR(-ENOMEM);
4146
4147	hcd->rsrc_start = memstart;
4148	hcd->rsrc_len = memlen;
4149	hcd->regs = base;
4150	hcd->irq = irq;
4151	hcd->state = HC_STATE_HALT;
4152
4153	oxu = hcd_to_oxu(hcd);
4154	oxu->is_otg = otg;
4155
4156	ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
4157	if (ret < 0) {
4158		usb_put_hcd(hcd);
4159		return ERR_PTR(ret);
4160	}
4161
4162	device_wakeup_enable(hcd->self.controller);
4163	return hcd;
4164}
4165
4166static int oxu_init(struct platform_device *pdev,
4167				unsigned long memstart, unsigned long memlen,
4168				void __iomem *base, int irq)
4169{
4170	struct oxu_info *info = platform_get_drvdata(pdev);
4171	struct usb_hcd *hcd;
4172	int ret;
4173
4174	/* First time configuration at start up */
4175	oxu_configuration(pdev, base);
4176
4177	ret = oxu_verify_id(pdev, base);
4178	if (ret) {
4179		dev_err(&pdev->dev, "no devices found!\n");
4180		return -ENODEV;
4181	}
4182
4183	/* Create the OTG controller */
4184	hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
4185	if (IS_ERR(hcd)) {
4186		dev_err(&pdev->dev, "cannot create OTG controller!\n");
4187		ret = PTR_ERR(hcd);
4188		goto error_create_otg;
4189	}
4190	info->hcd[0] = hcd;
4191
4192	/* Create the SPH host controller */
4193	hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
4194	if (IS_ERR(hcd)) {
4195		dev_err(&pdev->dev, "cannot create SPH controller!\n");
4196		ret = PTR_ERR(hcd);
4197		goto error_create_sph;
4198	}
4199	info->hcd[1] = hcd;
4200
4201	oxu_writel(base, OXU_CHIPIRQEN_SET,
4202		oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
4203
4204	return 0;
4205
4206error_create_sph:
4207	usb_remove_hcd(info->hcd[0]);
4208	usb_put_hcd(info->hcd[0]);
4209
4210error_create_otg:
4211	return ret;
4212}
4213
4214static int oxu_drv_probe(struct platform_device *pdev)
4215{
4216	struct resource *res;
4217	void __iomem *base;
4218	unsigned long memstart, memlen;
4219	int irq, ret;
4220	struct oxu_info *info;
4221
4222	if (usb_disabled())
4223		return -ENODEV;
4224
4225	/*
4226	 * Get the platform resources
4227	 */
4228	irq = platform_get_irq(pdev, 0);
4229	if (irq < 0)
4230		return irq;
4231	dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
4232
4233	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
4234	if (IS_ERR(base)) {
4235		ret = PTR_ERR(base);
4236		goto error;
4237	}
4238	memstart = res->start;
4239	memlen = resource_size(res);
4240
4241	ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
4242	if (ret) {
4243		dev_err(&pdev->dev, "error setting irq type\n");
4244		ret = -EFAULT;
4245		goto error;
4246	}
4247
4248	/* Allocate a driver data struct to hold useful info for both
4249	 * SPH & OTG devices
4250	 */
4251	info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
4252	if (!info) {
4253		ret = -EFAULT;
4254		goto error;
4255	}
4256	platform_set_drvdata(pdev, info);
4257
4258	ret = oxu_init(pdev, memstart, memlen, base, irq);
4259	if (ret < 0) {
4260		dev_dbg(&pdev->dev, "cannot init USB devices\n");
4261		goto error;
4262	}
4263
4264	dev_info(&pdev->dev, "devices enabled and running\n");
4265	platform_set_drvdata(pdev, info);
4266
4267	return 0;
4268
4269error:
4270	dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
4271	return ret;
4272}
4273
4274static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
4275{
4276	usb_remove_hcd(hcd);
4277	usb_put_hcd(hcd);
4278}
4279
4280static void oxu_drv_remove(struct platform_device *pdev)
4281{
4282	struct oxu_info *info = platform_get_drvdata(pdev);
4283
4284	oxu_remove(pdev, info->hcd[0]);
4285	oxu_remove(pdev, info->hcd[1]);
4286}
4287
4288static void oxu_drv_shutdown(struct platform_device *pdev)
4289{
4290	oxu_drv_remove(pdev);
4291}
4292
4293#if 0
4294/* FIXME: TODO */
4295static int oxu_drv_suspend(struct device *dev)
4296{
4297	struct platform_device *pdev = to_platform_device(dev);
4298	struct usb_hcd *hcd = dev_get_drvdata(dev);
4299
4300	return 0;
4301}
4302
4303static int oxu_drv_resume(struct device *dev)
4304{
4305	struct platform_device *pdev = to_platform_device(dev);
4306	struct usb_hcd *hcd = dev_get_drvdata(dev);
4307
4308	return 0;
4309}
4310#else
4311#define oxu_drv_suspend	NULL
4312#define oxu_drv_resume	NULL
4313#endif
4314
4315static struct platform_driver oxu_driver = {
4316	.probe		= oxu_drv_probe,
4317	.remove_new	= oxu_drv_remove,
4318	.shutdown	= oxu_drv_shutdown,
4319	.suspend	= oxu_drv_suspend,
4320	.resume		= oxu_drv_resume,
4321	.driver = {
4322		.name = "oxu210hp-hcd",
4323		.bus = &platform_bus_type
4324	}
4325};
4326
4327module_platform_driver(oxu_driver);
4328
4329MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
4330MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
4331MODULE_LICENSE("GPL");
4332