1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 *
5 * Copyright (C) 2005-2007 AMD (https://www.amd.com)
6 * Author: Thomas Dahlmann
7 */
8
9/*
10 * This file does the core driver implementation for the UDC that is based
11 * on Synopsys device controller IP (different than HS OTG IP) that is either
12 * connected through PCI bus or integrated to SoC platforms.
13 */
14
15/* Driver strings */
16#define UDC_MOD_DESCRIPTION		"Synopsys USB Device Controller"
17#define UDC_DRIVER_VERSION_STRING	"01.00.0206"
18
19#include <linux/module.h>
20#include <linux/pci.h>
21#include <linux/kernel.h>
22#include <linux/delay.h>
23#include <linux/ioport.h>
24#include <linux/sched.h>
25#include <linux/slab.h>
26#include <linux/errno.h>
27#include <linux/timer.h>
28#include <linux/list.h>
29#include <linux/interrupt.h>
30#include <linux/ioctl.h>
31#include <linux/fs.h>
32#include <linux/dmapool.h>
33#include <linux/prefetch.h>
34#include <linux/moduleparam.h>
35#include <asm/byteorder.h>
36#include <asm/unaligned.h>
37#include "amd5536udc.h"
38
39static void udc_setup_endpoints(struct udc *dev);
40static void udc_soft_reset(struct udc *dev);
41static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
42static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
43
44/* description */
45static const char mod_desc[] = UDC_MOD_DESCRIPTION;
46static const char name[] = "udc";
47
48/* structure to hold endpoint function pointers */
49static const struct usb_ep_ops udc_ep_ops;
50
51/* received setup data */
52static union udc_setup_data setup_data;
53
54/* pointer to device object */
55static struct udc *udc;
56
57/* irq spin lock for soft reset */
58static DEFINE_SPINLOCK(udc_irq_spinlock);
59/* stall spin lock */
60static DEFINE_SPINLOCK(udc_stall_spinlock);
61
62/*
63* slave mode: pending bytes in rx fifo after nyet,
64* used if EPIN irq came but no req was available
65*/
66static unsigned int udc_rxfifo_pending;
67
68/* count soft resets after suspend to avoid loop */
69static int soft_reset_occured;
70static int soft_reset_after_usbreset_occured;
71
72/* timer */
73static struct timer_list udc_timer;
74static int stop_timer;
75
76/* set_rde -- Is used to control enabling of RX DMA. Problem is
77 * that UDC has only one bit (RDE) to enable/disable RX DMA for
78 * all OUT endpoints. So we have to handle race conditions like
79 * when OUT data reaches the fifo but no request was queued yet.
80 * This cannot be solved by letting the RX DMA disabled until a
81 * request gets queued because there may be other OUT packets
82 * in the FIFO (important for not blocking control traffic).
83 * The value of set_rde controls the corresponding timer.
84 *
85 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
86 * set_rde  0 == do not touch RDE, do no start the RDE timer
87 * set_rde  1 == timer function will look whether FIFO has data
88 * set_rde  2 == set by timer function to enable RX DMA on next call
89 */
90static int set_rde = -1;
91
92static DECLARE_COMPLETION(on_exit);
93static struct timer_list udc_pollstall_timer;
94static int stop_pollstall_timer;
95static DECLARE_COMPLETION(on_pollstall_exit);
96
97/* endpoint names used for print */
98static const char ep0_string[] = "ep0in";
99static const struct {
100	const char *name;
101	const struct usb_ep_caps caps;
102} ep_info[] = {
103#define EP_INFO(_name, _caps) \
104	{ \
105		.name = _name, \
106		.caps = _caps, \
107	}
108
109	EP_INFO(ep0_string,
110		USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_IN)),
111	EP_INFO("ep1in-int",
112		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
113	EP_INFO("ep2in-bulk",
114		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
115	EP_INFO("ep3in-bulk",
116		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
117	EP_INFO("ep4in-bulk",
118		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
119	EP_INFO("ep5in-bulk",
120		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
121	EP_INFO("ep6in-bulk",
122		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
123	EP_INFO("ep7in-bulk",
124		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
125	EP_INFO("ep8in-bulk",
126		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
127	EP_INFO("ep9in-bulk",
128		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
129	EP_INFO("ep10in-bulk",
130		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
131	EP_INFO("ep11in-bulk",
132		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
133	EP_INFO("ep12in-bulk",
134		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
135	EP_INFO("ep13in-bulk",
136		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
137	EP_INFO("ep14in-bulk",
138		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
139	EP_INFO("ep15in-bulk",
140		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
141	EP_INFO("ep0out",
142		USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_OUT)),
143	EP_INFO("ep1out-bulk",
144		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
145	EP_INFO("ep2out-bulk",
146		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
147	EP_INFO("ep3out-bulk",
148		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
149	EP_INFO("ep4out-bulk",
150		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
151	EP_INFO("ep5out-bulk",
152		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
153	EP_INFO("ep6out-bulk",
154		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
155	EP_INFO("ep7out-bulk",
156		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
157	EP_INFO("ep8out-bulk",
158		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
159	EP_INFO("ep9out-bulk",
160		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
161	EP_INFO("ep10out-bulk",
162		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
163	EP_INFO("ep11out-bulk",
164		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
165	EP_INFO("ep12out-bulk",
166		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
167	EP_INFO("ep13out-bulk",
168		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
169	EP_INFO("ep14out-bulk",
170		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
171	EP_INFO("ep15out-bulk",
172		USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
173
174#undef EP_INFO
175};
176
177/* buffer fill mode */
178static int use_dma_bufferfill_mode;
179/* tx buffer size for high speed */
180static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
181
182/*---------------------------------------------------------------------------*/
183/* Prints UDC device registers and endpoint irq registers */
184static void print_regs(struct udc *dev)
185{
186	DBG(dev, "------- Device registers -------\n");
187	DBG(dev, "dev config     = %08x\n", readl(&dev->regs->cfg));
188	DBG(dev, "dev control    = %08x\n", readl(&dev->regs->ctl));
189	DBG(dev, "dev status     = %08x\n", readl(&dev->regs->sts));
190	DBG(dev, "\n");
191	DBG(dev, "dev int's      = %08x\n", readl(&dev->regs->irqsts));
192	DBG(dev, "dev intmask    = %08x\n", readl(&dev->regs->irqmsk));
193	DBG(dev, "\n");
194	DBG(dev, "dev ep int's   = %08x\n", readl(&dev->regs->ep_irqsts));
195	DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
196	DBG(dev, "\n");
197	DBG(dev, "USE DMA        = %d\n", use_dma);
198	if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
199		DBG(dev, "DMA mode       = PPBNDU (packet per buffer "
200			"WITHOUT desc. update)\n");
201		dev_info(dev->dev, "DMA mode (%s)\n", "PPBNDU");
202	} else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
203		DBG(dev, "DMA mode       = PPBDU (packet per buffer "
204			"WITH desc. update)\n");
205		dev_info(dev->dev, "DMA mode (%s)\n", "PPBDU");
206	}
207	if (use_dma && use_dma_bufferfill_mode) {
208		DBG(dev, "DMA mode       = BF (buffer fill mode)\n");
209		dev_info(dev->dev, "DMA mode (%s)\n", "BF");
210	}
211	if (!use_dma)
212		dev_info(dev->dev, "FIFO mode\n");
213	DBG(dev, "-------------------------------------------------------\n");
214}
215
216/* Masks unused interrupts */
217int udc_mask_unused_interrupts(struct udc *dev)
218{
219	u32 tmp;
220
221	/* mask all dev interrupts */
222	tmp =	AMD_BIT(UDC_DEVINT_SVC) |
223		AMD_BIT(UDC_DEVINT_ENUM) |
224		AMD_BIT(UDC_DEVINT_US) |
225		AMD_BIT(UDC_DEVINT_UR) |
226		AMD_BIT(UDC_DEVINT_ES) |
227		AMD_BIT(UDC_DEVINT_SI) |
228		AMD_BIT(UDC_DEVINT_SOF)|
229		AMD_BIT(UDC_DEVINT_SC);
230	writel(tmp, &dev->regs->irqmsk);
231
232	/* mask all ep interrupts */
233	writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
234
235	return 0;
236}
237EXPORT_SYMBOL_GPL(udc_mask_unused_interrupts);
238
239/* Enables endpoint 0 interrupts */
240static int udc_enable_ep0_interrupts(struct udc *dev)
241{
242	u32 tmp;
243
244	DBG(dev, "udc_enable_ep0_interrupts()\n");
245
246	/* read irq mask */
247	tmp = readl(&dev->regs->ep_irqmsk);
248	/* enable ep0 irq's */
249	tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
250		& AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
251	writel(tmp, &dev->regs->ep_irqmsk);
252
253	return 0;
254}
255
256/* Enables device interrupts for SET_INTF and SET_CONFIG */
257int udc_enable_dev_setup_interrupts(struct udc *dev)
258{
259	u32 tmp;
260
261	DBG(dev, "enable device interrupts for setup data\n");
262
263	/* read irq mask */
264	tmp = readl(&dev->regs->irqmsk);
265
266	/* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
267	tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
268		& AMD_UNMASK_BIT(UDC_DEVINT_SC)
269		& AMD_UNMASK_BIT(UDC_DEVINT_UR)
270		& AMD_UNMASK_BIT(UDC_DEVINT_SVC)
271		& AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
272	writel(tmp, &dev->regs->irqmsk);
273
274	return 0;
275}
276EXPORT_SYMBOL_GPL(udc_enable_dev_setup_interrupts);
277
278/* Calculates fifo start of endpoint based on preceding endpoints */
279static int udc_set_txfifo_addr(struct udc_ep *ep)
280{
281	struct udc	*dev;
282	u32 tmp;
283	int i;
284
285	if (!ep || !(ep->in))
286		return -EINVAL;
287
288	dev = ep->dev;
289	ep->txfifo = dev->txfifo;
290
291	/* traverse ep's */
292	for (i = 0; i < ep->num; i++) {
293		if (dev->ep[i].regs) {
294			/* read fifo size */
295			tmp = readl(&dev->ep[i].regs->bufin_framenum);
296			tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
297			ep->txfifo += tmp;
298		}
299	}
300	return 0;
301}
302
303/* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
304static u32 cnak_pending;
305
306static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
307{
308	if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
309		DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
310		cnak_pending |= 1 << (num);
311		ep->naking = 1;
312	} else
313		cnak_pending = cnak_pending & (~(1 << (num)));
314}
315
316
317/* Enables endpoint, is called by gadget driver */
318static int
319udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
320{
321	struct udc_ep		*ep;
322	struct udc		*dev;
323	u32			tmp;
324	unsigned long		iflags;
325	u8 udc_csr_epix;
326	unsigned		maxpacket;
327
328	if (!usbep
329			|| usbep->name == ep0_string
330			|| !desc
331			|| desc->bDescriptorType != USB_DT_ENDPOINT)
332		return -EINVAL;
333
334	ep = container_of(usbep, struct udc_ep, ep);
335	dev = ep->dev;
336
337	DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
338
339	if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
340		return -ESHUTDOWN;
341
342	spin_lock_irqsave(&dev->lock, iflags);
343	ep->ep.desc = desc;
344
345	ep->halted = 0;
346
347	/* set traffic type */
348	tmp = readl(&dev->ep[ep->num].regs->ctl);
349	tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
350	writel(tmp, &dev->ep[ep->num].regs->ctl);
351
352	/* set max packet size */
353	maxpacket = usb_endpoint_maxp(desc);
354	tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
355	tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
356	ep->ep.maxpacket = maxpacket;
357	writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
358
359	/* IN ep */
360	if (ep->in) {
361
362		/* ep ix in UDC CSR register space */
363		udc_csr_epix = ep->num;
364
365		/* set buffer size (tx fifo entries) */
366		tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
367		/* double buffering: fifo size = 2 x max packet size */
368		tmp = AMD_ADDBITS(
369				tmp,
370				maxpacket * UDC_EPIN_BUFF_SIZE_MULT
371					  / UDC_DWORD_BYTES,
372				UDC_EPIN_BUFF_SIZE);
373		writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
374
375		/* calc. tx fifo base addr */
376		udc_set_txfifo_addr(ep);
377
378		/* flush fifo */
379		tmp = readl(&ep->regs->ctl);
380		tmp |= AMD_BIT(UDC_EPCTL_F);
381		writel(tmp, &ep->regs->ctl);
382
383	/* OUT ep */
384	} else {
385		/* ep ix in UDC CSR register space */
386		udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
387
388		/* set max packet size UDC CSR	*/
389		tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
390		tmp = AMD_ADDBITS(tmp, maxpacket,
391					UDC_CSR_NE_MAX_PKT);
392		writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
393
394		if (use_dma && !ep->in) {
395			/* alloc and init BNA dummy request */
396			ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
397			ep->bna_occurred = 0;
398		}
399
400		if (ep->num != UDC_EP0OUT_IX)
401			dev->data_ep_enabled = 1;
402	}
403
404	/* set ep values */
405	tmp = readl(&dev->csr->ne[udc_csr_epix]);
406	/* max packet */
407	tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
408	/* ep number */
409	tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
410	/* ep direction */
411	tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
412	/* ep type */
413	tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
414	/* ep config */
415	tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
416	/* ep interface */
417	tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
418	/* ep alt */
419	tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
420	/* write reg */
421	writel(tmp, &dev->csr->ne[udc_csr_epix]);
422
423	/* enable ep irq */
424	tmp = readl(&dev->regs->ep_irqmsk);
425	tmp &= AMD_UNMASK_BIT(ep->num);
426	writel(tmp, &dev->regs->ep_irqmsk);
427
428	/*
429	 * clear NAK by writing CNAK
430	 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
431	 */
432	if (!use_dma || ep->in) {
433		tmp = readl(&ep->regs->ctl);
434		tmp |= AMD_BIT(UDC_EPCTL_CNAK);
435		writel(tmp, &ep->regs->ctl);
436		ep->naking = 0;
437		UDC_QUEUE_CNAK(ep, ep->num);
438	}
439	tmp = desc->bEndpointAddress;
440	DBG(dev, "%s enabled\n", usbep->name);
441
442	spin_unlock_irqrestore(&dev->lock, iflags);
443	return 0;
444}
445
446/* Resets endpoint */
447static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
448{
449	u32		tmp;
450
451	VDBG(ep->dev, "ep-%d reset\n", ep->num);
452	ep->ep.desc = NULL;
453	ep->ep.ops = &udc_ep_ops;
454	INIT_LIST_HEAD(&ep->queue);
455
456	usb_ep_set_maxpacket_limit(&ep->ep,(u16) ~0);
457	/* set NAK */
458	tmp = readl(&ep->regs->ctl);
459	tmp |= AMD_BIT(UDC_EPCTL_SNAK);
460	writel(tmp, &ep->regs->ctl);
461	ep->naking = 1;
462
463	/* disable interrupt */
464	tmp = readl(&regs->ep_irqmsk);
465	tmp |= AMD_BIT(ep->num);
466	writel(tmp, &regs->ep_irqmsk);
467
468	if (ep->in) {
469		/* unset P and IN bit of potential former DMA */
470		tmp = readl(&ep->regs->ctl);
471		tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
472		writel(tmp, &ep->regs->ctl);
473
474		tmp = readl(&ep->regs->sts);
475		tmp |= AMD_BIT(UDC_EPSTS_IN);
476		writel(tmp, &ep->regs->sts);
477
478		/* flush the fifo */
479		tmp = readl(&ep->regs->ctl);
480		tmp |= AMD_BIT(UDC_EPCTL_F);
481		writel(tmp, &ep->regs->ctl);
482
483	}
484	/* reset desc pointer */
485	writel(0, &ep->regs->desptr);
486}
487
488/* Disables endpoint, is called by gadget driver */
489static int udc_ep_disable(struct usb_ep *usbep)
490{
491	struct udc_ep	*ep = NULL;
492	unsigned long	iflags;
493
494	if (!usbep)
495		return -EINVAL;
496
497	ep = container_of(usbep, struct udc_ep, ep);
498	if (usbep->name == ep0_string || !ep->ep.desc)
499		return -EINVAL;
500
501	DBG(ep->dev, "Disable ep-%d\n", ep->num);
502
503	spin_lock_irqsave(&ep->dev->lock, iflags);
504	udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
505	empty_req_queue(ep);
506	ep_init(ep->dev->regs, ep);
507	spin_unlock_irqrestore(&ep->dev->lock, iflags);
508
509	return 0;
510}
511
512/* Allocates request packet, called by gadget driver */
513static struct usb_request *
514udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
515{
516	struct udc_request	*req;
517	struct udc_data_dma	*dma_desc;
518	struct udc_ep	*ep;
519
520	if (!usbep)
521		return NULL;
522
523	ep = container_of(usbep, struct udc_ep, ep);
524
525	VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
526	req = kzalloc(sizeof(struct udc_request), gfp);
527	if (!req)
528		return NULL;
529
530	req->req.dma = DMA_DONT_USE;
531	INIT_LIST_HEAD(&req->queue);
532
533	if (ep->dma) {
534		/* ep0 in requests are allocated from data pool here */
535		dma_desc = dma_pool_alloc(ep->dev->data_requests, gfp,
536						&req->td_phys);
537		if (!dma_desc) {
538			kfree(req);
539			return NULL;
540		}
541
542		VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
543				"td_phys = %lx\n",
544				req, dma_desc,
545				(unsigned long)req->td_phys);
546		/* prevent from using desc. - set HOST BUSY */
547		dma_desc->status = AMD_ADDBITS(dma_desc->status,
548						UDC_DMA_STP_STS_BS_HOST_BUSY,
549						UDC_DMA_STP_STS_BS);
550		dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
551		req->td_data = dma_desc;
552		req->td_data_last = NULL;
553		req->chain_len = 1;
554	}
555
556	return &req->req;
557}
558
559/* frees pci pool descriptors of a DMA chain */
560static void udc_free_dma_chain(struct udc *dev, struct udc_request *req)
561{
562	struct udc_data_dma *td = req->td_data;
563	unsigned int i;
564
565	dma_addr_t addr_next = 0x00;
566	dma_addr_t addr = (dma_addr_t)td->next;
567
568	DBG(dev, "free chain req = %p\n", req);
569
570	/* do not free first desc., will be done by free for request */
571	for (i = 1; i < req->chain_len; i++) {
572		td = phys_to_virt(addr);
573		addr_next = (dma_addr_t)td->next;
574		dma_pool_free(dev->data_requests, td, addr);
575		addr = addr_next;
576	}
577}
578
579/* Frees request packet, called by gadget driver */
580static void
581udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
582{
583	struct udc_ep	*ep;
584	struct udc_request	*req;
585
586	if (!usbep || !usbreq)
587		return;
588
589	ep = container_of(usbep, struct udc_ep, ep);
590	req = container_of(usbreq, struct udc_request, req);
591	VDBG(ep->dev, "free_req req=%p\n", req);
592	BUG_ON(!list_empty(&req->queue));
593	if (req->td_data) {
594		VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
595
596		/* free dma chain if created */
597		if (req->chain_len > 1)
598			udc_free_dma_chain(ep->dev, req);
599
600		dma_pool_free(ep->dev->data_requests, req->td_data,
601							req->td_phys);
602	}
603	kfree(req);
604}
605
606/* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
607static void udc_init_bna_dummy(struct udc_request *req)
608{
609	if (req) {
610		/* set last bit */
611		req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
612		/* set next pointer to itself */
613		req->td_data->next = req->td_phys;
614		/* set HOST BUSY */
615		req->td_data->status
616			= AMD_ADDBITS(req->td_data->status,
617					UDC_DMA_STP_STS_BS_DMA_DONE,
618					UDC_DMA_STP_STS_BS);
619#ifdef UDC_VERBOSE
620		pr_debug("bna desc = %p, sts = %08x\n",
621			req->td_data, req->td_data->status);
622#endif
623	}
624}
625
626/* Allocate BNA dummy descriptor */
627static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
628{
629	struct udc_request *req = NULL;
630	struct usb_request *_req = NULL;
631
632	/* alloc the dummy request */
633	_req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
634	if (_req) {
635		req = container_of(_req, struct udc_request, req);
636		ep->bna_dummy_req = req;
637		udc_init_bna_dummy(req);
638	}
639	return req;
640}
641
642/* Write data to TX fifo for IN packets */
643static void
644udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
645{
646	u8			*req_buf;
647	u32			*buf;
648	int			i, j;
649	unsigned		bytes = 0;
650	unsigned		remaining = 0;
651
652	if (!req || !ep)
653		return;
654
655	req_buf = req->buf + req->actual;
656	prefetch(req_buf);
657	remaining = req->length - req->actual;
658
659	buf = (u32 *) req_buf;
660
661	bytes = ep->ep.maxpacket;
662	if (bytes > remaining)
663		bytes = remaining;
664
665	/* dwords first */
666	for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
667		writel(*(buf + i), ep->txfifo);
668
669	/* remaining bytes must be written by byte access */
670	for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
671		writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
672							ep->txfifo);
673	}
674
675	/* dummy write confirm */
676	writel(0, &ep->regs->confirm);
677}
678
679/* Read dwords from RX fifo for OUT transfers */
680static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
681{
682	int i;
683
684	VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
685
686	for (i = 0; i < dwords; i++)
687		*(buf + i) = readl(dev->rxfifo);
688	return 0;
689}
690
691/* Read bytes from RX fifo for OUT transfers */
692static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
693{
694	int i, j;
695	u32 tmp;
696
697	VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
698
699	/* dwords first */
700	for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
701		*((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
702
703	/* remaining bytes must be read by byte access */
704	if (bytes % UDC_DWORD_BYTES) {
705		tmp = readl(dev->rxfifo);
706		for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
707			*(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
708			tmp = tmp >> UDC_BITS_PER_BYTE;
709		}
710	}
711
712	return 0;
713}
714
715/* Read data from RX fifo for OUT transfers */
716static int
717udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
718{
719	u8 *buf;
720	unsigned buf_space;
721	unsigned bytes = 0;
722	unsigned finished = 0;
723
724	/* received number bytes */
725	bytes = readl(&ep->regs->sts);
726	bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
727
728	buf_space = req->req.length - req->req.actual;
729	buf = req->req.buf + req->req.actual;
730	if (bytes > buf_space) {
731		if ((buf_space % ep->ep.maxpacket) != 0) {
732			DBG(ep->dev,
733				"%s: rx %d bytes, rx-buf space = %d bytesn\n",
734				ep->ep.name, bytes, buf_space);
735			req->req.status = -EOVERFLOW;
736		}
737		bytes = buf_space;
738	}
739	req->req.actual += bytes;
740
741	/* last packet ? */
742	if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
743		|| ((req->req.actual == req->req.length) && !req->req.zero))
744		finished = 1;
745
746	/* read rx fifo bytes */
747	VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
748	udc_rxfifo_read_bytes(ep->dev, buf, bytes);
749
750	return finished;
751}
752
753/* Creates or re-inits a DMA chain */
754static int udc_create_dma_chain(
755	struct udc_ep *ep,
756	struct udc_request *req,
757	unsigned long buf_len, gfp_t gfp_flags
758)
759{
760	unsigned long bytes = req->req.length;
761	unsigned int i;
762	dma_addr_t dma_addr;
763	struct udc_data_dma	*td = NULL;
764	struct udc_data_dma	*last = NULL;
765	unsigned long txbytes;
766	unsigned create_new_chain = 0;
767	unsigned len;
768
769	VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
770	     bytes, buf_len);
771	dma_addr = DMA_DONT_USE;
772
773	/* unset L bit in first desc for OUT */
774	if (!ep->in)
775		req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
776
777	/* alloc only new desc's if not already available */
778	len = req->req.length / ep->ep.maxpacket;
779	if (req->req.length % ep->ep.maxpacket)
780		len++;
781
782	if (len > req->chain_len) {
783		/* shorter chain already allocated before */
784		if (req->chain_len > 1)
785			udc_free_dma_chain(ep->dev, req);
786		req->chain_len = len;
787		create_new_chain = 1;
788	}
789
790	td = req->td_data;
791	/* gen. required number of descriptors and buffers */
792	for (i = buf_len; i < bytes; i += buf_len) {
793		/* create or determine next desc. */
794		if (create_new_chain) {
795			td = dma_pool_alloc(ep->dev->data_requests,
796					    gfp_flags, &dma_addr);
797			if (!td)
798				return -ENOMEM;
799
800			td->status = 0;
801		} else if (i == buf_len) {
802			/* first td */
803			td = (struct udc_data_dma *)phys_to_virt(
804						req->td_data->next);
805			td->status = 0;
806		} else {
807			td = (struct udc_data_dma *)phys_to_virt(last->next);
808			td->status = 0;
809		}
810
811		if (td)
812			td->bufptr = req->req.dma + i; /* assign buffer */
813		else
814			break;
815
816		/* short packet ? */
817		if ((bytes - i) >= buf_len) {
818			txbytes = buf_len;
819		} else {
820			/* short packet */
821			txbytes = bytes - i;
822		}
823
824		/* link td and assign tx bytes */
825		if (i == buf_len) {
826			if (create_new_chain)
827				req->td_data->next = dma_addr;
828			/*
829			 * else
830			 *	req->td_data->next = virt_to_phys(td);
831			 */
832			/* write tx bytes */
833			if (ep->in) {
834				/* first desc */
835				req->td_data->status =
836					AMD_ADDBITS(req->td_data->status,
837						    ep->ep.maxpacket,
838						    UDC_DMA_IN_STS_TXBYTES);
839				/* second desc */
840				td->status = AMD_ADDBITS(td->status,
841							txbytes,
842							UDC_DMA_IN_STS_TXBYTES);
843			}
844		} else {
845			if (create_new_chain)
846				last->next = dma_addr;
847			/*
848			 * else
849			 *	last->next = virt_to_phys(td);
850			 */
851			if (ep->in) {
852				/* write tx bytes */
853				td->status = AMD_ADDBITS(td->status,
854							txbytes,
855							UDC_DMA_IN_STS_TXBYTES);
856			}
857		}
858		last = td;
859	}
860	/* set last bit */
861	if (td) {
862		td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
863		/* last desc. points to itself */
864		req->td_data_last = td;
865	}
866
867	return 0;
868}
869
870/* create/re-init a DMA descriptor or a DMA descriptor chain */
871static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
872{
873	int	retval = 0;
874	u32	tmp;
875
876	VDBG(ep->dev, "prep_dma\n");
877	VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
878			ep->num, req->td_data);
879
880	/* set buffer pointer */
881	req->td_data->bufptr = req->req.dma;
882
883	/* set last bit */
884	req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
885
886	/* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
887	if (use_dma_ppb) {
888
889		retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
890		if (retval != 0) {
891			if (retval == -ENOMEM)
892				DBG(ep->dev, "Out of DMA memory\n");
893			return retval;
894		}
895		if (ep->in) {
896			if (req->req.length == ep->ep.maxpacket) {
897				/* write tx bytes */
898				req->td_data->status =
899					AMD_ADDBITS(req->td_data->status,
900						ep->ep.maxpacket,
901						UDC_DMA_IN_STS_TXBYTES);
902
903			}
904		}
905
906	}
907
908	if (ep->in) {
909		VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
910				"maxpacket=%d ep%d\n",
911				use_dma_ppb, req->req.length,
912				ep->ep.maxpacket, ep->num);
913		/*
914		 * if bytes < max packet then tx bytes must
915		 * be written in packet per buffer mode
916		 */
917		if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
918				|| ep->num == UDC_EP0OUT_IX
919				|| ep->num == UDC_EP0IN_IX) {
920			/* write tx bytes */
921			req->td_data->status =
922				AMD_ADDBITS(req->td_data->status,
923						req->req.length,
924						UDC_DMA_IN_STS_TXBYTES);
925			/* reset frame num */
926			req->td_data->status =
927				AMD_ADDBITS(req->td_data->status,
928						0,
929						UDC_DMA_IN_STS_FRAMENUM);
930		}
931		/* set HOST BUSY */
932		req->td_data->status =
933			AMD_ADDBITS(req->td_data->status,
934				UDC_DMA_STP_STS_BS_HOST_BUSY,
935				UDC_DMA_STP_STS_BS);
936	} else {
937		VDBG(ep->dev, "OUT set host ready\n");
938		/* set HOST READY */
939		req->td_data->status =
940			AMD_ADDBITS(req->td_data->status,
941				UDC_DMA_STP_STS_BS_HOST_READY,
942				UDC_DMA_STP_STS_BS);
943
944		/* clear NAK by writing CNAK */
945		if (ep->naking) {
946			tmp = readl(&ep->regs->ctl);
947			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
948			writel(tmp, &ep->regs->ctl);
949			ep->naking = 0;
950			UDC_QUEUE_CNAK(ep, ep->num);
951		}
952
953	}
954
955	return retval;
956}
957
958/* Completes request packet ... caller MUST hold lock */
959static void
960complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
961__releases(ep->dev->lock)
962__acquires(ep->dev->lock)
963{
964	struct udc		*dev;
965	unsigned		halted;
966
967	VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
968
969	dev = ep->dev;
970	/* unmap DMA */
971	if (ep->dma)
972		usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
973
974	halted = ep->halted;
975	ep->halted = 1;
976
977	/* set new status if pending */
978	if (req->req.status == -EINPROGRESS)
979		req->req.status = sts;
980
981	/* remove from ep queue */
982	list_del_init(&req->queue);
983
984	VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
985		&req->req, req->req.length, ep->ep.name, sts);
986
987	spin_unlock(&dev->lock);
988	usb_gadget_giveback_request(&ep->ep, &req->req);
989	spin_lock(&dev->lock);
990	ep->halted = halted;
991}
992
993/* Iterates to the end of a DMA chain and returns last descriptor */
994static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
995{
996	struct udc_data_dma	*td;
997
998	td = req->td_data;
999	while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
1000		td = phys_to_virt(td->next);
1001
1002	return td;
1003
1004}
1005
1006/* Iterates to the end of a DMA chain and counts bytes received */
1007static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
1008{
1009	struct udc_data_dma	*td;
1010	u32 count;
1011
1012	td = req->td_data;
1013	/* received number bytes */
1014	count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
1015
1016	while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
1017		td = phys_to_virt(td->next);
1018		/* received number bytes */
1019		if (td) {
1020			count += AMD_GETBITS(td->status,
1021				UDC_DMA_OUT_STS_RXBYTES);
1022		}
1023	}
1024
1025	return count;
1026
1027}
1028
1029/* Enabling RX DMA */
1030static void udc_set_rde(struct udc *dev)
1031{
1032	u32 tmp;
1033
1034	VDBG(dev, "udc_set_rde()\n");
1035	/* stop RDE timer */
1036	if (timer_pending(&udc_timer)) {
1037		set_rde = 0;
1038		mod_timer(&udc_timer, jiffies - 1);
1039	}
1040	/* set RDE */
1041	tmp = readl(&dev->regs->ctl);
1042	tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1043	writel(tmp, &dev->regs->ctl);
1044}
1045
1046/* Queues a request packet, called by gadget driver */
1047static int
1048udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1049{
1050	int			retval = 0;
1051	u8			open_rxfifo = 0;
1052	unsigned long		iflags;
1053	struct udc_ep		*ep;
1054	struct udc_request	*req;
1055	struct udc		*dev;
1056	u32			tmp;
1057
1058	/* check the inputs */
1059	req = container_of(usbreq, struct udc_request, req);
1060
1061	if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1062			|| !list_empty(&req->queue))
1063		return -EINVAL;
1064
1065	ep = container_of(usbep, struct udc_ep, ep);
1066	if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1067		return -EINVAL;
1068
1069	VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1070	dev = ep->dev;
1071
1072	if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1073		return -ESHUTDOWN;
1074
1075	/* map dma (usually done before) */
1076	if (ep->dma) {
1077		VDBG(dev, "DMA map req %p\n", req);
1078		retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
1079		if (retval)
1080			return retval;
1081	}
1082
1083	VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1084			usbep->name, usbreq, usbreq->length,
1085			req->td_data, usbreq->buf);
1086
1087	spin_lock_irqsave(&dev->lock, iflags);
1088	usbreq->actual = 0;
1089	usbreq->status = -EINPROGRESS;
1090	req->dma_done = 0;
1091
1092	/* on empty queue just do first transfer */
1093	if (list_empty(&ep->queue)) {
1094		/* zlp */
1095		if (usbreq->length == 0) {
1096			/* IN zlp's are handled by hardware */
1097			complete_req(ep, req, 0);
1098			VDBG(dev, "%s: zlp\n", ep->ep.name);
1099			/*
1100			 * if set_config or set_intf is waiting for ack by zlp
1101			 * then set CSR_DONE
1102			 */
1103			if (dev->set_cfg_not_acked) {
1104				tmp = readl(&dev->regs->ctl);
1105				tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1106				writel(tmp, &dev->regs->ctl);
1107				dev->set_cfg_not_acked = 0;
1108			}
1109			/* setup command is ACK'ed now by zlp */
1110			if (dev->waiting_zlp_ack_ep0in) {
1111				/* clear NAK by writing CNAK in EP0_IN */
1112				tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1113				tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1114				writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1115				dev->ep[UDC_EP0IN_IX].naking = 0;
1116				UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1117							UDC_EP0IN_IX);
1118				dev->waiting_zlp_ack_ep0in = 0;
1119			}
1120			goto finished;
1121		}
1122		if (ep->dma) {
1123			retval = prep_dma(ep, req, GFP_ATOMIC);
1124			if (retval != 0)
1125				goto finished;
1126			/* write desc pointer to enable DMA */
1127			if (ep->in) {
1128				/* set HOST READY */
1129				req->td_data->status =
1130					AMD_ADDBITS(req->td_data->status,
1131						UDC_DMA_IN_STS_BS_HOST_READY,
1132						UDC_DMA_IN_STS_BS);
1133			}
1134
1135			/* disabled rx dma while descriptor update */
1136			if (!ep->in) {
1137				/* stop RDE timer */
1138				if (timer_pending(&udc_timer)) {
1139					set_rde = 0;
1140					mod_timer(&udc_timer, jiffies - 1);
1141				}
1142				/* clear RDE */
1143				tmp = readl(&dev->regs->ctl);
1144				tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1145				writel(tmp, &dev->regs->ctl);
1146				open_rxfifo = 1;
1147
1148				/*
1149				 * if BNA occurred then let BNA dummy desc.
1150				 * point to current desc.
1151				 */
1152				if (ep->bna_occurred) {
1153					VDBG(dev, "copy to BNA dummy desc.\n");
1154					memcpy(ep->bna_dummy_req->td_data,
1155						req->td_data,
1156						sizeof(struct udc_data_dma));
1157				}
1158			}
1159			/* write desc pointer */
1160			writel(req->td_phys, &ep->regs->desptr);
1161
1162			/* clear NAK by writing CNAK */
1163			if (ep->naking) {
1164				tmp = readl(&ep->regs->ctl);
1165				tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1166				writel(tmp, &ep->regs->ctl);
1167				ep->naking = 0;
1168				UDC_QUEUE_CNAK(ep, ep->num);
1169			}
1170
1171			if (ep->in) {
1172				/* enable ep irq */
1173				tmp = readl(&dev->regs->ep_irqmsk);
1174				tmp &= AMD_UNMASK_BIT(ep->num);
1175				writel(tmp, &dev->regs->ep_irqmsk);
1176			}
1177		} else if (ep->in) {
1178				/* enable ep irq */
1179				tmp = readl(&dev->regs->ep_irqmsk);
1180				tmp &= AMD_UNMASK_BIT(ep->num);
1181				writel(tmp, &dev->regs->ep_irqmsk);
1182			}
1183
1184	} else if (ep->dma) {
1185
1186		/*
1187		 * prep_dma not used for OUT ep's, this is not possible
1188		 * for PPB modes, because of chain creation reasons
1189		 */
1190		if (ep->in) {
1191			retval = prep_dma(ep, req, GFP_ATOMIC);
1192			if (retval != 0)
1193				goto finished;
1194		}
1195	}
1196	VDBG(dev, "list_add\n");
1197	/* add request to ep queue */
1198	if (req) {
1199
1200		list_add_tail(&req->queue, &ep->queue);
1201
1202		/* open rxfifo if out data queued */
1203		if (open_rxfifo) {
1204			/* enable DMA */
1205			req->dma_going = 1;
1206			udc_set_rde(dev);
1207			if (ep->num != UDC_EP0OUT_IX)
1208				dev->data_ep_queued = 1;
1209		}
1210		/* stop OUT naking */
1211		if (!ep->in) {
1212			if (!use_dma && udc_rxfifo_pending) {
1213				DBG(dev, "udc_queue(): pending bytes in "
1214					"rxfifo after nyet\n");
1215				/*
1216				 * read pending bytes afer nyet:
1217				 * referring to isr
1218				 */
1219				if (udc_rxfifo_read(ep, req)) {
1220					/* finish */
1221					complete_req(ep, req, 0);
1222				}
1223				udc_rxfifo_pending = 0;
1224
1225			}
1226		}
1227	}
1228
1229finished:
1230	spin_unlock_irqrestore(&dev->lock, iflags);
1231	return retval;
1232}
1233
1234/* Empty request queue of an endpoint; caller holds spinlock */
1235void empty_req_queue(struct udc_ep *ep)
1236{
1237	struct udc_request	*req;
1238
1239	ep->halted = 1;
1240	while (!list_empty(&ep->queue)) {
1241		req = list_entry(ep->queue.next,
1242			struct udc_request,
1243			queue);
1244		complete_req(ep, req, -ESHUTDOWN);
1245	}
1246}
1247EXPORT_SYMBOL_GPL(empty_req_queue);
1248
1249/* Dequeues a request packet, called by gadget driver */
1250static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1251{
1252	struct udc_ep		*ep;
1253	struct udc_request	*req;
1254	unsigned		halted;
1255	unsigned long		iflags;
1256
1257	ep = container_of(usbep, struct udc_ep, ep);
1258	if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0
1259				&& ep->num != UDC_EP0OUT_IX)))
1260		return -EINVAL;
1261
1262	req = container_of(usbreq, struct udc_request, req);
1263
1264	spin_lock_irqsave(&ep->dev->lock, iflags);
1265	halted = ep->halted;
1266	ep->halted = 1;
1267	/* request in processing or next one */
1268	if (ep->queue.next == &req->queue) {
1269		if (ep->dma && req->dma_going) {
1270			if (ep->in)
1271				ep->cancel_transfer = 1;
1272			else {
1273				u32 tmp;
1274				u32 dma_sts;
1275				/* stop potential receive DMA */
1276				tmp = readl(&udc->regs->ctl);
1277				writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1278							&udc->regs->ctl);
1279				/*
1280				 * Cancel transfer later in ISR
1281				 * if descriptor was touched.
1282				 */
1283				dma_sts = AMD_GETBITS(req->td_data->status,
1284							UDC_DMA_OUT_STS_BS);
1285				if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1286					ep->cancel_transfer = 1;
1287				else {
1288					udc_init_bna_dummy(ep->req);
1289					writel(ep->bna_dummy_req->td_phys,
1290						&ep->regs->desptr);
1291				}
1292				writel(tmp, &udc->regs->ctl);
1293			}
1294		}
1295	}
1296	complete_req(ep, req, -ECONNRESET);
1297	ep->halted = halted;
1298
1299	spin_unlock_irqrestore(&ep->dev->lock, iflags);
1300	return 0;
1301}
1302
1303/* Halt or clear halt of endpoint */
1304static int
1305udc_set_halt(struct usb_ep *usbep, int halt)
1306{
1307	struct udc_ep	*ep;
1308	u32 tmp;
1309	unsigned long iflags;
1310	int retval = 0;
1311
1312	if (!usbep)
1313		return -EINVAL;
1314
1315	pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1316
1317	ep = container_of(usbep, struct udc_ep, ep);
1318	if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1319		return -EINVAL;
1320	if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1321		return -ESHUTDOWN;
1322
1323	spin_lock_irqsave(&udc_stall_spinlock, iflags);
1324	/* halt or clear halt */
1325	if (halt) {
1326		if (ep->num == 0)
1327			ep->dev->stall_ep0in = 1;
1328		else {
1329			/*
1330			 * set STALL
1331			 * rxfifo empty not taken into acount
1332			 */
1333			tmp = readl(&ep->regs->ctl);
1334			tmp |= AMD_BIT(UDC_EPCTL_S);
1335			writel(tmp, &ep->regs->ctl);
1336			ep->halted = 1;
1337
1338			/* setup poll timer */
1339			if (!timer_pending(&udc_pollstall_timer)) {
1340				udc_pollstall_timer.expires = jiffies +
1341					HZ * UDC_POLLSTALL_TIMER_USECONDS
1342					/ (1000 * 1000);
1343				if (!stop_pollstall_timer) {
1344					DBG(ep->dev, "start polltimer\n");
1345					add_timer(&udc_pollstall_timer);
1346				}
1347			}
1348		}
1349	} else {
1350		/* ep is halted by set_halt() before */
1351		if (ep->halted) {
1352			tmp = readl(&ep->regs->ctl);
1353			/* clear stall bit */
1354			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1355			/* clear NAK by writing CNAK */
1356			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1357			writel(tmp, &ep->regs->ctl);
1358			ep->halted = 0;
1359			UDC_QUEUE_CNAK(ep, ep->num);
1360		}
1361	}
1362	spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1363	return retval;
1364}
1365
1366/* gadget interface */
1367static const struct usb_ep_ops udc_ep_ops = {
1368	.enable		= udc_ep_enable,
1369	.disable	= udc_ep_disable,
1370
1371	.alloc_request	= udc_alloc_request,
1372	.free_request	= udc_free_request,
1373
1374	.queue		= udc_queue,
1375	.dequeue	= udc_dequeue,
1376
1377	.set_halt	= udc_set_halt,
1378	/* fifo ops not implemented */
1379};
1380
1381/*-------------------------------------------------------------------------*/
1382
1383/* Get frame counter (not implemented) */
1384static int udc_get_frame(struct usb_gadget *gadget)
1385{
1386	return -EOPNOTSUPP;
1387}
1388
1389/* Initiates a remote wakeup */
1390static int udc_remote_wakeup(struct udc *dev)
1391{
1392	unsigned long flags;
1393	u32 tmp;
1394
1395	DBG(dev, "UDC initiates remote wakeup\n");
1396
1397	spin_lock_irqsave(&dev->lock, flags);
1398
1399	tmp = readl(&dev->regs->ctl);
1400	tmp |= AMD_BIT(UDC_DEVCTL_RES);
1401	writel(tmp, &dev->regs->ctl);
1402	tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
1403	writel(tmp, &dev->regs->ctl);
1404
1405	spin_unlock_irqrestore(&dev->lock, flags);
1406	return 0;
1407}
1408
1409/* Remote wakeup gadget interface */
1410static int udc_wakeup(struct usb_gadget *gadget)
1411{
1412	struct udc		*dev;
1413
1414	if (!gadget)
1415		return -EINVAL;
1416	dev = container_of(gadget, struct udc, gadget);
1417	udc_remote_wakeup(dev);
1418
1419	return 0;
1420}
1421
1422static int amd5536_udc_start(struct usb_gadget *g,
1423		struct usb_gadget_driver *driver);
1424static int amd5536_udc_stop(struct usb_gadget *g);
1425
1426static const struct usb_gadget_ops udc_ops = {
1427	.wakeup		= udc_wakeup,
1428	.get_frame	= udc_get_frame,
1429	.udc_start	= amd5536_udc_start,
1430	.udc_stop	= amd5536_udc_stop,
1431};
1432
1433/* Setups endpoint parameters, adds endpoints to linked list */
1434static void make_ep_lists(struct udc *dev)
1435{
1436	/* make gadget ep lists */
1437	INIT_LIST_HEAD(&dev->gadget.ep_list);
1438	list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1439						&dev->gadget.ep_list);
1440	list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1441						&dev->gadget.ep_list);
1442	list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1443						&dev->gadget.ep_list);
1444
1445	/* fifo config */
1446	dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1447	if (dev->gadget.speed == USB_SPEED_FULL)
1448		dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1449	else if (dev->gadget.speed == USB_SPEED_HIGH)
1450		dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1451	dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1452}
1453
1454/* Inits UDC context */
1455void udc_basic_init(struct udc *dev)
1456{
1457	u32	tmp;
1458
1459	DBG(dev, "udc_basic_init()\n");
1460
1461	dev->gadget.speed = USB_SPEED_UNKNOWN;
1462
1463	/* stop RDE timer */
1464	if (timer_pending(&udc_timer)) {
1465		set_rde = 0;
1466		mod_timer(&udc_timer, jiffies - 1);
1467	}
1468	/* stop poll stall timer */
1469	if (timer_pending(&udc_pollstall_timer))
1470		mod_timer(&udc_pollstall_timer, jiffies - 1);
1471	/* disable DMA */
1472	tmp = readl(&dev->regs->ctl);
1473	tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1474	tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1475	writel(tmp, &dev->regs->ctl);
1476
1477	/* enable dynamic CSR programming */
1478	tmp = readl(&dev->regs->cfg);
1479	tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1480	/* set self powered */
1481	tmp |= AMD_BIT(UDC_DEVCFG_SP);
1482	/* set remote wakeupable */
1483	tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1484	writel(tmp, &dev->regs->cfg);
1485
1486	make_ep_lists(dev);
1487
1488	dev->data_ep_enabled = 0;
1489	dev->data_ep_queued = 0;
1490}
1491EXPORT_SYMBOL_GPL(udc_basic_init);
1492
1493/* init registers at driver load time */
1494static int startup_registers(struct udc *dev)
1495{
1496	u32 tmp;
1497
1498	/* init controller by soft reset */
1499	udc_soft_reset(dev);
1500
1501	/* mask not needed interrupts */
1502	udc_mask_unused_interrupts(dev);
1503
1504	/* put into initial config */
1505	udc_basic_init(dev);
1506	/* link up all endpoints */
1507	udc_setup_endpoints(dev);
1508
1509	/* program speed */
1510	tmp = readl(&dev->regs->cfg);
1511	if (use_fullspeed)
1512		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1513	else
1514		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1515	writel(tmp, &dev->regs->cfg);
1516
1517	return 0;
1518}
1519
1520/* Sets initial endpoint parameters */
1521static void udc_setup_endpoints(struct udc *dev)
1522{
1523	struct udc_ep	*ep;
1524	u32	tmp;
1525	u32	reg;
1526
1527	DBG(dev, "udc_setup_endpoints()\n");
1528
1529	/* read enum speed */
1530	tmp = readl(&dev->regs->sts);
1531	tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1532	if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
1533		dev->gadget.speed = USB_SPEED_HIGH;
1534	else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
1535		dev->gadget.speed = USB_SPEED_FULL;
1536
1537	/* set basic ep parameters */
1538	for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1539		ep = &dev->ep[tmp];
1540		ep->dev = dev;
1541		ep->ep.name = ep_info[tmp].name;
1542		ep->ep.caps = ep_info[tmp].caps;
1543		ep->num = tmp;
1544		/* txfifo size is calculated at enable time */
1545		ep->txfifo = dev->txfifo;
1546
1547		/* fifo size */
1548		if (tmp < UDC_EPIN_NUM) {
1549			ep->fifo_depth = UDC_TXFIFO_SIZE;
1550			ep->in = 1;
1551		} else {
1552			ep->fifo_depth = UDC_RXFIFO_SIZE;
1553			ep->in = 0;
1554
1555		}
1556		ep->regs = &dev->ep_regs[tmp];
1557		/*
1558		 * ep will be reset only if ep was not enabled before to avoid
1559		 * disabling ep interrupts when ENUM interrupt occurs but ep is
1560		 * not enabled by gadget driver
1561		 */
1562		if (!ep->ep.desc)
1563			ep_init(dev->regs, ep);
1564
1565		if (use_dma) {
1566			/*
1567			 * ep->dma is not really used, just to indicate that
1568			 * DMA is active: remove this
1569			 * dma regs = dev control regs
1570			 */
1571			ep->dma = &dev->regs->ctl;
1572
1573			/* nak OUT endpoints until enable - not for ep0 */
1574			if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1575						&& tmp > UDC_EPIN_NUM) {
1576				/* set NAK */
1577				reg = readl(&dev->ep[tmp].regs->ctl);
1578				reg |= AMD_BIT(UDC_EPCTL_SNAK);
1579				writel(reg, &dev->ep[tmp].regs->ctl);
1580				dev->ep[tmp].naking = 1;
1581
1582			}
1583		}
1584	}
1585	/* EP0 max packet */
1586	if (dev->gadget.speed == USB_SPEED_FULL) {
1587		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1588					   UDC_FS_EP0IN_MAX_PKT_SIZE);
1589		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1590					   UDC_FS_EP0OUT_MAX_PKT_SIZE);
1591	} else if (dev->gadget.speed == USB_SPEED_HIGH) {
1592		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1593					   UDC_EP0IN_MAX_PKT_SIZE);
1594		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1595					   UDC_EP0OUT_MAX_PKT_SIZE);
1596	}
1597
1598	/*
1599	 * with suspend bug workaround, ep0 params for gadget driver
1600	 * are set at gadget driver bind() call
1601	 */
1602	dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1603	dev->ep[UDC_EP0IN_IX].halted = 0;
1604	INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1605
1606	/* init cfg/alt/int */
1607	dev->cur_config = 0;
1608	dev->cur_intf = 0;
1609	dev->cur_alt = 0;
1610}
1611
1612/* Bringup after Connect event, initial bringup to be ready for ep0 events */
1613static void usb_connect(struct udc *dev)
1614{
1615	/* Return if already connected */
1616	if (dev->connected)
1617		return;
1618
1619	dev_info(dev->dev, "USB Connect\n");
1620
1621	dev->connected = 1;
1622
1623	/* put into initial config */
1624	udc_basic_init(dev);
1625
1626	/* enable device setup interrupts */
1627	udc_enable_dev_setup_interrupts(dev);
1628}
1629
1630/*
1631 * Calls gadget with disconnect event and resets the UDC and makes
1632 * initial bringup to be ready for ep0 events
1633 */
1634static void usb_disconnect(struct udc *dev)
1635{
1636	u32 tmp;
1637
1638	/* Return if already disconnected */
1639	if (!dev->connected)
1640		return;
1641
1642	dev_info(dev->dev, "USB Disconnect\n");
1643
1644	dev->connected = 0;
1645
1646	/* mask interrupts */
1647	udc_mask_unused_interrupts(dev);
1648
1649	if (dev->driver) {
1650		spin_unlock(&dev->lock);
1651		dev->driver->disconnect(&dev->gadget);
1652		spin_lock(&dev->lock);
1653
1654		/* empty queues */
1655		for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1656			empty_req_queue(&dev->ep[tmp]);
1657	}
1658
1659	/* disable ep0 */
1660	ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
1661
1662	if (!soft_reset_occured) {
1663		/* init controller by soft reset */
1664		udc_soft_reset(dev);
1665		soft_reset_occured++;
1666	}
1667
1668	/* re-enable dev interrupts */
1669	udc_enable_dev_setup_interrupts(dev);
1670	/* back to full speed ? */
1671	if (use_fullspeed) {
1672		tmp = readl(&dev->regs->cfg);
1673		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1674		writel(tmp, &dev->regs->cfg);
1675	}
1676}
1677
1678/* Reset the UDC core */
1679static void udc_soft_reset(struct udc *dev)
1680{
1681	unsigned long	flags;
1682
1683	DBG(dev, "Soft reset\n");
1684	/*
1685	 * reset possible waiting interrupts, because int.
1686	 * status is lost after soft reset,
1687	 * ep int. status reset
1688	 */
1689	writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1690	/* device int. status reset */
1691	writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1692
1693	/* Don't do this for Broadcom UDC since this is a reserved
1694	 * bit.
1695	 */
1696	if (dev->chiprev != UDC_BCM_REV) {
1697		spin_lock_irqsave(&udc_irq_spinlock, flags);
1698		writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1699		readl(&dev->regs->cfg);
1700		spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1701	}
1702}
1703
1704/* RDE timer callback to set RDE bit */
1705static void udc_timer_function(struct timer_list *unused)
1706{
1707	u32 tmp;
1708
1709	spin_lock_irq(&udc_irq_spinlock);
1710
1711	if (set_rde > 0) {
1712		/*
1713		 * open the fifo if fifo was filled on last timer call
1714		 * conditionally
1715		 */
1716		if (set_rde > 1) {
1717			/* set RDE to receive setup data */
1718			tmp = readl(&udc->regs->ctl);
1719			tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1720			writel(tmp, &udc->regs->ctl);
1721			set_rde = -1;
1722		} else if (readl(&udc->regs->sts)
1723				& AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1724			/*
1725			 * if fifo empty setup polling, do not just
1726			 * open the fifo
1727			 */
1728			udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1729			if (!stop_timer)
1730				add_timer(&udc_timer);
1731		} else {
1732			/*
1733			 * fifo contains data now, setup timer for opening
1734			 * the fifo when timer expires to be able to receive
1735			 * setup packets, when data packets gets queued by
1736			 * gadget layer then timer will forced to expire with
1737			 * set_rde=0 (RDE is set in udc_queue())
1738			 */
1739			set_rde++;
1740			/* debug: lhadmot_timer_start = 221070 */
1741			udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1742			if (!stop_timer)
1743				add_timer(&udc_timer);
1744		}
1745
1746	} else
1747		set_rde = -1; /* RDE was set by udc_queue() */
1748	spin_unlock_irq(&udc_irq_spinlock);
1749	if (stop_timer)
1750		complete(&on_exit);
1751
1752}
1753
1754/* Handle halt state, used in stall poll timer */
1755static void udc_handle_halt_state(struct udc_ep *ep)
1756{
1757	u32 tmp;
1758	/* set stall as long not halted */
1759	if (ep->halted == 1) {
1760		tmp = readl(&ep->regs->ctl);
1761		/* STALL cleared ? */
1762		if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1763			/*
1764			 * FIXME: MSC spec requires that stall remains
1765			 * even on receivng of CLEAR_FEATURE HALT. So
1766			 * we would set STALL again here to be compliant.
1767			 * But with current mass storage drivers this does
1768			 * not work (would produce endless host retries).
1769			 * So we clear halt on CLEAR_FEATURE.
1770			 *
1771			DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1772			tmp |= AMD_BIT(UDC_EPCTL_S);
1773			writel(tmp, &ep->regs->ctl);*/
1774
1775			/* clear NAK by writing CNAK */
1776			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1777			writel(tmp, &ep->regs->ctl);
1778			ep->halted = 0;
1779			UDC_QUEUE_CNAK(ep, ep->num);
1780		}
1781	}
1782}
1783
1784/* Stall timer callback to poll S bit and set it again after */
1785static void udc_pollstall_timer_function(struct timer_list *unused)
1786{
1787	struct udc_ep *ep;
1788	int halted = 0;
1789
1790	spin_lock_irq(&udc_stall_spinlock);
1791	/*
1792	 * only one IN and OUT endpoints are handled
1793	 * IN poll stall
1794	 */
1795	ep = &udc->ep[UDC_EPIN_IX];
1796	udc_handle_halt_state(ep);
1797	if (ep->halted)
1798		halted = 1;
1799	/* OUT poll stall */
1800	ep = &udc->ep[UDC_EPOUT_IX];
1801	udc_handle_halt_state(ep);
1802	if (ep->halted)
1803		halted = 1;
1804
1805	/* setup timer again when still halted */
1806	if (!stop_pollstall_timer && halted) {
1807		udc_pollstall_timer.expires = jiffies +
1808					HZ * UDC_POLLSTALL_TIMER_USECONDS
1809					/ (1000 * 1000);
1810		add_timer(&udc_pollstall_timer);
1811	}
1812	spin_unlock_irq(&udc_stall_spinlock);
1813
1814	if (stop_pollstall_timer)
1815		complete(&on_pollstall_exit);
1816}
1817
1818/* Inits endpoint 0 so that SETUP packets are processed */
1819static void activate_control_endpoints(struct udc *dev)
1820{
1821	u32 tmp;
1822
1823	DBG(dev, "activate_control_endpoints\n");
1824
1825	/* flush fifo */
1826	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1827	tmp |= AMD_BIT(UDC_EPCTL_F);
1828	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1829
1830	/* set ep0 directions */
1831	dev->ep[UDC_EP0IN_IX].in = 1;
1832	dev->ep[UDC_EP0OUT_IX].in = 0;
1833
1834	/* set buffer size (tx fifo entries) of EP0_IN */
1835	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1836	if (dev->gadget.speed == USB_SPEED_FULL)
1837		tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1838					UDC_EPIN_BUFF_SIZE);
1839	else if (dev->gadget.speed == USB_SPEED_HIGH)
1840		tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1841					UDC_EPIN_BUFF_SIZE);
1842	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1843
1844	/* set max packet size of EP0_IN */
1845	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1846	if (dev->gadget.speed == USB_SPEED_FULL)
1847		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1848					UDC_EP_MAX_PKT_SIZE);
1849	else if (dev->gadget.speed == USB_SPEED_HIGH)
1850		tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1851				UDC_EP_MAX_PKT_SIZE);
1852	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1853
1854	/* set max packet size of EP0_OUT */
1855	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1856	if (dev->gadget.speed == USB_SPEED_FULL)
1857		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1858					UDC_EP_MAX_PKT_SIZE);
1859	else if (dev->gadget.speed == USB_SPEED_HIGH)
1860		tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1861					UDC_EP_MAX_PKT_SIZE);
1862	writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1863
1864	/* set max packet size of EP0 in UDC CSR */
1865	tmp = readl(&dev->csr->ne[0]);
1866	if (dev->gadget.speed == USB_SPEED_FULL)
1867		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1868					UDC_CSR_NE_MAX_PKT);
1869	else if (dev->gadget.speed == USB_SPEED_HIGH)
1870		tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1871					UDC_CSR_NE_MAX_PKT);
1872	writel(tmp, &dev->csr->ne[0]);
1873
1874	if (use_dma) {
1875		dev->ep[UDC_EP0OUT_IX].td->status |=
1876			AMD_BIT(UDC_DMA_OUT_STS_L);
1877		/* write dma desc address */
1878		writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1879			&dev->ep[UDC_EP0OUT_IX].regs->subptr);
1880		writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1881			&dev->ep[UDC_EP0OUT_IX].regs->desptr);
1882		/* stop RDE timer */
1883		if (timer_pending(&udc_timer)) {
1884			set_rde = 0;
1885			mod_timer(&udc_timer, jiffies - 1);
1886		}
1887		/* stop pollstall timer */
1888		if (timer_pending(&udc_pollstall_timer))
1889			mod_timer(&udc_pollstall_timer, jiffies - 1);
1890		/* enable DMA */
1891		tmp = readl(&dev->regs->ctl);
1892		tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1893				| AMD_BIT(UDC_DEVCTL_RDE)
1894				| AMD_BIT(UDC_DEVCTL_TDE);
1895		if (use_dma_bufferfill_mode)
1896			tmp |= AMD_BIT(UDC_DEVCTL_BF);
1897		else if (use_dma_ppb_du)
1898			tmp |= AMD_BIT(UDC_DEVCTL_DU);
1899		writel(tmp, &dev->regs->ctl);
1900	}
1901
1902	/* clear NAK by writing CNAK for EP0IN */
1903	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1904	tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1905	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1906	dev->ep[UDC_EP0IN_IX].naking = 0;
1907	UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1908
1909	/* clear NAK by writing CNAK for EP0OUT */
1910	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1911	tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1912	writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1913	dev->ep[UDC_EP0OUT_IX].naking = 0;
1914	UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1915}
1916
1917/* Make endpoint 0 ready for control traffic */
1918static int setup_ep0(struct udc *dev)
1919{
1920	activate_control_endpoints(dev);
1921	/* enable ep0 interrupts */
1922	udc_enable_ep0_interrupts(dev);
1923	/* enable device setup interrupts */
1924	udc_enable_dev_setup_interrupts(dev);
1925
1926	return 0;
1927}
1928
1929/* Called by gadget driver to register itself */
1930static int amd5536_udc_start(struct usb_gadget *g,
1931		struct usb_gadget_driver *driver)
1932{
1933	struct udc *dev = to_amd5536_udc(g);
1934	u32 tmp;
1935
1936	dev->driver = driver;
1937
1938	/* Some gadget drivers use both ep0 directions.
1939	 * NOTE: to gadget driver, ep0 is just one endpoint...
1940	 */
1941	dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1942		dev->ep[UDC_EP0IN_IX].ep.driver_data;
1943
1944	/* get ready for ep0 traffic */
1945	setup_ep0(dev);
1946
1947	/* clear SD */
1948	tmp = readl(&dev->regs->ctl);
1949	tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1950	writel(tmp, &dev->regs->ctl);
1951
1952	usb_connect(dev);
1953
1954	return 0;
1955}
1956
1957/* shutdown requests and disconnect from gadget */
1958static void
1959shutdown(struct udc *dev, struct usb_gadget_driver *driver)
1960__releases(dev->lock)
1961__acquires(dev->lock)
1962{
1963	int tmp;
1964
1965	/* empty queues and init hardware */
1966	udc_basic_init(dev);
1967
1968	for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1969		empty_req_queue(&dev->ep[tmp]);
1970
1971	udc_setup_endpoints(dev);
1972}
1973
1974/* Called by gadget driver to unregister itself */
1975static int amd5536_udc_stop(struct usb_gadget *g)
1976{
1977	struct udc *dev = to_amd5536_udc(g);
1978	unsigned long flags;
1979	u32 tmp;
1980
1981	spin_lock_irqsave(&dev->lock, flags);
1982	udc_mask_unused_interrupts(dev);
1983	shutdown(dev, NULL);
1984	spin_unlock_irqrestore(&dev->lock, flags);
1985
1986	dev->driver = NULL;
1987
1988	/* set SD */
1989	tmp = readl(&dev->regs->ctl);
1990	tmp |= AMD_BIT(UDC_DEVCTL_SD);
1991	writel(tmp, &dev->regs->ctl);
1992
1993	return 0;
1994}
1995
1996/* Clear pending NAK bits */
1997static void udc_process_cnak_queue(struct udc *dev)
1998{
1999	u32 tmp;
2000	u32 reg;
2001
2002	/* check epin's */
2003	DBG(dev, "CNAK pending queue processing\n");
2004	for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
2005		if (cnak_pending & (1 << tmp)) {
2006			DBG(dev, "CNAK pending for ep%d\n", tmp);
2007			/* clear NAK by writing CNAK */
2008			reg = readl(&dev->ep[tmp].regs->ctl);
2009			reg |= AMD_BIT(UDC_EPCTL_CNAK);
2010			writel(reg, &dev->ep[tmp].regs->ctl);
2011			dev->ep[tmp].naking = 0;
2012			UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2013		}
2014	}
2015	/* ...	and ep0out */
2016	if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2017		DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2018		/* clear NAK by writing CNAK */
2019		reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2020		reg |= AMD_BIT(UDC_EPCTL_CNAK);
2021		writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2022		dev->ep[UDC_EP0OUT_IX].naking = 0;
2023		UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2024				dev->ep[UDC_EP0OUT_IX].num);
2025	}
2026}
2027
2028/* Enabling RX DMA after setup packet */
2029static void udc_ep0_set_rde(struct udc *dev)
2030{
2031	if (use_dma) {
2032		/*
2033		 * only enable RXDMA when no data endpoint enabled
2034		 * or data is queued
2035		 */
2036		if (!dev->data_ep_enabled || dev->data_ep_queued) {
2037			udc_set_rde(dev);
2038		} else {
2039			/*
2040			 * setup timer for enabling RDE (to not enable
2041			 * RXFIFO DMA for data endpoints to early)
2042			 */
2043			if (set_rde != 0 && !timer_pending(&udc_timer)) {
2044				udc_timer.expires =
2045					jiffies + HZ/UDC_RDE_TIMER_DIV;
2046				set_rde = 1;
2047				if (!stop_timer)
2048					add_timer(&udc_timer);
2049			}
2050		}
2051	}
2052}
2053
2054
2055/* Interrupt handler for data OUT traffic */
2056static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2057{
2058	irqreturn_t		ret_val = IRQ_NONE;
2059	u32			tmp;
2060	struct udc_ep		*ep;
2061	struct udc_request	*req;
2062	unsigned int		count;
2063	struct udc_data_dma	*td = NULL;
2064	unsigned		dma_done;
2065
2066	VDBG(dev, "ep%d irq\n", ep_ix);
2067	ep = &dev->ep[ep_ix];
2068
2069	tmp = readl(&ep->regs->sts);
2070	if (use_dma) {
2071		/* BNA event ? */
2072		if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2073			DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
2074					ep->num, readl(&ep->regs->desptr));
2075			/* clear BNA */
2076			writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2077			if (!ep->cancel_transfer)
2078				ep->bna_occurred = 1;
2079			else
2080				ep->cancel_transfer = 0;
2081			ret_val = IRQ_HANDLED;
2082			goto finished;
2083		}
2084	}
2085	/* HE event ? */
2086	if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2087		dev_err(dev->dev, "HE ep%dout occurred\n", ep->num);
2088
2089		/* clear HE */
2090		writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2091		ret_val = IRQ_HANDLED;
2092		goto finished;
2093	}
2094
2095	if (!list_empty(&ep->queue)) {
2096
2097		/* next request */
2098		req = list_entry(ep->queue.next,
2099			struct udc_request, queue);
2100	} else {
2101		req = NULL;
2102		udc_rxfifo_pending = 1;
2103	}
2104	VDBG(dev, "req = %p\n", req);
2105	/* fifo mode */
2106	if (!use_dma) {
2107
2108		/* read fifo */
2109		if (req && udc_rxfifo_read(ep, req)) {
2110			ret_val = IRQ_HANDLED;
2111
2112			/* finish */
2113			complete_req(ep, req, 0);
2114			/* next request */
2115			if (!list_empty(&ep->queue) && !ep->halted) {
2116				req = list_entry(ep->queue.next,
2117					struct udc_request, queue);
2118			} else
2119				req = NULL;
2120		}
2121
2122	/* DMA */
2123	} else if (!ep->cancel_transfer && req) {
2124		ret_val = IRQ_HANDLED;
2125
2126		/* check for DMA done */
2127		if (!use_dma_ppb) {
2128			dma_done = AMD_GETBITS(req->td_data->status,
2129						UDC_DMA_OUT_STS_BS);
2130		/* packet per buffer mode - rx bytes */
2131		} else {
2132			/*
2133			 * if BNA occurred then recover desc. from
2134			 * BNA dummy desc.
2135			 */
2136			if (ep->bna_occurred) {
2137				VDBG(dev, "Recover desc. from BNA dummy\n");
2138				memcpy(req->td_data, ep->bna_dummy_req->td_data,
2139						sizeof(struct udc_data_dma));
2140				ep->bna_occurred = 0;
2141				udc_init_bna_dummy(ep->req);
2142			}
2143			td = udc_get_last_dma_desc(req);
2144			dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2145		}
2146		if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2147			/* buffer fill mode - rx bytes */
2148			if (!use_dma_ppb) {
2149				/* received number bytes */
2150				count = AMD_GETBITS(req->td_data->status,
2151						UDC_DMA_OUT_STS_RXBYTES);
2152				VDBG(dev, "rx bytes=%u\n", count);
2153			/* packet per buffer mode - rx bytes */
2154			} else {
2155				VDBG(dev, "req->td_data=%p\n", req->td_data);
2156				VDBG(dev, "last desc = %p\n", td);
2157				/* received number bytes */
2158				if (use_dma_ppb_du) {
2159					/* every desc. counts bytes */
2160					count = udc_get_ppbdu_rxbytes(req);
2161				} else {
2162					/* last desc. counts bytes */
2163					count = AMD_GETBITS(td->status,
2164						UDC_DMA_OUT_STS_RXBYTES);
2165					if (!count && req->req.length
2166						== UDC_DMA_MAXPACKET) {
2167						/*
2168						 * on 64k packets the RXBYTES
2169						 * field is zero
2170						 */
2171						count = UDC_DMA_MAXPACKET;
2172					}
2173				}
2174				VDBG(dev, "last desc rx bytes=%u\n", count);
2175			}
2176
2177			tmp = req->req.length - req->req.actual;
2178			if (count > tmp) {
2179				if ((tmp % ep->ep.maxpacket) != 0) {
2180					DBG(dev, "%s: rx %db, space=%db\n",
2181						ep->ep.name, count, tmp);
2182					req->req.status = -EOVERFLOW;
2183				}
2184				count = tmp;
2185			}
2186			req->req.actual += count;
2187			req->dma_going = 0;
2188			/* complete request */
2189			complete_req(ep, req, 0);
2190
2191			/* next request */
2192			if (!list_empty(&ep->queue) && !ep->halted) {
2193				req = list_entry(ep->queue.next,
2194					struct udc_request,
2195					queue);
2196				/*
2197				 * DMA may be already started by udc_queue()
2198				 * called by gadget drivers completion
2199				 * routine. This happens when queue
2200				 * holds one request only.
2201				 */
2202				if (req->dma_going == 0) {
2203					/* next dma */
2204					if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2205						goto finished;
2206					/* write desc pointer */
2207					writel(req->td_phys,
2208						&ep->regs->desptr);
2209					req->dma_going = 1;
2210					/* enable DMA */
2211					udc_set_rde(dev);
2212				}
2213			} else {
2214				/*
2215				 * implant BNA dummy descriptor to allow
2216				 * RXFIFO opening by RDE
2217				 */
2218				if (ep->bna_dummy_req) {
2219					/* write desc pointer */
2220					writel(ep->bna_dummy_req->td_phys,
2221						&ep->regs->desptr);
2222					ep->bna_occurred = 0;
2223				}
2224
2225				/*
2226				 * schedule timer for setting RDE if queue
2227				 * remains empty to allow ep0 packets pass
2228				 * through
2229				 */
2230				if (set_rde != 0
2231						&& !timer_pending(&udc_timer)) {
2232					udc_timer.expires =
2233						jiffies
2234						+ HZ*UDC_RDE_TIMER_SECONDS;
2235					set_rde = 1;
2236					if (!stop_timer)
2237						add_timer(&udc_timer);
2238				}
2239				if (ep->num != UDC_EP0OUT_IX)
2240					dev->data_ep_queued = 0;
2241			}
2242
2243		} else {
2244			/*
2245			* RX DMA must be reenabled for each desc in PPBDU mode
2246			* and must be enabled for PPBNDU mode in case of BNA
2247			*/
2248			udc_set_rde(dev);
2249		}
2250
2251	} else if (ep->cancel_transfer) {
2252		ret_val = IRQ_HANDLED;
2253		ep->cancel_transfer = 0;
2254	}
2255
2256	/* check pending CNAKS */
2257	if (cnak_pending) {
2258		/* CNAk processing when rxfifo empty only */
2259		if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2260			udc_process_cnak_queue(dev);
2261	}
2262
2263	/* clear OUT bits in ep status */
2264	writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2265finished:
2266	return ret_val;
2267}
2268
2269/* Interrupt handler for data IN traffic */
2270static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2271{
2272	irqreturn_t ret_val = IRQ_NONE;
2273	u32 tmp;
2274	u32 epsts;
2275	struct udc_ep *ep;
2276	struct udc_request *req;
2277	struct udc_data_dma *td;
2278	unsigned len;
2279
2280	ep = &dev->ep[ep_ix];
2281
2282	epsts = readl(&ep->regs->sts);
2283	if (use_dma) {
2284		/* BNA ? */
2285		if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2286			dev_err(dev->dev,
2287				"BNA ep%din occurred - DESPTR = %08lx\n",
2288				ep->num,
2289				(unsigned long) readl(&ep->regs->desptr));
2290
2291			/* clear BNA */
2292			writel(epsts, &ep->regs->sts);
2293			ret_val = IRQ_HANDLED;
2294			goto finished;
2295		}
2296	}
2297	/* HE event ? */
2298	if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2299		dev_err(dev->dev,
2300			"HE ep%dn occurred - DESPTR = %08lx\n",
2301			ep->num, (unsigned long) readl(&ep->regs->desptr));
2302
2303		/* clear HE */
2304		writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2305		ret_val = IRQ_HANDLED;
2306		goto finished;
2307	}
2308
2309	/* DMA completion */
2310	if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2311		VDBG(dev, "TDC set- completion\n");
2312		ret_val = IRQ_HANDLED;
2313		if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2314			req = list_entry(ep->queue.next,
2315					struct udc_request, queue);
2316			/*
2317			 * length bytes transferred
2318			 * check dma done of last desc. in PPBDU mode
2319			 */
2320			if (use_dma_ppb_du) {
2321				td = udc_get_last_dma_desc(req);
2322				if (td)
2323					req->req.actual = req->req.length;
2324			} else {
2325				/* assume all bytes transferred */
2326				req->req.actual = req->req.length;
2327			}
2328
2329			if (req->req.actual == req->req.length) {
2330				/* complete req */
2331				complete_req(ep, req, 0);
2332				req->dma_going = 0;
2333				/* further request available ? */
2334				if (list_empty(&ep->queue)) {
2335					/* disable interrupt */
2336					tmp = readl(&dev->regs->ep_irqmsk);
2337					tmp |= AMD_BIT(ep->num);
2338					writel(tmp, &dev->regs->ep_irqmsk);
2339				}
2340			}
2341		}
2342		ep->cancel_transfer = 0;
2343
2344	}
2345	/*
2346	 * status reg has IN bit set and TDC not set (if TDC was handled,
2347	 * IN must not be handled (UDC defect) ?
2348	 */
2349	if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2350			&& !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2351		ret_val = IRQ_HANDLED;
2352		if (!list_empty(&ep->queue)) {
2353			/* next request */
2354			req = list_entry(ep->queue.next,
2355					struct udc_request, queue);
2356			/* FIFO mode */
2357			if (!use_dma) {
2358				/* write fifo */
2359				udc_txfifo_write(ep, &req->req);
2360				len = req->req.length - req->req.actual;
2361				if (len > ep->ep.maxpacket)
2362					len = ep->ep.maxpacket;
2363				req->req.actual += len;
2364				if (req->req.actual == req->req.length
2365					|| (len != ep->ep.maxpacket)) {
2366					/* complete req */
2367					complete_req(ep, req, 0);
2368				}
2369			/* DMA */
2370			} else if (req && !req->dma_going) {
2371				VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2372					req, req->td_data);
2373				if (req->td_data) {
2374
2375					req->dma_going = 1;
2376
2377					/*
2378					 * unset L bit of first desc.
2379					 * for chain
2380					 */
2381					if (use_dma_ppb && req->req.length >
2382							ep->ep.maxpacket) {
2383						req->td_data->status &=
2384							AMD_CLEAR_BIT(
2385							UDC_DMA_IN_STS_L);
2386					}
2387
2388					/* write desc pointer */
2389					writel(req->td_phys, &ep->regs->desptr);
2390
2391					/* set HOST READY */
2392					req->td_data->status =
2393						AMD_ADDBITS(
2394						req->td_data->status,
2395						UDC_DMA_IN_STS_BS_HOST_READY,
2396						UDC_DMA_IN_STS_BS);
2397
2398					/* set poll demand bit */
2399					tmp = readl(&ep->regs->ctl);
2400					tmp |= AMD_BIT(UDC_EPCTL_P);
2401					writel(tmp, &ep->regs->ctl);
2402				}
2403			}
2404
2405		} else if (!use_dma && ep->in) {
2406			/* disable interrupt */
2407			tmp = readl(
2408				&dev->regs->ep_irqmsk);
2409			tmp |= AMD_BIT(ep->num);
2410			writel(tmp,
2411				&dev->regs->ep_irqmsk);
2412		}
2413	}
2414	/* clear status bits */
2415	writel(epsts, &ep->regs->sts);
2416
2417finished:
2418	return ret_val;
2419
2420}
2421
2422/* Interrupt handler for Control OUT traffic */
2423static irqreturn_t udc_control_out_isr(struct udc *dev)
2424__releases(dev->lock)
2425__acquires(dev->lock)
2426{
2427	irqreturn_t ret_val = IRQ_NONE;
2428	u32 tmp;
2429	int setup_supported;
2430	u32 count;
2431	int set = 0;
2432	struct udc_ep	*ep;
2433	struct udc_ep	*ep_tmp;
2434
2435	ep = &dev->ep[UDC_EP0OUT_IX];
2436
2437	/* clear irq */
2438	writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2439
2440	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2441	/* check BNA and clear if set */
2442	if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2443		VDBG(dev, "ep0: BNA set\n");
2444		writel(AMD_BIT(UDC_EPSTS_BNA),
2445			&dev->ep[UDC_EP0OUT_IX].regs->sts);
2446		ep->bna_occurred = 1;
2447		ret_val = IRQ_HANDLED;
2448		goto finished;
2449	}
2450
2451	/* type of data: SETUP or DATA 0 bytes */
2452	tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2453	VDBG(dev, "data_typ = %x\n", tmp);
2454
2455	/* setup data */
2456	if (tmp == UDC_EPSTS_OUT_SETUP) {
2457		ret_val = IRQ_HANDLED;
2458
2459		ep->dev->stall_ep0in = 0;
2460		dev->waiting_zlp_ack_ep0in = 0;
2461
2462		/* set NAK for EP0_IN */
2463		tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2464		tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2465		writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2466		dev->ep[UDC_EP0IN_IX].naking = 1;
2467		/* get setup data */
2468		if (use_dma) {
2469
2470			/* clear OUT bits in ep status */
2471			writel(UDC_EPSTS_OUT_CLEAR,
2472				&dev->ep[UDC_EP0OUT_IX].regs->sts);
2473
2474			setup_data.data[0] =
2475				dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2476			setup_data.data[1] =
2477				dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2478			/* set HOST READY */
2479			dev->ep[UDC_EP0OUT_IX].td_stp->status =
2480					UDC_DMA_STP_STS_BS_HOST_READY;
2481		} else {
2482			/* read fifo */
2483			udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2484		}
2485
2486		/* determine direction of control data */
2487		if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2488			dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2489			/* enable RDE */
2490			udc_ep0_set_rde(dev);
2491			set = 0;
2492		} else {
2493			dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2494			/*
2495			 * implant BNA dummy descriptor to allow RXFIFO opening
2496			 * by RDE
2497			 */
2498			if (ep->bna_dummy_req) {
2499				/* write desc pointer */
2500				writel(ep->bna_dummy_req->td_phys,
2501					&dev->ep[UDC_EP0OUT_IX].regs->desptr);
2502				ep->bna_occurred = 0;
2503			}
2504
2505			set = 1;
2506			dev->ep[UDC_EP0OUT_IX].naking = 1;
2507			/*
2508			 * setup timer for enabling RDE (to not enable
2509			 * RXFIFO DMA for data to early)
2510			 */
2511			set_rde = 1;
2512			if (!timer_pending(&udc_timer)) {
2513				udc_timer.expires = jiffies +
2514							HZ/UDC_RDE_TIMER_DIV;
2515				if (!stop_timer)
2516					add_timer(&udc_timer);
2517			}
2518		}
2519
2520		/*
2521		 * mass storage reset must be processed here because
2522		 * next packet may be a CLEAR_FEATURE HALT which would not
2523		 * clear the stall bit when no STALL handshake was received
2524		 * before (autostall can cause this)
2525		 */
2526		if (setup_data.data[0] == UDC_MSCRES_DWORD0
2527				&& setup_data.data[1] == UDC_MSCRES_DWORD1) {
2528			DBG(dev, "MSC Reset\n");
2529			/*
2530			 * clear stall bits
2531			 * only one IN and OUT endpoints are handled
2532			 */
2533			ep_tmp = &udc->ep[UDC_EPIN_IX];
2534			udc_set_halt(&ep_tmp->ep, 0);
2535			ep_tmp = &udc->ep[UDC_EPOUT_IX];
2536			udc_set_halt(&ep_tmp->ep, 0);
2537		}
2538
2539		/* call gadget with setup data received */
2540		spin_unlock(&dev->lock);
2541		setup_supported = dev->driver->setup(&dev->gadget,
2542						&setup_data.request);
2543		spin_lock(&dev->lock);
2544
2545		tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2546		/* ep0 in returns data (not zlp) on IN phase */
2547		if (setup_supported >= 0 && setup_supported <
2548				UDC_EP0IN_MAXPACKET) {
2549			/* clear NAK by writing CNAK in EP0_IN */
2550			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2551			writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2552			dev->ep[UDC_EP0IN_IX].naking = 0;
2553			UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2554
2555		/* if unsupported request then stall */
2556		} else if (setup_supported < 0) {
2557			tmp |= AMD_BIT(UDC_EPCTL_S);
2558			writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2559		} else
2560			dev->waiting_zlp_ack_ep0in = 1;
2561
2562
2563		/* clear NAK by writing CNAK in EP0_OUT */
2564		if (!set) {
2565			tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2566			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2567			writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2568			dev->ep[UDC_EP0OUT_IX].naking = 0;
2569			UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2570		}
2571
2572		if (!use_dma) {
2573			/* clear OUT bits in ep status */
2574			writel(UDC_EPSTS_OUT_CLEAR,
2575				&dev->ep[UDC_EP0OUT_IX].regs->sts);
2576		}
2577
2578	/* data packet 0 bytes */
2579	} else if (tmp == UDC_EPSTS_OUT_DATA) {
2580		/* clear OUT bits in ep status */
2581		writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2582
2583		/* get setup data: only 0 packet */
2584		if (use_dma) {
2585			/* no req if 0 packet, just reactivate */
2586			if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2587				VDBG(dev, "ZLP\n");
2588
2589				/* set HOST READY */
2590				dev->ep[UDC_EP0OUT_IX].td->status =
2591					AMD_ADDBITS(
2592					dev->ep[UDC_EP0OUT_IX].td->status,
2593					UDC_DMA_OUT_STS_BS_HOST_READY,
2594					UDC_DMA_OUT_STS_BS);
2595				/* enable RDE */
2596				udc_ep0_set_rde(dev);
2597				ret_val = IRQ_HANDLED;
2598
2599			} else {
2600				/* control write */
2601				ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2602				/* re-program desc. pointer for possible ZLPs */
2603				writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2604					&dev->ep[UDC_EP0OUT_IX].regs->desptr);
2605				/* enable RDE */
2606				udc_ep0_set_rde(dev);
2607			}
2608		} else {
2609
2610			/* received number bytes */
2611			count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2612			count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2613			/* out data for fifo mode not working */
2614			count = 0;
2615
2616			/* 0 packet or real data ? */
2617			if (count != 0) {
2618				ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2619			} else {
2620				/* dummy read confirm */
2621				readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2622				ret_val = IRQ_HANDLED;
2623			}
2624		}
2625	}
2626
2627	/* check pending CNAKS */
2628	if (cnak_pending) {
2629		/* CNAk processing when rxfifo empty only */
2630		if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2631			udc_process_cnak_queue(dev);
2632	}
2633
2634finished:
2635	return ret_val;
2636}
2637
2638/* Interrupt handler for Control IN traffic */
2639static irqreturn_t udc_control_in_isr(struct udc *dev)
2640{
2641	irqreturn_t ret_val = IRQ_NONE;
2642	u32 tmp;
2643	struct udc_ep *ep;
2644	struct udc_request *req;
2645	unsigned len;
2646
2647	ep = &dev->ep[UDC_EP0IN_IX];
2648
2649	/* clear irq */
2650	writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2651
2652	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2653	/* DMA completion */
2654	if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2655		VDBG(dev, "isr: TDC clear\n");
2656		ret_val = IRQ_HANDLED;
2657
2658		/* clear TDC bit */
2659		writel(AMD_BIT(UDC_EPSTS_TDC),
2660				&dev->ep[UDC_EP0IN_IX].regs->sts);
2661
2662	/* status reg has IN bit set ? */
2663	} else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2664		ret_val = IRQ_HANDLED;
2665
2666		if (ep->dma) {
2667			/* clear IN bit */
2668			writel(AMD_BIT(UDC_EPSTS_IN),
2669				&dev->ep[UDC_EP0IN_IX].regs->sts);
2670		}
2671		if (dev->stall_ep0in) {
2672			DBG(dev, "stall ep0in\n");
2673			/* halt ep0in */
2674			tmp = readl(&ep->regs->ctl);
2675			tmp |= AMD_BIT(UDC_EPCTL_S);
2676			writel(tmp, &ep->regs->ctl);
2677		} else {
2678			if (!list_empty(&ep->queue)) {
2679				/* next request */
2680				req = list_entry(ep->queue.next,
2681						struct udc_request, queue);
2682
2683				if (ep->dma) {
2684					/* write desc pointer */
2685					writel(req->td_phys, &ep->regs->desptr);
2686					/* set HOST READY */
2687					req->td_data->status =
2688						AMD_ADDBITS(
2689						req->td_data->status,
2690						UDC_DMA_STP_STS_BS_HOST_READY,
2691						UDC_DMA_STP_STS_BS);
2692
2693					/* set poll demand bit */
2694					tmp =
2695					readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2696					tmp |= AMD_BIT(UDC_EPCTL_P);
2697					writel(tmp,
2698					&dev->ep[UDC_EP0IN_IX].regs->ctl);
2699
2700					/* all bytes will be transferred */
2701					req->req.actual = req->req.length;
2702
2703					/* complete req */
2704					complete_req(ep, req, 0);
2705
2706				} else {
2707					/* write fifo */
2708					udc_txfifo_write(ep, &req->req);
2709
2710					/* lengh bytes transferred */
2711					len = req->req.length - req->req.actual;
2712					if (len > ep->ep.maxpacket)
2713						len = ep->ep.maxpacket;
2714
2715					req->req.actual += len;
2716					if (req->req.actual == req->req.length
2717						|| (len != ep->ep.maxpacket)) {
2718						/* complete req */
2719						complete_req(ep, req, 0);
2720					}
2721				}
2722
2723			}
2724		}
2725		ep->halted = 0;
2726		dev->stall_ep0in = 0;
2727		if (!ep->dma) {
2728			/* clear IN bit */
2729			writel(AMD_BIT(UDC_EPSTS_IN),
2730				&dev->ep[UDC_EP0IN_IX].regs->sts);
2731		}
2732	}
2733
2734	return ret_val;
2735}
2736
2737
2738/* Interrupt handler for global device events */
2739static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2740__releases(dev->lock)
2741__acquires(dev->lock)
2742{
2743	irqreturn_t ret_val = IRQ_NONE;
2744	u32 tmp;
2745	u32 cfg;
2746	struct udc_ep *ep;
2747	u16 i;
2748	u8 udc_csr_epix;
2749
2750	/* SET_CONFIG irq ? */
2751	if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2752		ret_val = IRQ_HANDLED;
2753
2754		/* read config value */
2755		tmp = readl(&dev->regs->sts);
2756		cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2757		DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2758		dev->cur_config = cfg;
2759		dev->set_cfg_not_acked = 1;
2760
2761		/* make usb request for gadget driver */
2762		memset(&setup_data, 0 , sizeof(union udc_setup_data));
2763		setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2764		setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2765
2766		/* programm the NE registers */
2767		for (i = 0; i < UDC_EP_NUM; i++) {
2768			ep = &dev->ep[i];
2769			if (ep->in) {
2770
2771				/* ep ix in UDC CSR register space */
2772				udc_csr_epix = ep->num;
2773
2774
2775			/* OUT ep */
2776			} else {
2777				/* ep ix in UDC CSR register space */
2778				udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2779			}
2780
2781			tmp = readl(&dev->csr->ne[udc_csr_epix]);
2782			/* ep cfg */
2783			tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2784						UDC_CSR_NE_CFG);
2785			/* write reg */
2786			writel(tmp, &dev->csr->ne[udc_csr_epix]);
2787
2788			/* clear stall bits */
2789			ep->halted = 0;
2790			tmp = readl(&ep->regs->ctl);
2791			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2792			writel(tmp, &ep->regs->ctl);
2793		}
2794		/* call gadget zero with setup data received */
2795		spin_unlock(&dev->lock);
2796		tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2797		spin_lock(&dev->lock);
2798
2799	} /* SET_INTERFACE ? */
2800	if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2801		ret_val = IRQ_HANDLED;
2802
2803		dev->set_cfg_not_acked = 1;
2804		/* read interface and alt setting values */
2805		tmp = readl(&dev->regs->sts);
2806		dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2807		dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2808
2809		/* make usb request for gadget driver */
2810		memset(&setup_data, 0 , sizeof(union udc_setup_data));
2811		setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2812		setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2813		setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2814		setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2815
2816		DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2817				dev->cur_alt, dev->cur_intf);
2818
2819		/* programm the NE registers */
2820		for (i = 0; i < UDC_EP_NUM; i++) {
2821			ep = &dev->ep[i];
2822			if (ep->in) {
2823
2824				/* ep ix in UDC CSR register space */
2825				udc_csr_epix = ep->num;
2826
2827
2828			/* OUT ep */
2829			} else {
2830				/* ep ix in UDC CSR register space */
2831				udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2832			}
2833
2834			/* UDC CSR reg */
2835			/* set ep values */
2836			tmp = readl(&dev->csr->ne[udc_csr_epix]);
2837			/* ep interface */
2838			tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2839						UDC_CSR_NE_INTF);
2840			/* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2841			/* ep alt */
2842			tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2843						UDC_CSR_NE_ALT);
2844			/* write reg */
2845			writel(tmp, &dev->csr->ne[udc_csr_epix]);
2846
2847			/* clear stall bits */
2848			ep->halted = 0;
2849			tmp = readl(&ep->regs->ctl);
2850			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2851			writel(tmp, &ep->regs->ctl);
2852		}
2853
2854		/* call gadget zero with setup data received */
2855		spin_unlock(&dev->lock);
2856		tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2857		spin_lock(&dev->lock);
2858
2859	} /* USB reset */
2860	if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2861		DBG(dev, "USB Reset interrupt\n");
2862		ret_val = IRQ_HANDLED;
2863
2864		/* allow soft reset when suspend occurs */
2865		soft_reset_occured = 0;
2866
2867		dev->waiting_zlp_ack_ep0in = 0;
2868		dev->set_cfg_not_acked = 0;
2869
2870		/* mask not needed interrupts */
2871		udc_mask_unused_interrupts(dev);
2872
2873		/* call gadget to resume and reset configs etc. */
2874		spin_unlock(&dev->lock);
2875		if (dev->sys_suspended && dev->driver->resume) {
2876			dev->driver->resume(&dev->gadget);
2877			dev->sys_suspended = 0;
2878		}
2879		usb_gadget_udc_reset(&dev->gadget, dev->driver);
2880		spin_lock(&dev->lock);
2881
2882		/* disable ep0 to empty req queue */
2883		empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2884		ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2885
2886		/* soft reset when rxfifo not empty */
2887		tmp = readl(&dev->regs->sts);
2888		if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2889				&& !soft_reset_after_usbreset_occured) {
2890			udc_soft_reset(dev);
2891			soft_reset_after_usbreset_occured++;
2892		}
2893
2894		/*
2895		 * DMA reset to kill potential old DMA hw hang,
2896		 * POLL bit is already reset by ep_init() through
2897		 * disconnect()
2898		 */
2899		DBG(dev, "DMA machine reset\n");
2900		tmp = readl(&dev->regs->cfg);
2901		writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2902		writel(tmp, &dev->regs->cfg);
2903
2904		/* put into initial config */
2905		udc_basic_init(dev);
2906
2907		/* enable device setup interrupts */
2908		udc_enable_dev_setup_interrupts(dev);
2909
2910		/* enable suspend interrupt */
2911		tmp = readl(&dev->regs->irqmsk);
2912		tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2913		writel(tmp, &dev->regs->irqmsk);
2914
2915	} /* USB suspend */
2916	if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2917		DBG(dev, "USB Suspend interrupt\n");
2918		ret_val = IRQ_HANDLED;
2919		if (dev->driver->suspend) {
2920			spin_unlock(&dev->lock);
2921			dev->sys_suspended = 1;
2922			dev->driver->suspend(&dev->gadget);
2923			spin_lock(&dev->lock);
2924		}
2925	} /* new speed ? */
2926	if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
2927		DBG(dev, "ENUM interrupt\n");
2928		ret_val = IRQ_HANDLED;
2929		soft_reset_after_usbreset_occured = 0;
2930
2931		/* disable ep0 to empty req queue */
2932		empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2933		ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2934
2935		/* link up all endpoints */
2936		udc_setup_endpoints(dev);
2937		dev_info(dev->dev, "Connect: %s\n",
2938			 usb_speed_string(dev->gadget.speed));
2939
2940		/* init ep 0 */
2941		activate_control_endpoints(dev);
2942
2943		/* enable ep0 interrupts */
2944		udc_enable_ep0_interrupts(dev);
2945	}
2946	/* session valid change interrupt */
2947	if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
2948		DBG(dev, "USB SVC interrupt\n");
2949		ret_val = IRQ_HANDLED;
2950
2951		/* check that session is not valid to detect disconnect */
2952		tmp = readl(&dev->regs->sts);
2953		if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
2954			/* disable suspend interrupt */
2955			tmp = readl(&dev->regs->irqmsk);
2956			tmp |= AMD_BIT(UDC_DEVINT_US);
2957			writel(tmp, &dev->regs->irqmsk);
2958			DBG(dev, "USB Disconnect (session valid low)\n");
2959			/* cleanup on disconnect */
2960			usb_disconnect(udc);
2961		}
2962
2963	}
2964
2965	return ret_val;
2966}
2967
2968/* Interrupt Service Routine, see Linux Kernel Doc for parameters */
2969irqreturn_t udc_irq(int irq, void *pdev)
2970{
2971	struct udc *dev = pdev;
2972	u32 reg;
2973	u16 i;
2974	u32 ep_irq;
2975	irqreturn_t ret_val = IRQ_NONE;
2976
2977	spin_lock(&dev->lock);
2978
2979	/* check for ep irq */
2980	reg = readl(&dev->regs->ep_irqsts);
2981	if (reg) {
2982		if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
2983			ret_val |= udc_control_out_isr(dev);
2984		if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
2985			ret_val |= udc_control_in_isr(dev);
2986
2987		/*
2988		 * data endpoint
2989		 * iterate ep's
2990		 */
2991		for (i = 1; i < UDC_EP_NUM; i++) {
2992			ep_irq = 1 << i;
2993			if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
2994				continue;
2995
2996			/* clear irq status */
2997			writel(ep_irq, &dev->regs->ep_irqsts);
2998
2999			/* irq for out ep ? */
3000			if (i > UDC_EPIN_NUM)
3001				ret_val |= udc_data_out_isr(dev, i);
3002			else
3003				ret_val |= udc_data_in_isr(dev, i);
3004		}
3005
3006	}
3007
3008
3009	/* check for dev irq */
3010	reg = readl(&dev->regs->irqsts);
3011	if (reg) {
3012		/* clear irq */
3013		writel(reg, &dev->regs->irqsts);
3014		ret_val |= udc_dev_isr(dev, reg);
3015	}
3016
3017
3018	spin_unlock(&dev->lock);
3019	return ret_val;
3020}
3021EXPORT_SYMBOL_GPL(udc_irq);
3022
3023/* Tears down device */
3024void gadget_release(struct device *pdev)
3025{
3026	struct amd5536udc *dev = dev_get_drvdata(pdev);
3027	kfree(dev);
3028}
3029EXPORT_SYMBOL_GPL(gadget_release);
3030
3031/* Cleanup on device remove */
3032void udc_remove(struct udc *dev)
3033{
3034	/* remove timer */
3035	stop_timer++;
3036	if (timer_pending(&udc_timer))
3037		wait_for_completion(&on_exit);
3038	del_timer_sync(&udc_timer);
3039	/* remove pollstall timer */
3040	stop_pollstall_timer++;
3041	if (timer_pending(&udc_pollstall_timer))
3042		wait_for_completion(&on_pollstall_exit);
3043	del_timer_sync(&udc_pollstall_timer);
3044	udc = NULL;
3045}
3046EXPORT_SYMBOL_GPL(udc_remove);
3047
3048/* free all the dma pools */
3049void free_dma_pools(struct udc *dev)
3050{
3051	dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td,
3052		      dev->ep[UDC_EP0OUT_IX].td_phys);
3053	dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp,
3054		      dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3055	dma_pool_destroy(dev->stp_requests);
3056	dma_pool_destroy(dev->data_requests);
3057}
3058EXPORT_SYMBOL_GPL(free_dma_pools);
3059
3060/* create dma pools on init */
3061int init_dma_pools(struct udc *dev)
3062{
3063	struct udc_stp_dma	*td_stp;
3064	struct udc_data_dma	*td_data;
3065	int retval;
3066
3067	/* consistent DMA mode setting ? */
3068	if (use_dma_ppb) {
3069		use_dma_bufferfill_mode = 0;
3070	} else {
3071		use_dma_ppb_du = 0;
3072		use_dma_bufferfill_mode = 1;
3073	}
3074
3075	/* DMA setup */
3076	dev->data_requests = dma_pool_create("data_requests", dev->dev,
3077		sizeof(struct udc_data_dma), 0, 0);
3078	if (!dev->data_requests) {
3079		DBG(dev, "can't get request data pool\n");
3080		return -ENOMEM;
3081	}
3082
3083	/* EP0 in dma regs = dev control regs */
3084	dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3085
3086	/* dma desc for setup data */
3087	dev->stp_requests = dma_pool_create("setup requests", dev->dev,
3088		sizeof(struct udc_stp_dma), 0, 0);
3089	if (!dev->stp_requests) {
3090		DBG(dev, "can't get stp request pool\n");
3091		retval = -ENOMEM;
3092		goto err_create_dma_pool;
3093	}
3094	/* setup */
3095	td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3096				&dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3097	if (!td_stp) {
3098		retval = -ENOMEM;
3099		goto err_alloc_dma;
3100	}
3101	dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3102
3103	/* data: 0 packets !? */
3104	td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3105				&dev->ep[UDC_EP0OUT_IX].td_phys);
3106	if (!td_data) {
3107		retval = -ENOMEM;
3108		goto err_alloc_phys;
3109	}
3110	dev->ep[UDC_EP0OUT_IX].td = td_data;
3111	return 0;
3112
3113err_alloc_phys:
3114	dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp,
3115		      dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3116err_alloc_dma:
3117	dma_pool_destroy(dev->stp_requests);
3118	dev->stp_requests = NULL;
3119err_create_dma_pool:
3120	dma_pool_destroy(dev->data_requests);
3121	dev->data_requests = NULL;
3122	return retval;
3123}
3124EXPORT_SYMBOL_GPL(init_dma_pools);
3125
3126/* general probe */
3127int udc_probe(struct udc *dev)
3128{
3129	char		tmp[128];
3130	u32		reg;
3131	int		retval;
3132
3133	/* device struct setup */
3134	dev->gadget.ops = &udc_ops;
3135
3136	dev_set_name(&dev->gadget.dev, "gadget");
3137	dev->gadget.name = name;
3138	dev->gadget.max_speed = USB_SPEED_HIGH;
3139
3140	/* init registers, interrupts, ... */
3141	startup_registers(dev);
3142
3143	dev_info(dev->dev, "%s\n", mod_desc);
3144
3145	snprintf(tmp, sizeof(tmp), "%d", dev->irq);
3146
3147	/* Print this device info for AMD chips only*/
3148	if (dev->chiprev == UDC_HSA0_REV ||
3149	    dev->chiprev == UDC_HSB1_REV) {
3150		dev_info(dev->dev, "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3151			 tmp, dev->phys_addr, dev->chiprev,
3152			 (dev->chiprev == UDC_HSA0_REV) ?
3153			 "A0" : "B1");
3154		strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3155		if (dev->chiprev == UDC_HSA0_REV) {
3156			dev_err(dev->dev, "chip revision is A0; too old\n");
3157			retval = -ENODEV;
3158			goto finished;
3159		}
3160		dev_info(dev->dev,
3161			 "driver version: %s(for Geode5536 B1)\n", tmp);
3162	}
3163
3164	udc = dev;
3165
3166	retval = usb_add_gadget_udc_release(udc->dev, &dev->gadget,
3167					    gadget_release);
3168	if (retval)
3169		goto finished;
3170
3171	/* timer init */
3172	timer_setup(&udc_timer, udc_timer_function, 0);
3173	timer_setup(&udc_pollstall_timer, udc_pollstall_timer_function, 0);
3174
3175	/* set SD */
3176	reg = readl(&dev->regs->ctl);
3177	reg |= AMD_BIT(UDC_DEVCTL_SD);
3178	writel(reg, &dev->regs->ctl);
3179
3180	/* print dev register info */
3181	print_regs(dev);
3182
3183	return 0;
3184
3185finished:
3186	return retval;
3187}
3188EXPORT_SYMBOL_GPL(udc_probe);
3189
3190MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3191MODULE_AUTHOR("Thomas Dahlmann");
3192MODULE_LICENSE("GPL");
3193