1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * f_fs.c -- user mode file system API for USB composite function controllers
4 *
5 * Copyright (C) 2010 Samsung Electronics
6 * Author: Michal Nazarewicz <mina86@mina86.com>
7 *
8 * Based on inode.c (GadgetFS) which was:
9 * Copyright (C) 2003-2004 David Brownell
10 * Copyright (C) 2003 Agilent Technologies
11 */
12
13
14/* #define DEBUG */
15/* #define VERBOSE_DEBUG */
16
17#include <linux/blkdev.h>
18#include <linux/dma-buf.h>
19#include <linux/dma-fence.h>
20#include <linux/dma-resv.h>
21#include <linux/pagemap.h>
22#include <linux/export.h>
23#include <linux/fs_parser.h>
24#include <linux/hid.h>
25#include <linux/mm.h>
26#include <linux/module.h>
27#include <linux/scatterlist.h>
28#include <linux/sched/signal.h>
29#include <linux/uio.h>
30#include <linux/vmalloc.h>
31#include <asm/unaligned.h>
32
33#include <linux/usb/ccid.h>
34#include <linux/usb/composite.h>
35#include <linux/usb/functionfs.h>
36
37#include <linux/aio.h>
38#include <linux/kthread.h>
39#include <linux/poll.h>
40#include <linux/eventfd.h>
41
42#include "u_fs.h"
43#include "u_f.h"
44#include "u_os_desc.h"
45#include "configfs.h"
46
47#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
48
49#define DMABUF_ENQUEUE_TIMEOUT_MS 5000
50
51MODULE_IMPORT_NS(DMA_BUF);
52
53/* Reference counter handling */
54static void ffs_data_get(struct ffs_data *ffs);
55static void ffs_data_put(struct ffs_data *ffs);
56/* Creates new ffs_data object. */
57static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
58	__attribute__((malloc));
59
60/* Opened counter handling. */
61static void ffs_data_opened(struct ffs_data *ffs);
62static void ffs_data_closed(struct ffs_data *ffs);
63
64/* Called with ffs->mutex held; take over ownership of data. */
65static int __must_check
66__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
67static int __must_check
68__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
69
70
71/* The function structure ***************************************************/
72
73struct ffs_ep;
74
75struct ffs_function {
76	struct usb_configuration	*conf;
77	struct usb_gadget		*gadget;
78	struct ffs_data			*ffs;
79
80	struct ffs_ep			*eps;
81	u8				eps_revmap[16];
82	short				*interfaces_nums;
83
84	struct usb_function		function;
85};
86
87
88static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
89{
90	return container_of(f, struct ffs_function, function);
91}
92
93
94static inline enum ffs_setup_state
95ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
96{
97	return (enum ffs_setup_state)
98		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
99}
100
101
102static void ffs_func_eps_disable(struct ffs_function *func);
103static int __must_check ffs_func_eps_enable(struct ffs_function *func);
104
105static int ffs_func_bind(struct usb_configuration *,
106			 struct usb_function *);
107static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
108static void ffs_func_disable(struct usb_function *);
109static int ffs_func_setup(struct usb_function *,
110			  const struct usb_ctrlrequest *);
111static bool ffs_func_req_match(struct usb_function *,
112			       const struct usb_ctrlrequest *,
113			       bool config0);
114static void ffs_func_suspend(struct usb_function *);
115static void ffs_func_resume(struct usb_function *);
116
117
118static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
119static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
120
121
122/* The endpoints structures *************************************************/
123
124struct ffs_ep {
125	struct usb_ep			*ep;	/* P: ffs->eps_lock */
126	struct usb_request		*req;	/* P: epfile->mutex */
127
128	/* [0]: full speed, [1]: high speed, [2]: super speed */
129	struct usb_endpoint_descriptor	*descs[3];
130
131	u8				num;
132};
133
134struct ffs_dmabuf_priv {
135	struct list_head entry;
136	struct kref ref;
137	struct ffs_data *ffs;
138	struct dma_buf_attachment *attach;
139	struct sg_table *sgt;
140	enum dma_data_direction dir;
141	spinlock_t lock;
142	u64 context;
143	struct usb_request *req;	/* P: ffs->eps_lock */
144	struct usb_ep *ep;		/* P: ffs->eps_lock */
145};
146
147struct ffs_dma_fence {
148	struct dma_fence base;
149	struct ffs_dmabuf_priv *priv;
150	struct work_struct work;
151};
152
153struct ffs_epfile {
154	/* Protects ep->ep and ep->req. */
155	struct mutex			mutex;
156
157	struct ffs_data			*ffs;
158	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
159
160	struct dentry			*dentry;
161
162	/*
163	 * Buffer for holding data from partial reads which may happen since
164	 * we���re rounding user read requests to a multiple of a max packet size.
165	 *
166	 * The pointer is initialised with NULL value and may be set by
167	 * __ffs_epfile_read_data function to point to a temporary buffer.
168	 *
169	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
170	 * data from said buffer and eventually free it.  Importantly, while the
171	 * function is using the buffer, it sets the pointer to NULL.  This is
172	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
173	 * can never run concurrently (they are synchronised by epfile->mutex)
174	 * so the latter will not assign a new value to the pointer.
175	 *
176	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
177	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
178	 * value is crux of the synchronisation between ffs_func_eps_disable and
179	 * __ffs_epfile_read_data.
180	 *
181	 * Once __ffs_epfile_read_data is about to finish it will try to set the
182	 * pointer back to its old value (as described above), but seeing as the
183	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
184	 * the buffer.
185	 *
186	 * == State transitions ==
187	 *
188	 * ��� ptr == NULL:  (initial state)
189	 *   ��� __ffs_epfile_read_buffer_free: go to ptr == DROP
190	 *   ��� __ffs_epfile_read_buffered:    nop
191	 *   ��� __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
192	 *   ��� reading finishes:              n/a, not in ���and reading��� state
193	 * ��� ptr == DROP:
194	 *   ��� __ffs_epfile_read_buffer_free: nop
195	 *   ��� __ffs_epfile_read_buffered:    go to ptr == NULL
196	 *   ��� __ffs_epfile_read_data allocates temp buffer: free buf, nop
197	 *   ��� reading finishes:              n/a, not in ���and reading��� state
198	 * ��� ptr == buf:
199	 *   ��� __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
200	 *   ��� __ffs_epfile_read_buffered:    go to ptr == NULL and reading
201	 *   ��� __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
202	 *                                    is always called first
203	 *   ��� reading finishes:              n/a, not in ���and reading��� state
204	 * ��� ptr == NULL and reading:
205	 *   ��� __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
206	 *   ��� __ffs_epfile_read_buffered:    n/a, mutex is held
207	 *   ��� __ffs_epfile_read_data:        n/a, mutex is held
208	 *   ��� reading finishes and ���
209	 *     ��� all data read:               free buf, go to ptr == NULL
210	 *     ��� otherwise:                   go to ptr == buf and reading
211	 * ��� ptr == DROP and reading:
212	 *   ��� __ffs_epfile_read_buffer_free: nop
213	 *   ��� __ffs_epfile_read_buffered:    n/a, mutex is held
214	 *   ��� __ffs_epfile_read_data:        n/a, mutex is held
215	 *   ��� reading finishes:              free buf, go to ptr == DROP
216	 */
217	struct ffs_buffer		*read_buffer;
218#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
219
220	char				name[5];
221
222	unsigned char			in;	/* P: ffs->eps_lock */
223	unsigned char			isoc;	/* P: ffs->eps_lock */
224
225	unsigned char			_pad;
226
227	/* Protects dmabufs */
228	struct mutex			dmabufs_mutex;
229	struct list_head		dmabufs; /* P: dmabufs_mutex */
230	atomic_t			seqno;
231};
232
233struct ffs_buffer {
234	size_t length;
235	char *data;
236	char storage[] __counted_by(length);
237};
238
239/*  ffs_io_data structure ***************************************************/
240
241struct ffs_io_data {
242	bool aio;
243	bool read;
244
245	struct kiocb *kiocb;
246	struct iov_iter data;
247	const void *to_free;
248	char *buf;
249
250	struct mm_struct *mm;
251	struct work_struct work;
252
253	struct usb_ep *ep;
254	struct usb_request *req;
255	struct sg_table sgt;
256	bool use_sg;
257
258	struct ffs_data *ffs;
259
260	int status;
261	struct completion done;
262};
263
264struct ffs_desc_helper {
265	struct ffs_data *ffs;
266	unsigned interfaces_count;
267	unsigned eps_count;
268};
269
270static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
271static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
272
273static struct dentry *
274ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
275		   const struct file_operations *fops);
276
277/* Devices management *******************************************************/
278
279DEFINE_MUTEX(ffs_lock);
280EXPORT_SYMBOL_GPL(ffs_lock);
281
282static struct ffs_dev *_ffs_find_dev(const char *name);
283static struct ffs_dev *_ffs_alloc_dev(void);
284static void _ffs_free_dev(struct ffs_dev *dev);
285static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
286static void ffs_release_dev(struct ffs_dev *ffs_dev);
287static int ffs_ready(struct ffs_data *ffs);
288static void ffs_closed(struct ffs_data *ffs);
289
290/* Misc helper functions ****************************************************/
291
292static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
293	__attribute__((warn_unused_result, nonnull));
294static char *ffs_prepare_buffer(const char __user *buf, size_t len)
295	__attribute__((warn_unused_result, nonnull));
296
297
298/* Control file aka ep0 *****************************************************/
299
300static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
301{
302	struct ffs_data *ffs = req->context;
303
304	complete(&ffs->ep0req_completion);
305}
306
307static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
308	__releases(&ffs->ev.waitq.lock)
309{
310	struct usb_request *req = ffs->ep0req;
311	int ret;
312
313	if (!req) {
314		spin_unlock_irq(&ffs->ev.waitq.lock);
315		return -EINVAL;
316	}
317
318	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
319
320	spin_unlock_irq(&ffs->ev.waitq.lock);
321
322	req->buf      = data;
323	req->length   = len;
324
325	/*
326	 * UDC layer requires to provide a buffer even for ZLP, but should
327	 * not use it at all. Let's provide some poisoned pointer to catch
328	 * possible bug in the driver.
329	 */
330	if (req->buf == NULL)
331		req->buf = (void *)0xDEADBABE;
332
333	reinit_completion(&ffs->ep0req_completion);
334
335	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
336	if (ret < 0)
337		return ret;
338
339	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
340	if (ret) {
341		usb_ep_dequeue(ffs->gadget->ep0, req);
342		return -EINTR;
343	}
344
345	ffs->setup_state = FFS_NO_SETUP;
346	return req->status ? req->status : req->actual;
347}
348
349static int __ffs_ep0_stall(struct ffs_data *ffs)
350{
351	if (ffs->ev.can_stall) {
352		pr_vdebug("ep0 stall\n");
353		usb_ep_set_halt(ffs->gadget->ep0);
354		ffs->setup_state = FFS_NO_SETUP;
355		return -EL2HLT;
356	} else {
357		pr_debug("bogus ep0 stall!\n");
358		return -ESRCH;
359	}
360}
361
362static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
363			     size_t len, loff_t *ptr)
364{
365	struct ffs_data *ffs = file->private_data;
366	ssize_t ret;
367	char *data;
368
369	/* Fast check if setup was canceled */
370	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
371		return -EIDRM;
372
373	/* Acquire mutex */
374	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
375	if (ret < 0)
376		return ret;
377
378	/* Check state */
379	switch (ffs->state) {
380	case FFS_READ_DESCRIPTORS:
381	case FFS_READ_STRINGS:
382		/* Copy data */
383		if (len < 16) {
384			ret = -EINVAL;
385			break;
386		}
387
388		data = ffs_prepare_buffer(buf, len);
389		if (IS_ERR(data)) {
390			ret = PTR_ERR(data);
391			break;
392		}
393
394		/* Handle data */
395		if (ffs->state == FFS_READ_DESCRIPTORS) {
396			pr_info("read descriptors\n");
397			ret = __ffs_data_got_descs(ffs, data, len);
398			if (ret < 0)
399				break;
400
401			ffs->state = FFS_READ_STRINGS;
402			ret = len;
403		} else {
404			pr_info("read strings\n");
405			ret = __ffs_data_got_strings(ffs, data, len);
406			if (ret < 0)
407				break;
408
409			ret = ffs_epfiles_create(ffs);
410			if (ret) {
411				ffs->state = FFS_CLOSING;
412				break;
413			}
414
415			ffs->state = FFS_ACTIVE;
416			mutex_unlock(&ffs->mutex);
417
418			ret = ffs_ready(ffs);
419			if (ret < 0) {
420				ffs->state = FFS_CLOSING;
421				return ret;
422			}
423
424			return len;
425		}
426		break;
427
428	case FFS_ACTIVE:
429		data = NULL;
430		/*
431		 * We're called from user space, we can use _irq
432		 * rather then _irqsave
433		 */
434		spin_lock_irq(&ffs->ev.waitq.lock);
435		switch (ffs_setup_state_clear_cancelled(ffs)) {
436		case FFS_SETUP_CANCELLED:
437			ret = -EIDRM;
438			goto done_spin;
439
440		case FFS_NO_SETUP:
441			ret = -ESRCH;
442			goto done_spin;
443
444		case FFS_SETUP_PENDING:
445			break;
446		}
447
448		/* FFS_SETUP_PENDING */
449		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
450			spin_unlock_irq(&ffs->ev.waitq.lock);
451			ret = __ffs_ep0_stall(ffs);
452			break;
453		}
454
455		/* FFS_SETUP_PENDING and not stall */
456		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
457
458		spin_unlock_irq(&ffs->ev.waitq.lock);
459
460		data = ffs_prepare_buffer(buf, len);
461		if (IS_ERR(data)) {
462			ret = PTR_ERR(data);
463			break;
464		}
465
466		spin_lock_irq(&ffs->ev.waitq.lock);
467
468		/*
469		 * We are guaranteed to be still in FFS_ACTIVE state
470		 * but the state of setup could have changed from
471		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
472		 * to check for that.  If that happened we copied data
473		 * from user space in vain but it's unlikely.
474		 *
475		 * For sure we are not in FFS_NO_SETUP since this is
476		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
477		 * transition can be performed and it's protected by
478		 * mutex.
479		 */
480		if (ffs_setup_state_clear_cancelled(ffs) ==
481		    FFS_SETUP_CANCELLED) {
482			ret = -EIDRM;
483done_spin:
484			spin_unlock_irq(&ffs->ev.waitq.lock);
485		} else {
486			/* unlocks spinlock */
487			ret = __ffs_ep0_queue_wait(ffs, data, len);
488		}
489		kfree(data);
490		break;
491
492	default:
493		ret = -EBADFD;
494		break;
495	}
496
497	mutex_unlock(&ffs->mutex);
498	return ret;
499}
500
501/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
502static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
503				     size_t n)
504	__releases(&ffs->ev.waitq.lock)
505{
506	/*
507	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
508	 * size of ffs->ev.types array (which is four) so that's how much space
509	 * we reserve.
510	 */
511	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
512	const size_t size = n * sizeof *events;
513	unsigned i = 0;
514
515	memset(events, 0, size);
516
517	do {
518		events[i].type = ffs->ev.types[i];
519		if (events[i].type == FUNCTIONFS_SETUP) {
520			events[i].u.setup = ffs->ev.setup;
521			ffs->setup_state = FFS_SETUP_PENDING;
522		}
523	} while (++i < n);
524
525	ffs->ev.count -= n;
526	if (ffs->ev.count)
527		memmove(ffs->ev.types, ffs->ev.types + n,
528			ffs->ev.count * sizeof *ffs->ev.types);
529
530	spin_unlock_irq(&ffs->ev.waitq.lock);
531	mutex_unlock(&ffs->mutex);
532
533	return copy_to_user(buf, events, size) ? -EFAULT : size;
534}
535
536static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
537			    size_t len, loff_t *ptr)
538{
539	struct ffs_data *ffs = file->private_data;
540	char *data = NULL;
541	size_t n;
542	int ret;
543
544	/* Fast check if setup was canceled */
545	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
546		return -EIDRM;
547
548	/* Acquire mutex */
549	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
550	if (ret < 0)
551		return ret;
552
553	/* Check state */
554	if (ffs->state != FFS_ACTIVE) {
555		ret = -EBADFD;
556		goto done_mutex;
557	}
558
559	/*
560	 * We're called from user space, we can use _irq rather then
561	 * _irqsave
562	 */
563	spin_lock_irq(&ffs->ev.waitq.lock);
564
565	switch (ffs_setup_state_clear_cancelled(ffs)) {
566	case FFS_SETUP_CANCELLED:
567		ret = -EIDRM;
568		break;
569
570	case FFS_NO_SETUP:
571		n = len / sizeof(struct usb_functionfs_event);
572		if (!n) {
573			ret = -EINVAL;
574			break;
575		}
576
577		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
578			ret = -EAGAIN;
579			break;
580		}
581
582		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
583							ffs->ev.count)) {
584			ret = -EINTR;
585			break;
586		}
587
588		/* unlocks spinlock */
589		return __ffs_ep0_read_events(ffs, buf,
590					     min(n, (size_t)ffs->ev.count));
591
592	case FFS_SETUP_PENDING:
593		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
594			spin_unlock_irq(&ffs->ev.waitq.lock);
595			ret = __ffs_ep0_stall(ffs);
596			goto done_mutex;
597		}
598
599		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
600
601		spin_unlock_irq(&ffs->ev.waitq.lock);
602
603		if (len) {
604			data = kmalloc(len, GFP_KERNEL);
605			if (!data) {
606				ret = -ENOMEM;
607				goto done_mutex;
608			}
609		}
610
611		spin_lock_irq(&ffs->ev.waitq.lock);
612
613		/* See ffs_ep0_write() */
614		if (ffs_setup_state_clear_cancelled(ffs) ==
615		    FFS_SETUP_CANCELLED) {
616			ret = -EIDRM;
617			break;
618		}
619
620		/* unlocks spinlock */
621		ret = __ffs_ep0_queue_wait(ffs, data, len);
622		if ((ret > 0) && (copy_to_user(buf, data, len)))
623			ret = -EFAULT;
624		goto done_mutex;
625
626	default:
627		ret = -EBADFD;
628		break;
629	}
630
631	spin_unlock_irq(&ffs->ev.waitq.lock);
632done_mutex:
633	mutex_unlock(&ffs->mutex);
634	kfree(data);
635	return ret;
636}
637
638static int ffs_ep0_open(struct inode *inode, struct file *file)
639{
640	struct ffs_data *ffs = inode->i_private;
641
642	if (ffs->state == FFS_CLOSING)
643		return -EBUSY;
644
645	file->private_data = ffs;
646	ffs_data_opened(ffs);
647
648	return stream_open(inode, file);
649}
650
651static int ffs_ep0_release(struct inode *inode, struct file *file)
652{
653	struct ffs_data *ffs = file->private_data;
654
655	ffs_data_closed(ffs);
656
657	return 0;
658}
659
660static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
661{
662	struct ffs_data *ffs = file->private_data;
663	struct usb_gadget *gadget = ffs->gadget;
664	long ret;
665
666	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
667		struct ffs_function *func = ffs->func;
668		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
669	} else if (gadget && gadget->ops->ioctl) {
670		ret = gadget->ops->ioctl(gadget, code, value);
671	} else {
672		ret = -ENOTTY;
673	}
674
675	return ret;
676}
677
678static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
679{
680	struct ffs_data *ffs = file->private_data;
681	__poll_t mask = EPOLLWRNORM;
682	int ret;
683
684	poll_wait(file, &ffs->ev.waitq, wait);
685
686	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
687	if (ret < 0)
688		return mask;
689
690	switch (ffs->state) {
691	case FFS_READ_DESCRIPTORS:
692	case FFS_READ_STRINGS:
693		mask |= EPOLLOUT;
694		break;
695
696	case FFS_ACTIVE:
697		switch (ffs->setup_state) {
698		case FFS_NO_SETUP:
699			if (ffs->ev.count)
700				mask |= EPOLLIN;
701			break;
702
703		case FFS_SETUP_PENDING:
704		case FFS_SETUP_CANCELLED:
705			mask |= (EPOLLIN | EPOLLOUT);
706			break;
707		}
708		break;
709
710	case FFS_CLOSING:
711		break;
712	case FFS_DEACTIVATED:
713		break;
714	}
715
716	mutex_unlock(&ffs->mutex);
717
718	return mask;
719}
720
721static const struct file_operations ffs_ep0_operations = {
722	.llseek =	no_llseek,
723
724	.open =		ffs_ep0_open,
725	.write =	ffs_ep0_write,
726	.read =		ffs_ep0_read,
727	.release =	ffs_ep0_release,
728	.unlocked_ioctl =	ffs_ep0_ioctl,
729	.poll =		ffs_ep0_poll,
730};
731
732
733/* "Normal" endpoints operations ********************************************/
734
735static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
736{
737	struct ffs_io_data *io_data = req->context;
738
739	if (req->status)
740		io_data->status = req->status;
741	else
742		io_data->status = req->actual;
743
744	complete(&io_data->done);
745}
746
747static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
748{
749	ssize_t ret = copy_to_iter(data, data_len, iter);
750	if (ret == data_len)
751		return ret;
752
753	if (iov_iter_count(iter))
754		return -EFAULT;
755
756	/*
757	 * Dear user space developer!
758	 *
759	 * TL;DR: To stop getting below error message in your kernel log, change
760	 * user space code using functionfs to align read buffers to a max
761	 * packet size.
762	 *
763	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
764	 * packet size.  When unaligned buffer is passed to functionfs, it
765	 * internally uses a larger, aligned buffer so that such UDCs are happy.
766	 *
767	 * Unfortunately, this means that host may send more data than was
768	 * requested in read(2) system call.  f_fs doesn���t know what to do with
769	 * that excess data so it simply drops it.
770	 *
771	 * Was the buffer aligned in the first place, no such problem would
772	 * happen.
773	 *
774	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
775	 * by splitting a request into multiple parts.  This splitting may still
776	 * be a problem though so it���s likely best to align the buffer
777	 * regardless of it being AIO or not..
778	 *
779	 * This only affects OUT endpoints, i.e. reading data with a read(2),
780	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
781	 * affected.
782	 */
783	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
784	       "Align read buffer size to max packet size to avoid the problem.\n",
785	       data_len, ret);
786
787	return ret;
788}
789
790/*
791 * allocate a virtually contiguous buffer and create a scatterlist describing it
792 * @sg_table	- pointer to a place to be filled with sg_table contents
793 * @size	- required buffer size
794 */
795static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
796{
797	struct page **pages;
798	void *vaddr, *ptr;
799	unsigned int n_pages;
800	int i;
801
802	vaddr = vmalloc(sz);
803	if (!vaddr)
804		return NULL;
805
806	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
807	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
808	if (!pages) {
809		vfree(vaddr);
810
811		return NULL;
812	}
813	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
814		pages[i] = vmalloc_to_page(ptr);
815
816	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
817		kvfree(pages);
818		vfree(vaddr);
819
820		return NULL;
821	}
822	kvfree(pages);
823
824	return vaddr;
825}
826
827static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
828	size_t data_len)
829{
830	if (io_data->use_sg)
831		return ffs_build_sg_list(&io_data->sgt, data_len);
832
833	return kmalloc(data_len, GFP_KERNEL);
834}
835
836static inline void ffs_free_buffer(struct ffs_io_data *io_data)
837{
838	if (!io_data->buf)
839		return;
840
841	if (io_data->use_sg) {
842		sg_free_table(&io_data->sgt);
843		vfree(io_data->buf);
844	} else {
845		kfree(io_data->buf);
846	}
847}
848
849static void ffs_user_copy_worker(struct work_struct *work)
850{
851	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
852						   work);
853	int ret = io_data->status;
854	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
855
856	if (io_data->read && ret > 0) {
857		kthread_use_mm(io_data->mm);
858		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
859		kthread_unuse_mm(io_data->mm);
860	}
861
862	io_data->kiocb->ki_complete(io_data->kiocb, ret);
863
864	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
865		eventfd_signal(io_data->ffs->ffs_eventfd);
866
867	if (io_data->read)
868		kfree(io_data->to_free);
869	ffs_free_buffer(io_data);
870	kfree(io_data);
871}
872
873static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
874					 struct usb_request *req)
875{
876	struct ffs_io_data *io_data = req->context;
877	struct ffs_data *ffs = io_data->ffs;
878
879	io_data->status = req->status ? req->status : req->actual;
880	usb_ep_free_request(_ep, req);
881
882	INIT_WORK(&io_data->work, ffs_user_copy_worker);
883	queue_work(ffs->io_completion_wq, &io_data->work);
884}
885
886static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
887{
888	/*
889	 * See comment in struct ffs_epfile for full read_buffer pointer
890	 * synchronisation story.
891	 */
892	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
893	if (buf && buf != READ_BUFFER_DROP)
894		kfree(buf);
895}
896
897/* Assumes epfile->mutex is held. */
898static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
899					  struct iov_iter *iter)
900{
901	/*
902	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
903	 * the buffer while we are using it.  See comment in struct ffs_epfile
904	 * for full read_buffer pointer synchronisation story.
905	 */
906	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
907	ssize_t ret;
908	if (!buf || buf == READ_BUFFER_DROP)
909		return 0;
910
911	ret = copy_to_iter(buf->data, buf->length, iter);
912	if (buf->length == ret) {
913		kfree(buf);
914		return ret;
915	}
916
917	if (iov_iter_count(iter)) {
918		ret = -EFAULT;
919	} else {
920		buf->length -= ret;
921		buf->data += ret;
922	}
923
924	if (cmpxchg(&epfile->read_buffer, NULL, buf))
925		kfree(buf);
926
927	return ret;
928}
929
930/* Assumes epfile->mutex is held. */
931static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
932				      void *data, int data_len,
933				      struct iov_iter *iter)
934{
935	struct ffs_buffer *buf;
936
937	ssize_t ret = copy_to_iter(data, data_len, iter);
938	if (data_len == ret)
939		return ret;
940
941	if (iov_iter_count(iter))
942		return -EFAULT;
943
944	/* See ffs_copy_to_iter for more context. */
945	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
946		data_len, ret);
947
948	data_len -= ret;
949	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
950	if (!buf)
951		return -ENOMEM;
952	buf->length = data_len;
953	buf->data = buf->storage;
954	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
955
956	/*
957	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
958	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
959	 * in struct ffs_epfile for full read_buffer pointer synchronisation
960	 * story.
961	 */
962	if (cmpxchg(&epfile->read_buffer, NULL, buf))
963		kfree(buf);
964
965	return ret;
966}
967
968static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
969{
970	struct ffs_epfile *epfile = file->private_data;
971	struct ffs_ep *ep;
972	int ret;
973
974	/* Wait for endpoint to be enabled */
975	ep = epfile->ep;
976	if (!ep) {
977		if (file->f_flags & O_NONBLOCK)
978			return ERR_PTR(-EAGAIN);
979
980		ret = wait_event_interruptible(
981				epfile->ffs->wait, (ep = epfile->ep));
982		if (ret)
983			return ERR_PTR(-EINTR);
984	}
985
986	return ep;
987}
988
989static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
990{
991	struct ffs_epfile *epfile = file->private_data;
992	struct usb_request *req;
993	struct ffs_ep *ep;
994	char *data = NULL;
995	ssize_t ret, data_len = -EINVAL;
996	int halt;
997
998	/* Are we still active? */
999	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1000		return -ENODEV;
1001
1002	ep = ffs_epfile_wait_ep(file);
1003	if (IS_ERR(ep))
1004		return PTR_ERR(ep);
1005
1006	/* Do we halt? */
1007	halt = (!io_data->read == !epfile->in);
1008	if (halt && epfile->isoc)
1009		return -EINVAL;
1010
1011	/* We will be using request and read_buffer */
1012	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1013	if (ret)
1014		goto error;
1015
1016	/* Allocate & copy */
1017	if (!halt) {
1018		struct usb_gadget *gadget;
1019
1020		/*
1021		 * Do we have buffered data from previous partial read?  Check
1022		 * that for synchronous case only because we do not have
1023		 * facility to ���wake up��� a pending asynchronous read and push
1024		 * buffered data to it which we would need to make things behave
1025		 * consistently.
1026		 */
1027		if (!io_data->aio && io_data->read) {
1028			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1029			if (ret)
1030				goto error_mutex;
1031		}
1032
1033		/*
1034		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1035		 * before the waiting completes, so do not assign to 'gadget'
1036		 * earlier
1037		 */
1038		gadget = epfile->ffs->gadget;
1039
1040		spin_lock_irq(&epfile->ffs->eps_lock);
1041		/* In the meantime, endpoint got disabled or changed. */
1042		if (epfile->ep != ep) {
1043			ret = -ESHUTDOWN;
1044			goto error_lock;
1045		}
1046		data_len = iov_iter_count(&io_data->data);
1047		/*
1048		 * Controller may require buffer size to be aligned to
1049		 * maxpacketsize of an out endpoint.
1050		 */
1051		if (io_data->read)
1052			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1053
1054		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1055		spin_unlock_irq(&epfile->ffs->eps_lock);
1056
1057		data = ffs_alloc_buffer(io_data, data_len);
1058		if (!data) {
1059			ret = -ENOMEM;
1060			goto error_mutex;
1061		}
1062		if (!io_data->read &&
1063		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1064			ret = -EFAULT;
1065			goto error_mutex;
1066		}
1067	}
1068
1069	spin_lock_irq(&epfile->ffs->eps_lock);
1070
1071	if (epfile->ep != ep) {
1072		/* In the meantime, endpoint got disabled or changed. */
1073		ret = -ESHUTDOWN;
1074	} else if (halt) {
1075		ret = usb_ep_set_halt(ep->ep);
1076		if (!ret)
1077			ret = -EBADMSG;
1078	} else if (data_len == -EINVAL) {
1079		/*
1080		 * Sanity Check: even though data_len can't be used
1081		 * uninitialized at the time I write this comment, some
1082		 * compilers complain about this situation.
1083		 * In order to keep the code clean from warnings, data_len is
1084		 * being initialized to -EINVAL during its declaration, which
1085		 * means we can't rely on compiler anymore to warn no future
1086		 * changes won't result in data_len being used uninitialized.
1087		 * For such reason, we're adding this redundant sanity check
1088		 * here.
1089		 */
1090		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1091		ret = -EINVAL;
1092	} else if (!io_data->aio) {
1093		bool interrupted = false;
1094
1095		req = ep->req;
1096		if (io_data->use_sg) {
1097			req->buf = NULL;
1098			req->sg	= io_data->sgt.sgl;
1099			req->num_sgs = io_data->sgt.nents;
1100		} else {
1101			req->buf = data;
1102			req->num_sgs = 0;
1103		}
1104		req->length = data_len;
1105
1106		io_data->buf = data;
1107
1108		init_completion(&io_data->done);
1109		req->context  = io_data;
1110		req->complete = ffs_epfile_io_complete;
1111
1112		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1113		if (ret < 0)
1114			goto error_lock;
1115
1116		spin_unlock_irq(&epfile->ffs->eps_lock);
1117
1118		if (wait_for_completion_interruptible(&io_data->done)) {
1119			spin_lock_irq(&epfile->ffs->eps_lock);
1120			if (epfile->ep != ep) {
1121				ret = -ESHUTDOWN;
1122				goto error_lock;
1123			}
1124			/*
1125			 * To avoid race condition with ffs_epfile_io_complete,
1126			 * dequeue the request first then check
1127			 * status. usb_ep_dequeue API should guarantee no race
1128			 * condition with req->complete callback.
1129			 */
1130			usb_ep_dequeue(ep->ep, req);
1131			spin_unlock_irq(&epfile->ffs->eps_lock);
1132			wait_for_completion(&io_data->done);
1133			interrupted = io_data->status < 0;
1134		}
1135
1136		if (interrupted)
1137			ret = -EINTR;
1138		else if (io_data->read && io_data->status > 0)
1139			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1140						     &io_data->data);
1141		else
1142			ret = io_data->status;
1143		goto error_mutex;
1144	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1145		ret = -ENOMEM;
1146	} else {
1147		if (io_data->use_sg) {
1148			req->buf = NULL;
1149			req->sg	= io_data->sgt.sgl;
1150			req->num_sgs = io_data->sgt.nents;
1151		} else {
1152			req->buf = data;
1153			req->num_sgs = 0;
1154		}
1155		req->length = data_len;
1156
1157		io_data->buf = data;
1158		io_data->ep = ep->ep;
1159		io_data->req = req;
1160		io_data->ffs = epfile->ffs;
1161
1162		req->context  = io_data;
1163		req->complete = ffs_epfile_async_io_complete;
1164
1165		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1166		if (ret) {
1167			io_data->req = NULL;
1168			usb_ep_free_request(ep->ep, req);
1169			goto error_lock;
1170		}
1171
1172		ret = -EIOCBQUEUED;
1173		/*
1174		 * Do not kfree the buffer in this function.  It will be freed
1175		 * by ffs_user_copy_worker.
1176		 */
1177		data = NULL;
1178	}
1179
1180error_lock:
1181	spin_unlock_irq(&epfile->ffs->eps_lock);
1182error_mutex:
1183	mutex_unlock(&epfile->mutex);
1184error:
1185	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1186		ffs_free_buffer(io_data);
1187	return ret;
1188}
1189
1190static int
1191ffs_epfile_open(struct inode *inode, struct file *file)
1192{
1193	struct ffs_epfile *epfile = inode->i_private;
1194
1195	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1196		return -ENODEV;
1197
1198	file->private_data = epfile;
1199	ffs_data_opened(epfile->ffs);
1200
1201	return stream_open(inode, file);
1202}
1203
1204static int ffs_aio_cancel(struct kiocb *kiocb)
1205{
1206	struct ffs_io_data *io_data = kiocb->private;
1207	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1208	unsigned long flags;
1209	int value;
1210
1211	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1212
1213	if (io_data && io_data->ep && io_data->req)
1214		value = usb_ep_dequeue(io_data->ep, io_data->req);
1215	else
1216		value = -EINVAL;
1217
1218	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1219
1220	return value;
1221}
1222
1223static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1224{
1225	struct ffs_io_data io_data, *p = &io_data;
1226	ssize_t res;
1227
1228	if (!is_sync_kiocb(kiocb)) {
1229		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1230		if (!p)
1231			return -ENOMEM;
1232		p->aio = true;
1233	} else {
1234		memset(p, 0, sizeof(*p));
1235		p->aio = false;
1236	}
1237
1238	p->read = false;
1239	p->kiocb = kiocb;
1240	p->data = *from;
1241	p->mm = current->mm;
1242
1243	kiocb->private = p;
1244
1245	if (p->aio)
1246		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1247
1248	res = ffs_epfile_io(kiocb->ki_filp, p);
1249	if (res == -EIOCBQUEUED)
1250		return res;
1251	if (p->aio)
1252		kfree(p);
1253	else
1254		*from = p->data;
1255	return res;
1256}
1257
1258static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1259{
1260	struct ffs_io_data io_data, *p = &io_data;
1261	ssize_t res;
1262
1263	if (!is_sync_kiocb(kiocb)) {
1264		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1265		if (!p)
1266			return -ENOMEM;
1267		p->aio = true;
1268	} else {
1269		memset(p, 0, sizeof(*p));
1270		p->aio = false;
1271	}
1272
1273	p->read = true;
1274	p->kiocb = kiocb;
1275	if (p->aio) {
1276		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1277		if (!iter_is_ubuf(&p->data) && !p->to_free) {
1278			kfree(p);
1279			return -ENOMEM;
1280		}
1281	} else {
1282		p->data = *to;
1283		p->to_free = NULL;
1284	}
1285	p->mm = current->mm;
1286
1287	kiocb->private = p;
1288
1289	if (p->aio)
1290		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1291
1292	res = ffs_epfile_io(kiocb->ki_filp, p);
1293	if (res == -EIOCBQUEUED)
1294		return res;
1295
1296	if (p->aio) {
1297		kfree(p->to_free);
1298		kfree(p);
1299	} else {
1300		*to = p->data;
1301	}
1302	return res;
1303}
1304
1305static void ffs_dmabuf_release(struct kref *ref)
1306{
1307	struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1308	struct dma_buf_attachment *attach = priv->attach;
1309	struct dma_buf *dmabuf = attach->dmabuf;
1310
1311	pr_vdebug("FFS DMABUF release\n");
1312	dma_resv_lock(dmabuf->resv, NULL);
1313	dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1314	dma_resv_unlock(dmabuf->resv);
1315
1316	dma_buf_detach(attach->dmabuf, attach);
1317	dma_buf_put(dmabuf);
1318	kfree(priv);
1319}
1320
1321static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1322{
1323	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1324
1325	kref_get(&priv->ref);
1326}
1327
1328static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1329{
1330	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1331
1332	kref_put(&priv->ref, ffs_dmabuf_release);
1333}
1334
1335static int
1336ffs_epfile_release(struct inode *inode, struct file *file)
1337{
1338	struct ffs_epfile *epfile = inode->i_private;
1339	struct ffs_dmabuf_priv *priv, *tmp;
1340	struct ffs_data *ffs = epfile->ffs;
1341
1342	mutex_lock(&epfile->dmabufs_mutex);
1343
1344	/* Close all attached DMABUFs */
1345	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1346		/* Cancel any pending transfer */
1347		spin_lock_irq(&ffs->eps_lock);
1348		if (priv->ep && priv->req)
1349			usb_ep_dequeue(priv->ep, priv->req);
1350		spin_unlock_irq(&ffs->eps_lock);
1351
1352		list_del(&priv->entry);
1353		ffs_dmabuf_put(priv->attach);
1354	}
1355
1356	mutex_unlock(&epfile->dmabufs_mutex);
1357
1358	__ffs_epfile_read_buffer_free(epfile);
1359	ffs_data_closed(epfile->ffs);
1360
1361	return 0;
1362}
1363
1364static void ffs_dmabuf_cleanup(struct work_struct *work)
1365{
1366	struct ffs_dma_fence *dma_fence =
1367		container_of(work, struct ffs_dma_fence, work);
1368	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1369	struct dma_buf_attachment *attach = priv->attach;
1370	struct dma_fence *fence = &dma_fence->base;
1371
1372	ffs_dmabuf_put(attach);
1373	dma_fence_put(fence);
1374}
1375
1376static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1377{
1378	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1379	struct dma_fence *fence = &dma_fence->base;
1380	bool cookie = dma_fence_begin_signalling();
1381
1382	dma_fence_get(fence);
1383	fence->error = ret;
1384	dma_fence_signal(fence);
1385	dma_fence_end_signalling(cookie);
1386
1387	/*
1388	 * The fence will be unref'd in ffs_dmabuf_cleanup.
1389	 * It can't be done here, as the unref functions might try to lock
1390	 * the resv object, which would deadlock.
1391	 */
1392	INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1393	queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1394}
1395
1396static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1397					  struct usb_request *req)
1398{
1399	pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1400	ffs_dmabuf_signal_done(req->context, req->status);
1401	usb_ep_free_request(ep, req);
1402}
1403
1404static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1405{
1406	return "functionfs";
1407}
1408
1409static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1410{
1411	return "";
1412}
1413
1414static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1415{
1416	struct ffs_dma_fence *dma_fence =
1417		container_of(fence, struct ffs_dma_fence, base);
1418
1419	kfree(dma_fence);
1420}
1421
1422static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1423	.get_driver_name	= ffs_dmabuf_get_driver_name,
1424	.get_timeline_name	= ffs_dmabuf_get_timeline_name,
1425	.release		= ffs_dmabuf_fence_release,
1426};
1427
1428static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1429{
1430	if (!nonblock)
1431		return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1432
1433	if (!dma_resv_trylock(dmabuf->resv))
1434		return -EBUSY;
1435
1436	return 0;
1437}
1438
1439static struct dma_buf_attachment *
1440ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1441{
1442	struct device *dev = epfile->ffs->gadget->dev.parent;
1443	struct dma_buf_attachment *attach = NULL;
1444	struct ffs_dmabuf_priv *priv;
1445
1446	mutex_lock(&epfile->dmabufs_mutex);
1447
1448	list_for_each_entry(priv, &epfile->dmabufs, entry) {
1449		if (priv->attach->dev == dev
1450		    && priv->attach->dmabuf == dmabuf) {
1451			attach = priv->attach;
1452			break;
1453		}
1454	}
1455
1456	if (attach)
1457		ffs_dmabuf_get(attach);
1458
1459	mutex_unlock(&epfile->dmabufs_mutex);
1460
1461	return attach ?: ERR_PTR(-EPERM);
1462}
1463
1464static int ffs_dmabuf_attach(struct file *file, int fd)
1465{
1466	bool nonblock = file->f_flags & O_NONBLOCK;
1467	struct ffs_epfile *epfile = file->private_data;
1468	struct usb_gadget *gadget = epfile->ffs->gadget;
1469	struct dma_buf_attachment *attach;
1470	struct ffs_dmabuf_priv *priv;
1471	enum dma_data_direction dir;
1472	struct sg_table *sg_table;
1473	struct dma_buf *dmabuf;
1474	int err;
1475
1476	if (!gadget || !gadget->sg_supported)
1477		return -EPERM;
1478
1479	dmabuf = dma_buf_get(fd);
1480	if (IS_ERR(dmabuf))
1481		return PTR_ERR(dmabuf);
1482
1483	attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1484	if (IS_ERR(attach)) {
1485		err = PTR_ERR(attach);
1486		goto err_dmabuf_put;
1487	}
1488
1489	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1490	if (!priv) {
1491		err = -ENOMEM;
1492		goto err_dmabuf_detach;
1493	}
1494
1495	dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1496
1497	err = ffs_dma_resv_lock(dmabuf, nonblock);
1498	if (err)
1499		goto err_free_priv;
1500
1501	sg_table = dma_buf_map_attachment(attach, dir);
1502	dma_resv_unlock(dmabuf->resv);
1503
1504	if (IS_ERR(sg_table)) {
1505		err = PTR_ERR(sg_table);
1506		goto err_free_priv;
1507	}
1508
1509	attach->importer_priv = priv;
1510
1511	priv->sgt = sg_table;
1512	priv->dir = dir;
1513	priv->ffs = epfile->ffs;
1514	priv->attach = attach;
1515	spin_lock_init(&priv->lock);
1516	kref_init(&priv->ref);
1517	priv->context = dma_fence_context_alloc(1);
1518
1519	mutex_lock(&epfile->dmabufs_mutex);
1520	list_add(&priv->entry, &epfile->dmabufs);
1521	mutex_unlock(&epfile->dmabufs_mutex);
1522
1523	return 0;
1524
1525err_free_priv:
1526	kfree(priv);
1527err_dmabuf_detach:
1528	dma_buf_detach(dmabuf, attach);
1529err_dmabuf_put:
1530	dma_buf_put(dmabuf);
1531
1532	return err;
1533}
1534
1535static int ffs_dmabuf_detach(struct file *file, int fd)
1536{
1537	struct ffs_epfile *epfile = file->private_data;
1538	struct ffs_data *ffs = epfile->ffs;
1539	struct device *dev = ffs->gadget->dev.parent;
1540	struct ffs_dmabuf_priv *priv, *tmp;
1541	struct dma_buf *dmabuf;
1542	int ret = -EPERM;
1543
1544	dmabuf = dma_buf_get(fd);
1545	if (IS_ERR(dmabuf))
1546		return PTR_ERR(dmabuf);
1547
1548	mutex_lock(&epfile->dmabufs_mutex);
1549
1550	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1551		if (priv->attach->dev == dev
1552		    && priv->attach->dmabuf == dmabuf) {
1553			/* Cancel any pending transfer */
1554			spin_lock_irq(&ffs->eps_lock);
1555			if (priv->ep && priv->req)
1556				usb_ep_dequeue(priv->ep, priv->req);
1557			spin_unlock_irq(&ffs->eps_lock);
1558
1559			list_del(&priv->entry);
1560
1561			/* Unref the reference from ffs_dmabuf_attach() */
1562			ffs_dmabuf_put(priv->attach);
1563			ret = 0;
1564			break;
1565		}
1566	}
1567
1568	mutex_unlock(&epfile->dmabufs_mutex);
1569	dma_buf_put(dmabuf);
1570
1571	return ret;
1572}
1573
1574static int ffs_dmabuf_transfer(struct file *file,
1575			       const struct usb_ffs_dmabuf_transfer_req *req)
1576{
1577	bool nonblock = file->f_flags & O_NONBLOCK;
1578	struct ffs_epfile *epfile = file->private_data;
1579	struct dma_buf_attachment *attach;
1580	struct ffs_dmabuf_priv *priv;
1581	struct ffs_dma_fence *fence;
1582	struct usb_request *usb_req;
1583	enum dma_resv_usage resv_dir;
1584	struct dma_buf *dmabuf;
1585	unsigned long timeout;
1586	struct ffs_ep *ep;
1587	bool cookie;
1588	u32 seqno;
1589	long retl;
1590	int ret;
1591
1592	if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1593		return -EINVAL;
1594
1595	dmabuf = dma_buf_get(req->fd);
1596	if (IS_ERR(dmabuf))
1597		return PTR_ERR(dmabuf);
1598
1599	if (req->length > dmabuf->size || req->length == 0) {
1600		ret = -EINVAL;
1601		goto err_dmabuf_put;
1602	}
1603
1604	attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1605	if (IS_ERR(attach)) {
1606		ret = PTR_ERR(attach);
1607		goto err_dmabuf_put;
1608	}
1609
1610	priv = attach->importer_priv;
1611
1612	ep = ffs_epfile_wait_ep(file);
1613	if (IS_ERR(ep)) {
1614		ret = PTR_ERR(ep);
1615		goto err_attachment_put;
1616	}
1617
1618	ret = ffs_dma_resv_lock(dmabuf, nonblock);
1619	if (ret)
1620		goto err_attachment_put;
1621
1622	/* Make sure we don't have writers */
1623	timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1624	retl = dma_resv_wait_timeout(dmabuf->resv,
1625				     dma_resv_usage_rw(epfile->in),
1626				     true, timeout);
1627	if (retl == 0)
1628		retl = -EBUSY;
1629	if (retl < 0) {
1630		ret = (int)retl;
1631		goto err_resv_unlock;
1632	}
1633
1634	ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1635	if (ret)
1636		goto err_resv_unlock;
1637
1638	fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1639	if (!fence) {
1640		ret = -ENOMEM;
1641		goto err_resv_unlock;
1642	}
1643
1644	fence->priv = priv;
1645
1646	spin_lock_irq(&epfile->ffs->eps_lock);
1647
1648	/* In the meantime, endpoint got disabled or changed. */
1649	if (epfile->ep != ep) {
1650		ret = -ESHUTDOWN;
1651		goto err_fence_put;
1652	}
1653
1654	usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1655	if (!usb_req) {
1656		ret = -ENOMEM;
1657		goto err_fence_put;
1658	}
1659
1660	/*
1661	 * usb_ep_queue() guarantees that all transfers are processed in the
1662	 * order they are enqueued, so we can use a simple incrementing
1663	 * sequence number for the dma_fence.
1664	 */
1665	seqno = atomic_add_return(1, &epfile->seqno);
1666
1667	dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1668		       &priv->lock, priv->context, seqno);
1669
1670	resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1671
1672	dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir);
1673	dma_resv_unlock(dmabuf->resv);
1674
1675	/* Now that the dma_fence is in place, queue the transfer. */
1676
1677	usb_req->length = req->length;
1678	usb_req->buf = NULL;
1679	usb_req->sg = priv->sgt->sgl;
1680	usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1681	usb_req->sg_was_mapped = true;
1682	usb_req->context  = fence;
1683	usb_req->complete = ffs_epfile_dmabuf_io_complete;
1684
1685	cookie = dma_fence_begin_signalling();
1686	ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1687	dma_fence_end_signalling(cookie);
1688	if (!ret) {
1689		priv->req = usb_req;
1690		priv->ep = ep->ep;
1691	} else {
1692		pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1693		ffs_dmabuf_signal_done(fence, ret);
1694		usb_ep_free_request(ep->ep, usb_req);
1695	}
1696
1697	spin_unlock_irq(&epfile->ffs->eps_lock);
1698	dma_buf_put(dmabuf);
1699
1700	return ret;
1701
1702err_fence_put:
1703	spin_unlock_irq(&epfile->ffs->eps_lock);
1704	dma_fence_put(&fence->base);
1705err_resv_unlock:
1706	dma_resv_unlock(dmabuf->resv);
1707err_attachment_put:
1708	ffs_dmabuf_put(attach);
1709err_dmabuf_put:
1710	dma_buf_put(dmabuf);
1711
1712	return ret;
1713}
1714
1715static long ffs_epfile_ioctl(struct file *file, unsigned code,
1716			     unsigned long value)
1717{
1718	struct ffs_epfile *epfile = file->private_data;
1719	struct ffs_ep *ep;
1720	int ret;
1721
1722	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1723		return -ENODEV;
1724
1725	switch (code) {
1726	case FUNCTIONFS_DMABUF_ATTACH:
1727	{
1728		int fd;
1729
1730		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1731			ret = -EFAULT;
1732			break;
1733		}
1734
1735		return ffs_dmabuf_attach(file, fd);
1736	}
1737	case FUNCTIONFS_DMABUF_DETACH:
1738	{
1739		int fd;
1740
1741		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1742			ret = -EFAULT;
1743			break;
1744		}
1745
1746		return ffs_dmabuf_detach(file, fd);
1747	}
1748	case FUNCTIONFS_DMABUF_TRANSFER:
1749	{
1750		struct usb_ffs_dmabuf_transfer_req req;
1751
1752		if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1753			ret = -EFAULT;
1754			break;
1755		}
1756
1757		return ffs_dmabuf_transfer(file, &req);
1758	}
1759	default:
1760		break;
1761	}
1762
1763	/* Wait for endpoint to be enabled */
1764	ep = ffs_epfile_wait_ep(file);
1765	if (IS_ERR(ep))
1766		return PTR_ERR(ep);
1767
1768	spin_lock_irq(&epfile->ffs->eps_lock);
1769
1770	/* In the meantime, endpoint got disabled or changed. */
1771	if (epfile->ep != ep) {
1772		spin_unlock_irq(&epfile->ffs->eps_lock);
1773		return -ESHUTDOWN;
1774	}
1775
1776	switch (code) {
1777	case FUNCTIONFS_FIFO_STATUS:
1778		ret = usb_ep_fifo_status(epfile->ep->ep);
1779		break;
1780	case FUNCTIONFS_FIFO_FLUSH:
1781		usb_ep_fifo_flush(epfile->ep->ep);
1782		ret = 0;
1783		break;
1784	case FUNCTIONFS_CLEAR_HALT:
1785		ret = usb_ep_clear_halt(epfile->ep->ep);
1786		break;
1787	case FUNCTIONFS_ENDPOINT_REVMAP:
1788		ret = epfile->ep->num;
1789		break;
1790	case FUNCTIONFS_ENDPOINT_DESC:
1791	{
1792		int desc_idx;
1793		struct usb_endpoint_descriptor desc1, *desc;
1794
1795		switch (epfile->ffs->gadget->speed) {
1796		case USB_SPEED_SUPER:
1797		case USB_SPEED_SUPER_PLUS:
1798			desc_idx = 2;
1799			break;
1800		case USB_SPEED_HIGH:
1801			desc_idx = 1;
1802			break;
1803		default:
1804			desc_idx = 0;
1805		}
1806
1807		desc = epfile->ep->descs[desc_idx];
1808		memcpy(&desc1, desc, desc->bLength);
1809
1810		spin_unlock_irq(&epfile->ffs->eps_lock);
1811		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1812		if (ret)
1813			ret = -EFAULT;
1814		return ret;
1815	}
1816	default:
1817		ret = -ENOTTY;
1818	}
1819	spin_unlock_irq(&epfile->ffs->eps_lock);
1820
1821	return ret;
1822}
1823
1824static const struct file_operations ffs_epfile_operations = {
1825	.llseek =	no_llseek,
1826
1827	.open =		ffs_epfile_open,
1828	.write_iter =	ffs_epfile_write_iter,
1829	.read_iter =	ffs_epfile_read_iter,
1830	.release =	ffs_epfile_release,
1831	.unlocked_ioctl =	ffs_epfile_ioctl,
1832	.compat_ioctl = compat_ptr_ioctl,
1833};
1834
1835
1836/* File system and super block operations ***********************************/
1837
1838/*
1839 * Mounting the file system creates a controller file, used first for
1840 * function configuration then later for event monitoring.
1841 */
1842
1843static struct inode *__must_check
1844ffs_sb_make_inode(struct super_block *sb, void *data,
1845		  const struct file_operations *fops,
1846		  const struct inode_operations *iops,
1847		  struct ffs_file_perms *perms)
1848{
1849	struct inode *inode;
1850
1851	inode = new_inode(sb);
1852
1853	if (inode) {
1854		struct timespec64 ts = inode_set_ctime_current(inode);
1855
1856		inode->i_ino	 = get_next_ino();
1857		inode->i_mode    = perms->mode;
1858		inode->i_uid     = perms->uid;
1859		inode->i_gid     = perms->gid;
1860		inode_set_atime_to_ts(inode, ts);
1861		inode_set_mtime_to_ts(inode, ts);
1862		inode->i_private = data;
1863		if (fops)
1864			inode->i_fop = fops;
1865		if (iops)
1866			inode->i_op  = iops;
1867	}
1868
1869	return inode;
1870}
1871
1872/* Create "regular" file */
1873static struct dentry *ffs_sb_create_file(struct super_block *sb,
1874					const char *name, void *data,
1875					const struct file_operations *fops)
1876{
1877	struct ffs_data	*ffs = sb->s_fs_info;
1878	struct dentry	*dentry;
1879	struct inode	*inode;
1880
1881	dentry = d_alloc_name(sb->s_root, name);
1882	if (!dentry)
1883		return NULL;
1884
1885	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1886	if (!inode) {
1887		dput(dentry);
1888		return NULL;
1889	}
1890
1891	d_add(dentry, inode);
1892	return dentry;
1893}
1894
1895/* Super block */
1896static const struct super_operations ffs_sb_operations = {
1897	.statfs =	simple_statfs,
1898	.drop_inode =	generic_delete_inode,
1899};
1900
1901struct ffs_sb_fill_data {
1902	struct ffs_file_perms perms;
1903	umode_t root_mode;
1904	const char *dev_name;
1905	bool no_disconnect;
1906	struct ffs_data *ffs_data;
1907};
1908
1909static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1910{
1911	struct ffs_sb_fill_data *data = fc->fs_private;
1912	struct inode	*inode;
1913	struct ffs_data	*ffs = data->ffs_data;
1914
1915	ffs->sb              = sb;
1916	data->ffs_data       = NULL;
1917	sb->s_fs_info        = ffs;
1918	sb->s_blocksize      = PAGE_SIZE;
1919	sb->s_blocksize_bits = PAGE_SHIFT;
1920	sb->s_magic          = FUNCTIONFS_MAGIC;
1921	sb->s_op             = &ffs_sb_operations;
1922	sb->s_time_gran      = 1;
1923
1924	/* Root inode */
1925	data->perms.mode = data->root_mode;
1926	inode = ffs_sb_make_inode(sb, NULL,
1927				  &simple_dir_operations,
1928				  &simple_dir_inode_operations,
1929				  &data->perms);
1930	sb->s_root = d_make_root(inode);
1931	if (!sb->s_root)
1932		return -ENOMEM;
1933
1934	/* EP0 file */
1935	if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1936		return -ENOMEM;
1937
1938	return 0;
1939}
1940
1941enum {
1942	Opt_no_disconnect,
1943	Opt_rmode,
1944	Opt_fmode,
1945	Opt_mode,
1946	Opt_uid,
1947	Opt_gid,
1948};
1949
1950static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1951	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1952	fsparam_u32	("rmode",		Opt_rmode),
1953	fsparam_u32	("fmode",		Opt_fmode),
1954	fsparam_u32	("mode",		Opt_mode),
1955	fsparam_u32	("uid",			Opt_uid),
1956	fsparam_u32	("gid",			Opt_gid),
1957	{}
1958};
1959
1960static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1961{
1962	struct ffs_sb_fill_data *data = fc->fs_private;
1963	struct fs_parse_result result;
1964	int opt;
1965
1966	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1967	if (opt < 0)
1968		return opt;
1969
1970	switch (opt) {
1971	case Opt_no_disconnect:
1972		data->no_disconnect = result.boolean;
1973		break;
1974	case Opt_rmode:
1975		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1976		break;
1977	case Opt_fmode:
1978		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1979		break;
1980	case Opt_mode:
1981		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1982		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1983		break;
1984
1985	case Opt_uid:
1986		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1987		if (!uid_valid(data->perms.uid))
1988			goto unmapped_value;
1989		break;
1990	case Opt_gid:
1991		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1992		if (!gid_valid(data->perms.gid))
1993			goto unmapped_value;
1994		break;
1995
1996	default:
1997		return -ENOPARAM;
1998	}
1999
2000	return 0;
2001
2002unmapped_value:
2003	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2004}
2005
2006/*
2007 * Set up the superblock for a mount.
2008 */
2009static int ffs_fs_get_tree(struct fs_context *fc)
2010{
2011	struct ffs_sb_fill_data *ctx = fc->fs_private;
2012	struct ffs_data	*ffs;
2013	int ret;
2014
2015	if (!fc->source)
2016		return invalf(fc, "No source specified");
2017
2018	ffs = ffs_data_new(fc->source);
2019	if (!ffs)
2020		return -ENOMEM;
2021	ffs->file_perms = ctx->perms;
2022	ffs->no_disconnect = ctx->no_disconnect;
2023
2024	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2025	if (!ffs->dev_name) {
2026		ffs_data_put(ffs);
2027		return -ENOMEM;
2028	}
2029
2030	ret = ffs_acquire_dev(ffs->dev_name, ffs);
2031	if (ret) {
2032		ffs_data_put(ffs);
2033		return ret;
2034	}
2035
2036	ctx->ffs_data = ffs;
2037	return get_tree_nodev(fc, ffs_sb_fill);
2038}
2039
2040static void ffs_fs_free_fc(struct fs_context *fc)
2041{
2042	struct ffs_sb_fill_data *ctx = fc->fs_private;
2043
2044	if (ctx) {
2045		if (ctx->ffs_data) {
2046			ffs_data_put(ctx->ffs_data);
2047		}
2048
2049		kfree(ctx);
2050	}
2051}
2052
2053static const struct fs_context_operations ffs_fs_context_ops = {
2054	.free		= ffs_fs_free_fc,
2055	.parse_param	= ffs_fs_parse_param,
2056	.get_tree	= ffs_fs_get_tree,
2057};
2058
2059static int ffs_fs_init_fs_context(struct fs_context *fc)
2060{
2061	struct ffs_sb_fill_data *ctx;
2062
2063	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2064	if (!ctx)
2065		return -ENOMEM;
2066
2067	ctx->perms.mode = S_IFREG | 0600;
2068	ctx->perms.uid = GLOBAL_ROOT_UID;
2069	ctx->perms.gid = GLOBAL_ROOT_GID;
2070	ctx->root_mode = S_IFDIR | 0500;
2071	ctx->no_disconnect = false;
2072
2073	fc->fs_private = ctx;
2074	fc->ops = &ffs_fs_context_ops;
2075	return 0;
2076}
2077
2078static void
2079ffs_fs_kill_sb(struct super_block *sb)
2080{
2081	kill_litter_super(sb);
2082	if (sb->s_fs_info)
2083		ffs_data_closed(sb->s_fs_info);
2084}
2085
2086static struct file_system_type ffs_fs_type = {
2087	.owner		= THIS_MODULE,
2088	.name		= "functionfs",
2089	.init_fs_context = ffs_fs_init_fs_context,
2090	.parameters	= ffs_fs_fs_parameters,
2091	.kill_sb	= ffs_fs_kill_sb,
2092};
2093MODULE_ALIAS_FS("functionfs");
2094
2095
2096/* Driver's main init/cleanup functions *************************************/
2097
2098static int functionfs_init(void)
2099{
2100	int ret;
2101
2102	ret = register_filesystem(&ffs_fs_type);
2103	if (!ret)
2104		pr_info("file system registered\n");
2105	else
2106		pr_err("failed registering file system (%d)\n", ret);
2107
2108	return ret;
2109}
2110
2111static void functionfs_cleanup(void)
2112{
2113	pr_info("unloading\n");
2114	unregister_filesystem(&ffs_fs_type);
2115}
2116
2117
2118/* ffs_data and ffs_function construction and destruction code **************/
2119
2120static void ffs_data_clear(struct ffs_data *ffs);
2121static void ffs_data_reset(struct ffs_data *ffs);
2122
2123static void ffs_data_get(struct ffs_data *ffs)
2124{
2125	refcount_inc(&ffs->ref);
2126}
2127
2128static void ffs_data_opened(struct ffs_data *ffs)
2129{
2130	refcount_inc(&ffs->ref);
2131	if (atomic_add_return(1, &ffs->opened) == 1 &&
2132			ffs->state == FFS_DEACTIVATED) {
2133		ffs->state = FFS_CLOSING;
2134		ffs_data_reset(ffs);
2135	}
2136}
2137
2138static void ffs_data_put(struct ffs_data *ffs)
2139{
2140	if (refcount_dec_and_test(&ffs->ref)) {
2141		pr_info("%s(): freeing\n", __func__);
2142		ffs_data_clear(ffs);
2143		ffs_release_dev(ffs->private_data);
2144		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2145		       swait_active(&ffs->ep0req_completion.wait) ||
2146		       waitqueue_active(&ffs->wait));
2147		destroy_workqueue(ffs->io_completion_wq);
2148		kfree(ffs->dev_name);
2149		kfree(ffs);
2150	}
2151}
2152
2153static void ffs_data_closed(struct ffs_data *ffs)
2154{
2155	struct ffs_epfile *epfiles;
2156	unsigned long flags;
2157
2158	if (atomic_dec_and_test(&ffs->opened)) {
2159		if (ffs->no_disconnect) {
2160			ffs->state = FFS_DEACTIVATED;
2161			spin_lock_irqsave(&ffs->eps_lock, flags);
2162			epfiles = ffs->epfiles;
2163			ffs->epfiles = NULL;
2164			spin_unlock_irqrestore(&ffs->eps_lock,
2165							flags);
2166
2167			if (epfiles)
2168				ffs_epfiles_destroy(epfiles,
2169						 ffs->eps_count);
2170
2171			if (ffs->setup_state == FFS_SETUP_PENDING)
2172				__ffs_ep0_stall(ffs);
2173		} else {
2174			ffs->state = FFS_CLOSING;
2175			ffs_data_reset(ffs);
2176		}
2177	}
2178	if (atomic_read(&ffs->opened) < 0) {
2179		ffs->state = FFS_CLOSING;
2180		ffs_data_reset(ffs);
2181	}
2182
2183	ffs_data_put(ffs);
2184}
2185
2186static struct ffs_data *ffs_data_new(const char *dev_name)
2187{
2188	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2189	if (!ffs)
2190		return NULL;
2191
2192	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2193	if (!ffs->io_completion_wq) {
2194		kfree(ffs);
2195		return NULL;
2196	}
2197
2198	refcount_set(&ffs->ref, 1);
2199	atomic_set(&ffs->opened, 0);
2200	ffs->state = FFS_READ_DESCRIPTORS;
2201	mutex_init(&ffs->mutex);
2202	spin_lock_init(&ffs->eps_lock);
2203	init_waitqueue_head(&ffs->ev.waitq);
2204	init_waitqueue_head(&ffs->wait);
2205	init_completion(&ffs->ep0req_completion);
2206
2207	/* XXX REVISIT need to update it in some places, or do we? */
2208	ffs->ev.can_stall = 1;
2209
2210	return ffs;
2211}
2212
2213static void ffs_data_clear(struct ffs_data *ffs)
2214{
2215	struct ffs_epfile *epfiles;
2216	unsigned long flags;
2217
2218	ffs_closed(ffs);
2219
2220	BUG_ON(ffs->gadget);
2221
2222	spin_lock_irqsave(&ffs->eps_lock, flags);
2223	epfiles = ffs->epfiles;
2224	ffs->epfiles = NULL;
2225	spin_unlock_irqrestore(&ffs->eps_lock, flags);
2226
2227	/*
2228	 * potential race possible between ffs_func_eps_disable
2229	 * & ffs_epfile_release therefore maintaining a local
2230	 * copy of epfile will save us from use-after-free.
2231	 */
2232	if (epfiles) {
2233		ffs_epfiles_destroy(epfiles, ffs->eps_count);
2234		ffs->epfiles = NULL;
2235	}
2236
2237	if (ffs->ffs_eventfd) {
2238		eventfd_ctx_put(ffs->ffs_eventfd);
2239		ffs->ffs_eventfd = NULL;
2240	}
2241
2242	kfree(ffs->raw_descs_data);
2243	kfree(ffs->raw_strings);
2244	kfree(ffs->stringtabs);
2245}
2246
2247static void ffs_data_reset(struct ffs_data *ffs)
2248{
2249	ffs_data_clear(ffs);
2250
2251	ffs->raw_descs_data = NULL;
2252	ffs->raw_descs = NULL;
2253	ffs->raw_strings = NULL;
2254	ffs->stringtabs = NULL;
2255
2256	ffs->raw_descs_length = 0;
2257	ffs->fs_descs_count = 0;
2258	ffs->hs_descs_count = 0;
2259	ffs->ss_descs_count = 0;
2260
2261	ffs->strings_count = 0;
2262	ffs->interfaces_count = 0;
2263	ffs->eps_count = 0;
2264
2265	ffs->ev.count = 0;
2266
2267	ffs->state = FFS_READ_DESCRIPTORS;
2268	ffs->setup_state = FFS_NO_SETUP;
2269	ffs->flags = 0;
2270
2271	ffs->ms_os_descs_ext_prop_count = 0;
2272	ffs->ms_os_descs_ext_prop_name_len = 0;
2273	ffs->ms_os_descs_ext_prop_data_len = 0;
2274}
2275
2276
2277static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2278{
2279	struct usb_gadget_strings **lang;
2280	int first_id;
2281
2282	if (WARN_ON(ffs->state != FFS_ACTIVE
2283		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2284		return -EBADFD;
2285
2286	first_id = usb_string_ids_n(cdev, ffs->strings_count);
2287	if (first_id < 0)
2288		return first_id;
2289
2290	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2291	if (!ffs->ep0req)
2292		return -ENOMEM;
2293	ffs->ep0req->complete = ffs_ep0_complete;
2294	ffs->ep0req->context = ffs;
2295
2296	lang = ffs->stringtabs;
2297	if (lang) {
2298		for (; *lang; ++lang) {
2299			struct usb_string *str = (*lang)->strings;
2300			int id = first_id;
2301			for (; str->s; ++id, ++str)
2302				str->id = id;
2303		}
2304	}
2305
2306	ffs->gadget = cdev->gadget;
2307	ffs_data_get(ffs);
2308	return 0;
2309}
2310
2311static void functionfs_unbind(struct ffs_data *ffs)
2312{
2313	if (!WARN_ON(!ffs->gadget)) {
2314		/* dequeue before freeing ep0req */
2315		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2316		mutex_lock(&ffs->mutex);
2317		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2318		ffs->ep0req = NULL;
2319		ffs->gadget = NULL;
2320		clear_bit(FFS_FL_BOUND, &ffs->flags);
2321		mutex_unlock(&ffs->mutex);
2322		ffs_data_put(ffs);
2323	}
2324}
2325
2326static int ffs_epfiles_create(struct ffs_data *ffs)
2327{
2328	struct ffs_epfile *epfile, *epfiles;
2329	unsigned i, count;
2330
2331	count = ffs->eps_count;
2332	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2333	if (!epfiles)
2334		return -ENOMEM;
2335
2336	epfile = epfiles;
2337	for (i = 1; i <= count; ++i, ++epfile) {
2338		epfile->ffs = ffs;
2339		mutex_init(&epfile->mutex);
2340		mutex_init(&epfile->dmabufs_mutex);
2341		INIT_LIST_HEAD(&epfile->dmabufs);
2342		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2343			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2344		else
2345			sprintf(epfile->name, "ep%u", i);
2346		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
2347						 epfile,
2348						 &ffs_epfile_operations);
2349		if (!epfile->dentry) {
2350			ffs_epfiles_destroy(epfiles, i - 1);
2351			return -ENOMEM;
2352		}
2353	}
2354
2355	ffs->epfiles = epfiles;
2356	return 0;
2357}
2358
2359static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
2360{
2361	struct ffs_epfile *epfile = epfiles;
2362
2363	for (; count; --count, ++epfile) {
2364		BUG_ON(mutex_is_locked(&epfile->mutex));
2365		if (epfile->dentry) {
2366			d_delete(epfile->dentry);
2367			dput(epfile->dentry);
2368			epfile->dentry = NULL;
2369		}
2370	}
2371
2372	kfree(epfiles);
2373}
2374
2375static void ffs_func_eps_disable(struct ffs_function *func)
2376{
2377	struct ffs_ep *ep;
2378	struct ffs_epfile *epfile;
2379	unsigned short count;
2380	unsigned long flags;
2381
2382	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2383	count = func->ffs->eps_count;
2384	epfile = func->ffs->epfiles;
2385	ep = func->eps;
2386	while (count--) {
2387		/* pending requests get nuked */
2388		if (ep->ep)
2389			usb_ep_disable(ep->ep);
2390		++ep;
2391
2392		if (epfile) {
2393			epfile->ep = NULL;
2394			__ffs_epfile_read_buffer_free(epfile);
2395			++epfile;
2396		}
2397	}
2398	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2399}
2400
2401static int ffs_func_eps_enable(struct ffs_function *func)
2402{
2403	struct ffs_data *ffs;
2404	struct ffs_ep *ep;
2405	struct ffs_epfile *epfile;
2406	unsigned short count;
2407	unsigned long flags;
2408	int ret = 0;
2409
2410	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2411	ffs = func->ffs;
2412	ep = func->eps;
2413	epfile = ffs->epfiles;
2414	count = ffs->eps_count;
2415	while(count--) {
2416		ep->ep->driver_data = ep;
2417
2418		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2419		if (ret) {
2420			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2421					__func__, ep->ep->name, ret);
2422			break;
2423		}
2424
2425		ret = usb_ep_enable(ep->ep);
2426		if (!ret) {
2427			epfile->ep = ep;
2428			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2429			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2430		} else {
2431			break;
2432		}
2433
2434		++ep;
2435		++epfile;
2436	}
2437
2438	wake_up_interruptible(&ffs->wait);
2439	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2440
2441	return ret;
2442}
2443
2444
2445/* Parsing and building descriptors and strings *****************************/
2446
2447/*
2448 * This validates if data pointed by data is a valid USB descriptor as
2449 * well as record how many interfaces, endpoints and strings are
2450 * required by given configuration.  Returns address after the
2451 * descriptor or NULL if data is invalid.
2452 */
2453
2454enum ffs_entity_type {
2455	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2456};
2457
2458enum ffs_os_desc_type {
2459	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2460};
2461
2462typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2463				   u8 *valuep,
2464				   struct usb_descriptor_header *desc,
2465				   void *priv);
2466
2467typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2468				    struct usb_os_desc_header *h, void *data,
2469				    unsigned len, void *priv);
2470
2471static int __must_check ffs_do_single_desc(char *data, unsigned len,
2472					   ffs_entity_callback entity,
2473					   void *priv, int *current_class)
2474{
2475	struct usb_descriptor_header *_ds = (void *)data;
2476	u8 length;
2477	int ret;
2478
2479	/* At least two bytes are required: length and type */
2480	if (len < 2) {
2481		pr_vdebug("descriptor too short\n");
2482		return -EINVAL;
2483	}
2484
2485	/* If we have at least as many bytes as the descriptor takes? */
2486	length = _ds->bLength;
2487	if (len < length) {
2488		pr_vdebug("descriptor longer then available data\n");
2489		return -EINVAL;
2490	}
2491
2492#define __entity_check_INTERFACE(val)  1
2493#define __entity_check_STRING(val)     (val)
2494#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2495#define __entity(type, val) do {					\
2496		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2497		if (!__entity_check_ ##type(val)) {			\
2498			pr_vdebug("invalid entity's value\n");		\
2499			return -EINVAL;					\
2500		}							\
2501		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2502		if (ret < 0) {						\
2503			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2504				 (val), ret);				\
2505			return ret;					\
2506		}							\
2507	} while (0)
2508
2509	/* Parse descriptor depending on type. */
2510	switch (_ds->bDescriptorType) {
2511	case USB_DT_DEVICE:
2512	case USB_DT_CONFIG:
2513	case USB_DT_STRING:
2514	case USB_DT_DEVICE_QUALIFIER:
2515		/* function can't have any of those */
2516		pr_vdebug("descriptor reserved for gadget: %d\n",
2517		      _ds->bDescriptorType);
2518		return -EINVAL;
2519
2520	case USB_DT_INTERFACE: {
2521		struct usb_interface_descriptor *ds = (void *)_ds;
2522		pr_vdebug("interface descriptor\n");
2523		if (length != sizeof *ds)
2524			goto inv_length;
2525
2526		__entity(INTERFACE, ds->bInterfaceNumber);
2527		if (ds->iInterface)
2528			__entity(STRING, ds->iInterface);
2529		*current_class = ds->bInterfaceClass;
2530	}
2531		break;
2532
2533	case USB_DT_ENDPOINT: {
2534		struct usb_endpoint_descriptor *ds = (void *)_ds;
2535		pr_vdebug("endpoint descriptor\n");
2536		if (length != USB_DT_ENDPOINT_SIZE &&
2537		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2538			goto inv_length;
2539		__entity(ENDPOINT, ds->bEndpointAddress);
2540	}
2541		break;
2542
2543	case USB_TYPE_CLASS | 0x01:
2544		if (*current_class == USB_INTERFACE_CLASS_HID) {
2545			pr_vdebug("hid descriptor\n");
2546			if (length != sizeof(struct hid_descriptor))
2547				goto inv_length;
2548			break;
2549		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2550			pr_vdebug("ccid descriptor\n");
2551			if (length != sizeof(struct ccid_descriptor))
2552				goto inv_length;
2553			break;
2554		} else {
2555			pr_vdebug("unknown descriptor: %d for class %d\n",
2556			      _ds->bDescriptorType, *current_class);
2557			return -EINVAL;
2558		}
2559
2560	case USB_DT_OTG:
2561		if (length != sizeof(struct usb_otg_descriptor))
2562			goto inv_length;
2563		break;
2564
2565	case USB_DT_INTERFACE_ASSOCIATION: {
2566		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2567		pr_vdebug("interface association descriptor\n");
2568		if (length != sizeof *ds)
2569			goto inv_length;
2570		if (ds->iFunction)
2571			__entity(STRING, ds->iFunction);
2572	}
2573		break;
2574
2575	case USB_DT_SS_ENDPOINT_COMP:
2576		pr_vdebug("EP SS companion descriptor\n");
2577		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2578			goto inv_length;
2579		break;
2580
2581	case USB_DT_OTHER_SPEED_CONFIG:
2582	case USB_DT_INTERFACE_POWER:
2583	case USB_DT_DEBUG:
2584	case USB_DT_SECURITY:
2585	case USB_DT_CS_RADIO_CONTROL:
2586		/* TODO */
2587		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2588		return -EINVAL;
2589
2590	default:
2591		/* We should never be here */
2592		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2593		return -EINVAL;
2594
2595inv_length:
2596		pr_vdebug("invalid length: %d (descriptor %d)\n",
2597			  _ds->bLength, _ds->bDescriptorType);
2598		return -EINVAL;
2599	}
2600
2601#undef __entity
2602#undef __entity_check_DESCRIPTOR
2603#undef __entity_check_INTERFACE
2604#undef __entity_check_STRING
2605#undef __entity_check_ENDPOINT
2606
2607	return length;
2608}
2609
2610static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2611				     ffs_entity_callback entity, void *priv)
2612{
2613	const unsigned _len = len;
2614	unsigned long num = 0;
2615	int current_class = -1;
2616
2617	for (;;) {
2618		int ret;
2619
2620		if (num == count)
2621			data = NULL;
2622
2623		/* Record "descriptor" entity */
2624		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2625		if (ret < 0) {
2626			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2627				 num, ret);
2628			return ret;
2629		}
2630
2631		if (!data)
2632			return _len - len;
2633
2634		ret = ffs_do_single_desc(data, len, entity, priv,
2635			&current_class);
2636		if (ret < 0) {
2637			pr_debug("%s returns %d\n", __func__, ret);
2638			return ret;
2639		}
2640
2641		len -= ret;
2642		data += ret;
2643		++num;
2644	}
2645}
2646
2647static int __ffs_data_do_entity(enum ffs_entity_type type,
2648				u8 *valuep, struct usb_descriptor_header *desc,
2649				void *priv)
2650{
2651	struct ffs_desc_helper *helper = priv;
2652	struct usb_endpoint_descriptor *d;
2653
2654	switch (type) {
2655	case FFS_DESCRIPTOR:
2656		break;
2657
2658	case FFS_INTERFACE:
2659		/*
2660		 * Interfaces are indexed from zero so if we
2661		 * encountered interface "n" then there are at least
2662		 * "n+1" interfaces.
2663		 */
2664		if (*valuep >= helper->interfaces_count)
2665			helper->interfaces_count = *valuep + 1;
2666		break;
2667
2668	case FFS_STRING:
2669		/*
2670		 * Strings are indexed from 1 (0 is reserved
2671		 * for languages list)
2672		 */
2673		if (*valuep > helper->ffs->strings_count)
2674			helper->ffs->strings_count = *valuep;
2675		break;
2676
2677	case FFS_ENDPOINT:
2678		d = (void *)desc;
2679		helper->eps_count++;
2680		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2681			return -EINVAL;
2682		/* Check if descriptors for any speed were already parsed */
2683		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2684			helper->ffs->eps_addrmap[helper->eps_count] =
2685				d->bEndpointAddress;
2686		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2687				d->bEndpointAddress)
2688			return -EINVAL;
2689		break;
2690	}
2691
2692	return 0;
2693}
2694
2695static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2696				   struct usb_os_desc_header *desc)
2697{
2698	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2699	u16 w_index = le16_to_cpu(desc->wIndex);
2700
2701	if (bcd_version == 0x1) {
2702		pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2703			"Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2704	} else if (bcd_version != 0x100) {
2705		pr_vdebug("unsupported os descriptors version: 0x%x\n",
2706			  bcd_version);
2707		return -EINVAL;
2708	}
2709	switch (w_index) {
2710	case 0x4:
2711		*next_type = FFS_OS_DESC_EXT_COMPAT;
2712		break;
2713	case 0x5:
2714		*next_type = FFS_OS_DESC_EXT_PROP;
2715		break;
2716	default:
2717		pr_vdebug("unsupported os descriptor type: %d", w_index);
2718		return -EINVAL;
2719	}
2720
2721	return sizeof(*desc);
2722}
2723
2724/*
2725 * Process all extended compatibility/extended property descriptors
2726 * of a feature descriptor
2727 */
2728static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2729					      enum ffs_os_desc_type type,
2730					      u16 feature_count,
2731					      ffs_os_desc_callback entity,
2732					      void *priv,
2733					      struct usb_os_desc_header *h)
2734{
2735	int ret;
2736	const unsigned _len = len;
2737
2738	/* loop over all ext compat/ext prop descriptors */
2739	while (feature_count--) {
2740		ret = entity(type, h, data, len, priv);
2741		if (ret < 0) {
2742			pr_debug("bad OS descriptor, type: %d\n", type);
2743			return ret;
2744		}
2745		data += ret;
2746		len -= ret;
2747	}
2748	return _len - len;
2749}
2750
2751/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2752static int __must_check ffs_do_os_descs(unsigned count,
2753					char *data, unsigned len,
2754					ffs_os_desc_callback entity, void *priv)
2755{
2756	const unsigned _len = len;
2757	unsigned long num = 0;
2758
2759	for (num = 0; num < count; ++num) {
2760		int ret;
2761		enum ffs_os_desc_type type;
2762		u16 feature_count;
2763		struct usb_os_desc_header *desc = (void *)data;
2764
2765		if (len < sizeof(*desc))
2766			return -EINVAL;
2767
2768		/*
2769		 * Record "descriptor" entity.
2770		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2771		 * Move the data pointer to the beginning of extended
2772		 * compatibilities proper or extended properties proper
2773		 * portions of the data
2774		 */
2775		if (le32_to_cpu(desc->dwLength) > len)
2776			return -EINVAL;
2777
2778		ret = __ffs_do_os_desc_header(&type, desc);
2779		if (ret < 0) {
2780			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2781				 num, ret);
2782			return ret;
2783		}
2784		/*
2785		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2786		 */
2787		feature_count = le16_to_cpu(desc->wCount);
2788		if (type == FFS_OS_DESC_EXT_COMPAT &&
2789		    (feature_count > 255 || desc->Reserved))
2790				return -EINVAL;
2791		len -= ret;
2792		data += ret;
2793
2794		/*
2795		 * Process all function/property descriptors
2796		 * of this Feature Descriptor
2797		 */
2798		ret = ffs_do_single_os_desc(data, len, type,
2799					    feature_count, entity, priv, desc);
2800		if (ret < 0) {
2801			pr_debug("%s returns %d\n", __func__, ret);
2802			return ret;
2803		}
2804
2805		len -= ret;
2806		data += ret;
2807	}
2808	return _len - len;
2809}
2810
2811/*
2812 * Validate contents of the buffer from userspace related to OS descriptors.
2813 */
2814static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2815				 struct usb_os_desc_header *h, void *data,
2816				 unsigned len, void *priv)
2817{
2818	struct ffs_data *ffs = priv;
2819	u8 length;
2820
2821	switch (type) {
2822	case FFS_OS_DESC_EXT_COMPAT: {
2823		struct usb_ext_compat_desc *d = data;
2824		int i;
2825
2826		if (len < sizeof(*d) ||
2827		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2828			return -EINVAL;
2829		if (d->Reserved1 != 1) {
2830			/*
2831			 * According to the spec, Reserved1 must be set to 1
2832			 * but older kernels incorrectly rejected non-zero
2833			 * values.  We fix it here to avoid returning EINVAL
2834			 * in response to values we used to accept.
2835			 */
2836			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2837			d->Reserved1 = 1;
2838		}
2839		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2840			if (d->Reserved2[i])
2841				return -EINVAL;
2842
2843		length = sizeof(struct usb_ext_compat_desc);
2844	}
2845		break;
2846	case FFS_OS_DESC_EXT_PROP: {
2847		struct usb_ext_prop_desc *d = data;
2848		u32 type, pdl;
2849		u16 pnl;
2850
2851		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2852			return -EINVAL;
2853		length = le32_to_cpu(d->dwSize);
2854		if (len < length)
2855			return -EINVAL;
2856		type = le32_to_cpu(d->dwPropertyDataType);
2857		if (type < USB_EXT_PROP_UNICODE ||
2858		    type > USB_EXT_PROP_UNICODE_MULTI) {
2859			pr_vdebug("unsupported os descriptor property type: %d",
2860				  type);
2861			return -EINVAL;
2862		}
2863		pnl = le16_to_cpu(d->wPropertyNameLength);
2864		if (length < 14 + pnl) {
2865			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2866				  length, pnl, type);
2867			return -EINVAL;
2868		}
2869		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2870		if (length != 14 + pnl + pdl) {
2871			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2872				  length, pnl, pdl, type);
2873			return -EINVAL;
2874		}
2875		++ffs->ms_os_descs_ext_prop_count;
2876		/* property name reported to the host as "WCHAR"s */
2877		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2878		ffs->ms_os_descs_ext_prop_data_len += pdl;
2879	}
2880		break;
2881	default:
2882		pr_vdebug("unknown descriptor: %d\n", type);
2883		return -EINVAL;
2884	}
2885	return length;
2886}
2887
2888static int __ffs_data_got_descs(struct ffs_data *ffs,
2889				char *const _data, size_t len)
2890{
2891	char *data = _data, *raw_descs;
2892	unsigned os_descs_count = 0, counts[3], flags;
2893	int ret = -EINVAL, i;
2894	struct ffs_desc_helper helper;
2895
2896	if (get_unaligned_le32(data + 4) != len)
2897		goto error;
2898
2899	switch (get_unaligned_le32(data)) {
2900	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2901		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2902		data += 8;
2903		len  -= 8;
2904		break;
2905	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2906		flags = get_unaligned_le32(data + 8);
2907		ffs->user_flags = flags;
2908		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2909			      FUNCTIONFS_HAS_HS_DESC |
2910			      FUNCTIONFS_HAS_SS_DESC |
2911			      FUNCTIONFS_HAS_MS_OS_DESC |
2912			      FUNCTIONFS_VIRTUAL_ADDR |
2913			      FUNCTIONFS_EVENTFD |
2914			      FUNCTIONFS_ALL_CTRL_RECIP |
2915			      FUNCTIONFS_CONFIG0_SETUP)) {
2916			ret = -ENOSYS;
2917			goto error;
2918		}
2919		data += 12;
2920		len  -= 12;
2921		break;
2922	default:
2923		goto error;
2924	}
2925
2926	if (flags & FUNCTIONFS_EVENTFD) {
2927		if (len < 4)
2928			goto error;
2929		ffs->ffs_eventfd =
2930			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2931		if (IS_ERR(ffs->ffs_eventfd)) {
2932			ret = PTR_ERR(ffs->ffs_eventfd);
2933			ffs->ffs_eventfd = NULL;
2934			goto error;
2935		}
2936		data += 4;
2937		len  -= 4;
2938	}
2939
2940	/* Read fs_count, hs_count and ss_count (if present) */
2941	for (i = 0; i < 3; ++i) {
2942		if (!(flags & (1 << i))) {
2943			counts[i] = 0;
2944		} else if (len < 4) {
2945			goto error;
2946		} else {
2947			counts[i] = get_unaligned_le32(data);
2948			data += 4;
2949			len  -= 4;
2950		}
2951	}
2952	if (flags & (1 << i)) {
2953		if (len < 4) {
2954			goto error;
2955		}
2956		os_descs_count = get_unaligned_le32(data);
2957		data += 4;
2958		len -= 4;
2959	}
2960
2961	/* Read descriptors */
2962	raw_descs = data;
2963	helper.ffs = ffs;
2964	for (i = 0; i < 3; ++i) {
2965		if (!counts[i])
2966			continue;
2967		helper.interfaces_count = 0;
2968		helper.eps_count = 0;
2969		ret = ffs_do_descs(counts[i], data, len,
2970				   __ffs_data_do_entity, &helper);
2971		if (ret < 0)
2972			goto error;
2973		if (!ffs->eps_count && !ffs->interfaces_count) {
2974			ffs->eps_count = helper.eps_count;
2975			ffs->interfaces_count = helper.interfaces_count;
2976		} else {
2977			if (ffs->eps_count != helper.eps_count) {
2978				ret = -EINVAL;
2979				goto error;
2980			}
2981			if (ffs->interfaces_count != helper.interfaces_count) {
2982				ret = -EINVAL;
2983				goto error;
2984			}
2985		}
2986		data += ret;
2987		len  -= ret;
2988	}
2989	if (os_descs_count) {
2990		ret = ffs_do_os_descs(os_descs_count, data, len,
2991				      __ffs_data_do_os_desc, ffs);
2992		if (ret < 0)
2993			goto error;
2994		data += ret;
2995		len -= ret;
2996	}
2997
2998	if (raw_descs == data || len) {
2999		ret = -EINVAL;
3000		goto error;
3001	}
3002
3003	ffs->raw_descs_data	= _data;
3004	ffs->raw_descs		= raw_descs;
3005	ffs->raw_descs_length	= data - raw_descs;
3006	ffs->fs_descs_count	= counts[0];
3007	ffs->hs_descs_count	= counts[1];
3008	ffs->ss_descs_count	= counts[2];
3009	ffs->ms_os_descs_count	= os_descs_count;
3010
3011	return 0;
3012
3013error:
3014	kfree(_data);
3015	return ret;
3016}
3017
3018static int __ffs_data_got_strings(struct ffs_data *ffs,
3019				  char *const _data, size_t len)
3020{
3021	u32 str_count, needed_count, lang_count;
3022	struct usb_gadget_strings **stringtabs, *t;
3023	const char *data = _data;
3024	struct usb_string *s;
3025
3026	if (len < 16 ||
3027	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3028	    get_unaligned_le32(data + 4) != len)
3029		goto error;
3030	str_count  = get_unaligned_le32(data + 8);
3031	lang_count = get_unaligned_le32(data + 12);
3032
3033	/* if one is zero the other must be zero */
3034	if (!str_count != !lang_count)
3035		goto error;
3036
3037	/* Do we have at least as many strings as descriptors need? */
3038	needed_count = ffs->strings_count;
3039	if (str_count < needed_count)
3040		goto error;
3041
3042	/*
3043	 * If we don't need any strings just return and free all
3044	 * memory.
3045	 */
3046	if (!needed_count) {
3047		kfree(_data);
3048		return 0;
3049	}
3050
3051	/* Allocate everything in one chunk so there's less maintenance. */
3052	{
3053		unsigned i = 0;
3054		vla_group(d);
3055		vla_item(d, struct usb_gadget_strings *, stringtabs,
3056			size_add(lang_count, 1));
3057		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3058		vla_item(d, struct usb_string, strings,
3059			size_mul(lang_count, (needed_count + 1)));
3060
3061		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3062
3063		if (!vlabuf) {
3064			kfree(_data);
3065			return -ENOMEM;
3066		}
3067
3068		/* Initialize the VLA pointers */
3069		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3070		t = vla_ptr(vlabuf, d, stringtab);
3071		i = lang_count;
3072		do {
3073			*stringtabs++ = t++;
3074		} while (--i);
3075		*stringtabs = NULL;
3076
3077		/* stringtabs = vlabuf = d_stringtabs for later kfree */
3078		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3079		t = vla_ptr(vlabuf, d, stringtab);
3080		s = vla_ptr(vlabuf, d, strings);
3081	}
3082
3083	/* For each language */
3084	data += 16;
3085	len -= 16;
3086
3087	do { /* lang_count > 0 so we can use do-while */
3088		unsigned needed = needed_count;
3089		u32 str_per_lang = str_count;
3090
3091		if (len < 3)
3092			goto error_free;
3093		t->language = get_unaligned_le16(data);
3094		t->strings  = s;
3095		++t;
3096
3097		data += 2;
3098		len -= 2;
3099
3100		/* For each string */
3101		do { /* str_count > 0 so we can use do-while */
3102			size_t length = strnlen(data, len);
3103
3104			if (length == len)
3105				goto error_free;
3106
3107			/*
3108			 * User may provide more strings then we need,
3109			 * if that's the case we simply ignore the
3110			 * rest
3111			 */
3112			if (needed) {
3113				/*
3114				 * s->id will be set while adding
3115				 * function to configuration so for
3116				 * now just leave garbage here.
3117				 */
3118				s->s = data;
3119				--needed;
3120				++s;
3121			}
3122
3123			data += length + 1;
3124			len -= length + 1;
3125		} while (--str_per_lang);
3126
3127		s->id = 0;   /* terminator */
3128		s->s = NULL;
3129		++s;
3130
3131	} while (--lang_count);
3132
3133	/* Some garbage left? */
3134	if (len)
3135		goto error_free;
3136
3137	/* Done! */
3138	ffs->stringtabs = stringtabs;
3139	ffs->raw_strings = _data;
3140
3141	return 0;
3142
3143error_free:
3144	kfree(stringtabs);
3145error:
3146	kfree(_data);
3147	return -EINVAL;
3148}
3149
3150
3151/* Events handling and management *******************************************/
3152
3153static void __ffs_event_add(struct ffs_data *ffs,
3154			    enum usb_functionfs_event_type type)
3155{
3156	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3157	int neg = 0;
3158
3159	/*
3160	 * Abort any unhandled setup
3161	 *
3162	 * We do not need to worry about some cmpxchg() changing value
3163	 * of ffs->setup_state without holding the lock because when
3164	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3165	 * the source does nothing.
3166	 */
3167	if (ffs->setup_state == FFS_SETUP_PENDING)
3168		ffs->setup_state = FFS_SETUP_CANCELLED;
3169
3170	/*
3171	 * Logic of this function guarantees that there are at most four pending
3172	 * evens on ffs->ev.types queue.  This is important because the queue
3173	 * has space for four elements only and __ffs_ep0_read_events function
3174	 * depends on that limit as well.  If more event types are added, those
3175	 * limits have to be revisited or guaranteed to still hold.
3176	 */
3177	switch (type) {
3178	case FUNCTIONFS_RESUME:
3179		rem_type2 = FUNCTIONFS_SUSPEND;
3180		fallthrough;
3181	case FUNCTIONFS_SUSPEND:
3182	case FUNCTIONFS_SETUP:
3183		rem_type1 = type;
3184		/* Discard all similar events */
3185		break;
3186
3187	case FUNCTIONFS_BIND:
3188	case FUNCTIONFS_UNBIND:
3189	case FUNCTIONFS_DISABLE:
3190	case FUNCTIONFS_ENABLE:
3191		/* Discard everything other then power management. */
3192		rem_type1 = FUNCTIONFS_SUSPEND;
3193		rem_type2 = FUNCTIONFS_RESUME;
3194		neg = 1;
3195		break;
3196
3197	default:
3198		WARN(1, "%d: unknown event, this should not happen\n", type);
3199		return;
3200	}
3201
3202	{
3203		u8 *ev  = ffs->ev.types, *out = ev;
3204		unsigned n = ffs->ev.count;
3205		for (; n; --n, ++ev)
3206			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3207				*out++ = *ev;
3208			else
3209				pr_vdebug("purging event %d\n", *ev);
3210		ffs->ev.count = out - ffs->ev.types;
3211	}
3212
3213	pr_vdebug("adding event %d\n", type);
3214	ffs->ev.types[ffs->ev.count++] = type;
3215	wake_up_locked(&ffs->ev.waitq);
3216	if (ffs->ffs_eventfd)
3217		eventfd_signal(ffs->ffs_eventfd);
3218}
3219
3220static void ffs_event_add(struct ffs_data *ffs,
3221			  enum usb_functionfs_event_type type)
3222{
3223	unsigned long flags;
3224	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3225	__ffs_event_add(ffs, type);
3226	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3227}
3228
3229/* Bind/unbind USB function hooks *******************************************/
3230
3231static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3232{
3233	int i;
3234
3235	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3236		if (ffs->eps_addrmap[i] == endpoint_address)
3237			return i;
3238	return -ENOENT;
3239}
3240
3241static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3242				    struct usb_descriptor_header *desc,
3243				    void *priv)
3244{
3245	struct usb_endpoint_descriptor *ds = (void *)desc;
3246	struct ffs_function *func = priv;
3247	struct ffs_ep *ffs_ep;
3248	unsigned ep_desc_id;
3249	int idx;
3250	static const char *speed_names[] = { "full", "high", "super" };
3251
3252	if (type != FFS_DESCRIPTOR)
3253		return 0;
3254
3255	/*
3256	 * If ss_descriptors is not NULL, we are reading super speed
3257	 * descriptors; if hs_descriptors is not NULL, we are reading high
3258	 * speed descriptors; otherwise, we are reading full speed
3259	 * descriptors.
3260	 */
3261	if (func->function.ss_descriptors) {
3262		ep_desc_id = 2;
3263		func->function.ss_descriptors[(long)valuep] = desc;
3264	} else if (func->function.hs_descriptors) {
3265		ep_desc_id = 1;
3266		func->function.hs_descriptors[(long)valuep] = desc;
3267	} else {
3268		ep_desc_id = 0;
3269		func->function.fs_descriptors[(long)valuep]    = desc;
3270	}
3271
3272	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3273		return 0;
3274
3275	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3276	if (idx < 0)
3277		return idx;
3278
3279	ffs_ep = func->eps + idx;
3280
3281	if (ffs_ep->descs[ep_desc_id]) {
3282		pr_err("two %sspeed descriptors for EP %d\n",
3283			  speed_names[ep_desc_id],
3284			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
3285		return -EINVAL;
3286	}
3287	ffs_ep->descs[ep_desc_id] = ds;
3288
3289	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
3290	if (ffs_ep->ep) {
3291		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3292		if (!ds->wMaxPacketSize)
3293			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3294	} else {
3295		struct usb_request *req;
3296		struct usb_ep *ep;
3297		u8 bEndpointAddress;
3298		u16 wMaxPacketSize;
3299
3300		/*
3301		 * We back up bEndpointAddress because autoconfig overwrites
3302		 * it with physical endpoint address.
3303		 */
3304		bEndpointAddress = ds->bEndpointAddress;
3305		/*
3306		 * We back up wMaxPacketSize because autoconfig treats
3307		 * endpoint descriptors as if they were full speed.
3308		 */
3309		wMaxPacketSize = ds->wMaxPacketSize;
3310		pr_vdebug("autoconfig\n");
3311		ep = usb_ep_autoconfig(func->gadget, ds);
3312		if (!ep)
3313			return -ENOTSUPP;
3314		ep->driver_data = func->eps + idx;
3315
3316		req = usb_ep_alloc_request(ep, GFP_KERNEL);
3317		if (!req)
3318			return -ENOMEM;
3319
3320		ffs_ep->ep  = ep;
3321		ffs_ep->req = req;
3322		func->eps_revmap[ds->bEndpointAddress &
3323				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3324		/*
3325		 * If we use virtual address mapping, we restore
3326		 * original bEndpointAddress value.
3327		 */
3328		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3329			ds->bEndpointAddress = bEndpointAddress;
3330		/*
3331		 * Restore wMaxPacketSize which was potentially
3332		 * overwritten by autoconfig.
3333		 */
3334		ds->wMaxPacketSize = wMaxPacketSize;
3335	}
3336	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3337
3338	return 0;
3339}
3340
3341static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3342				   struct usb_descriptor_header *desc,
3343				   void *priv)
3344{
3345	struct ffs_function *func = priv;
3346	unsigned idx;
3347	u8 newValue;
3348
3349	switch (type) {
3350	default:
3351	case FFS_DESCRIPTOR:
3352		/* Handled in previous pass by __ffs_func_bind_do_descs() */
3353		return 0;
3354
3355	case FFS_INTERFACE:
3356		idx = *valuep;
3357		if (func->interfaces_nums[idx] < 0) {
3358			int id = usb_interface_id(func->conf, &func->function);
3359			if (id < 0)
3360				return id;
3361			func->interfaces_nums[idx] = id;
3362		}
3363		newValue = func->interfaces_nums[idx];
3364		break;
3365
3366	case FFS_STRING:
3367		/* String' IDs are allocated when fsf_data is bound to cdev */
3368		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3369		break;
3370
3371	case FFS_ENDPOINT:
3372		/*
3373		 * USB_DT_ENDPOINT are handled in
3374		 * __ffs_func_bind_do_descs().
3375		 */
3376		if (desc->bDescriptorType == USB_DT_ENDPOINT)
3377			return 0;
3378
3379		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3380		if (!func->eps[idx].ep)
3381			return -EINVAL;
3382
3383		{
3384			struct usb_endpoint_descriptor **descs;
3385			descs = func->eps[idx].descs;
3386			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3387		}
3388		break;
3389	}
3390
3391	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3392	*valuep = newValue;
3393	return 0;
3394}
3395
3396static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3397				      struct usb_os_desc_header *h, void *data,
3398				      unsigned len, void *priv)
3399{
3400	struct ffs_function *func = priv;
3401	u8 length = 0;
3402
3403	switch (type) {
3404	case FFS_OS_DESC_EXT_COMPAT: {
3405		struct usb_ext_compat_desc *desc = data;
3406		struct usb_os_desc_table *t;
3407
3408		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3409		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3410		memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3411		       sizeof_field(struct usb_ext_compat_desc, IDs));
3412		length = sizeof(*desc);
3413	}
3414		break;
3415	case FFS_OS_DESC_EXT_PROP: {
3416		struct usb_ext_prop_desc *desc = data;
3417		struct usb_os_desc_table *t;
3418		struct usb_os_desc_ext_prop *ext_prop;
3419		char *ext_prop_name;
3420		char *ext_prop_data;
3421
3422		t = &func->function.os_desc_table[h->interface];
3423		t->if_id = func->interfaces_nums[h->interface];
3424
3425		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3426		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3427
3428		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3429		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3430		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3431			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3432		length = ext_prop->name_len + ext_prop->data_len + 14;
3433
3434		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3435		func->ffs->ms_os_descs_ext_prop_name_avail +=
3436			ext_prop->name_len;
3437
3438		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3439		func->ffs->ms_os_descs_ext_prop_data_avail +=
3440			ext_prop->data_len;
3441		memcpy(ext_prop_data,
3442		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3443		       ext_prop->data_len);
3444		/* unicode data reported to the host as "WCHAR"s */
3445		switch (ext_prop->type) {
3446		case USB_EXT_PROP_UNICODE:
3447		case USB_EXT_PROP_UNICODE_ENV:
3448		case USB_EXT_PROP_UNICODE_LINK:
3449		case USB_EXT_PROP_UNICODE_MULTI:
3450			ext_prop->data_len *= 2;
3451			break;
3452		}
3453		ext_prop->data = ext_prop_data;
3454
3455		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3456		       ext_prop->name_len);
3457		/* property name reported to the host as "WCHAR"s */
3458		ext_prop->name_len *= 2;
3459		ext_prop->name = ext_prop_name;
3460
3461		t->os_desc->ext_prop_len +=
3462			ext_prop->name_len + ext_prop->data_len + 14;
3463		++t->os_desc->ext_prop_count;
3464		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3465	}
3466		break;
3467	default:
3468		pr_vdebug("unknown descriptor: %d\n", type);
3469	}
3470
3471	return length;
3472}
3473
3474static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3475						struct usb_configuration *c)
3476{
3477	struct ffs_function *func = ffs_func_from_usb(f);
3478	struct f_fs_opts *ffs_opts =
3479		container_of(f->fi, struct f_fs_opts, func_inst);
3480	struct ffs_data *ffs_data;
3481	int ret;
3482
3483	/*
3484	 * Legacy gadget triggers binding in functionfs_ready_callback,
3485	 * which already uses locking; taking the same lock here would
3486	 * cause a deadlock.
3487	 *
3488	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3489	 */
3490	if (!ffs_opts->no_configfs)
3491		ffs_dev_lock();
3492	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3493	ffs_data = ffs_opts->dev->ffs_data;
3494	if (!ffs_opts->no_configfs)
3495		ffs_dev_unlock();
3496	if (ret)
3497		return ERR_PTR(ret);
3498
3499	func->ffs = ffs_data;
3500	func->conf = c;
3501	func->gadget = c->cdev->gadget;
3502
3503	/*
3504	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3505	 * configurations are bound in sequence with list_for_each_entry,
3506	 * in each configuration its functions are bound in sequence
3507	 * with list_for_each_entry, so we assume no race condition
3508	 * with regard to ffs_opts->bound access
3509	 */
3510	if (!ffs_opts->refcnt) {
3511		ret = functionfs_bind(func->ffs, c->cdev);
3512		if (ret)
3513			return ERR_PTR(ret);
3514	}
3515	ffs_opts->refcnt++;
3516	func->function.strings = func->ffs->stringtabs;
3517
3518	return ffs_opts;
3519}
3520
3521static int _ffs_func_bind(struct usb_configuration *c,
3522			  struct usb_function *f)
3523{
3524	struct ffs_function *func = ffs_func_from_usb(f);
3525	struct ffs_data *ffs = func->ffs;
3526
3527	const int full = !!func->ffs->fs_descs_count;
3528	const int high = !!func->ffs->hs_descs_count;
3529	const int super = !!func->ffs->ss_descs_count;
3530
3531	int fs_len, hs_len, ss_len, ret, i;
3532	struct ffs_ep *eps_ptr;
3533
3534	/* Make it a single chunk, less management later on */
3535	vla_group(d);
3536	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3537	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3538		full ? ffs->fs_descs_count + 1 : 0);
3539	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3540		high ? ffs->hs_descs_count + 1 : 0);
3541	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3542		super ? ffs->ss_descs_count + 1 : 0);
3543	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3544	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3545			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3546	vla_item_with_sz(d, char[16], ext_compat,
3547			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3548	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3549			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3550	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3551			 ffs->ms_os_descs_ext_prop_count);
3552	vla_item_with_sz(d, char, ext_prop_name,
3553			 ffs->ms_os_descs_ext_prop_name_len);
3554	vla_item_with_sz(d, char, ext_prop_data,
3555			 ffs->ms_os_descs_ext_prop_data_len);
3556	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3557	char *vlabuf;
3558
3559	/* Has descriptors only for speeds gadget does not support */
3560	if (!(full | high | super))
3561		return -ENOTSUPP;
3562
3563	/* Allocate a single chunk, less management later on */
3564	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3565	if (!vlabuf)
3566		return -ENOMEM;
3567
3568	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3569	ffs->ms_os_descs_ext_prop_name_avail =
3570		vla_ptr(vlabuf, d, ext_prop_name);
3571	ffs->ms_os_descs_ext_prop_data_avail =
3572		vla_ptr(vlabuf, d, ext_prop_data);
3573
3574	/* Copy descriptors  */
3575	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3576	       ffs->raw_descs_length);
3577
3578	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3579	eps_ptr = vla_ptr(vlabuf, d, eps);
3580	for (i = 0; i < ffs->eps_count; i++)
3581		eps_ptr[i].num = -1;
3582
3583	/* Save pointers
3584	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3585	*/
3586	func->eps             = vla_ptr(vlabuf, d, eps);
3587	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3588
3589	/*
3590	 * Go through all the endpoint descriptors and allocate
3591	 * endpoints first, so that later we can rewrite the endpoint
3592	 * numbers without worrying that it may be described later on.
3593	 */
3594	if (full) {
3595		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3596		fs_len = ffs_do_descs(ffs->fs_descs_count,
3597				      vla_ptr(vlabuf, d, raw_descs),
3598				      d_raw_descs__sz,
3599				      __ffs_func_bind_do_descs, func);
3600		if (fs_len < 0) {
3601			ret = fs_len;
3602			goto error;
3603		}
3604	} else {
3605		fs_len = 0;
3606	}
3607
3608	if (high) {
3609		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3610		hs_len = ffs_do_descs(ffs->hs_descs_count,
3611				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3612				      d_raw_descs__sz - fs_len,
3613				      __ffs_func_bind_do_descs, func);
3614		if (hs_len < 0) {
3615			ret = hs_len;
3616			goto error;
3617		}
3618	} else {
3619		hs_len = 0;
3620	}
3621
3622	if (super) {
3623		func->function.ss_descriptors = func->function.ssp_descriptors =
3624			vla_ptr(vlabuf, d, ss_descs);
3625		ss_len = ffs_do_descs(ffs->ss_descs_count,
3626				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3627				d_raw_descs__sz - fs_len - hs_len,
3628				__ffs_func_bind_do_descs, func);
3629		if (ss_len < 0) {
3630			ret = ss_len;
3631			goto error;
3632		}
3633	} else {
3634		ss_len = 0;
3635	}
3636
3637	/*
3638	 * Now handle interface numbers allocation and interface and
3639	 * endpoint numbers rewriting.  We can do that in one go
3640	 * now.
3641	 */
3642	ret = ffs_do_descs(ffs->fs_descs_count +
3643			   (high ? ffs->hs_descs_count : 0) +
3644			   (super ? ffs->ss_descs_count : 0),
3645			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3646			   __ffs_func_bind_do_nums, func);
3647	if (ret < 0)
3648		goto error;
3649
3650	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3651	if (c->cdev->use_os_string) {
3652		for (i = 0; i < ffs->interfaces_count; ++i) {
3653			struct usb_os_desc *desc;
3654
3655			desc = func->function.os_desc_table[i].os_desc =
3656				vla_ptr(vlabuf, d, os_desc) +
3657				i * sizeof(struct usb_os_desc);
3658			desc->ext_compat_id =
3659				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3660			INIT_LIST_HEAD(&desc->ext_prop);
3661		}
3662		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3663				      vla_ptr(vlabuf, d, raw_descs) +
3664				      fs_len + hs_len + ss_len,
3665				      d_raw_descs__sz - fs_len - hs_len -
3666				      ss_len,
3667				      __ffs_func_bind_do_os_desc, func);
3668		if (ret < 0)
3669			goto error;
3670	}
3671	func->function.os_desc_n =
3672		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3673
3674	/* And we're done */
3675	ffs_event_add(ffs, FUNCTIONFS_BIND);
3676	return 0;
3677
3678error:
3679	/* XXX Do we need to release all claimed endpoints here? */
3680	return ret;
3681}
3682
3683static int ffs_func_bind(struct usb_configuration *c,
3684			 struct usb_function *f)
3685{
3686	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3687	struct ffs_function *func = ffs_func_from_usb(f);
3688	int ret;
3689
3690	if (IS_ERR(ffs_opts))
3691		return PTR_ERR(ffs_opts);
3692
3693	ret = _ffs_func_bind(c, f);
3694	if (ret && !--ffs_opts->refcnt)
3695		functionfs_unbind(func->ffs);
3696
3697	return ret;
3698}
3699
3700
3701/* Other USB function hooks *************************************************/
3702
3703static void ffs_reset_work(struct work_struct *work)
3704{
3705	struct ffs_data *ffs = container_of(work,
3706		struct ffs_data, reset_work);
3707	ffs_data_reset(ffs);
3708}
3709
3710static int ffs_func_set_alt(struct usb_function *f,
3711			    unsigned interface, unsigned alt)
3712{
3713	struct ffs_function *func = ffs_func_from_usb(f);
3714	struct ffs_data *ffs = func->ffs;
3715	int ret = 0, intf;
3716
3717	if (alt != (unsigned)-1) {
3718		intf = ffs_func_revmap_intf(func, interface);
3719		if (intf < 0)
3720			return intf;
3721	}
3722
3723	if (ffs->func)
3724		ffs_func_eps_disable(ffs->func);
3725
3726	if (ffs->state == FFS_DEACTIVATED) {
3727		ffs->state = FFS_CLOSING;
3728		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3729		schedule_work(&ffs->reset_work);
3730		return -ENODEV;
3731	}
3732
3733	if (ffs->state != FFS_ACTIVE)
3734		return -ENODEV;
3735
3736	if (alt == (unsigned)-1) {
3737		ffs->func = NULL;
3738		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3739		return 0;
3740	}
3741
3742	ffs->func = func;
3743	ret = ffs_func_eps_enable(func);
3744	if (ret >= 0)
3745		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3746	return ret;
3747}
3748
3749static void ffs_func_disable(struct usb_function *f)
3750{
3751	ffs_func_set_alt(f, 0, (unsigned)-1);
3752}
3753
3754static int ffs_func_setup(struct usb_function *f,
3755			  const struct usb_ctrlrequest *creq)
3756{
3757	struct ffs_function *func = ffs_func_from_usb(f);
3758	struct ffs_data *ffs = func->ffs;
3759	unsigned long flags;
3760	int ret;
3761
3762	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3763	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3764	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3765	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3766	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3767
3768	/*
3769	 * Most requests directed to interface go through here
3770	 * (notable exceptions are set/get interface) so we need to
3771	 * handle them.  All other either handled by composite or
3772	 * passed to usb_configuration->setup() (if one is set).  No
3773	 * matter, we will handle requests directed to endpoint here
3774	 * as well (as it's straightforward).  Other request recipient
3775	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3776	 * is being used.
3777	 */
3778	if (ffs->state != FFS_ACTIVE)
3779		return -ENODEV;
3780
3781	switch (creq->bRequestType & USB_RECIP_MASK) {
3782	case USB_RECIP_INTERFACE:
3783		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3784		if (ret < 0)
3785			return ret;
3786		break;
3787
3788	case USB_RECIP_ENDPOINT:
3789		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3790		if (ret < 0)
3791			return ret;
3792		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3793			ret = func->ffs->eps_addrmap[ret];
3794		break;
3795
3796	default:
3797		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3798			ret = le16_to_cpu(creq->wIndex);
3799		else
3800			return -EOPNOTSUPP;
3801	}
3802
3803	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3804	ffs->ev.setup = *creq;
3805	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3806	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3807	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3808
3809	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3810}
3811
3812static bool ffs_func_req_match(struct usb_function *f,
3813			       const struct usb_ctrlrequest *creq,
3814			       bool config0)
3815{
3816	struct ffs_function *func = ffs_func_from_usb(f);
3817
3818	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3819		return false;
3820
3821	switch (creq->bRequestType & USB_RECIP_MASK) {
3822	case USB_RECIP_INTERFACE:
3823		return (ffs_func_revmap_intf(func,
3824					     le16_to_cpu(creq->wIndex)) >= 0);
3825	case USB_RECIP_ENDPOINT:
3826		return (ffs_func_revmap_ep(func,
3827					   le16_to_cpu(creq->wIndex)) >= 0);
3828	default:
3829		return (bool) (func->ffs->user_flags &
3830			       FUNCTIONFS_ALL_CTRL_RECIP);
3831	}
3832}
3833
3834static void ffs_func_suspend(struct usb_function *f)
3835{
3836	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3837}
3838
3839static void ffs_func_resume(struct usb_function *f)
3840{
3841	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3842}
3843
3844
3845/* Endpoint and interface numbers reverse mapping ***************************/
3846
3847static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3848{
3849	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3850	return num ? num : -EDOM;
3851}
3852
3853static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3854{
3855	short *nums = func->interfaces_nums;
3856	unsigned count = func->ffs->interfaces_count;
3857
3858	for (; count; --count, ++nums) {
3859		if (*nums >= 0 && *nums == intf)
3860			return nums - func->interfaces_nums;
3861	}
3862
3863	return -EDOM;
3864}
3865
3866
3867/* Devices management *******************************************************/
3868
3869static LIST_HEAD(ffs_devices);
3870
3871static struct ffs_dev *_ffs_do_find_dev(const char *name)
3872{
3873	struct ffs_dev *dev;
3874
3875	if (!name)
3876		return NULL;
3877
3878	list_for_each_entry(dev, &ffs_devices, entry) {
3879		if (strcmp(dev->name, name) == 0)
3880			return dev;
3881	}
3882
3883	return NULL;
3884}
3885
3886/*
3887 * ffs_lock must be taken by the caller of this function
3888 */
3889static struct ffs_dev *_ffs_get_single_dev(void)
3890{
3891	struct ffs_dev *dev;
3892
3893	if (list_is_singular(&ffs_devices)) {
3894		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3895		if (dev->single)
3896			return dev;
3897	}
3898
3899	return NULL;
3900}
3901
3902/*
3903 * ffs_lock must be taken by the caller of this function
3904 */
3905static struct ffs_dev *_ffs_find_dev(const char *name)
3906{
3907	struct ffs_dev *dev;
3908
3909	dev = _ffs_get_single_dev();
3910	if (dev)
3911		return dev;
3912
3913	return _ffs_do_find_dev(name);
3914}
3915
3916/* Configfs support *********************************************************/
3917
3918static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3919{
3920	return container_of(to_config_group(item), struct f_fs_opts,
3921			    func_inst.group);
3922}
3923
3924static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3925{
3926	struct f_fs_opts *opts = to_ffs_opts(item);
3927	int ready;
3928
3929	ffs_dev_lock();
3930	ready = opts->dev->desc_ready;
3931	ffs_dev_unlock();
3932
3933	return sprintf(page, "%d\n", ready);
3934}
3935
3936CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3937
3938static struct configfs_attribute *ffs_attrs[] = {
3939	&f_fs_opts_attr_ready,
3940	NULL,
3941};
3942
3943static void ffs_attr_release(struct config_item *item)
3944{
3945	struct f_fs_opts *opts = to_ffs_opts(item);
3946
3947	usb_put_function_instance(&opts->func_inst);
3948}
3949
3950static struct configfs_item_operations ffs_item_ops = {
3951	.release	= ffs_attr_release,
3952};
3953
3954static const struct config_item_type ffs_func_type = {
3955	.ct_item_ops	= &ffs_item_ops,
3956	.ct_attrs	= ffs_attrs,
3957	.ct_owner	= THIS_MODULE,
3958};
3959
3960
3961/* Function registration interface ******************************************/
3962
3963static void ffs_free_inst(struct usb_function_instance *f)
3964{
3965	struct f_fs_opts *opts;
3966
3967	opts = to_f_fs_opts(f);
3968	ffs_release_dev(opts->dev);
3969	ffs_dev_lock();
3970	_ffs_free_dev(opts->dev);
3971	ffs_dev_unlock();
3972	kfree(opts);
3973}
3974
3975static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3976{
3977	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3978		return -ENAMETOOLONG;
3979	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3980}
3981
3982static struct usb_function_instance *ffs_alloc_inst(void)
3983{
3984	struct f_fs_opts *opts;
3985	struct ffs_dev *dev;
3986
3987	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3988	if (!opts)
3989		return ERR_PTR(-ENOMEM);
3990
3991	opts->func_inst.set_inst_name = ffs_set_inst_name;
3992	opts->func_inst.free_func_inst = ffs_free_inst;
3993	ffs_dev_lock();
3994	dev = _ffs_alloc_dev();
3995	ffs_dev_unlock();
3996	if (IS_ERR(dev)) {
3997		kfree(opts);
3998		return ERR_CAST(dev);
3999	}
4000	opts->dev = dev;
4001	dev->opts = opts;
4002
4003	config_group_init_type_name(&opts->func_inst.group, "",
4004				    &ffs_func_type);
4005	return &opts->func_inst;
4006}
4007
4008static void ffs_free(struct usb_function *f)
4009{
4010	kfree(ffs_func_from_usb(f));
4011}
4012
4013static void ffs_func_unbind(struct usb_configuration *c,
4014			    struct usb_function *f)
4015{
4016	struct ffs_function *func = ffs_func_from_usb(f);
4017	struct ffs_data *ffs = func->ffs;
4018	struct f_fs_opts *opts =
4019		container_of(f->fi, struct f_fs_opts, func_inst);
4020	struct ffs_ep *ep = func->eps;
4021	unsigned count = ffs->eps_count;
4022	unsigned long flags;
4023
4024	if (ffs->func == func) {
4025		ffs_func_eps_disable(func);
4026		ffs->func = NULL;
4027	}
4028
4029	/* Drain any pending AIO completions */
4030	drain_workqueue(ffs->io_completion_wq);
4031
4032	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4033	if (!--opts->refcnt)
4034		functionfs_unbind(ffs);
4035
4036	/* cleanup after autoconfig */
4037	spin_lock_irqsave(&func->ffs->eps_lock, flags);
4038	while (count--) {
4039		if (ep->ep && ep->req)
4040			usb_ep_free_request(ep->ep, ep->req);
4041		ep->req = NULL;
4042		++ep;
4043	}
4044	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4045	kfree(func->eps);
4046	func->eps = NULL;
4047	/*
4048	 * eps, descriptors and interfaces_nums are allocated in the
4049	 * same chunk so only one free is required.
4050	 */
4051	func->function.fs_descriptors = NULL;
4052	func->function.hs_descriptors = NULL;
4053	func->function.ss_descriptors = NULL;
4054	func->function.ssp_descriptors = NULL;
4055	func->interfaces_nums = NULL;
4056
4057}
4058
4059static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4060{
4061	struct ffs_function *func;
4062
4063	func = kzalloc(sizeof(*func), GFP_KERNEL);
4064	if (!func)
4065		return ERR_PTR(-ENOMEM);
4066
4067	func->function.name    = "Function FS Gadget";
4068
4069	func->function.bind    = ffs_func_bind;
4070	func->function.unbind  = ffs_func_unbind;
4071	func->function.set_alt = ffs_func_set_alt;
4072	func->function.disable = ffs_func_disable;
4073	func->function.setup   = ffs_func_setup;
4074	func->function.req_match = ffs_func_req_match;
4075	func->function.suspend = ffs_func_suspend;
4076	func->function.resume  = ffs_func_resume;
4077	func->function.free_func = ffs_free;
4078
4079	return &func->function;
4080}
4081
4082/*
4083 * ffs_lock must be taken by the caller of this function
4084 */
4085static struct ffs_dev *_ffs_alloc_dev(void)
4086{
4087	struct ffs_dev *dev;
4088	int ret;
4089
4090	if (_ffs_get_single_dev())
4091			return ERR_PTR(-EBUSY);
4092
4093	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4094	if (!dev)
4095		return ERR_PTR(-ENOMEM);
4096
4097	if (list_empty(&ffs_devices)) {
4098		ret = functionfs_init();
4099		if (ret) {
4100			kfree(dev);
4101			return ERR_PTR(ret);
4102		}
4103	}
4104
4105	list_add(&dev->entry, &ffs_devices);
4106
4107	return dev;
4108}
4109
4110int ffs_name_dev(struct ffs_dev *dev, const char *name)
4111{
4112	struct ffs_dev *existing;
4113	int ret = 0;
4114
4115	ffs_dev_lock();
4116
4117	existing = _ffs_do_find_dev(name);
4118	if (!existing)
4119		strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4120	else if (existing != dev)
4121		ret = -EBUSY;
4122
4123	ffs_dev_unlock();
4124
4125	return ret;
4126}
4127EXPORT_SYMBOL_GPL(ffs_name_dev);
4128
4129int ffs_single_dev(struct ffs_dev *dev)
4130{
4131	int ret;
4132
4133	ret = 0;
4134	ffs_dev_lock();
4135
4136	if (!list_is_singular(&ffs_devices))
4137		ret = -EBUSY;
4138	else
4139		dev->single = true;
4140
4141	ffs_dev_unlock();
4142	return ret;
4143}
4144EXPORT_SYMBOL_GPL(ffs_single_dev);
4145
4146/*
4147 * ffs_lock must be taken by the caller of this function
4148 */
4149static void _ffs_free_dev(struct ffs_dev *dev)
4150{
4151	list_del(&dev->entry);
4152
4153	kfree(dev);
4154	if (list_empty(&ffs_devices))
4155		functionfs_cleanup();
4156}
4157
4158static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4159{
4160	int ret = 0;
4161	struct ffs_dev *ffs_dev;
4162
4163	ffs_dev_lock();
4164
4165	ffs_dev = _ffs_find_dev(dev_name);
4166	if (!ffs_dev) {
4167		ret = -ENOENT;
4168	} else if (ffs_dev->mounted) {
4169		ret = -EBUSY;
4170	} else if (ffs_dev->ffs_acquire_dev_callback &&
4171		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4172		ret = -ENOENT;
4173	} else {
4174		ffs_dev->mounted = true;
4175		ffs_dev->ffs_data = ffs_data;
4176		ffs_data->private_data = ffs_dev;
4177	}
4178
4179	ffs_dev_unlock();
4180	return ret;
4181}
4182
4183static void ffs_release_dev(struct ffs_dev *ffs_dev)
4184{
4185	ffs_dev_lock();
4186
4187	if (ffs_dev && ffs_dev->mounted) {
4188		ffs_dev->mounted = false;
4189		if (ffs_dev->ffs_data) {
4190			ffs_dev->ffs_data->private_data = NULL;
4191			ffs_dev->ffs_data = NULL;
4192		}
4193
4194		if (ffs_dev->ffs_release_dev_callback)
4195			ffs_dev->ffs_release_dev_callback(ffs_dev);
4196	}
4197
4198	ffs_dev_unlock();
4199}
4200
4201static int ffs_ready(struct ffs_data *ffs)
4202{
4203	struct ffs_dev *ffs_obj;
4204	int ret = 0;
4205
4206	ffs_dev_lock();
4207
4208	ffs_obj = ffs->private_data;
4209	if (!ffs_obj) {
4210		ret = -EINVAL;
4211		goto done;
4212	}
4213	if (WARN_ON(ffs_obj->desc_ready)) {
4214		ret = -EBUSY;
4215		goto done;
4216	}
4217
4218	ffs_obj->desc_ready = true;
4219
4220	if (ffs_obj->ffs_ready_callback) {
4221		ret = ffs_obj->ffs_ready_callback(ffs);
4222		if (ret)
4223			goto done;
4224	}
4225
4226	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4227done:
4228	ffs_dev_unlock();
4229	return ret;
4230}
4231
4232static void ffs_closed(struct ffs_data *ffs)
4233{
4234	struct ffs_dev *ffs_obj;
4235	struct f_fs_opts *opts;
4236	struct config_item *ci;
4237
4238	ffs_dev_lock();
4239
4240	ffs_obj = ffs->private_data;
4241	if (!ffs_obj)
4242		goto done;
4243
4244	ffs_obj->desc_ready = false;
4245
4246	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4247	    ffs_obj->ffs_closed_callback)
4248		ffs_obj->ffs_closed_callback(ffs);
4249
4250	if (ffs_obj->opts)
4251		opts = ffs_obj->opts;
4252	else
4253		goto done;
4254
4255	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4256	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4257		goto done;
4258
4259	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4260	ffs_dev_unlock();
4261
4262	if (test_bit(FFS_FL_BOUND, &ffs->flags))
4263		unregister_gadget_item(ci);
4264	return;
4265done:
4266	ffs_dev_unlock();
4267}
4268
4269/* Misc helper functions ****************************************************/
4270
4271static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4272{
4273	return nonblock
4274		? mutex_trylock(mutex) ? 0 : -EAGAIN
4275		: mutex_lock_interruptible(mutex);
4276}
4277
4278static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4279{
4280	char *data;
4281
4282	if (!len)
4283		return NULL;
4284
4285	data = memdup_user(buf, len);
4286	if (IS_ERR(data))
4287		return data;
4288
4289	pr_vdebug("Buffer from user space:\n");
4290	ffs_dump_mem("", data, len);
4291
4292	return data;
4293}
4294
4295DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4296MODULE_LICENSE("GPL");
4297MODULE_AUTHOR("Michal Nazarewicz");
4298