1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2/*
3 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
4 *
5 * Copyright (C) 2004-2013 Synopsys, Inc.
6 */
7
8/*
9 * This file contains the functions to manage Queue Heads and Queue
10 * Transfer Descriptors for Host mode
11 */
12#include <linux/gcd.h>
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/dma-mapping.h>
18#include <linux/io.h>
19#include <linux/slab.h>
20#include <linux/usb.h>
21
22#include <linux/usb/hcd.h>
23#include <linux/usb/ch11.h>
24
25#include "core.h"
26#include "hcd.h"
27
28/* Wait this long before releasing periodic reservation */
29#define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5))
30
31/* If we get a NAK, wait this long before retrying */
32#define DWC2_RETRY_WAIT_DELAY (1 * NSEC_PER_MSEC)
33
34/**
35 * dwc2_periodic_channel_available() - Checks that a channel is available for a
36 * periodic transfer
37 *
38 * @hsotg: The HCD state structure for the DWC OTG controller
39 *
40 * Return: 0 if successful, negative error code otherwise
41 */
42static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
43{
44	/*
45	 * Currently assuming that there is a dedicated host channel for
46	 * each periodic transaction plus at least one host channel for
47	 * non-periodic transactions
48	 */
49	int status;
50	int num_channels;
51
52	num_channels = hsotg->params.host_channels;
53	if ((hsotg->periodic_channels + hsotg->non_periodic_channels <
54	     num_channels) && (hsotg->periodic_channels < num_channels - 1)) {
55		status = 0;
56	} else {
57		dev_dbg(hsotg->dev,
58			"%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
59			__func__, num_channels,
60			hsotg->periodic_channels, hsotg->non_periodic_channels);
61		status = -ENOSPC;
62	}
63
64	return status;
65}
66
67/**
68 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
69 * for the specified QH in the periodic schedule
70 *
71 * @hsotg: The HCD state structure for the DWC OTG controller
72 * @qh:    QH containing periodic bandwidth required
73 *
74 * Return: 0 if successful, negative error code otherwise
75 *
76 * For simplicity, this calculation assumes that all the transfers in the
77 * periodic schedule may occur in the same (micro)frame
78 */
79static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
80					 struct dwc2_qh *qh)
81{
82	int status;
83	s16 max_claimed_usecs;
84
85	status = 0;
86
87	if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
88		/*
89		 * High speed mode
90		 * Max periodic usecs is 80% x 125 usec = 100 usec
91		 */
92		max_claimed_usecs = 100 - qh->host_us;
93	} else {
94		/*
95		 * Full speed mode
96		 * Max periodic usecs is 90% x 1000 usec = 900 usec
97		 */
98		max_claimed_usecs = 900 - qh->host_us;
99	}
100
101	if (hsotg->periodic_usecs > max_claimed_usecs) {
102		dev_err(hsotg->dev,
103			"%s: already claimed usecs %d, required usecs %d\n",
104			__func__, hsotg->periodic_usecs, qh->host_us);
105		status = -ENOSPC;
106	}
107
108	return status;
109}
110
111/**
112 * pmap_schedule() - Schedule time in a periodic bitmap (pmap).
113 *
114 * @map:             The bitmap representing the schedule; will be updated
115 *                   upon success.
116 * @bits_per_period: The schedule represents several periods.  This is how many
117 *                   bits are in each period.  It's assumed that the beginning
118 *                   of the schedule will repeat after its end.
119 * @periods_in_map:  The number of periods in the schedule.
120 * @num_bits:        The number of bits we need per period we want to reserve
121 *                   in this function call.
122 * @interval:        How often we need to be scheduled for the reservation this
123 *                   time.  1 means every period.  2 means every other period.
124 *                   ...you get the picture?
125 * @start:           The bit number to start at.  Normally 0.  Must be within
126 *                   the interval or we return failure right away.
127 * @only_one_period: Normally we'll allow picking a start anywhere within the
128 *                   first interval, since we can still make all repetition
129 *                   requirements by doing that.  However, if you pass true
130 *                   here then we'll return failure if we can't fit within
131 *                   the period that "start" is in.
132 *
133 * The idea here is that we want to schedule time for repeating events that all
134 * want the same resource.  The resource is divided into fixed-sized periods
135 * and the events want to repeat every "interval" periods.  The schedule
136 * granularity is one bit.
137 *
138 * To keep things "simple", we'll represent our schedule with a bitmap that
139 * contains a fixed number of periods.  This gets rid of a lot of complexity
140 * but does mean that we need to handle things specially (and non-ideally) if
141 * the number of the periods in the schedule doesn't match well with the
142 * intervals that we're trying to schedule.
143 *
144 * Here's an explanation of the scheme we'll implement, assuming 8 periods.
145 * - If interval is 1, we need to take up space in each of the 8
146 *   periods we're scheduling.  Easy.
147 * - If interval is 2, we need to take up space in half of the
148 *   periods.  Again, easy.
149 * - If interval is 3, we actually need to fall back to interval 1.
150 *   Why?  Because we might need time in any period.  AKA for the
151 *   first 8 periods, we'll be in slot 0, 3, 6.  Then we'll be
152 *   in slot 1, 4, 7.  Then we'll be in 2, 5.  Then we'll be back to
153 *   0, 3, and 6.  Since we could be in any frame we need to reserve
154 *   for all of them.  Sucks, but that's what you gotta do.  Note that
155 *   if we were instead scheduling 8 * 3 = 24 we'd do much better, but
156 *   then we need more memory and time to do scheduling.
157 * - If interval is 4, easy.
158 * - If interval is 5, we again need interval 1.  The schedule will be
159 *   0, 5, 2, 7, 4, 1, 6, 3, 0
160 * - If interval is 6, we need interval 2.  0, 6, 4, 2.
161 * - If interval is 7, we need interval 1.
162 * - If interval is 8, we need interval 8.
163 *
164 * If you do the math, you'll see that we need to pretend that interval is
165 * equal to the greatest_common_divisor(interval, periods_in_map).
166 *
167 * Note that at the moment this function tends to front-pack the schedule.
168 * In some cases that's really non-ideal (it's hard to schedule things that
169 * need to repeat every period).  In other cases it's perfect (you can easily
170 * schedule bigger, less often repeating things).
171 *
172 * Here's the algorithm in action (8 periods, 5 bits per period):
173 *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
174 *  |*****|  ***|*****|  ***|*****|  ***|*****|  ***|   OK 3 bits, intv 3 at 2
175 *  |*****|* ***|*****|  ***|*****|* ***|*****|  ***|   OK 1 bits, intv 4 at 5
176 *  |**   |*    |**   |     |**   |*    |**   |     | Remv 3 bits, intv 3 at 2
177 *  |***  |*    |***  |     |***  |*    |***  |     |   OK 1 bits, intv 6 at 2
178 *  |**** |*  * |**** |   * |**** |*  * |**** |   * |   OK 1 bits, intv 1 at 3
179 *  |**** |**** |**** | *** |**** |**** |**** | *** |   OK 2 bits, intv 2 at 6
180 *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 1 at 4
181 *  |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1
182 *  |  ***|*****|  ***| ****|  ***|*****|  ***| ****| Remv 2 bits, intv 2 at 0
183 *  |  ***| ****|  ***| ****|  ***| ****|  ***| ****| Remv 1 bits, intv 4 at 5
184 *  |   **| ****|   **| ****|   **| ****|   **| ****| Remv 1 bits, intv 6 at 2
185 *  |    *| ** *|    *| ** *|    *| ** *|    *| ** *| Remv 1 bits, intv 1 at 3
186 *  |    *|    *|    *|    *|    *|    *|    *|    *| Remv 2 bits, intv 2 at 6
187 *  |     |     |     |     |     |     |     |     | Remv 1 bits, intv 1 at 4
188 *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
189 *  |***  |     |**   |     |***  |     |**   |     |   OK 1 bits, intv 4 at 2
190 *  |*****|     |** **|     |*****|     |** **|     |   OK 2 bits, intv 2 at 3
191 *  |*****|*    |** **|     |*****|*    |** **|     |   OK 1 bits, intv 4 at 5
192 *  |*****|***  |** **| **  |*****|***  |** **| **  |   OK 2 bits, intv 2 at 6
193 *  |*****|*****|** **| ****|*****|*****|** **| ****|   OK 2 bits, intv 2 at 8
194 *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 4 at 12
195 *
196 * This function is pretty generic and could be easily abstracted if anything
197 * needed similar scheduling.
198 *
199 * Returns either -ENOSPC or a >= 0 start bit which should be passed to the
200 * unschedule routine.  The map bitmap will be updated on a non-error result.
201 */
202static int pmap_schedule(unsigned long *map, int bits_per_period,
203			 int periods_in_map, int num_bits,
204			 int interval, int start, bool only_one_period)
205{
206	int interval_bits;
207	int to_reserve;
208	int first_end;
209	int i;
210
211	if (num_bits > bits_per_period)
212		return -ENOSPC;
213
214	/* Adjust interval as per description */
215	interval = gcd(interval, periods_in_map);
216
217	interval_bits = bits_per_period * interval;
218	to_reserve = periods_in_map / interval;
219
220	/* If start has gotten us past interval then we can't schedule */
221	if (start >= interval_bits)
222		return -ENOSPC;
223
224	if (only_one_period)
225		/* Must fit within same period as start; end at begin of next */
226		first_end = (start / bits_per_period + 1) * bits_per_period;
227	else
228		/* Can fit anywhere in the first interval */
229		first_end = interval_bits;
230
231	/*
232	 * We'll try to pick the first repetition, then see if that time
233	 * is free for each of the subsequent repetitions.  If it's not
234	 * we'll adjust the start time for the next search of the first
235	 * repetition.
236	 */
237	while (start + num_bits <= first_end) {
238		int end;
239
240		/* Need to stay within this period */
241		end = (start / bits_per_period + 1) * bits_per_period;
242
243		/* Look for num_bits us in this microframe starting at start */
244		start = bitmap_find_next_zero_area(map, end, start, num_bits,
245						   0);
246
247		/*
248		 * We should get start >= end if we fail.  We might be
249		 * able to check the next microframe depending on the
250		 * interval, so continue on (start already updated).
251		 */
252		if (start >= end) {
253			start = end;
254			continue;
255		}
256
257		/* At this point we have a valid point for first one */
258		for (i = 1; i < to_reserve; i++) {
259			int ith_start = start + interval_bits * i;
260			int ith_end = end + interval_bits * i;
261			int ret;
262
263			/* Use this as a dumb "check if bits are 0" */
264			ret = bitmap_find_next_zero_area(
265				map, ith_start + num_bits, ith_start, num_bits,
266				0);
267
268			/* We got the right place, continue checking */
269			if (ret == ith_start)
270				continue;
271
272			/* Move start up for next time and exit for loop */
273			ith_start = bitmap_find_next_zero_area(
274				map, ith_end, ith_start, num_bits, 0);
275			if (ith_start >= ith_end)
276				/* Need a while new period next time */
277				start = end;
278			else
279				start = ith_start - interval_bits * i;
280			break;
281		}
282
283		/* If didn't exit the for loop with a break, we have success */
284		if (i == to_reserve)
285			break;
286	}
287
288	if (start + num_bits > first_end)
289		return -ENOSPC;
290
291	for (i = 0; i < to_reserve; i++) {
292		int ith_start = start + interval_bits * i;
293
294		bitmap_set(map, ith_start, num_bits);
295	}
296
297	return start;
298}
299
300/**
301 * pmap_unschedule() - Undo work done by pmap_schedule()
302 *
303 * @map:             See pmap_schedule().
304 * @bits_per_period: See pmap_schedule().
305 * @periods_in_map:  See pmap_schedule().
306 * @num_bits:        The number of bits that was passed to schedule.
307 * @interval:        The interval that was passed to schedule.
308 * @start:           The return value from pmap_schedule().
309 */
310static void pmap_unschedule(unsigned long *map, int bits_per_period,
311			    int periods_in_map, int num_bits,
312			    int interval, int start)
313{
314	int interval_bits;
315	int to_release;
316	int i;
317
318	/* Adjust interval as per description in pmap_schedule() */
319	interval = gcd(interval, periods_in_map);
320
321	interval_bits = bits_per_period * interval;
322	to_release = periods_in_map / interval;
323
324	for (i = 0; i < to_release; i++) {
325		int ith_start = start + interval_bits * i;
326
327		bitmap_clear(map, ith_start, num_bits);
328	}
329}
330
331/**
332 * dwc2_get_ls_map() - Get the map used for the given qh
333 *
334 * @hsotg: The HCD state structure for the DWC OTG controller.
335 * @qh:    QH for the periodic transfer.
336 *
337 * We'll always get the periodic map out of our TT.  Note that even if we're
338 * running the host straight in low speed / full speed mode it appears as if
339 * a TT is allocated for us, so we'll use it.  If that ever changes we can
340 * add logic here to get a map out of "hsotg" if !qh->do_split.
341 *
342 * Returns: the map or NULL if a map couldn't be found.
343 */
344static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg,
345				      struct dwc2_qh *qh)
346{
347	unsigned long *map;
348
349	/* Don't expect to be missing a TT and be doing low speed scheduling */
350	if (WARN_ON(!qh->dwc_tt))
351		return NULL;
352
353	/* Get the map and adjust if this is a multi_tt hub */
354	map = qh->dwc_tt->periodic_bitmaps;
355	if (qh->dwc_tt->usb_tt->multi)
356		map += DWC2_ELEMENTS_PER_LS_BITMAP * (qh->ttport - 1);
357
358	return map;
359}
360
361#ifdef DWC2_PRINT_SCHEDULE
362/*
363 * cat_printf() - A printf() + strcat() helper
364 *
365 * This is useful for concatenating a bunch of strings where each string is
366 * constructed using printf.
367 *
368 * @buf:   The destination buffer; will be updated to point after the printed
369 *         data.
370 * @size:  The number of bytes in the buffer (includes space for '\0').
371 * @fmt:   The format for printf.
372 * @...:   The args for printf.
373 */
374static __printf(3, 4)
375void cat_printf(char **buf, size_t *size, const char *fmt, ...)
376{
377	va_list args;
378	int i;
379
380	if (*size == 0)
381		return;
382
383	va_start(args, fmt);
384	i = vsnprintf(*buf, *size, fmt, args);
385	va_end(args);
386
387	if (i >= *size) {
388		(*buf)[*size - 1] = '\0';
389		*buf += *size;
390		*size = 0;
391	} else {
392		*buf += i;
393		*size -= i;
394	}
395}
396
397/*
398 * pmap_print() - Print the given periodic map
399 *
400 * Will attempt to print out the periodic schedule.
401 *
402 * @map:             See pmap_schedule().
403 * @bits_per_period: See pmap_schedule().
404 * @periods_in_map:  See pmap_schedule().
405 * @period_name:     The name of 1 period, like "uFrame"
406 * @units:           The name of the units, like "us".
407 * @print_fn:        The function to call for printing.
408 * @print_data:      Opaque data to pass to the print function.
409 */
410static void pmap_print(unsigned long *map, int bits_per_period,
411		       int periods_in_map, const char *period_name,
412		       const char *units,
413		       void (*print_fn)(const char *str, void *data),
414		       void *print_data)
415{
416	int period;
417
418	for (period = 0; period < periods_in_map; period++) {
419		char tmp[64];
420		char *buf = tmp;
421		size_t buf_size = sizeof(tmp);
422		int period_start = period * bits_per_period;
423		int period_end = period_start + bits_per_period;
424		int start = 0;
425		int count = 0;
426		bool printed = false;
427		int i;
428
429		for (i = period_start; i < period_end + 1; i++) {
430			/* Handle case when ith bit is set */
431			if (i < period_end &&
432			    bitmap_find_next_zero_area(map, i + 1,
433						       i, 1, 0) != i) {
434				if (count == 0)
435					start = i - period_start;
436				count++;
437				continue;
438			}
439
440			/* ith bit isn't set; don't care if count == 0 */
441			if (count == 0)
442				continue;
443
444			if (!printed)
445				cat_printf(&buf, &buf_size, "%s %d: ",
446					   period_name, period);
447			else
448				cat_printf(&buf, &buf_size, ", ");
449			printed = true;
450
451			cat_printf(&buf, &buf_size, "%d %s -%3d %s", start,
452				   units, start + count - 1, units);
453			count = 0;
454		}
455
456		if (printed)
457			print_fn(tmp, print_data);
458	}
459}
460
461struct dwc2_qh_print_data {
462	struct dwc2_hsotg *hsotg;
463	struct dwc2_qh *qh;
464};
465
466/**
467 * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print()
468 *
469 * @str:  The string to print
470 * @data: A pointer to a struct dwc2_qh_print_data
471 */
472static void dwc2_qh_print(const char *str, void *data)
473{
474	struct dwc2_qh_print_data *print_data = data;
475
476	dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str);
477}
478
479/**
480 * dwc2_qh_schedule_print() - Print the periodic schedule
481 *
482 * @hsotg: The HCD state structure for the DWC OTG controller.
483 * @qh:    QH to print.
484 */
485static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
486				   struct dwc2_qh *qh)
487{
488	struct dwc2_qh_print_data print_data = { hsotg, qh };
489	int i;
490
491	/*
492	 * The printing functions are quite slow and inefficient.
493	 * If we don't have tracing turned on, don't run unless the special
494	 * define is turned on.
495	 */
496
497	if (qh->schedule_low_speed) {
498		unsigned long *map = dwc2_get_ls_map(hsotg, qh);
499
500		dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us",
501			     qh, qh->device_us,
502			     DWC2_ROUND_US_TO_SLICE(qh->device_us),
503			     DWC2_US_PER_SLICE * qh->ls_start_schedule_slice);
504
505		if (map) {
506			dwc2_sch_dbg(hsotg,
507				     "QH=%p Whole low/full speed map %p now:\n",
508				     qh, map);
509			pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
510				   DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices",
511				   dwc2_qh_print, &print_data);
512		}
513	}
514
515	for (i = 0; i < qh->num_hs_transfers; i++) {
516		struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i;
517		int uframe = trans_time->start_schedule_us /
518			     DWC2_HS_PERIODIC_US_PER_UFRAME;
519		int rel_us = trans_time->start_schedule_us %
520			     DWC2_HS_PERIODIC_US_PER_UFRAME;
521
522		dwc2_sch_dbg(hsotg,
523			     "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n",
524			     qh, i, trans_time->duration_us, uframe, rel_us);
525	}
526	if (qh->num_hs_transfers) {
527		dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh);
528		pmap_print(hsotg->hs_periodic_bitmap,
529			   DWC2_HS_PERIODIC_US_PER_UFRAME,
530			   DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us",
531			   dwc2_qh_print, &print_data);
532	}
533}
534#else
535static inline void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
536					  struct dwc2_qh *qh) {};
537#endif
538
539/**
540 * dwc2_ls_pmap_schedule() - Schedule a low speed QH
541 *
542 * @hsotg:        The HCD state structure for the DWC OTG controller.
543 * @qh:           QH for the periodic transfer.
544 * @search_slice: We'll start trying to schedule at the passed slice.
545 *                Remember that slices are the units of the low speed
546 *                schedule (think 25us or so).
547 *
548 * Wraps pmap_schedule() with the right parameters for low speed scheduling.
549 *
550 * Normally we schedule low speed devices on the map associated with the TT.
551 *
552 * Returns: 0 for success or an error code.
553 */
554static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
555				 int search_slice)
556{
557	int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
558	unsigned long *map = dwc2_get_ls_map(hsotg, qh);
559	int slice;
560
561	if (!map)
562		return -EINVAL;
563
564	/*
565	 * Schedule on the proper low speed map with our low speed scheduling
566	 * parameters.  Note that we use the "device_interval" here since
567	 * we want the low speed interval and the only way we'd be in this
568	 * function is if the device is low speed.
569	 *
570	 * If we happen to be doing low speed and high speed scheduling for the
571	 * same transaction (AKA we have a split) we always do low speed first.
572	 * That means we can always pass "false" for only_one_period (that
573	 * parameters is only useful when we're trying to get one schedule to
574	 * match what we already planned in the other schedule).
575	 */
576	slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
577			      DWC2_LS_SCHEDULE_FRAMES, slices,
578			      qh->device_interval, search_slice, false);
579
580	if (slice < 0)
581		return slice;
582
583	qh->ls_start_schedule_slice = slice;
584	return 0;
585}
586
587/**
588 * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule()
589 *
590 * @hsotg:       The HCD state structure for the DWC OTG controller.
591 * @qh:          QH for the periodic transfer.
592 */
593static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg,
594				    struct dwc2_qh *qh)
595{
596	int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
597	unsigned long *map = dwc2_get_ls_map(hsotg, qh);
598
599	/* Schedule should have failed, so no worries about no error code */
600	if (!map)
601		return;
602
603	pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
604			DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval,
605			qh->ls_start_schedule_slice);
606}
607
608/**
609 * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule
610 *
611 * This will schedule something on the main dwc2 schedule.
612 *
613 * We'll start looking in qh->hs_transfers[index].start_schedule_us.  We'll
614 * update this with the result upon success.  We also use the duration from
615 * the same structure.
616 *
617 * @hsotg:           The HCD state structure for the DWC OTG controller.
618 * @qh:              QH for the periodic transfer.
619 * @only_one_period: If true we will limit ourselves to just looking at
620 *                   one period (aka one 100us chunk).  This is used if we have
621 *                   already scheduled something on the low speed schedule and
622 *                   need to find something that matches on the high speed one.
623 * @index:           The index into qh->hs_transfers that we're working with.
624 *
625 * Returns: 0 for success or an error code.  Upon success the
626 *          dwc2_hs_transfer_time specified by "index" will be updated.
627 */
628static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
629				 bool only_one_period, int index)
630{
631	struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
632	int us;
633
634	us = pmap_schedule(hsotg->hs_periodic_bitmap,
635			   DWC2_HS_PERIODIC_US_PER_UFRAME,
636			   DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
637			   qh->host_interval, trans_time->start_schedule_us,
638			   only_one_period);
639
640	if (us < 0)
641		return us;
642
643	trans_time->start_schedule_us = us;
644	return 0;
645}
646
647/**
648 * dwc2_hs_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule()
649 *
650 * @hsotg:       The HCD state structure for the DWC OTG controller.
651 * @qh:          QH for the periodic transfer.
652 * @index:       Transfer index
653 */
654static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg,
655				    struct dwc2_qh *qh, int index)
656{
657	struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
658
659	pmap_unschedule(hsotg->hs_periodic_bitmap,
660			DWC2_HS_PERIODIC_US_PER_UFRAME,
661			DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
662			qh->host_interval, trans_time->start_schedule_us);
663}
664
665/**
666 * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer.
667 *
668 * This is the most complicated thing in USB.  We have to find matching time
669 * in both the global high speed schedule for the port and the low speed
670 * schedule for the TT associated with the given device.
671 *
672 * Being here means that the host must be running in high speed mode and the
673 * device is in low or full speed mode (and behind a hub).
674 *
675 * @hsotg:       The HCD state structure for the DWC OTG controller.
676 * @qh:          QH for the periodic transfer.
677 */
678static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg,
679				      struct dwc2_qh *qh)
680{
681	int bytecount = qh->maxp_mult * qh->maxp;
682	int ls_search_slice;
683	int err = 0;
684	int host_interval_in_sched;
685
686	/*
687	 * The interval (how often to repeat) in the actual host schedule.
688	 * See pmap_schedule() for gcd() explanation.
689	 */
690	host_interval_in_sched = gcd(qh->host_interval,
691				     DWC2_HS_SCHEDULE_UFRAMES);
692
693	/*
694	 * We always try to find space in the low speed schedule first, then
695	 * try to find high speed time that matches.  If we don't, we'll bump
696	 * up the place we start searching in the low speed schedule and try
697	 * again.  To start we'll look right at the beginning of the low speed
698	 * schedule.
699	 *
700	 * Note that this will tend to front-load the high speed schedule.
701	 * We may eventually want to try to avoid this by either considering
702	 * both schedules together or doing some sort of round robin.
703	 */
704	ls_search_slice = 0;
705
706	while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) {
707		int start_s_uframe;
708		int ssplit_s_uframe;
709		int second_s_uframe;
710		int rel_uframe;
711		int first_count;
712		int middle_count;
713		int end_count;
714		int first_data_bytes;
715		int other_data_bytes;
716		int i;
717
718		if (qh->schedule_low_speed) {
719			err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice);
720
721			/*
722			 * If we got an error here there's no other magic we
723			 * can do, so bail.  All the looping above is only
724			 * helpful to redo things if we got a low speed slot
725			 * and then couldn't find a matching high speed slot.
726			 */
727			if (err)
728				return err;
729		} else {
730			/* Must be missing the tt structure?  Why? */
731			WARN_ON_ONCE(1);
732		}
733
734		/*
735		 * This will give us a number 0 - 7 if
736		 * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ...
737		 */
738		start_s_uframe = qh->ls_start_schedule_slice /
739				 DWC2_SLICES_PER_UFRAME;
740
741		/* Get a number that's always 0 - 7 */
742		rel_uframe = (start_s_uframe % 8);
743
744		/*
745		 * If we were going to start in uframe 7 then we would need to
746		 * issue a start split in uframe 6, which spec says is not OK.
747		 * Move on to the next full frame (assuming there is one).
748		 *
749		 * See 11.18.4 Host Split Transaction Scheduling Requirements
750		 * bullet 1.
751		 */
752		if (rel_uframe == 7) {
753			if (qh->schedule_low_speed)
754				dwc2_ls_pmap_unschedule(hsotg, qh);
755			ls_search_slice =
756				(qh->ls_start_schedule_slice /
757				 DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) *
758				DWC2_LS_PERIODIC_SLICES_PER_FRAME;
759			continue;
760		}
761
762		/*
763		 * For ISOC in:
764		 * - start split            (frame -1)
765		 * - complete split w/ data (frame +1)
766		 * - complete split w/ data (frame +2)
767		 * - ...
768		 * - complete split w/ data (frame +num_data_packets)
769		 * - complete split w/ data (frame +num_data_packets+1)
770		 * - complete split w/ data (frame +num_data_packets+2, max 8)
771		 *   ...though if frame was "0" then max is 7...
772		 *
773		 * For ISOC out we might need to do:
774		 * - start split w/ data    (frame -1)
775		 * - start split w/ data    (frame +0)
776		 * - ...
777		 * - start split w/ data    (frame +num_data_packets-2)
778		 *
779		 * For INTERRUPT in we might need to do:
780		 * - start split            (frame -1)
781		 * - complete split w/ data (frame +1)
782		 * - complete split w/ data (frame +2)
783		 * - complete split w/ data (frame +3, max 8)
784		 *
785		 * For INTERRUPT out we might need to do:
786		 * - start split w/ data    (frame -1)
787		 * - complete split         (frame +1)
788		 * - complete split         (frame +2)
789		 * - complete split         (frame +3, max 8)
790		 *
791		 * Start adjusting!
792		 */
793		ssplit_s_uframe = (start_s_uframe +
794				   host_interval_in_sched - 1) %
795				  host_interval_in_sched;
796		if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)
797			second_s_uframe = start_s_uframe;
798		else
799			second_s_uframe = start_s_uframe + 1;
800
801		/* First data transfer might not be all 188 bytes. */
802		first_data_bytes = 188 -
803			DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice %
804					    DWC2_SLICES_PER_UFRAME),
805				     DWC2_SLICES_PER_UFRAME);
806		if (first_data_bytes > bytecount)
807			first_data_bytes = bytecount;
808		other_data_bytes = bytecount - first_data_bytes;
809
810		/*
811		 * For now, skip OUT xfers where first xfer is partial
812		 *
813		 * Main dwc2 code assumes:
814		 * - INT transfers never get split in two.
815		 * - ISOC transfers can always transfer 188 bytes the first
816		 *   time.
817		 *
818		 * Until that code is fixed, try again if the first transfer
819		 * couldn't transfer everything.
820		 *
821		 * This code can be removed if/when the rest of dwc2 handles
822		 * the above cases.  Until it's fixed we just won't be able
823		 * to schedule quite as tightly.
824		 */
825		if (!qh->ep_is_in &&
826		    (first_data_bytes != min_t(int, 188, bytecount))) {
827			dwc2_sch_dbg(hsotg,
828				     "QH=%p avoiding broken 1st xfer (%d, %d)\n",
829				     qh, first_data_bytes, bytecount);
830			if (qh->schedule_low_speed)
831				dwc2_ls_pmap_unschedule(hsotg, qh);
832			ls_search_slice = (start_s_uframe + 1) *
833				DWC2_SLICES_PER_UFRAME;
834			continue;
835		}
836
837		/* Start by assuming transfers for the bytes */
838		qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188);
839
840		/*
841		 * Everything except ISOC OUT has extra transfers.  Rules are
842		 * complicated.  See 11.18.4 Host Split Transaction Scheduling
843		 * Requirements bullet 3.
844		 */
845		if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
846			if (rel_uframe == 6)
847				qh->num_hs_transfers += 2;
848			else
849				qh->num_hs_transfers += 3;
850
851			if (qh->ep_is_in) {
852				/*
853				 * First is start split, middle/end is data.
854				 * Allocate full data bytes for all data.
855				 */
856				first_count = 4;
857				middle_count = bytecount;
858				end_count = bytecount;
859			} else {
860				/*
861				 * First is data, middle/end is complete.
862				 * First transfer and second can have data.
863				 * Rest should just have complete split.
864				 */
865				first_count = first_data_bytes;
866				middle_count = max_t(int, 4, other_data_bytes);
867				end_count = 4;
868			}
869		} else {
870			if (qh->ep_is_in) {
871				int last;
872
873				/* Account for the start split */
874				qh->num_hs_transfers++;
875
876				/* Calculate "L" value from spec */
877				last = rel_uframe + qh->num_hs_transfers + 1;
878
879				/* Start with basic case */
880				if (last <= 6)
881					qh->num_hs_transfers += 2;
882				else
883					qh->num_hs_transfers += 1;
884
885				/* Adjust downwards */
886				if (last >= 6 && rel_uframe == 0)
887					qh->num_hs_transfers--;
888
889				/* 1st = start; rest can contain data */
890				first_count = 4;
891				middle_count = min_t(int, 188, bytecount);
892				end_count = middle_count;
893			} else {
894				/* All contain data, last might be smaller */
895				first_count = first_data_bytes;
896				middle_count = min_t(int, 188,
897						     other_data_bytes);
898				end_count = other_data_bytes % 188;
899			}
900		}
901
902		/* Assign durations per uFrame */
903		qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count);
904		for (i = 1; i < qh->num_hs_transfers - 1; i++)
905			qh->hs_transfers[i].duration_us =
906				HS_USECS_ISO(middle_count);
907		if (qh->num_hs_transfers > 1)
908			qh->hs_transfers[qh->num_hs_transfers - 1].duration_us =
909				HS_USECS_ISO(end_count);
910
911		/*
912		 * Assign start us.  The call below to dwc2_hs_pmap_schedule()
913		 * will start with these numbers but may adjust within the same
914		 * microframe.
915		 */
916		qh->hs_transfers[0].start_schedule_us =
917			ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME;
918		for (i = 1; i < qh->num_hs_transfers; i++)
919			qh->hs_transfers[i].start_schedule_us =
920				((second_s_uframe + i - 1) %
921				 DWC2_HS_SCHEDULE_UFRAMES) *
922				DWC2_HS_PERIODIC_US_PER_UFRAME;
923
924		/* Try to schedule with filled in hs_transfers above */
925		for (i = 0; i < qh->num_hs_transfers; i++) {
926			err = dwc2_hs_pmap_schedule(hsotg, qh, true, i);
927			if (err)
928				break;
929		}
930
931		/* If we scheduled all w/out breaking out then we're all good */
932		if (i == qh->num_hs_transfers)
933			break;
934
935		for (; i >= 0; i--)
936			dwc2_hs_pmap_unschedule(hsotg, qh, i);
937
938		if (qh->schedule_low_speed)
939			dwc2_ls_pmap_unschedule(hsotg, qh);
940
941		/* Try again starting in the next microframe */
942		ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME;
943	}
944
945	if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES)
946		return -ENOSPC;
947
948	return 0;
949}
950
951/**
952 * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer.
953 *
954 * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean
955 * interface.
956 *
957 * @hsotg:       The HCD state structure for the DWC OTG controller.
958 * @qh:          QH for the periodic transfer.
959 */
960static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
961{
962	/* In non-split host and device time are the same */
963	WARN_ON(qh->host_us != qh->device_us);
964	WARN_ON(qh->host_interval != qh->device_interval);
965	WARN_ON(qh->num_hs_transfers != 1);
966
967	/* We'll have one transfer; init start to 0 before calling scheduler */
968	qh->hs_transfers[0].start_schedule_us = 0;
969	qh->hs_transfers[0].duration_us = qh->host_us;
970
971	return dwc2_hs_pmap_schedule(hsotg, qh, false, 0);
972}
973
974/**
975 * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer.
976 *
977 * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean
978 * interface.
979 *
980 * @hsotg:       The HCD state structure for the DWC OTG controller.
981 * @qh:          QH for the periodic transfer.
982 */
983static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
984{
985	/* In non-split host and device time are the same */
986	WARN_ON(qh->host_us != qh->device_us);
987	WARN_ON(qh->host_interval != qh->device_interval);
988	WARN_ON(!qh->schedule_low_speed);
989
990	/* Run on the main low speed schedule (no split = no hub = no TT) */
991	return dwc2_ls_pmap_schedule(hsotg, qh, 0);
992}
993
994/**
995 * dwc2_uframe_schedule - Schedule a QH for a periodic xfer.
996 *
997 * Calls one of the 3 sub-function depending on what type of transfer this QH
998 * is for.  Also adds some printing.
999 *
1000 * @hsotg:       The HCD state structure for the DWC OTG controller.
1001 * @qh:          QH for the periodic transfer.
1002 */
1003static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1004{
1005	int ret;
1006
1007	if (qh->dev_speed == USB_SPEED_HIGH)
1008		ret = dwc2_uframe_schedule_hs(hsotg, qh);
1009	else if (!qh->do_split)
1010		ret = dwc2_uframe_schedule_ls(hsotg, qh);
1011	else
1012		ret = dwc2_uframe_schedule_split(hsotg, qh);
1013
1014	if (ret)
1015		dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret);
1016	else
1017		dwc2_qh_schedule_print(hsotg, qh);
1018
1019	return ret;
1020}
1021
1022/**
1023 * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule().
1024 *
1025 * @hsotg:       The HCD state structure for the DWC OTG controller.
1026 * @qh:          QH for the periodic transfer.
1027 */
1028static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1029{
1030	int i;
1031
1032	for (i = 0; i < qh->num_hs_transfers; i++)
1033		dwc2_hs_pmap_unschedule(hsotg, qh, i);
1034
1035	if (qh->schedule_low_speed)
1036		dwc2_ls_pmap_unschedule(hsotg, qh);
1037
1038	dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh);
1039}
1040
1041/**
1042 * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled
1043 *
1044 * Takes a qh that has already been scheduled (which means we know we have the
1045 * bandwdith reserved for us) and set the next_active_frame and the
1046 * start_active_frame.
1047 *
1048 * This is expected to be called on qh's that weren't previously actively
1049 * running.  It just picks the next frame that we can fit into without any
1050 * thought about the past.
1051 *
1052 * @hsotg: The HCD state structure for the DWC OTG controller
1053 * @qh:    QH for a periodic endpoint
1054 *
1055 */
1056static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1057{
1058	u16 frame_number;
1059	u16 earliest_frame;
1060	u16 next_active_frame;
1061	u16 relative_frame;
1062	u16 interval;
1063
1064	/*
1065	 * Use the real frame number rather than the cached value as of the
1066	 * last SOF to give us a little extra slop.
1067	 */
1068	frame_number = dwc2_hcd_get_frame_number(hsotg);
1069
1070	/*
1071	 * We wouldn't want to start any earlier than the next frame just in
1072	 * case the frame number ticks as we're doing this calculation.
1073	 *
1074	 * NOTE: if we could quantify how long till we actually get scheduled
1075	 * we might be able to avoid the "+ 1" by looking at the upper part of
1076	 * HFNUM (the FRREM field).  For now we'll just use the + 1 though.
1077	 */
1078	earliest_frame = dwc2_frame_num_inc(frame_number, 1);
1079	next_active_frame = earliest_frame;
1080
1081	/* Get the "no microframe scheduler" out of the way... */
1082	if (!hsotg->params.uframe_sched) {
1083		if (qh->do_split)
1084			/* Splits are active at microframe 0 minus 1 */
1085			next_active_frame |= 0x7;
1086		goto exit;
1087	}
1088
1089	if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
1090		/*
1091		 * We're either at high speed or we're doing a split (which
1092		 * means we're talking high speed to a hub).  In any case
1093		 * the first frame should be based on when the first scheduled
1094		 * event is.
1095		 */
1096		WARN_ON(qh->num_hs_transfers < 1);
1097
1098		relative_frame = qh->hs_transfers[0].start_schedule_us /
1099				 DWC2_HS_PERIODIC_US_PER_UFRAME;
1100
1101		/* Adjust interval as per high speed schedule */
1102		interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES);
1103
1104	} else {
1105		/*
1106		 * Low or full speed directly on dwc2.  Just about the same
1107		 * as high speed but on a different schedule and with slightly
1108		 * different adjustments.  Note that this works because when
1109		 * the host and device are both low speed then frames in the
1110		 * controller tick at low speed.
1111		 */
1112		relative_frame = qh->ls_start_schedule_slice /
1113				 DWC2_LS_PERIODIC_SLICES_PER_FRAME;
1114		interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES);
1115	}
1116
1117	/* Scheduler messed up if frame is past interval */
1118	WARN_ON(relative_frame >= interval);
1119
1120	/*
1121	 * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've
1122	 * done the gcd(), so it's safe to move to the beginning of the current
1123	 * interval like this.
1124	 *
1125	 * After this we might be before earliest_frame, but don't worry,
1126	 * we'll fix it...
1127	 */
1128	next_active_frame = (next_active_frame / interval) * interval;
1129
1130	/*
1131	 * Actually choose to start at the frame number we've been
1132	 * scheduled for.
1133	 */
1134	next_active_frame = dwc2_frame_num_inc(next_active_frame,
1135					       relative_frame);
1136
1137	/*
1138	 * We actually need 1 frame before since the next_active_frame is
1139	 * the frame number we'll be put on the ready list and we won't be on
1140	 * the bus until 1 frame later.
1141	 */
1142	next_active_frame = dwc2_frame_num_dec(next_active_frame, 1);
1143
1144	/*
1145	 * By now we might actually be before the earliest_frame.  Let's move
1146	 * up intervals until we're not.
1147	 */
1148	while (dwc2_frame_num_gt(earliest_frame, next_active_frame))
1149		next_active_frame = dwc2_frame_num_inc(next_active_frame,
1150						       interval);
1151
1152exit:
1153	qh->next_active_frame = next_active_frame;
1154	qh->start_active_frame = next_active_frame;
1155
1156	dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n",
1157		      qh, frame_number, qh->next_active_frame);
1158}
1159
1160/**
1161 * dwc2_do_reserve() - Make a periodic reservation
1162 *
1163 * Try to allocate space in the periodic schedule.  Depending on parameters
1164 * this might use the microframe scheduler or the dumb scheduler.
1165 *
1166 * @hsotg: The HCD state structure for the DWC OTG controller
1167 * @qh:    QH for the periodic transfer.
1168 *
1169 * Returns: 0 upon success; error upon failure.
1170 */
1171static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1172{
1173	int status;
1174
1175	if (hsotg->params.uframe_sched) {
1176		status = dwc2_uframe_schedule(hsotg, qh);
1177	} else {
1178		status = dwc2_periodic_channel_available(hsotg);
1179		if (status) {
1180			dev_info(hsotg->dev,
1181				 "%s: No host channel available for periodic transfer\n",
1182				 __func__);
1183			return status;
1184		}
1185
1186		status = dwc2_check_periodic_bandwidth(hsotg, qh);
1187	}
1188
1189	if (status) {
1190		dev_dbg(hsotg->dev,
1191			"%s: Insufficient periodic bandwidth for periodic transfer\n",
1192			__func__);
1193		return status;
1194	}
1195
1196	if (!hsotg->params.uframe_sched)
1197		/* Reserve periodic channel */
1198		hsotg->periodic_channels++;
1199
1200	/* Update claimed usecs per (micro)frame */
1201	hsotg->periodic_usecs += qh->host_us;
1202
1203	dwc2_pick_first_frame(hsotg, qh);
1204
1205	return 0;
1206}
1207
1208/**
1209 * dwc2_do_unreserve() - Actually release the periodic reservation
1210 *
1211 * This function actually releases the periodic bandwidth that was reserved
1212 * by the given qh.
1213 *
1214 * @hsotg: The HCD state structure for the DWC OTG controller
1215 * @qh:    QH for the periodic transfer.
1216 */
1217static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1218{
1219	assert_spin_locked(&hsotg->lock);
1220
1221	WARN_ON(!qh->unreserve_pending);
1222
1223	/* No more unreserve pending--we're doing it */
1224	qh->unreserve_pending = false;
1225
1226	if (WARN_ON(!list_empty(&qh->qh_list_entry)))
1227		list_del_init(&qh->qh_list_entry);
1228
1229	/* Update claimed usecs per (micro)frame */
1230	hsotg->periodic_usecs -= qh->host_us;
1231
1232	if (hsotg->params.uframe_sched) {
1233		dwc2_uframe_unschedule(hsotg, qh);
1234	} else {
1235		/* Release periodic channel reservation */
1236		hsotg->periodic_channels--;
1237	}
1238}
1239
1240/**
1241 * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation
1242 *
1243 * According to the kernel doc for usb_submit_urb() (specifically the part about
1244 * "Reserved Bandwidth Transfers"), we need to keep a reservation active as
1245 * long as a device driver keeps submitting.  Since we're using HCD_BH to give
1246 * back the URB we need to give the driver a little bit of time before we
1247 * release the reservation.  This worker is called after the appropriate
1248 * delay.
1249 *
1250 * @t: Address to a qh unreserve_work.
1251 */
1252static void dwc2_unreserve_timer_fn(struct timer_list *t)
1253{
1254	struct dwc2_qh *qh = from_timer(qh, t, unreserve_timer);
1255	struct dwc2_hsotg *hsotg = qh->hsotg;
1256	unsigned long flags;
1257
1258	/*
1259	 * Wait for the lock, or for us to be scheduled again.  We
1260	 * could be scheduled again if:
1261	 * - We started executing but didn't get the lock yet.
1262	 * - A new reservation came in, but cancel didn't take effect
1263	 *   because we already started executing.
1264	 * - The timer has been kicked again.
1265	 * In that case cancel and wait for the next call.
1266	 */
1267	while (!spin_trylock_irqsave(&hsotg->lock, flags)) {
1268		if (timer_pending(&qh->unreserve_timer))
1269			return;
1270	}
1271
1272	/*
1273	 * Might be no more unreserve pending if:
1274	 * - We started executing but didn't get the lock yet.
1275	 * - A new reservation came in, but cancel didn't take effect
1276	 *   because we already started executing.
1277	 *
1278	 * We can't put this in the loop above because unreserve_pending needs
1279	 * to be accessed under lock, so we can only check it once we got the
1280	 * lock.
1281	 */
1282	if (qh->unreserve_pending)
1283		dwc2_do_unreserve(hsotg, qh);
1284
1285	spin_unlock_irqrestore(&hsotg->lock, flags);
1286}
1287
1288/**
1289 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
1290 * host channel is large enough to handle the maximum data transfer in a single
1291 * (micro)frame for a periodic transfer
1292 *
1293 * @hsotg: The HCD state structure for the DWC OTG controller
1294 * @qh:    QH for a periodic endpoint
1295 *
1296 * Return: 0 if successful, negative error code otherwise
1297 */
1298static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
1299				    struct dwc2_qh *qh)
1300{
1301	u32 max_xfer_size;
1302	u32 max_channel_xfer_size;
1303	int status = 0;
1304
1305	max_xfer_size = qh->maxp * qh->maxp_mult;
1306	max_channel_xfer_size = hsotg->params.max_transfer_size;
1307
1308	if (max_xfer_size > max_channel_xfer_size) {
1309		dev_err(hsotg->dev,
1310			"%s: Periodic xfer length %d > max xfer length for channel %d\n",
1311			__func__, max_xfer_size, max_channel_xfer_size);
1312		status = -ENOSPC;
1313	}
1314
1315	return status;
1316}
1317
1318/**
1319 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
1320 * the periodic schedule
1321 *
1322 * @hsotg: The HCD state structure for the DWC OTG controller
1323 * @qh:    QH for the periodic transfer. The QH should already contain the
1324 *         scheduling information.
1325 *
1326 * Return: 0 if successful, negative error code otherwise
1327 */
1328static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1329{
1330	int status;
1331
1332	status = dwc2_check_max_xfer_size(hsotg, qh);
1333	if (status) {
1334		dev_dbg(hsotg->dev,
1335			"%s: Channel max transfer size too small for periodic transfer\n",
1336			__func__);
1337		return status;
1338	}
1339
1340	/* Cancel pending unreserve; if canceled OK, unreserve was pending */
1341	if (del_timer(&qh->unreserve_timer))
1342		WARN_ON(!qh->unreserve_pending);
1343
1344	/*
1345	 * Only need to reserve if there's not an unreserve pending, since if an
1346	 * unreserve is pending then by definition our old reservation is still
1347	 * valid.  Unreserve might still be pending even if we didn't cancel if
1348	 * dwc2_unreserve_timer_fn() already started.  Code in the timer handles
1349	 * that case.
1350	 */
1351	if (!qh->unreserve_pending) {
1352		status = dwc2_do_reserve(hsotg, qh);
1353		if (status)
1354			return status;
1355	} else {
1356		/*
1357		 * It might have been a while, so make sure that frame_number
1358		 * is still good.  Note: we could also try to use the similar
1359		 * dwc2_next_periodic_start() but that schedules much more
1360		 * tightly and we might need to hurry and queue things up.
1361		 */
1362		if (dwc2_frame_num_le(qh->next_active_frame,
1363				      hsotg->frame_number))
1364			dwc2_pick_first_frame(hsotg, qh);
1365	}
1366
1367	qh->unreserve_pending = 0;
1368
1369	if (hsotg->params.dma_desc_enable)
1370		/* Don't rely on SOF and start in ready schedule */
1371		list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
1372	else
1373		/* Always start in inactive schedule */
1374		list_add_tail(&qh->qh_list_entry,
1375			      &hsotg->periodic_sched_inactive);
1376
1377	return 0;
1378}
1379
1380/**
1381 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
1382 * from the periodic schedule
1383 *
1384 * @hsotg: The HCD state structure for the DWC OTG controller
1385 * @qh:	   QH for the periodic transfer
1386 */
1387static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
1388				     struct dwc2_qh *qh)
1389{
1390	bool did_modify;
1391
1392	assert_spin_locked(&hsotg->lock);
1393
1394	/*
1395	 * Schedule the unreserve to happen in a little bit.  Cases here:
1396	 * - Unreserve worker might be sitting there waiting to grab the lock.
1397	 *   In this case it will notice it's been schedule again and will
1398	 *   quit.
1399	 * - Unreserve worker might not be scheduled.
1400	 *
1401	 * We should never already be scheduled since dwc2_schedule_periodic()
1402	 * should have canceled the scheduled unreserve timer (hence the
1403	 * warning on did_modify).
1404	 *
1405	 * We add + 1 to the timer to guarantee that at least 1 jiffy has
1406	 * passed (otherwise if the jiffy counter might tick right after we
1407	 * read it and we'll get no delay).
1408	 */
1409	did_modify = mod_timer(&qh->unreserve_timer,
1410			       jiffies + DWC2_UNRESERVE_DELAY + 1);
1411	WARN_ON(did_modify);
1412	qh->unreserve_pending = 1;
1413
1414	list_del_init(&qh->qh_list_entry);
1415}
1416
1417/**
1418 * dwc2_wait_timer_fn() - Timer function to re-queue after waiting
1419 *
1420 * As per the spec, a NAK indicates that "a function is temporarily unable to
1421 * transmit or receive data, but will eventually be able to do so without need
1422 * of host intervention".
1423 *
1424 * That means that when we encounter a NAK we're supposed to retry.
1425 *
1426 * ...but if we retry right away (from the interrupt handler that saw the NAK)
1427 * then we can end up with an interrupt storm (if the other side keeps NAKing
1428 * us) because on slow enough CPUs it could take us longer to get out of the
1429 * interrupt routine than it takes for the device to send another NAK.  That
1430 * leads to a constant stream of NAK interrupts and the CPU locks.
1431 *
1432 * ...so instead of retrying right away in the case of a NAK we'll set a timer
1433 * to retry some time later.  This function handles that timer and moves the
1434 * qh back to the "inactive" list, then queues transactions.
1435 *
1436 * @t: Pointer to wait_timer in a qh.
1437 *
1438 * Return: HRTIMER_NORESTART to not automatically restart this timer.
1439 */
1440static enum hrtimer_restart dwc2_wait_timer_fn(struct hrtimer *t)
1441{
1442	struct dwc2_qh *qh = container_of(t, struct dwc2_qh, wait_timer);
1443	struct dwc2_hsotg *hsotg = qh->hsotg;
1444	unsigned long flags;
1445
1446	spin_lock_irqsave(&hsotg->lock, flags);
1447
1448	/*
1449	 * We'll set wait_timer_cancel to true if we want to cancel this
1450	 * operation in dwc2_hcd_qh_unlink().
1451	 */
1452	if (!qh->wait_timer_cancel) {
1453		enum dwc2_transaction_type tr_type;
1454
1455		qh->want_wait = false;
1456
1457		list_move(&qh->qh_list_entry,
1458			  &hsotg->non_periodic_sched_inactive);
1459
1460		tr_type = dwc2_hcd_select_transactions(hsotg);
1461		if (tr_type != DWC2_TRANSACTION_NONE)
1462			dwc2_hcd_queue_transactions(hsotg, tr_type);
1463	}
1464
1465	spin_unlock_irqrestore(&hsotg->lock, flags);
1466	return HRTIMER_NORESTART;
1467}
1468
1469/**
1470 * dwc2_qh_init() - Initializes a QH structure
1471 *
1472 * @hsotg: The HCD state structure for the DWC OTG controller
1473 * @qh:    The QH to init
1474 * @urb:   Holds the information about the device/endpoint needed to initialize
1475 *         the QH
1476 * @mem_flags: Flags for allocating memory.
1477 */
1478static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1479			 struct dwc2_hcd_urb *urb, gfp_t mem_flags)
1480{
1481	int dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1482	u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
1483	bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info);
1484	bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC);
1485	bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT);
1486	u32 hprt = dwc2_readl(hsotg, HPRT0);
1487	u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1488	bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED &&
1489			 dev_speed != USB_SPEED_HIGH);
1490	int maxp = dwc2_hcd_get_maxp(&urb->pipe_info);
1491	int maxp_mult = dwc2_hcd_get_maxp_mult(&urb->pipe_info);
1492	int bytecount = maxp_mult * maxp;
1493	char *speed, *type;
1494
1495	/* Initialize QH */
1496	qh->hsotg = hsotg;
1497	timer_setup(&qh->unreserve_timer, dwc2_unreserve_timer_fn, 0);
1498	hrtimer_init(&qh->wait_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1499	qh->wait_timer.function = &dwc2_wait_timer_fn;
1500	qh->ep_type = ep_type;
1501	qh->ep_is_in = ep_is_in;
1502
1503	qh->data_toggle = DWC2_HC_PID_DATA0;
1504	qh->maxp = maxp;
1505	qh->maxp_mult = maxp_mult;
1506	INIT_LIST_HEAD(&qh->qtd_list);
1507	INIT_LIST_HEAD(&qh->qh_list_entry);
1508
1509	qh->do_split = do_split;
1510	qh->dev_speed = dev_speed;
1511
1512	if (ep_is_int || ep_is_isoc) {
1513		/* Compute scheduling parameters once and save them */
1514		int host_speed = do_split ? USB_SPEED_HIGH : dev_speed;
1515		struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv,
1516							       mem_flags,
1517							       &qh->ttport);
1518		int device_ns;
1519
1520		qh->dwc_tt = dwc_tt;
1521
1522		qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in,
1523				       ep_is_isoc, bytecount));
1524		device_ns = usb_calc_bus_time(dev_speed, ep_is_in,
1525					      ep_is_isoc, bytecount);
1526
1527		if (do_split && dwc_tt)
1528			device_ns += dwc_tt->usb_tt->think_time;
1529		qh->device_us = NS_TO_US(device_ns);
1530
1531		qh->device_interval = urb->interval;
1532		qh->host_interval = urb->interval * (do_split ? 8 : 1);
1533
1534		/*
1535		 * Schedule low speed if we're running the host in low or
1536		 * full speed OR if we've got a "TT" to deal with to access this
1537		 * device.
1538		 */
1539		qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED ||
1540					 dwc_tt;
1541
1542		if (do_split) {
1543			/* We won't know num transfers until we schedule */
1544			qh->num_hs_transfers = -1;
1545		} else if (dev_speed == USB_SPEED_HIGH) {
1546			qh->num_hs_transfers = 1;
1547		} else {
1548			qh->num_hs_transfers = 0;
1549		}
1550
1551		/* We'll schedule later when we have something to do */
1552	}
1553
1554	switch (dev_speed) {
1555	case USB_SPEED_LOW:
1556		speed = "low";
1557		break;
1558	case USB_SPEED_FULL:
1559		speed = "full";
1560		break;
1561	case USB_SPEED_HIGH:
1562		speed = "high";
1563		break;
1564	default:
1565		speed = "?";
1566		break;
1567	}
1568
1569	switch (qh->ep_type) {
1570	case USB_ENDPOINT_XFER_ISOC:
1571		type = "isochronous";
1572		break;
1573	case USB_ENDPOINT_XFER_INT:
1574		type = "interrupt";
1575		break;
1576	case USB_ENDPOINT_XFER_CONTROL:
1577		type = "control";
1578		break;
1579	case USB_ENDPOINT_XFER_BULK:
1580		type = "bulk";
1581		break;
1582	default:
1583		type = "?";
1584		break;
1585	}
1586
1587	dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type,
1588		     speed, bytecount);
1589	dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh,
1590		     dwc2_hcd_get_dev_addr(&urb->pipe_info),
1591		     dwc2_hcd_get_ep_num(&urb->pipe_info),
1592		     ep_is_in ? "IN" : "OUT");
1593	if (ep_is_int || ep_is_isoc) {
1594		dwc2_sch_dbg(hsotg,
1595			     "QH=%p ...duration: host=%d us, device=%d us\n",
1596			     qh, qh->host_us, qh->device_us);
1597		dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n",
1598			     qh, qh->host_interval, qh->device_interval);
1599		if (qh->schedule_low_speed)
1600			dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n",
1601				     qh, dwc2_get_ls_map(hsotg, qh));
1602	}
1603}
1604
1605/**
1606 * dwc2_hcd_qh_create() - Allocates and initializes a QH
1607 *
1608 * @hsotg:        The HCD state structure for the DWC OTG controller
1609 * @urb:          Holds the information about the device/endpoint needed
1610 *                to initialize the QH
1611 * @mem_flags:   Flags for allocating memory.
1612 *
1613 * Return: Pointer to the newly allocated QH, or NULL on error
1614 */
1615struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
1616				   struct dwc2_hcd_urb *urb,
1617					  gfp_t mem_flags)
1618{
1619	struct dwc2_qh *qh;
1620
1621	if (!urb->priv)
1622		return NULL;
1623
1624	/* Allocate memory */
1625	qh = kzalloc(sizeof(*qh), mem_flags);
1626	if (!qh)
1627		return NULL;
1628
1629	dwc2_qh_init(hsotg, qh, urb, mem_flags);
1630
1631	if (hsotg->params.dma_desc_enable &&
1632	    dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
1633		dwc2_hcd_qh_free(hsotg, qh);
1634		return NULL;
1635	}
1636
1637	return qh;
1638}
1639
1640/**
1641 * dwc2_hcd_qh_free() - Frees the QH
1642 *
1643 * @hsotg: HCD instance
1644 * @qh:    The QH to free
1645 *
1646 * QH should already be removed from the list. QTD list should already be empty
1647 * if called from URB Dequeue.
1648 *
1649 * Must NOT be called with interrupt disabled or spinlock held
1650 */
1651void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1652{
1653	/* Make sure any unreserve work is finished. */
1654	if (del_timer_sync(&qh->unreserve_timer)) {
1655		unsigned long flags;
1656
1657		spin_lock_irqsave(&hsotg->lock, flags);
1658		dwc2_do_unreserve(hsotg, qh);
1659		spin_unlock_irqrestore(&hsotg->lock, flags);
1660	}
1661
1662	/*
1663	 * We don't have the lock so we can safely wait until the wait timer
1664	 * finishes.  Of course, at this point in time we'd better have set
1665	 * wait_timer_active to false so if this timer was still pending it
1666	 * won't do anything anyway, but we want it to finish before we free
1667	 * memory.
1668	 */
1669	hrtimer_cancel(&qh->wait_timer);
1670
1671	dwc2_host_put_tt_info(hsotg, qh->dwc_tt);
1672
1673	if (qh->desc_list)
1674		dwc2_hcd_qh_free_ddma(hsotg, qh);
1675	else if (hsotg->unaligned_cache && qh->dw_align_buf)
1676		kmem_cache_free(hsotg->unaligned_cache, qh->dw_align_buf);
1677
1678	kfree(qh);
1679}
1680
1681/**
1682 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
1683 * schedule if it is not already in the schedule. If the QH is already in
1684 * the schedule, no action is taken.
1685 *
1686 * @hsotg: The HCD state structure for the DWC OTG controller
1687 * @qh:    The QH to add
1688 *
1689 * Return: 0 if successful, negative error code otherwise
1690 */
1691int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1692{
1693	int status;
1694	u32 intr_mask;
1695	ktime_t delay;
1696
1697	if (dbg_qh(qh))
1698		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1699
1700	if (!list_empty(&qh->qh_list_entry))
1701		/* QH already in a schedule */
1702		return 0;
1703
1704	/* Add the new QH to the appropriate schedule */
1705	if (dwc2_qh_is_non_per(qh)) {
1706		/* Schedule right away */
1707		qh->start_active_frame = hsotg->frame_number;
1708		qh->next_active_frame = qh->start_active_frame;
1709
1710		if (qh->want_wait) {
1711			list_add_tail(&qh->qh_list_entry,
1712				      &hsotg->non_periodic_sched_waiting);
1713			qh->wait_timer_cancel = false;
1714			delay = ktime_set(0, DWC2_RETRY_WAIT_DELAY);
1715			hrtimer_start(&qh->wait_timer, delay, HRTIMER_MODE_REL);
1716		} else {
1717			list_add_tail(&qh->qh_list_entry,
1718				      &hsotg->non_periodic_sched_inactive);
1719		}
1720		return 0;
1721	}
1722
1723	status = dwc2_schedule_periodic(hsotg, qh);
1724	if (status)
1725		return status;
1726	if (!hsotg->periodic_qh_count) {
1727		intr_mask = dwc2_readl(hsotg, GINTMSK);
1728		intr_mask |= GINTSTS_SOF;
1729		dwc2_writel(hsotg, intr_mask, GINTMSK);
1730	}
1731	hsotg->periodic_qh_count++;
1732
1733	return 0;
1734}
1735
1736/**
1737 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
1738 * schedule. Memory is not freed.
1739 *
1740 * @hsotg: The HCD state structure
1741 * @qh:    QH to remove from schedule
1742 */
1743void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1744{
1745	u32 intr_mask;
1746
1747	dev_vdbg(hsotg->dev, "%s()\n", __func__);
1748
1749	/* If the wait_timer is pending, this will stop it from acting */
1750	qh->wait_timer_cancel = true;
1751
1752	if (list_empty(&qh->qh_list_entry))
1753		/* QH is not in a schedule */
1754		return;
1755
1756	if (dwc2_qh_is_non_per(qh)) {
1757		if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
1758			hsotg->non_periodic_qh_ptr =
1759					hsotg->non_periodic_qh_ptr->next;
1760		list_del_init(&qh->qh_list_entry);
1761		return;
1762	}
1763
1764	dwc2_deschedule_periodic(hsotg, qh);
1765	hsotg->periodic_qh_count--;
1766	if (!hsotg->periodic_qh_count &&
1767	    !hsotg->params.dma_desc_enable) {
1768		intr_mask = dwc2_readl(hsotg, GINTMSK);
1769		intr_mask &= ~GINTSTS_SOF;
1770		dwc2_writel(hsotg, intr_mask, GINTMSK);
1771	}
1772}
1773
1774/**
1775 * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split.
1776 *
1777 * This is called for setting next_active_frame for periodic splits for all but
1778 * the first packet of the split.  Confusing?  I thought so...
1779 *
1780 * Periodic splits are single low/full speed transfers that we end up splitting
1781 * up into several high speed transfers.  They always fit into one full (1 ms)
1782 * frame but might be split over several microframes (125 us each).  We to put
1783 * each of the parts on a very specific high speed frame.
1784 *
1785 * This function figures out where the next active uFrame needs to be.
1786 *
1787 * @hsotg:        The HCD state structure
1788 * @qh:           QH for the periodic transfer.
1789 * @frame_number: The current frame number.
1790 *
1791 * Return: number missed by (or 0 if we didn't miss).
1792 */
1793static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg,
1794					struct dwc2_qh *qh, u16 frame_number)
1795{
1796	u16 old_frame = qh->next_active_frame;
1797	u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1798	int missed = 0;
1799	u16 incr;
1800
1801	/*
1802	 * See dwc2_uframe_schedule_split() for split scheduling.
1803	 *
1804	 * Basically: increment 1 normally, but 2 right after the start split
1805	 * (except for ISOC out).
1806	 */
1807	if (old_frame == qh->start_active_frame &&
1808	    !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in))
1809		incr = 2;
1810	else
1811		incr = 1;
1812
1813	qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr);
1814
1815	/*
1816	 * Note that it's OK for frame_number to be 1 frame past
1817	 * next_active_frame.  Remember that next_active_frame is supposed to
1818	 * be 1 frame _before_ when we want to be scheduled.  If we're 1 frame
1819	 * past it just means schedule ASAP.
1820	 *
1821	 * It's _not_ OK, however, if we're more than one frame past.
1822	 */
1823	if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) {
1824		/*
1825		 * OOPS, we missed.  That's actually pretty bad since
1826		 * the hub will be unhappy; try ASAP I guess.
1827		 */
1828		missed = dwc2_frame_num_dec(prev_frame_number,
1829					    qh->next_active_frame);
1830		qh->next_active_frame = frame_number;
1831	}
1832
1833	return missed;
1834}
1835
1836/**
1837 * dwc2_next_periodic_start() - Set next_active_frame for next transfer start
1838 *
1839 * This is called for setting next_active_frame for a periodic transfer for
1840 * all cases other than midway through a periodic split.  This will also update
1841 * start_active_frame.
1842 *
1843 * Since we _always_ keep start_active_frame as the start of the previous
1844 * transfer this is normally pretty easy: we just add our interval to
1845 * start_active_frame and we've got our answer.
1846 *
1847 * The tricks come into play if we miss.  In that case we'll look for the next
1848 * slot we can fit into.
1849 *
1850 * @hsotg:        The HCD state structure
1851 * @qh:           QH for the periodic transfer.
1852 * @frame_number: The current frame number.
1853 *
1854 * Return: number missed by (or 0 if we didn't miss).
1855 */
1856static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg,
1857				    struct dwc2_qh *qh, u16 frame_number)
1858{
1859	int missed = 0;
1860	u16 interval = qh->host_interval;
1861	u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1862
1863	qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame,
1864						    interval);
1865
1866	/*
1867	 * The dwc2_frame_num_gt() function used below won't work terribly well
1868	 * with if we just incremented by a really large intervals since the
1869	 * frame counter only goes to 0x3fff.  It's terribly unlikely that we
1870	 * will have missed in this case anyway.  Just go to exit.  If we want
1871	 * to try to do better we'll need to keep track of a bigger counter
1872	 * somewhere in the driver and handle overflows.
1873	 */
1874	if (interval >= 0x1000)
1875		goto exit;
1876
1877	/*
1878	 * Test for misses, which is when it's too late to schedule.
1879	 *
1880	 * A few things to note:
1881	 * - We compare against prev_frame_number since start_active_frame
1882	 *   and next_active_frame are always 1 frame before we want things
1883	 *   to be active and we assume we can still get scheduled in the
1884	 *   current frame number.
1885	 * - It's possible for start_active_frame (now incremented) to be
1886	 *   next_active_frame if we got an EO MISS (even_odd miss) which
1887	 *   basically means that we detected there wasn't enough time for
1888	 *   the last packet and dwc2_hc_set_even_odd_frame() rescheduled us
1889	 *   at the last second.  We want to make sure we don't schedule
1890	 *   another transfer for the same frame.  My test webcam doesn't seem
1891	 *   terribly upset by missing a transfer but really doesn't like when
1892	 *   we do two transfers in the same frame.
1893	 * - Some misses are expected.  Specifically, in order to work
1894	 *   perfectly dwc2 really needs quite spectacular interrupt latency
1895	 *   requirements.  It needs to be able to handle its interrupts
1896	 *   completely within 125 us of them being asserted. That not only
1897	 *   means that the dwc2 interrupt handler needs to be fast but it
1898	 *   means that nothing else in the system has to block dwc2 for a long
1899	 *   time.  We can help with the dwc2 parts of this, but it's hard to
1900	 *   guarantee that a system will have interrupt latency < 125 us, so
1901	 *   we have to be robust to some misses.
1902	 */
1903	if (qh->start_active_frame == qh->next_active_frame ||
1904	    dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) {
1905		u16 ideal_start = qh->start_active_frame;
1906		int periods_in_map;
1907
1908		/*
1909		 * Adjust interval as per gcd with map size.
1910		 * See pmap_schedule() for more details here.
1911		 */
1912		if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH)
1913			periods_in_map = DWC2_HS_SCHEDULE_UFRAMES;
1914		else
1915			periods_in_map = DWC2_LS_SCHEDULE_FRAMES;
1916		interval = gcd(interval, periods_in_map);
1917
1918		do {
1919			qh->start_active_frame = dwc2_frame_num_inc(
1920				qh->start_active_frame, interval);
1921		} while (dwc2_frame_num_gt(prev_frame_number,
1922					   qh->start_active_frame));
1923
1924		missed = dwc2_frame_num_dec(qh->start_active_frame,
1925					    ideal_start);
1926	}
1927
1928exit:
1929	qh->next_active_frame = qh->start_active_frame;
1930
1931	return missed;
1932}
1933
1934/*
1935 * Deactivates a QH. For non-periodic QHs, removes the QH from the active
1936 * non-periodic schedule. The QH is added to the inactive non-periodic
1937 * schedule if any QTDs are still attached to the QH.
1938 *
1939 * For periodic QHs, the QH is removed from the periodic queued schedule. If
1940 * there are any QTDs still attached to the QH, the QH is added to either the
1941 * periodic inactive schedule or the periodic ready schedule and its next
1942 * scheduled frame is calculated. The QH is placed in the ready schedule if
1943 * the scheduled frame has been reached already. Otherwise it's placed in the
1944 * inactive schedule. If there are no QTDs attached to the QH, the QH is
1945 * completely removed from the periodic schedule.
1946 */
1947void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1948			    int sched_next_periodic_split)
1949{
1950	u16 old_frame = qh->next_active_frame;
1951	u16 frame_number;
1952	int missed;
1953
1954	if (dbg_qh(qh))
1955		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1956
1957	if (dwc2_qh_is_non_per(qh)) {
1958		dwc2_hcd_qh_unlink(hsotg, qh);
1959		if (!list_empty(&qh->qtd_list))
1960			/* Add back to inactive/waiting non-periodic schedule */
1961			dwc2_hcd_qh_add(hsotg, qh);
1962		return;
1963	}
1964
1965	/*
1966	 * Use the real frame number rather than the cached value as of the
1967	 * last SOF just to get us a little closer to reality.  Note that
1968	 * means we don't actually know if we've already handled the SOF
1969	 * interrupt for this frame.
1970	 */
1971	frame_number = dwc2_hcd_get_frame_number(hsotg);
1972
1973	if (sched_next_periodic_split)
1974		missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number);
1975	else
1976		missed = dwc2_next_periodic_start(hsotg, qh, frame_number);
1977
1978	dwc2_sch_vdbg(hsotg,
1979		      "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n",
1980		     qh, sched_next_periodic_split, frame_number, old_frame,
1981		     qh->next_active_frame,
1982		     dwc2_frame_num_dec(qh->next_active_frame, old_frame),
1983		missed, missed ? "MISS" : "");
1984
1985	if (list_empty(&qh->qtd_list)) {
1986		dwc2_hcd_qh_unlink(hsotg, qh);
1987		return;
1988	}
1989
1990	/*
1991	 * Remove from periodic_sched_queued and move to
1992	 * appropriate queue
1993	 *
1994	 * Note: we purposely use the frame_number from the "hsotg" structure
1995	 * since we know SOF interrupt will handle future frames.
1996	 */
1997	if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number))
1998		list_move_tail(&qh->qh_list_entry,
1999			       &hsotg->periodic_sched_ready);
2000	else
2001		list_move_tail(&qh->qh_list_entry,
2002			       &hsotg->periodic_sched_inactive);
2003}
2004
2005/**
2006 * dwc2_hcd_qtd_init() - Initializes a QTD structure
2007 *
2008 * @qtd: The QTD to initialize
2009 * @urb: The associated URB
2010 */
2011void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2012{
2013	qtd->urb = urb;
2014	if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
2015			USB_ENDPOINT_XFER_CONTROL) {
2016		/*
2017		 * The only time the QTD data toggle is used is on the data
2018		 * phase of control transfers. This phase always starts with
2019		 * DATA1.
2020		 */
2021		qtd->data_toggle = DWC2_HC_PID_DATA1;
2022		qtd->control_phase = DWC2_CONTROL_SETUP;
2023	}
2024
2025	/* Start split */
2026	qtd->complete_split = 0;
2027	qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
2028	qtd->isoc_split_offset = 0;
2029	qtd->in_process = 0;
2030
2031	/* Store the qtd ptr in the urb to reference the QTD */
2032	urb->qtd = qtd;
2033}
2034
2035/**
2036 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
2037 *			Caller must hold driver lock.
2038 *
2039 * @hsotg:        The DWC HCD structure
2040 * @qtd:          The QTD to add
2041 * @qh:           Queue head to add qtd to
2042 *
2043 * Return: 0 if successful, negative error code otherwise
2044 *
2045 * If the QH to which the QTD is added is not currently scheduled, it is placed
2046 * into the proper schedule based on its EP type.
2047 */
2048int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
2049		     struct dwc2_qh *qh)
2050{
2051	int retval;
2052
2053	if (unlikely(!qh)) {
2054		dev_err(hsotg->dev, "%s: Invalid QH\n", __func__);
2055		retval = -EINVAL;
2056		goto fail;
2057	}
2058
2059	retval = dwc2_hcd_qh_add(hsotg, qh);
2060	if (retval)
2061		goto fail;
2062
2063	qtd->qh = qh;
2064	list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
2065
2066	return 0;
2067fail:
2068	return retval;
2069}
2070