1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 *		http://www.samsung.com
5 *
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 *      Ben Dooks <ben@simtec.co.uk>
9 *      http://armlinux.simtec.co.uk/
10 *
11 * S3C USB2.0 High-speed / OtG driver
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/platform_device.h>
19#include <linux/dma-mapping.h>
20#include <linux/mutex.h>
21#include <linux/seq_file.h>
22#include <linux/delay.h>
23#include <linux/io.h>
24#include <linux/slab.h>
25
26#include <linux/usb/ch9.h>
27#include <linux/usb/gadget.h>
28#include <linux/usb/phy.h>
29#include <linux/usb/composite.h>
30
31
32#include "core.h"
33#include "hw.h"
34
35/* conversion functions */
36static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
37{
38	return container_of(req, struct dwc2_hsotg_req, req);
39}
40
41static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
42{
43	return container_of(ep, struct dwc2_hsotg_ep, ep);
44}
45
46static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
47{
48	return container_of(gadget, struct dwc2_hsotg, gadget);
49}
50
51static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
52{
53	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
54}
55
56static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
57{
58	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
59}
60
61static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
62						u32 ep_index, u32 dir_in)
63{
64	if (dir_in)
65		return hsotg->eps_in[ep_index];
66	else
67		return hsotg->eps_out[ep_index];
68}
69
70/* forward declaration of functions */
71static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
72
73/**
74 * using_dma - return the DMA status of the driver.
75 * @hsotg: The driver state.
76 *
77 * Return true if we're using DMA.
78 *
79 * Currently, we have the DMA support code worked into everywhere
80 * that needs it, but the AMBA DMA implementation in the hardware can
81 * only DMA from 32bit aligned addresses. This means that gadgets such
82 * as the CDC Ethernet cannot work as they often pass packets which are
83 * not 32bit aligned.
84 *
85 * Unfortunately the choice to use DMA or not is global to the controller
86 * and seems to be only settable when the controller is being put through
87 * a core reset. This means we either need to fix the gadgets to take
88 * account of DMA alignment, or add bounce buffers (yuerk).
89 *
90 * g_using_dma is set depending on dts flag.
91 */
92static inline bool using_dma(struct dwc2_hsotg *hsotg)
93{
94	return hsotg->params.g_dma;
95}
96
97/*
98 * using_desc_dma - return the descriptor DMA status of the driver.
99 * @hsotg: The driver state.
100 *
101 * Return true if we're using descriptor DMA.
102 */
103static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
104{
105	return hsotg->params.g_dma_desc;
106}
107
108/**
109 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
110 * @hs_ep: The endpoint
111 *
112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
113 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
114 */
115static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
116{
117	struct dwc2_hsotg *hsotg = hs_ep->parent;
118	u16 limit = DSTS_SOFFN_LIMIT;
119
120	if (hsotg->gadget.speed != USB_SPEED_HIGH)
121		limit >>= 3;
122
123	hs_ep->target_frame += hs_ep->interval;
124	if (hs_ep->target_frame > limit) {
125		hs_ep->frame_overrun = true;
126		hs_ep->target_frame &= limit;
127	} else {
128		hs_ep->frame_overrun = false;
129	}
130}
131
132/**
133 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
134 *                                    by one.
135 * @hs_ep: The endpoint.
136 *
137 * This function used in service interval based scheduling flow to calculate
138 * descriptor frame number filed value. For service interval mode frame
139 * number in descriptor should point to last (u)frame in the interval.
140 *
141 */
142static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
143{
144	struct dwc2_hsotg *hsotg = hs_ep->parent;
145	u16 limit = DSTS_SOFFN_LIMIT;
146
147	if (hsotg->gadget.speed != USB_SPEED_HIGH)
148		limit >>= 3;
149
150	if (hs_ep->target_frame)
151		hs_ep->target_frame -= 1;
152	else
153		hs_ep->target_frame = limit;
154}
155
156/**
157 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
158 * @hsotg: The device state
159 * @ints: A bitmask of the interrupts to enable
160 */
161static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
162{
163	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
164	u32 new_gsintmsk;
165
166	new_gsintmsk = gsintmsk | ints;
167
168	if (new_gsintmsk != gsintmsk) {
169		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
170		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
171	}
172}
173
174/**
175 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
176 * @hsotg: The device state
177 * @ints: A bitmask of the interrupts to enable
178 */
179static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
180{
181	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
182	u32 new_gsintmsk;
183
184	new_gsintmsk = gsintmsk & ~ints;
185
186	if (new_gsintmsk != gsintmsk)
187		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
188}
189
190/**
191 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
192 * @hsotg: The device state
193 * @ep: The endpoint index
194 * @dir_in: True if direction is in.
195 * @en: The enable value, true to enable
196 *
197 * Set or clear the mask for an individual endpoint's interrupt
198 * request.
199 */
200static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
201				  unsigned int ep, unsigned int dir_in,
202				 unsigned int en)
203{
204	unsigned long flags;
205	u32 bit = 1 << ep;
206	u32 daint;
207
208	if (!dir_in)
209		bit <<= 16;
210
211	local_irq_save(flags);
212	daint = dwc2_readl(hsotg, DAINTMSK);
213	if (en)
214		daint |= bit;
215	else
216		daint &= ~bit;
217	dwc2_writel(hsotg, daint, DAINTMSK);
218	local_irq_restore(flags);
219}
220
221/**
222 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
223 *
224 * @hsotg: Programming view of the DWC_otg controller
225 */
226int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
227{
228	if (hsotg->hw_params.en_multiple_tx_fifo)
229		/* In dedicated FIFO mode we need count of IN EPs */
230		return hsotg->hw_params.num_dev_in_eps;
231	else
232		/* In shared FIFO mode we need count of Periodic IN EPs */
233		return hsotg->hw_params.num_dev_perio_in_ep;
234}
235
236/**
237 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
238 * device mode TX FIFOs
239 *
240 * @hsotg: Programming view of the DWC_otg controller
241 */
242int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
243{
244	int addr;
245	int tx_addr_max;
246	u32 np_tx_fifo_size;
247
248	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
249				hsotg->params.g_np_tx_fifo_size);
250
251	/* Get Endpoint Info Control block size in DWORDs. */
252	tx_addr_max = hsotg->hw_params.total_fifo_size;
253
254	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
255	if (tx_addr_max <= addr)
256		return 0;
257
258	return tx_addr_max - addr;
259}
260
261/**
262 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
263 *
264 * @hsotg: Programming view of the DWC_otg controller
265 *
266 */
267static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
268{
269	u32 gintsts2;
270	u32 gintmsk2;
271
272	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
273	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
274	gintsts2 &= gintmsk2;
275
276	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
277		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
278		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
279		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
280	}
281}
282
283/**
284 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
285 * TX FIFOs
286 *
287 * @hsotg: Programming view of the DWC_otg controller
288 */
289int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
290{
291	int tx_fifo_count;
292	int tx_fifo_depth;
293
294	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
295
296	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
297
298	if (!tx_fifo_count)
299		return tx_fifo_depth;
300	else
301		return tx_fifo_depth / tx_fifo_count;
302}
303
304/**
305 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
306 * @hsotg: The device instance.
307 */
308static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
309{
310	unsigned int ep;
311	unsigned int addr;
312	int timeout;
313
314	u32 val;
315	u32 *txfsz = hsotg->params.g_tx_fifo_size;
316
317	/* Reset fifo map if not correctly cleared during previous session */
318	WARN_ON(hsotg->fifo_map);
319	hsotg->fifo_map = 0;
320
321	/* set RX/NPTX FIFO sizes */
322	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
323	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
324		    FIFOSIZE_STARTADDR_SHIFT) |
325		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
326		    GNPTXFSIZ);
327
328	/*
329	 * arange all the rest of the TX FIFOs, as some versions of this
330	 * block have overlapping default addresses. This also ensures
331	 * that if the settings have been changed, then they are set to
332	 * known values.
333	 */
334
335	/* start at the end of the GNPTXFSIZ, rounded up */
336	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
337
338	/*
339	 * Configure fifos sizes from provided configuration and assign
340	 * them to endpoints dynamically according to maxpacket size value of
341	 * given endpoint.
342	 */
343	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
344		if (!txfsz[ep])
345			continue;
346		val = addr;
347		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
348		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
349			  "insufficient fifo memory");
350		addr += txfsz[ep];
351
352		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
353		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
354	}
355
356	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
357		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
358		    GDFIFOCFG);
359	/*
360	 * according to p428 of the design guide, we need to ensure that
361	 * all fifos are flushed before continuing
362	 */
363
364	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
365	       GRSTCTL_RXFFLSH, GRSTCTL);
366
367	/* wait until the fifos are both flushed */
368	timeout = 100;
369	while (1) {
370		val = dwc2_readl(hsotg, GRSTCTL);
371
372		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
373			break;
374
375		if (--timeout == 0) {
376			dev_err(hsotg->dev,
377				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
378				__func__, val);
379			break;
380		}
381
382		udelay(1);
383	}
384
385	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
386}
387
388/**
389 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
390 * @ep: USB endpoint to allocate request for.
391 * @flags: Allocation flags
392 *
393 * Allocate a new USB request structure appropriate for the specified endpoint
394 */
395static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
396						       gfp_t flags)
397{
398	struct dwc2_hsotg_req *req;
399
400	req = kzalloc(sizeof(*req), flags);
401	if (!req)
402		return NULL;
403
404	INIT_LIST_HEAD(&req->queue);
405
406	return &req->req;
407}
408
409/**
410 * is_ep_periodic - return true if the endpoint is in periodic mode.
411 * @hs_ep: The endpoint to query.
412 *
413 * Returns true if the endpoint is in periodic mode, meaning it is being
414 * used for an Interrupt or ISO transfer.
415 */
416static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
417{
418	return hs_ep->periodic;
419}
420
421/**
422 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
423 * @hsotg: The device state.
424 * @hs_ep: The endpoint for the request
425 * @hs_req: The request being processed.
426 *
427 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
428 * of a request to ensure the buffer is ready for access by the caller.
429 */
430static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
431				 struct dwc2_hsotg_ep *hs_ep,
432				struct dwc2_hsotg_req *hs_req)
433{
434	struct usb_request *req = &hs_req->req;
435
436	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
437}
438
439/*
440 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
441 * for Control endpoint
442 * @hsotg: The device state.
443 *
444 * This function will allocate 4 descriptor chains for EP 0: 2 for
445 * Setup stage, per one for IN and OUT data/status transactions.
446 */
447static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
448{
449	hsotg->setup_desc[0] =
450		dmam_alloc_coherent(hsotg->dev,
451				    sizeof(struct dwc2_dma_desc),
452				    &hsotg->setup_desc_dma[0],
453				    GFP_KERNEL);
454	if (!hsotg->setup_desc[0])
455		goto fail;
456
457	hsotg->setup_desc[1] =
458		dmam_alloc_coherent(hsotg->dev,
459				    sizeof(struct dwc2_dma_desc),
460				    &hsotg->setup_desc_dma[1],
461				    GFP_KERNEL);
462	if (!hsotg->setup_desc[1])
463		goto fail;
464
465	hsotg->ctrl_in_desc =
466		dmam_alloc_coherent(hsotg->dev,
467				    sizeof(struct dwc2_dma_desc),
468				    &hsotg->ctrl_in_desc_dma,
469				    GFP_KERNEL);
470	if (!hsotg->ctrl_in_desc)
471		goto fail;
472
473	hsotg->ctrl_out_desc =
474		dmam_alloc_coherent(hsotg->dev,
475				    sizeof(struct dwc2_dma_desc),
476				    &hsotg->ctrl_out_desc_dma,
477				    GFP_KERNEL);
478	if (!hsotg->ctrl_out_desc)
479		goto fail;
480
481	return 0;
482
483fail:
484	return -ENOMEM;
485}
486
487/**
488 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
489 * @hsotg: The controller state.
490 * @hs_ep: The endpoint we're going to write for.
491 * @hs_req: The request to write data for.
492 *
493 * This is called when the TxFIFO has some space in it to hold a new
494 * transmission and we have something to give it. The actual setup of
495 * the data size is done elsewhere, so all we have to do is to actually
496 * write the data.
497 *
498 * The return value is zero if there is more space (or nothing was done)
499 * otherwise -ENOSPC is returned if the FIFO space was used up.
500 *
501 * This routine is only needed for PIO
502 */
503static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
504				 struct dwc2_hsotg_ep *hs_ep,
505				struct dwc2_hsotg_req *hs_req)
506{
507	bool periodic = is_ep_periodic(hs_ep);
508	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
509	int buf_pos = hs_req->req.actual;
510	int to_write = hs_ep->size_loaded;
511	void *data;
512	int can_write;
513	int pkt_round;
514	int max_transfer;
515
516	to_write -= (buf_pos - hs_ep->last_load);
517
518	/* if there's nothing to write, get out early */
519	if (to_write == 0)
520		return 0;
521
522	if (periodic && !hsotg->dedicated_fifos) {
523		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
524		int size_left;
525		int size_done;
526
527		/*
528		 * work out how much data was loaded so we can calculate
529		 * how much data is left in the fifo.
530		 */
531
532		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
533
534		/*
535		 * if shared fifo, we cannot write anything until the
536		 * previous data has been completely sent.
537		 */
538		if (hs_ep->fifo_load != 0) {
539			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
540			return -ENOSPC;
541		}
542
543		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
544			__func__, size_left,
545			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
546
547		/* how much of the data has moved */
548		size_done = hs_ep->size_loaded - size_left;
549
550		/* how much data is left in the fifo */
551		can_write = hs_ep->fifo_load - size_done;
552		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
553			__func__, can_write);
554
555		can_write = hs_ep->fifo_size - can_write;
556		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
557			__func__, can_write);
558
559		if (can_write <= 0) {
560			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
561			return -ENOSPC;
562		}
563	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
564		can_write = dwc2_readl(hsotg,
565				       DTXFSTS(hs_ep->fifo_index));
566
567		can_write &= 0xffff;
568		can_write *= 4;
569	} else {
570		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
571			dev_dbg(hsotg->dev,
572				"%s: no queue slots available (0x%08x)\n",
573				__func__, gnptxsts);
574
575			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
576			return -ENOSPC;
577		}
578
579		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
580		can_write *= 4;	/* fifo size is in 32bit quantities. */
581	}
582
583	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
584
585	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
586		__func__, gnptxsts, can_write, to_write, max_transfer);
587
588	/*
589	 * limit to 512 bytes of data, it seems at least on the non-periodic
590	 * FIFO, requests of >512 cause the endpoint to get stuck with a
591	 * fragment of the end of the transfer in it.
592	 */
593	if (can_write > 512 && !periodic)
594		can_write = 512;
595
596	/*
597	 * limit the write to one max-packet size worth of data, but allow
598	 * the transfer to return that it did not run out of fifo space
599	 * doing it.
600	 */
601	if (to_write > max_transfer) {
602		to_write = max_transfer;
603
604		/* it's needed only when we do not use dedicated fifos */
605		if (!hsotg->dedicated_fifos)
606			dwc2_hsotg_en_gsint(hsotg,
607					    periodic ? GINTSTS_PTXFEMP :
608					   GINTSTS_NPTXFEMP);
609	}
610
611	/* see if we can write data */
612
613	if (to_write > can_write) {
614		to_write = can_write;
615		pkt_round = to_write % max_transfer;
616
617		/*
618		 * Round the write down to an
619		 * exact number of packets.
620		 *
621		 * Note, we do not currently check to see if we can ever
622		 * write a full packet or not to the FIFO.
623		 */
624
625		if (pkt_round)
626			to_write -= pkt_round;
627
628		/*
629		 * enable correct FIFO interrupt to alert us when there
630		 * is more room left.
631		 */
632
633		/* it's needed only when we do not use dedicated fifos */
634		if (!hsotg->dedicated_fifos)
635			dwc2_hsotg_en_gsint(hsotg,
636					    periodic ? GINTSTS_PTXFEMP :
637					   GINTSTS_NPTXFEMP);
638	}
639
640	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
641		to_write, hs_req->req.length, can_write, buf_pos);
642
643	if (to_write <= 0)
644		return -ENOSPC;
645
646	hs_req->req.actual = buf_pos + to_write;
647	hs_ep->total_data += to_write;
648
649	if (periodic)
650		hs_ep->fifo_load += to_write;
651
652	to_write = DIV_ROUND_UP(to_write, 4);
653	data = hs_req->req.buf + buf_pos;
654
655	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
656
657	return (to_write >= can_write) ? -ENOSPC : 0;
658}
659
660/**
661 * get_ep_limit - get the maximum data legnth for this endpoint
662 * @hs_ep: The endpoint
663 *
664 * Return the maximum data that can be queued in one go on a given endpoint
665 * so that transfers that are too long can be split.
666 */
667static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
668{
669	int index = hs_ep->index;
670	unsigned int maxsize;
671	unsigned int maxpkt;
672
673	if (index != 0) {
674		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
675		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
676	} else {
677		maxsize = 64 + 64;
678		if (hs_ep->dir_in)
679			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
680		else
681			maxpkt = 2;
682	}
683
684	/* we made the constant loading easier above by using +1 */
685	maxpkt--;
686	maxsize--;
687
688	/*
689	 * constrain by packet count if maxpkts*pktsize is greater
690	 * than the length register size.
691	 */
692
693	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
694		maxsize = maxpkt * hs_ep->ep.maxpacket;
695
696	return maxsize;
697}
698
699/**
700 * dwc2_hsotg_read_frameno - read current frame number
701 * @hsotg: The device instance
702 *
703 * Return the current frame number
704 */
705static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
706{
707	u32 dsts;
708
709	dsts = dwc2_readl(hsotg, DSTS);
710	dsts &= DSTS_SOFFN_MASK;
711	dsts >>= DSTS_SOFFN_SHIFT;
712
713	return dsts;
714}
715
716/**
717 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
718 * DMA descriptor chain prepared for specific endpoint
719 * @hs_ep: The endpoint
720 *
721 * Return the maximum data that can be queued in one go on a given endpoint
722 * depending on its descriptor chain capacity so that transfers that
723 * are too long can be split.
724 */
725static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
726{
727	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
728	int is_isoc = hs_ep->isochronous;
729	unsigned int maxsize;
730	u32 mps = hs_ep->ep.maxpacket;
731	int dir_in = hs_ep->dir_in;
732
733	if (is_isoc)
734		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
735					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
736					   MAX_DMA_DESC_NUM_HS_ISOC;
737	else
738		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
739
740	/* Interrupt OUT EP with mps not multiple of 4 */
741	if (hs_ep->index)
742		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
743			maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
744
745	return maxsize;
746}
747
748/*
749 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
750 * @hs_ep: The endpoint
751 * @mask: RX/TX bytes mask to be defined
752 *
753 * Returns maximum data payload for one descriptor after analyzing endpoint
754 * characteristics.
755 * DMA descriptor transfer bytes limit depends on EP type:
756 * Control out - MPS,
757 * Isochronous - descriptor rx/tx bytes bitfield limit,
758 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
759 * have concatenations from various descriptors within one packet.
760 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
761 * to a single descriptor.
762 *
763 * Selects corresponding mask for RX/TX bytes as well.
764 */
765static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
766{
767	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
768	u32 mps = hs_ep->ep.maxpacket;
769	int dir_in = hs_ep->dir_in;
770	u32 desc_size = 0;
771
772	if (!hs_ep->index && !dir_in) {
773		desc_size = mps;
774		*mask = DEV_DMA_NBYTES_MASK;
775	} else if (hs_ep->isochronous) {
776		if (dir_in) {
777			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
778			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
779		} else {
780			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
781			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
782		}
783	} else {
784		desc_size = DEV_DMA_NBYTES_LIMIT;
785		*mask = DEV_DMA_NBYTES_MASK;
786
787		/* Round down desc_size to be mps multiple */
788		desc_size -= desc_size % mps;
789	}
790
791	/* Interrupt OUT EP with mps not multiple of 4 */
792	if (hs_ep->index)
793		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
794			desc_size = mps;
795			*mask = DEV_DMA_NBYTES_MASK;
796		}
797
798	return desc_size;
799}
800
801static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
802						 struct dwc2_dma_desc **desc,
803						 dma_addr_t dma_buff,
804						 unsigned int len,
805						 bool true_last)
806{
807	int dir_in = hs_ep->dir_in;
808	u32 mps = hs_ep->ep.maxpacket;
809	u32 maxsize = 0;
810	u32 offset = 0;
811	u32 mask = 0;
812	int i;
813
814	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
815
816	hs_ep->desc_count = (len / maxsize) +
817				((len % maxsize) ? 1 : 0);
818	if (len == 0)
819		hs_ep->desc_count = 1;
820
821	for (i = 0; i < hs_ep->desc_count; ++i) {
822		(*desc)->status = 0;
823		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
824				 << DEV_DMA_BUFF_STS_SHIFT);
825
826		if (len > maxsize) {
827			if (!hs_ep->index && !dir_in)
828				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
829
830			(*desc)->status |=
831				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
832			(*desc)->buf = dma_buff + offset;
833
834			len -= maxsize;
835			offset += maxsize;
836		} else {
837			if (true_last)
838				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
839
840			if (dir_in)
841				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
842					((hs_ep->send_zlp && true_last) ?
843					DEV_DMA_SHORT : 0);
844
845			(*desc)->status |=
846				len << DEV_DMA_NBYTES_SHIFT & mask;
847			(*desc)->buf = dma_buff + offset;
848		}
849
850		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
851		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
852				 << DEV_DMA_BUFF_STS_SHIFT);
853		(*desc)++;
854	}
855}
856
857/*
858 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
859 * @hs_ep: The endpoint
860 * @ureq: Request to transfer
861 * @offset: offset in bytes
862 * @len: Length of the transfer
863 *
864 * This function will iterate over descriptor chain and fill its entries
865 * with corresponding information based on transfer data.
866 */
867static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
868						 dma_addr_t dma_buff,
869						 unsigned int len)
870{
871	struct usb_request *ureq = NULL;
872	struct dwc2_dma_desc *desc = hs_ep->desc_list;
873	struct scatterlist *sg;
874	int i;
875	u8 desc_count = 0;
876
877	if (hs_ep->req)
878		ureq = &hs_ep->req->req;
879
880	/* non-DMA sg buffer */
881	if (!ureq || !ureq->num_sgs) {
882		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
883			dma_buff, len, true);
884		return;
885	}
886
887	/* DMA sg buffer */
888	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
889		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
890			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
891			sg_is_last(sg));
892		desc_count += hs_ep->desc_count;
893	}
894
895	hs_ep->desc_count = desc_count;
896}
897
898/*
899 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
900 * @hs_ep: The isochronous endpoint.
901 * @dma_buff: usb requests dma buffer.
902 * @len: usb request transfer length.
903 *
904 * Fills next free descriptor with the data of the arrived usb request,
905 * frame info, sets Last and IOC bits increments next_desc. If filled
906 * descriptor is not the first one, removes L bit from the previous descriptor
907 * status.
908 */
909static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
910				      dma_addr_t dma_buff, unsigned int len)
911{
912	struct dwc2_dma_desc *desc;
913	struct dwc2_hsotg *hsotg = hs_ep->parent;
914	u32 index;
915	u32 mask = 0;
916	u8 pid = 0;
917
918	dwc2_gadget_get_desc_params(hs_ep, &mask);
919
920	index = hs_ep->next_desc;
921	desc = &hs_ep->desc_list[index];
922
923	/* Check if descriptor chain full */
924	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
925	    DEV_DMA_BUFF_STS_HREADY) {
926		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
927		return 1;
928	}
929
930	/* Clear L bit of previous desc if more than one entries in the chain */
931	if (hs_ep->next_desc)
932		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
933
934	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
935		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
936
937	desc->status = 0;
938	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
939
940	desc->buf = dma_buff;
941	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
942			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
943
944	if (hs_ep->dir_in) {
945		if (len)
946			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
947		else
948			pid = 1;
949		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
950				 DEV_DMA_ISOC_PID_MASK) |
951				((len % hs_ep->ep.maxpacket) ?
952				 DEV_DMA_SHORT : 0) |
953				((hs_ep->target_frame <<
954				  DEV_DMA_ISOC_FRNUM_SHIFT) &
955				 DEV_DMA_ISOC_FRNUM_MASK);
956	}
957
958	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
959	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
960
961	/* Increment frame number by interval for IN */
962	if (hs_ep->dir_in)
963		dwc2_gadget_incr_frame_num(hs_ep);
964
965	/* Update index of last configured entry in the chain */
966	hs_ep->next_desc++;
967	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
968		hs_ep->next_desc = 0;
969
970	return 0;
971}
972
973/*
974 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
975 * @hs_ep: The isochronous endpoint.
976 *
977 * Prepare descriptor chain for isochronous endpoints. Afterwards
978 * write DMA address to HW and enable the endpoint.
979 */
980static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
981{
982	struct dwc2_hsotg *hsotg = hs_ep->parent;
983	struct dwc2_hsotg_req *hs_req, *treq;
984	int index = hs_ep->index;
985	int ret;
986	int i;
987	u32 dma_reg;
988	u32 depctl;
989	u32 ctrl;
990	struct dwc2_dma_desc *desc;
991
992	if (list_empty(&hs_ep->queue)) {
993		hs_ep->target_frame = TARGET_FRAME_INITIAL;
994		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
995		return;
996	}
997
998	/* Initialize descriptor chain by Host Busy status */
999	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
1000		desc = &hs_ep->desc_list[i];
1001		desc->status = 0;
1002		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
1003				    << DEV_DMA_BUFF_STS_SHIFT);
1004	}
1005
1006	hs_ep->next_desc = 0;
1007	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
1008		dma_addr_t dma_addr = hs_req->req.dma;
1009
1010		if (hs_req->req.num_sgs) {
1011			WARN_ON(hs_req->req.num_sgs > 1);
1012			dma_addr = sg_dma_address(hs_req->req.sg);
1013		}
1014		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1015						 hs_req->req.length);
1016		if (ret)
1017			break;
1018	}
1019
1020	hs_ep->compl_desc = 0;
1021	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1022	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1023
1024	/* write descriptor chain address to control register */
1025	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1026
1027	ctrl = dwc2_readl(hsotg, depctl);
1028	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1029	dwc2_writel(hsotg, ctrl, depctl);
1030}
1031
1032static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep);
1033static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1034					struct dwc2_hsotg_ep *hs_ep,
1035				       struct dwc2_hsotg_req *hs_req,
1036				       int result);
1037
1038/**
1039 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1040 * @hsotg: The controller state.
1041 * @hs_ep: The endpoint to process a request for
1042 * @hs_req: The request to start.
1043 * @continuing: True if we are doing more for the current request.
1044 *
1045 * Start the given request running by setting the endpoint registers
1046 * appropriately, and writing any data to the FIFOs.
1047 */
1048static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1049				 struct dwc2_hsotg_ep *hs_ep,
1050				struct dwc2_hsotg_req *hs_req,
1051				bool continuing)
1052{
1053	struct usb_request *ureq = &hs_req->req;
1054	int index = hs_ep->index;
1055	int dir_in = hs_ep->dir_in;
1056	u32 epctrl_reg;
1057	u32 epsize_reg;
1058	u32 epsize;
1059	u32 ctrl;
1060	unsigned int length;
1061	unsigned int packets;
1062	unsigned int maxreq;
1063	unsigned int dma_reg;
1064
1065	if (index != 0) {
1066		if (hs_ep->req && !continuing) {
1067			dev_err(hsotg->dev, "%s: active request\n", __func__);
1068			WARN_ON(1);
1069			return;
1070		} else if (hs_ep->req != hs_req && continuing) {
1071			dev_err(hsotg->dev,
1072				"%s: continue different req\n", __func__);
1073			WARN_ON(1);
1074			return;
1075		}
1076	}
1077
1078	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1079	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1080	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1081
1082	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1083		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1084		hs_ep->dir_in ? "in" : "out");
1085
1086	/* If endpoint is stalled, we will restart request later */
1087	ctrl = dwc2_readl(hsotg, epctrl_reg);
1088
1089	if (index && ctrl & DXEPCTL_STALL) {
1090		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1091		return;
1092	}
1093
1094	length = ureq->length - ureq->actual;
1095	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1096		ureq->length, ureq->actual);
1097
1098	if (!using_desc_dma(hsotg))
1099		maxreq = get_ep_limit(hs_ep);
1100	else
1101		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1102
1103	if (length > maxreq) {
1104		int round = maxreq % hs_ep->ep.maxpacket;
1105
1106		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1107			__func__, length, maxreq, round);
1108
1109		/* round down to multiple of packets */
1110		if (round)
1111			maxreq -= round;
1112
1113		length = maxreq;
1114	}
1115
1116	if (length)
1117		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1118	else
1119		packets = 1;	/* send one packet if length is zero. */
1120
1121	if (dir_in && index != 0)
1122		if (hs_ep->isochronous)
1123			epsize = DXEPTSIZ_MC(packets);
1124		else
1125			epsize = DXEPTSIZ_MC(1);
1126	else
1127		epsize = 0;
1128
1129	/*
1130	 * zero length packet should be programmed on its own and should not
1131	 * be counted in DIEPTSIZ.PktCnt with other packets.
1132	 */
1133	if (dir_in && ureq->zero && !continuing) {
1134		/* Test if zlp is actually required. */
1135		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1136		    !(ureq->length % hs_ep->ep.maxpacket))
1137			hs_ep->send_zlp = 1;
1138	}
1139
1140	epsize |= DXEPTSIZ_PKTCNT(packets);
1141	epsize |= DXEPTSIZ_XFERSIZE(length);
1142
1143	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1144		__func__, packets, length, ureq->length, epsize, epsize_reg);
1145
1146	/* store the request as the current one we're doing */
1147	hs_ep->req = hs_req;
1148
1149	if (using_desc_dma(hsotg)) {
1150		u32 offset = 0;
1151		u32 mps = hs_ep->ep.maxpacket;
1152
1153		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1154		if (!dir_in) {
1155			if (!index)
1156				length = mps;
1157			else if (length % mps)
1158				length += (mps - (length % mps));
1159		}
1160
1161		if (continuing)
1162			offset = ureq->actual;
1163
1164		/* Fill DDMA chain entries */
1165		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1166						     length);
1167
1168		/* write descriptor chain address to control register */
1169		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1170
1171		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1172			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1173	} else {
1174		/* write size / packets */
1175		dwc2_writel(hsotg, epsize, epsize_reg);
1176
1177		if (using_dma(hsotg) && !continuing && (length != 0)) {
1178			/*
1179			 * write DMA address to control register, buffer
1180			 * already synced by dwc2_hsotg_ep_queue().
1181			 */
1182
1183			dwc2_writel(hsotg, ureq->dma, dma_reg);
1184
1185			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1186				__func__, &ureq->dma, dma_reg);
1187		}
1188	}
1189
1190	if (hs_ep->isochronous) {
1191		if (!dwc2_gadget_target_frame_elapsed(hs_ep)) {
1192			if (hs_ep->interval == 1) {
1193				if (hs_ep->target_frame & 0x1)
1194					ctrl |= DXEPCTL_SETODDFR;
1195				else
1196					ctrl |= DXEPCTL_SETEVENFR;
1197			}
1198			ctrl |= DXEPCTL_CNAK;
1199		} else {
1200			hs_req->req.frame_number = hs_ep->target_frame;
1201			hs_req->req.actual = 0;
1202			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
1203			return;
1204		}
1205	}
1206
1207	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1208
1209	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1210
1211	/* For Setup request do not clear NAK */
1212	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1213		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1214
1215	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1216	dwc2_writel(hsotg, ctrl, epctrl_reg);
1217
1218	/*
1219	 * set these, it seems that DMA support increments past the end
1220	 * of the packet buffer so we need to calculate the length from
1221	 * this information.
1222	 */
1223	hs_ep->size_loaded = length;
1224	hs_ep->last_load = ureq->actual;
1225
1226	if (dir_in && !using_dma(hsotg)) {
1227		/* set these anyway, we may need them for non-periodic in */
1228		hs_ep->fifo_load = 0;
1229
1230		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1231	}
1232
1233	/*
1234	 * Note, trying to clear the NAK here causes problems with transmit
1235	 * on the S3C6400 ending up with the TXFIFO becoming full.
1236	 */
1237
1238	/* check ep is enabled */
1239	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1240		dev_dbg(hsotg->dev,
1241			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1242			 index, dwc2_readl(hsotg, epctrl_reg));
1243
1244	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1245		__func__, dwc2_readl(hsotg, epctrl_reg));
1246
1247	/* enable ep interrupts */
1248	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1249}
1250
1251/**
1252 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1253 * @hsotg: The device state.
1254 * @hs_ep: The endpoint the request is on.
1255 * @req: The request being processed.
1256 *
1257 * We've been asked to queue a request, so ensure that the memory buffer
1258 * is correctly setup for DMA. If we've been passed an extant DMA address
1259 * then ensure the buffer has been synced to memory. If our buffer has no
1260 * DMA memory, then we map the memory and mark our request to allow us to
1261 * cleanup on completion.
1262 */
1263static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1264			      struct dwc2_hsotg_ep *hs_ep,
1265			     struct usb_request *req)
1266{
1267	int ret;
1268
1269	hs_ep->map_dir = hs_ep->dir_in;
1270	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1271	if (ret)
1272		goto dma_error;
1273
1274	return 0;
1275
1276dma_error:
1277	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1278		__func__, req->buf, req->length);
1279
1280	return -EIO;
1281}
1282
1283static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1284						 struct dwc2_hsotg_ep *hs_ep,
1285						 struct dwc2_hsotg_req *hs_req)
1286{
1287	void *req_buf = hs_req->req.buf;
1288
1289	/* If dma is not being used or buffer is aligned */
1290	if (!using_dma(hsotg) || !((long)req_buf & 3))
1291		return 0;
1292
1293	WARN_ON(hs_req->saved_req_buf);
1294
1295	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1296		hs_ep->ep.name, req_buf, hs_req->req.length);
1297
1298	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1299	if (!hs_req->req.buf) {
1300		hs_req->req.buf = req_buf;
1301		dev_err(hsotg->dev,
1302			"%s: unable to allocate memory for bounce buffer\n",
1303			__func__);
1304		return -ENOMEM;
1305	}
1306
1307	/* Save actual buffer */
1308	hs_req->saved_req_buf = req_buf;
1309
1310	if (hs_ep->dir_in)
1311		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1312	return 0;
1313}
1314
1315static void
1316dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1317					 struct dwc2_hsotg_ep *hs_ep,
1318					 struct dwc2_hsotg_req *hs_req)
1319{
1320	/* If dma is not being used or buffer was aligned */
1321	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1322		return;
1323
1324	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1325		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1326
1327	/* Copy data from bounce buffer on successful out transfer */
1328	if (!hs_ep->dir_in && !hs_req->req.status)
1329		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1330		       hs_req->req.actual);
1331
1332	/* Free bounce buffer */
1333	kfree(hs_req->req.buf);
1334
1335	hs_req->req.buf = hs_req->saved_req_buf;
1336	hs_req->saved_req_buf = NULL;
1337}
1338
1339/**
1340 * dwc2_gadget_target_frame_elapsed - Checks target frame
1341 * @hs_ep: The driver endpoint to check
1342 *
1343 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1344 * corresponding transfer.
1345 */
1346static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1347{
1348	struct dwc2_hsotg *hsotg = hs_ep->parent;
1349	u32 target_frame = hs_ep->target_frame;
1350	u32 current_frame = hsotg->frame_number;
1351	bool frame_overrun = hs_ep->frame_overrun;
1352	u16 limit = DSTS_SOFFN_LIMIT;
1353
1354	if (hsotg->gadget.speed != USB_SPEED_HIGH)
1355		limit >>= 3;
1356
1357	if (!frame_overrun && current_frame >= target_frame)
1358		return true;
1359
1360	if (frame_overrun && current_frame >= target_frame &&
1361	    ((current_frame - target_frame) < limit / 2))
1362		return true;
1363
1364	return false;
1365}
1366
1367/*
1368 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1369 * @hsotg: The driver state
1370 * @hs_ep: the ep descriptor chain is for
1371 *
1372 * Called to update EP0 structure's pointers depend on stage of
1373 * control transfer.
1374 */
1375static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1376					  struct dwc2_hsotg_ep *hs_ep)
1377{
1378	switch (hsotg->ep0_state) {
1379	case DWC2_EP0_SETUP:
1380	case DWC2_EP0_STATUS_OUT:
1381		hs_ep->desc_list = hsotg->setup_desc[0];
1382		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1383		break;
1384	case DWC2_EP0_DATA_IN:
1385	case DWC2_EP0_STATUS_IN:
1386		hs_ep->desc_list = hsotg->ctrl_in_desc;
1387		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1388		break;
1389	case DWC2_EP0_DATA_OUT:
1390		hs_ep->desc_list = hsotg->ctrl_out_desc;
1391		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1392		break;
1393	default:
1394		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1395			hsotg->ep0_state);
1396		return -EINVAL;
1397	}
1398
1399	return 0;
1400}
1401
1402static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1403			       gfp_t gfp_flags)
1404{
1405	struct dwc2_hsotg_req *hs_req = our_req(req);
1406	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1407	struct dwc2_hsotg *hs = hs_ep->parent;
1408	bool first;
1409	int ret;
1410	u32 maxsize = 0;
1411	u32 mask = 0;
1412
1413
1414	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1415		ep->name, req, req->length, req->buf, req->no_interrupt,
1416		req->zero, req->short_not_ok);
1417
1418	if (hs->lx_state == DWC2_L1) {
1419		dwc2_wakeup_from_lpm_l1(hs, true);
1420	}
1421
1422	/* Prevent new request submission when controller is suspended */
1423	if (hs->lx_state != DWC2_L0) {
1424		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1425			__func__);
1426		return -EAGAIN;
1427	}
1428
1429	/* initialise status of the request */
1430	INIT_LIST_HEAD(&hs_req->queue);
1431	req->actual = 0;
1432	req->status = -EINPROGRESS;
1433
1434	/* Don't queue ISOC request if length greater than mps*mc */
1435	if (hs_ep->isochronous &&
1436	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1437		dev_err(hs->dev, "req length > maxpacket*mc\n");
1438		return -EINVAL;
1439	}
1440
1441	/* In DDMA mode for ISOC's don't queue request if length greater
1442	 * than descriptor limits.
1443	 */
1444	if (using_desc_dma(hs) && hs_ep->isochronous) {
1445		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1446		if (hs_ep->dir_in && req->length > maxsize) {
1447			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1448				req->length, maxsize);
1449			return -EINVAL;
1450		}
1451
1452		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1453			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1454				req->length, hs_ep->ep.maxpacket);
1455			return -EINVAL;
1456		}
1457	}
1458
1459	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1460	if (ret)
1461		return ret;
1462
1463	/* if we're using DMA, sync the buffers as necessary */
1464	if (using_dma(hs)) {
1465		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1466		if (ret)
1467			return ret;
1468	}
1469	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1470	if (using_desc_dma(hs) && !hs_ep->index) {
1471		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1472		if (ret)
1473			return ret;
1474	}
1475
1476	first = list_empty(&hs_ep->queue);
1477	list_add_tail(&hs_req->queue, &hs_ep->queue);
1478
1479	/*
1480	 * Handle DDMA isochronous transfers separately - just add new entry
1481	 * to the descriptor chain.
1482	 * Transfer will be started once SW gets either one of NAK or
1483	 * OutTknEpDis interrupts.
1484	 */
1485	if (using_desc_dma(hs) && hs_ep->isochronous) {
1486		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1487			dma_addr_t dma_addr = hs_req->req.dma;
1488
1489			if (hs_req->req.num_sgs) {
1490				WARN_ON(hs_req->req.num_sgs > 1);
1491				dma_addr = sg_dma_address(hs_req->req.sg);
1492			}
1493			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1494						   hs_req->req.length);
1495		}
1496		return 0;
1497	}
1498
1499	/* Change EP direction if status phase request is after data out */
1500	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1501	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1502		hs_ep->dir_in = 1;
1503
1504	if (first) {
1505		if (!hs_ep->isochronous) {
1506			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1507			return 0;
1508		}
1509
1510		/* Update current frame number value. */
1511		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1512		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1513			dwc2_gadget_incr_frame_num(hs_ep);
1514			/* Update current frame number value once more as it
1515			 * changes here.
1516			 */
1517			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1518		}
1519
1520		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1521			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1522	}
1523	return 0;
1524}
1525
1526static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1527				    gfp_t gfp_flags)
1528{
1529	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1530	struct dwc2_hsotg *hs = hs_ep->parent;
1531	unsigned long flags;
1532	int ret;
1533
1534	spin_lock_irqsave(&hs->lock, flags);
1535	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1536	spin_unlock_irqrestore(&hs->lock, flags);
1537
1538	return ret;
1539}
1540
1541static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1542				       struct usb_request *req)
1543{
1544	struct dwc2_hsotg_req *hs_req = our_req(req);
1545
1546	kfree(hs_req);
1547}
1548
1549/**
1550 * dwc2_hsotg_complete_oursetup - setup completion callback
1551 * @ep: The endpoint the request was on.
1552 * @req: The request completed.
1553 *
1554 * Called on completion of any requests the driver itself
1555 * submitted that need cleaning up.
1556 */
1557static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1558					 struct usb_request *req)
1559{
1560	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1561	struct dwc2_hsotg *hsotg = hs_ep->parent;
1562
1563	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1564
1565	dwc2_hsotg_ep_free_request(ep, req);
1566}
1567
1568/**
1569 * ep_from_windex - convert control wIndex value to endpoint
1570 * @hsotg: The driver state.
1571 * @windex: The control request wIndex field (in host order).
1572 *
1573 * Convert the given wIndex into a pointer to an driver endpoint
1574 * structure, or return NULL if it is not a valid endpoint.
1575 */
1576static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1577					    u32 windex)
1578{
1579	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1580	int idx = windex & 0x7F;
1581
1582	if (windex >= 0x100)
1583		return NULL;
1584
1585	if (idx > hsotg->num_of_eps)
1586		return NULL;
1587
1588	return index_to_ep(hsotg, idx, dir);
1589}
1590
1591/**
1592 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1593 * @hsotg: The driver state.
1594 * @testmode: requested usb test mode
1595 * Enable usb Test Mode requested by the Host.
1596 */
1597int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1598{
1599	int dctl = dwc2_readl(hsotg, DCTL);
1600
1601	dctl &= ~DCTL_TSTCTL_MASK;
1602	switch (testmode) {
1603	case USB_TEST_J:
1604	case USB_TEST_K:
1605	case USB_TEST_SE0_NAK:
1606	case USB_TEST_PACKET:
1607	case USB_TEST_FORCE_ENABLE:
1608		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1609		break;
1610	default:
1611		return -EINVAL;
1612	}
1613	dwc2_writel(hsotg, dctl, DCTL);
1614	return 0;
1615}
1616
1617/**
1618 * dwc2_hsotg_send_reply - send reply to control request
1619 * @hsotg: The device state
1620 * @ep: Endpoint 0
1621 * @buff: Buffer for request
1622 * @length: Length of reply.
1623 *
1624 * Create a request and queue it on the given endpoint. This is useful as
1625 * an internal method of sending replies to certain control requests, etc.
1626 */
1627static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1628				 struct dwc2_hsotg_ep *ep,
1629				void *buff,
1630				int length)
1631{
1632	struct usb_request *req;
1633	int ret;
1634
1635	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1636
1637	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1638	hsotg->ep0_reply = req;
1639	if (!req) {
1640		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1641		return -ENOMEM;
1642	}
1643
1644	req->buf = hsotg->ep0_buff;
1645	req->length = length;
1646	/*
1647	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1648	 * STATUS stage.
1649	 */
1650	req->zero = 0;
1651	req->complete = dwc2_hsotg_complete_oursetup;
1652
1653	if (length)
1654		memcpy(req->buf, buff, length);
1655
1656	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1657	if (ret) {
1658		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1659		return ret;
1660	}
1661
1662	return 0;
1663}
1664
1665/**
1666 * dwc2_hsotg_process_req_status - process request GET_STATUS
1667 * @hsotg: The device state
1668 * @ctrl: USB control request
1669 */
1670static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1671					 struct usb_ctrlrequest *ctrl)
1672{
1673	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1674	struct dwc2_hsotg_ep *ep;
1675	__le16 reply;
1676	u16 status;
1677	int ret;
1678
1679	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1680
1681	if (!ep0->dir_in) {
1682		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1683		return -EINVAL;
1684	}
1685
1686	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1687	case USB_RECIP_DEVICE:
1688		status = hsotg->gadget.is_selfpowered <<
1689			 USB_DEVICE_SELF_POWERED;
1690		status |= hsotg->remote_wakeup_allowed <<
1691			  USB_DEVICE_REMOTE_WAKEUP;
1692		reply = cpu_to_le16(status);
1693		break;
1694
1695	case USB_RECIP_INTERFACE:
1696		/* currently, the data result should be zero */
1697		reply = cpu_to_le16(0);
1698		break;
1699
1700	case USB_RECIP_ENDPOINT:
1701		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1702		if (!ep)
1703			return -ENOENT;
1704
1705		reply = cpu_to_le16(ep->halted ? 1 : 0);
1706		break;
1707
1708	default:
1709		return 0;
1710	}
1711
1712	if (le16_to_cpu(ctrl->wLength) != 2)
1713		return -EINVAL;
1714
1715	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1716	if (ret) {
1717		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1718		return ret;
1719	}
1720
1721	return 1;
1722}
1723
1724static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1725
1726/**
1727 * get_ep_head - return the first request on the endpoint
1728 * @hs_ep: The controller endpoint to get
1729 *
1730 * Get the first request on the endpoint.
1731 */
1732static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1733{
1734	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1735					queue);
1736}
1737
1738/**
1739 * dwc2_gadget_start_next_request - Starts next request from ep queue
1740 * @hs_ep: Endpoint structure
1741 *
1742 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1743 * in its handler. Hence we need to unmask it here to be able to do
1744 * resynchronization.
1745 */
1746static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1747{
1748	struct dwc2_hsotg *hsotg = hs_ep->parent;
1749	int dir_in = hs_ep->dir_in;
1750	struct dwc2_hsotg_req *hs_req;
1751
1752	if (!list_empty(&hs_ep->queue)) {
1753		hs_req = get_ep_head(hs_ep);
1754		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1755		return;
1756	}
1757	if (!hs_ep->isochronous)
1758		return;
1759
1760	if (dir_in) {
1761		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1762			__func__);
1763	} else {
1764		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1765			__func__);
1766	}
1767}
1768
1769/**
1770 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1771 * @hsotg: The device state
1772 * @ctrl: USB control request
1773 */
1774static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1775					  struct usb_ctrlrequest *ctrl)
1776{
1777	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1778	struct dwc2_hsotg_req *hs_req;
1779	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1780	struct dwc2_hsotg_ep *ep;
1781	int ret;
1782	bool halted;
1783	u32 recip;
1784	u32 wValue;
1785	u32 wIndex;
1786
1787	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1788		__func__, set ? "SET" : "CLEAR");
1789
1790	wValue = le16_to_cpu(ctrl->wValue);
1791	wIndex = le16_to_cpu(ctrl->wIndex);
1792	recip = ctrl->bRequestType & USB_RECIP_MASK;
1793
1794	switch (recip) {
1795	case USB_RECIP_DEVICE:
1796		switch (wValue) {
1797		case USB_DEVICE_REMOTE_WAKEUP:
1798			if (set)
1799				hsotg->remote_wakeup_allowed = 1;
1800			else
1801				hsotg->remote_wakeup_allowed = 0;
1802			break;
1803
1804		case USB_DEVICE_TEST_MODE:
1805			if ((wIndex & 0xff) != 0)
1806				return -EINVAL;
1807			if (!set)
1808				return -EINVAL;
1809
1810			hsotg->test_mode = wIndex >> 8;
1811			break;
1812		default:
1813			return -ENOENT;
1814		}
1815
1816		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1817		if (ret) {
1818			dev_err(hsotg->dev,
1819				"%s: failed to send reply\n", __func__);
1820			return ret;
1821		}
1822		break;
1823
1824	case USB_RECIP_ENDPOINT:
1825		ep = ep_from_windex(hsotg, wIndex);
1826		if (!ep) {
1827			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1828				__func__, wIndex);
1829			return -ENOENT;
1830		}
1831
1832		switch (wValue) {
1833		case USB_ENDPOINT_HALT:
1834			halted = ep->halted;
1835
1836			if (!ep->wedged)
1837				dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1838
1839			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1840			if (ret) {
1841				dev_err(hsotg->dev,
1842					"%s: failed to send reply\n", __func__);
1843				return ret;
1844			}
1845
1846			/*
1847			 * we have to complete all requests for ep if it was
1848			 * halted, and the halt was cleared by CLEAR_FEATURE
1849			 */
1850
1851			if (!set && halted) {
1852				/*
1853				 * If we have request in progress,
1854				 * then complete it
1855				 */
1856				if (ep->req) {
1857					hs_req = ep->req;
1858					ep->req = NULL;
1859					list_del_init(&hs_req->queue);
1860					if (hs_req->req.complete) {
1861						spin_unlock(&hsotg->lock);
1862						usb_gadget_giveback_request(
1863							&ep->ep, &hs_req->req);
1864						spin_lock(&hsotg->lock);
1865					}
1866				}
1867
1868				/* If we have pending request, then start it */
1869				if (!ep->req)
1870					dwc2_gadget_start_next_request(ep);
1871			}
1872
1873			break;
1874
1875		default:
1876			return -ENOENT;
1877		}
1878		break;
1879	default:
1880		return -ENOENT;
1881	}
1882	return 1;
1883}
1884
1885static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1886
1887/**
1888 * dwc2_hsotg_stall_ep0 - stall ep0
1889 * @hsotg: The device state
1890 *
1891 * Set stall for ep0 as response for setup request.
1892 */
1893static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1894{
1895	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1896	u32 reg;
1897	u32 ctrl;
1898
1899	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1900	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1901
1902	/*
1903	 * DxEPCTL_Stall will be cleared by EP once it has
1904	 * taken effect, so no need to clear later.
1905	 */
1906
1907	ctrl = dwc2_readl(hsotg, reg);
1908	ctrl |= DXEPCTL_STALL;
1909	ctrl |= DXEPCTL_CNAK;
1910	dwc2_writel(hsotg, ctrl, reg);
1911
1912	dev_dbg(hsotg->dev,
1913		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1914		ctrl, reg, dwc2_readl(hsotg, reg));
1915
1916	 /*
1917	  * complete won't be called, so we enqueue
1918	  * setup request here
1919	  */
1920	 dwc2_hsotg_enqueue_setup(hsotg);
1921}
1922
1923/**
1924 * dwc2_hsotg_process_control - process a control request
1925 * @hsotg: The device state
1926 * @ctrl: The control request received
1927 *
1928 * The controller has received the SETUP phase of a control request, and
1929 * needs to work out what to do next (and whether to pass it on to the
1930 * gadget driver).
1931 */
1932static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1933				       struct usb_ctrlrequest *ctrl)
1934{
1935	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1936	int ret = 0;
1937	u32 dcfg;
1938
1939	dev_dbg(hsotg->dev,
1940		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1941		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1942		ctrl->wIndex, ctrl->wLength);
1943
1944	if (ctrl->wLength == 0) {
1945		ep0->dir_in = 1;
1946		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1947	} else if (ctrl->bRequestType & USB_DIR_IN) {
1948		ep0->dir_in = 1;
1949		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1950	} else {
1951		ep0->dir_in = 0;
1952		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1953	}
1954
1955	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1956		switch (ctrl->bRequest) {
1957		case USB_REQ_SET_ADDRESS:
1958			hsotg->connected = 1;
1959			dcfg = dwc2_readl(hsotg, DCFG);
1960			dcfg &= ~DCFG_DEVADDR_MASK;
1961			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1962				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1963			dwc2_writel(hsotg, dcfg, DCFG);
1964
1965			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1966
1967			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1968			return;
1969
1970		case USB_REQ_GET_STATUS:
1971			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1972			break;
1973
1974		case USB_REQ_CLEAR_FEATURE:
1975		case USB_REQ_SET_FEATURE:
1976			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1977			break;
1978		}
1979	}
1980
1981	/* as a fallback, try delivering it to the driver to deal with */
1982
1983	if (ret == 0 && hsotg->driver) {
1984		spin_unlock(&hsotg->lock);
1985		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1986		spin_lock(&hsotg->lock);
1987		if (ret < 0)
1988			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1989	}
1990
1991	hsotg->delayed_status = false;
1992	if (ret == USB_GADGET_DELAYED_STATUS)
1993		hsotg->delayed_status = true;
1994
1995	/*
1996	 * the request is either unhandlable, or is not formatted correctly
1997	 * so respond with a STALL for the status stage to indicate failure.
1998	 */
1999
2000	if (ret < 0)
2001		dwc2_hsotg_stall_ep0(hsotg);
2002}
2003
2004/**
2005 * dwc2_hsotg_complete_setup - completion of a setup transfer
2006 * @ep: The endpoint the request was on.
2007 * @req: The request completed.
2008 *
2009 * Called on completion of any requests the driver itself submitted for
2010 * EP0 setup packets
2011 */
2012static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
2013				      struct usb_request *req)
2014{
2015	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2016	struct dwc2_hsotg *hsotg = hs_ep->parent;
2017
2018	if (req->status < 0) {
2019		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
2020		return;
2021	}
2022
2023	spin_lock(&hsotg->lock);
2024	if (req->actual == 0)
2025		dwc2_hsotg_enqueue_setup(hsotg);
2026	else
2027		dwc2_hsotg_process_control(hsotg, req->buf);
2028	spin_unlock(&hsotg->lock);
2029}
2030
2031/**
2032 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2033 * @hsotg: The device state.
2034 *
2035 * Enqueue a request on EP0 if necessary to received any SETUP packets
2036 * received from the host.
2037 */
2038static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2039{
2040	struct usb_request *req = hsotg->ctrl_req;
2041	struct dwc2_hsotg_req *hs_req = our_req(req);
2042	int ret;
2043
2044	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2045
2046	req->zero = 0;
2047	req->length = 8;
2048	req->buf = hsotg->ctrl_buff;
2049	req->complete = dwc2_hsotg_complete_setup;
2050
2051	if (!list_empty(&hs_req->queue)) {
2052		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2053		return;
2054	}
2055
2056	hsotg->eps_out[0]->dir_in = 0;
2057	hsotg->eps_out[0]->send_zlp = 0;
2058	hsotg->ep0_state = DWC2_EP0_SETUP;
2059
2060	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2061	if (ret < 0) {
2062		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2063		/*
2064		 * Don't think there's much we can do other than watch the
2065		 * driver fail.
2066		 */
2067	}
2068}
2069
2070static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2071				   struct dwc2_hsotg_ep *hs_ep)
2072{
2073	u32 ctrl;
2074	u8 index = hs_ep->index;
2075	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2076	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2077
2078	if (hs_ep->dir_in)
2079		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2080			index);
2081	else
2082		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2083			index);
2084	if (using_desc_dma(hsotg)) {
2085		/* Not specific buffer needed for ep0 ZLP */
2086		dma_addr_t dma = hs_ep->desc_list_dma;
2087
2088		if (!index)
2089			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2090
2091		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2092	} else {
2093		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2094			    DXEPTSIZ_XFERSIZE(0),
2095			    epsiz_reg);
2096	}
2097
2098	ctrl = dwc2_readl(hsotg, epctl_reg);
2099	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2100	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2101	ctrl |= DXEPCTL_USBACTEP;
2102	dwc2_writel(hsotg, ctrl, epctl_reg);
2103}
2104
2105/**
2106 * dwc2_hsotg_complete_request - complete a request given to us
2107 * @hsotg: The device state.
2108 * @hs_ep: The endpoint the request was on.
2109 * @hs_req: The request to complete.
2110 * @result: The result code (0 => Ok, otherwise errno)
2111 *
2112 * The given request has finished, so call the necessary completion
2113 * if it has one and then look to see if we can start a new request
2114 * on the endpoint.
2115 *
2116 * Note, expects the ep to already be locked as appropriate.
2117 */
2118static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2119					struct dwc2_hsotg_ep *hs_ep,
2120				       struct dwc2_hsotg_req *hs_req,
2121				       int result)
2122{
2123	if (!hs_req) {
2124		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2125		return;
2126	}
2127
2128	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2129		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2130
2131	/*
2132	 * only replace the status if we've not already set an error
2133	 * from a previous transaction
2134	 */
2135
2136	if (hs_req->req.status == -EINPROGRESS)
2137		hs_req->req.status = result;
2138
2139	if (using_dma(hsotg))
2140		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2141
2142	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2143
2144	hs_ep->req = NULL;
2145	list_del_init(&hs_req->queue);
2146
2147	/*
2148	 * call the complete request with the locks off, just in case the
2149	 * request tries to queue more work for this endpoint.
2150	 */
2151
2152	if (hs_req->req.complete) {
2153		spin_unlock(&hsotg->lock);
2154		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2155		spin_lock(&hsotg->lock);
2156	}
2157
2158	/* In DDMA don't need to proceed to starting of next ISOC request */
2159	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2160		return;
2161
2162	/*
2163	 * Look to see if there is anything else to do. Note, the completion
2164	 * of the previous request may have caused a new request to be started
2165	 * so be careful when doing this.
2166	 */
2167
2168	if (!hs_ep->req && result >= 0)
2169		dwc2_gadget_start_next_request(hs_ep);
2170}
2171
2172/*
2173 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2174 * @hs_ep: The endpoint the request was on.
2175 *
2176 * Get first request from the ep queue, determine descriptor on which complete
2177 * happened. SW discovers which descriptor currently in use by HW, adjusts
2178 * dma_address and calculates index of completed descriptor based on the value
2179 * of DEPDMA register. Update actual length of request, giveback to gadget.
2180 */
2181static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2182{
2183	struct dwc2_hsotg *hsotg = hs_ep->parent;
2184	struct dwc2_hsotg_req *hs_req;
2185	struct usb_request *ureq;
2186	u32 desc_sts;
2187	u32 mask;
2188
2189	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2190
2191	/* Process only descriptors with buffer status set to DMA done */
2192	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2193		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2194
2195		hs_req = get_ep_head(hs_ep);
2196		if (!hs_req) {
2197			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2198			return;
2199		}
2200		ureq = &hs_req->req;
2201
2202		/* Check completion status */
2203		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2204			DEV_DMA_STS_SUCC) {
2205			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2206				DEV_DMA_ISOC_RX_NBYTES_MASK;
2207			ureq->actual = ureq->length - ((desc_sts & mask) >>
2208				DEV_DMA_ISOC_NBYTES_SHIFT);
2209
2210			/* Adjust actual len for ISOC Out if len is
2211			 * not align of 4
2212			 */
2213			if (!hs_ep->dir_in && ureq->length & 0x3)
2214				ureq->actual += 4 - (ureq->length & 0x3);
2215
2216			/* Set actual frame number for completed transfers */
2217			ureq->frame_number =
2218				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2219				DEV_DMA_ISOC_FRNUM_SHIFT;
2220		}
2221
2222		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2223
2224		hs_ep->compl_desc++;
2225		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2226			hs_ep->compl_desc = 0;
2227		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2228	}
2229}
2230
2231/*
2232 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2233 * @hs_ep: The isochronous endpoint.
2234 *
2235 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2236 * interrupt. Reset target frame and next_desc to allow to start
2237 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2238 * interrupt for OUT direction.
2239 */
2240static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2241{
2242	struct dwc2_hsotg *hsotg = hs_ep->parent;
2243
2244	if (!hs_ep->dir_in)
2245		dwc2_flush_rx_fifo(hsotg);
2246	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2247
2248	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2249	hs_ep->next_desc = 0;
2250	hs_ep->compl_desc = 0;
2251}
2252
2253/**
2254 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2255 * @hsotg: The device state.
2256 * @ep_idx: The endpoint index for the data
2257 * @size: The size of data in the fifo, in bytes
2258 *
2259 * The FIFO status shows there is data to read from the FIFO for a given
2260 * endpoint, so sort out whether we need to read the data into a request
2261 * that has been made for that endpoint.
2262 */
2263static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2264{
2265	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2266	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2267	int to_read;
2268	int max_req;
2269	int read_ptr;
2270
2271	if (!hs_req) {
2272		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2273		int ptr;
2274
2275		dev_dbg(hsotg->dev,
2276			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2277			 __func__, size, ep_idx, epctl);
2278
2279		/* dump the data from the FIFO, we've nothing we can do */
2280		for (ptr = 0; ptr < size; ptr += 4)
2281			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2282
2283		return;
2284	}
2285
2286	to_read = size;
2287	read_ptr = hs_req->req.actual;
2288	max_req = hs_req->req.length - read_ptr;
2289
2290	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2291		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2292
2293	if (to_read > max_req) {
2294		/*
2295		 * more data appeared than we where willing
2296		 * to deal with in this request.
2297		 */
2298
2299		/* currently we don't deal this */
2300		WARN_ON_ONCE(1);
2301	}
2302
2303	hs_ep->total_data += to_read;
2304	hs_req->req.actual += to_read;
2305	to_read = DIV_ROUND_UP(to_read, 4);
2306
2307	/*
2308	 * note, we might over-write the buffer end by 3 bytes depending on
2309	 * alignment of the data.
2310	 */
2311	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2312		       hs_req->req.buf + read_ptr, to_read);
2313}
2314
2315/**
2316 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2317 * @hsotg: The device instance
2318 * @dir_in: If IN zlp
2319 *
2320 * Generate a zero-length IN packet request for terminating a SETUP
2321 * transaction.
2322 *
2323 * Note, since we don't write any data to the TxFIFO, then it is
2324 * currently believed that we do not need to wait for any space in
2325 * the TxFIFO.
2326 */
2327static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2328{
2329	/* eps_out[0] is used in both directions */
2330	hsotg->eps_out[0]->dir_in = dir_in;
2331	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2332
2333	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2334}
2335
2336/*
2337 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2338 * @hs_ep - The endpoint on which transfer went
2339 *
2340 * Iterate over endpoints descriptor chain and get info on bytes remained
2341 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2342 */
2343static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2344{
2345	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2346	struct dwc2_hsotg *hsotg = hs_ep->parent;
2347	unsigned int bytes_rem = 0;
2348	unsigned int bytes_rem_correction = 0;
2349	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2350	int i;
2351	u32 status;
2352	u32 mps = hs_ep->ep.maxpacket;
2353	int dir_in = hs_ep->dir_in;
2354
2355	if (!desc)
2356		return -EINVAL;
2357
2358	/* Interrupt OUT EP with mps not multiple of 4 */
2359	if (hs_ep->index)
2360		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2361			bytes_rem_correction = 4 - (mps % 4);
2362
2363	for (i = 0; i < hs_ep->desc_count; ++i) {
2364		status = desc->status;
2365		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2366		bytes_rem -= bytes_rem_correction;
2367
2368		if (status & DEV_DMA_STS_MASK)
2369			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2370				i, status & DEV_DMA_STS_MASK);
2371
2372		if (status & DEV_DMA_L)
2373			break;
2374
2375		desc++;
2376	}
2377
2378	return bytes_rem;
2379}
2380
2381/**
2382 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2383 * @hsotg: The device instance
2384 * @epnum: The endpoint received from
2385 *
2386 * The RXFIFO has delivered an OutDone event, which means that the data
2387 * transfer for an OUT endpoint has been completed, either by a short
2388 * packet or by the finish of a transfer.
2389 */
2390static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2391{
2392	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2393	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2394	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2395	struct usb_request *req = &hs_req->req;
2396	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2397	int result = 0;
2398
2399	if (!hs_req) {
2400		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2401		return;
2402	}
2403
2404	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2405		dev_dbg(hsotg->dev, "zlp packet received\n");
2406		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2407		dwc2_hsotg_enqueue_setup(hsotg);
2408		return;
2409	}
2410
2411	if (using_desc_dma(hsotg))
2412		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2413
2414	if (using_dma(hsotg)) {
2415		unsigned int size_done;
2416
2417		/*
2418		 * Calculate the size of the transfer by checking how much
2419		 * is left in the endpoint size register and then working it
2420		 * out from the amount we loaded for the transfer.
2421		 *
2422		 * We need to do this as DMA pointers are always 32bit aligned
2423		 * so may overshoot/undershoot the transfer.
2424		 */
2425
2426		size_done = hs_ep->size_loaded - size_left;
2427		size_done += hs_ep->last_load;
2428
2429		req->actual = size_done;
2430	}
2431
2432	/* if there is more request to do, schedule new transfer */
2433	if (req->actual < req->length && size_left == 0) {
2434		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2435		return;
2436	}
2437
2438	if (req->actual < req->length && req->short_not_ok) {
2439		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2440			__func__, req->actual, req->length);
2441
2442		/*
2443		 * todo - what should we return here? there's no one else
2444		 * even bothering to check the status.
2445		 */
2446	}
2447
2448	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2449	if (!using_desc_dma(hsotg) && epnum == 0 &&
2450	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2451		/* Move to STATUS IN */
2452		if (!hsotg->delayed_status)
2453			dwc2_hsotg_ep0_zlp(hsotg, true);
2454	}
2455
2456	/* Set actual frame number for completed transfers */
2457	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2458		req->frame_number = hs_ep->target_frame;
2459		dwc2_gadget_incr_frame_num(hs_ep);
2460	}
2461
2462	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2463}
2464
2465/**
2466 * dwc2_hsotg_handle_rx - RX FIFO has data
2467 * @hsotg: The device instance
2468 *
2469 * The IRQ handler has detected that the RX FIFO has some data in it
2470 * that requires processing, so find out what is in there and do the
2471 * appropriate read.
2472 *
2473 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2474 * chunks, so if you have x packets received on an endpoint you'll get x
2475 * FIFO events delivered, each with a packet's worth of data in it.
2476 *
2477 * When using DMA, we should not be processing events from the RXFIFO
2478 * as the actual data should be sent to the memory directly and we turn
2479 * on the completion interrupts to get notifications of transfer completion.
2480 */
2481static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2482{
2483	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2484	u32 epnum, status, size;
2485
2486	WARN_ON(using_dma(hsotg));
2487
2488	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2489	status = grxstsr & GRXSTS_PKTSTS_MASK;
2490
2491	size = grxstsr & GRXSTS_BYTECNT_MASK;
2492	size >>= GRXSTS_BYTECNT_SHIFT;
2493
2494	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2495		__func__, grxstsr, size, epnum);
2496
2497	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2498	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2499		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2500		break;
2501
2502	case GRXSTS_PKTSTS_OUTDONE:
2503		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2504			dwc2_hsotg_read_frameno(hsotg));
2505
2506		if (!using_dma(hsotg))
2507			dwc2_hsotg_handle_outdone(hsotg, epnum);
2508		break;
2509
2510	case GRXSTS_PKTSTS_SETUPDONE:
2511		dev_dbg(hsotg->dev,
2512			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2513			dwc2_hsotg_read_frameno(hsotg),
2514			dwc2_readl(hsotg, DOEPCTL(0)));
2515		/*
2516		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2517		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2518		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2519		 */
2520		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2521			dwc2_hsotg_handle_outdone(hsotg, epnum);
2522		break;
2523
2524	case GRXSTS_PKTSTS_OUTRX:
2525		dwc2_hsotg_rx_data(hsotg, epnum, size);
2526		break;
2527
2528	case GRXSTS_PKTSTS_SETUPRX:
2529		dev_dbg(hsotg->dev,
2530			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2531			dwc2_hsotg_read_frameno(hsotg),
2532			dwc2_readl(hsotg, DOEPCTL(0)));
2533
2534		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2535
2536		dwc2_hsotg_rx_data(hsotg, epnum, size);
2537		break;
2538
2539	default:
2540		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2541			 __func__, grxstsr);
2542
2543		dwc2_hsotg_dump(hsotg);
2544		break;
2545	}
2546}
2547
2548/**
2549 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2550 * @mps: The maximum packet size in bytes.
2551 */
2552static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2553{
2554	switch (mps) {
2555	case 64:
2556		return D0EPCTL_MPS_64;
2557	case 32:
2558		return D0EPCTL_MPS_32;
2559	case 16:
2560		return D0EPCTL_MPS_16;
2561	case 8:
2562		return D0EPCTL_MPS_8;
2563	}
2564
2565	/* bad max packet size, warn and return invalid result */
2566	WARN_ON(1);
2567	return (u32)-1;
2568}
2569
2570/**
2571 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2572 * @hsotg: The driver state.
2573 * @ep: The index number of the endpoint
2574 * @mps: The maximum packet size in bytes
2575 * @mc: The multicount value
2576 * @dir_in: True if direction is in.
2577 *
2578 * Configure the maximum packet size for the given endpoint, updating
2579 * the hardware control registers to reflect this.
2580 */
2581static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2582					unsigned int ep, unsigned int mps,
2583					unsigned int mc, unsigned int dir_in)
2584{
2585	struct dwc2_hsotg_ep *hs_ep;
2586	u32 reg;
2587
2588	hs_ep = index_to_ep(hsotg, ep, dir_in);
2589	if (!hs_ep)
2590		return;
2591
2592	if (ep == 0) {
2593		u32 mps_bytes = mps;
2594
2595		/* EP0 is a special case */
2596		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2597		if (mps > 3)
2598			goto bad_mps;
2599		hs_ep->ep.maxpacket = mps_bytes;
2600		hs_ep->mc = 1;
2601	} else {
2602		if (mps > 1024)
2603			goto bad_mps;
2604		hs_ep->mc = mc;
2605		if (mc > 3)
2606			goto bad_mps;
2607		hs_ep->ep.maxpacket = mps;
2608	}
2609
2610	if (dir_in) {
2611		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2612		reg &= ~DXEPCTL_MPS_MASK;
2613		reg |= mps;
2614		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2615	} else {
2616		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2617		reg &= ~DXEPCTL_MPS_MASK;
2618		reg |= mps;
2619		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2620	}
2621
2622	return;
2623
2624bad_mps:
2625	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2626}
2627
2628/**
2629 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2630 * @hsotg: The driver state
2631 * @idx: The index for the endpoint (0..15)
2632 */
2633static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2634{
2635	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2636		    GRSTCTL);
2637
2638	/* wait until the fifo is flushed */
2639	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2640		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2641			 __func__);
2642}
2643
2644/**
2645 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2646 * @hsotg: The driver state
2647 * @hs_ep: The driver endpoint to check.
2648 *
2649 * Check to see if there is a request that has data to send, and if so
2650 * make an attempt to write data into the FIFO.
2651 */
2652static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2653			    struct dwc2_hsotg_ep *hs_ep)
2654{
2655	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2656
2657	if (!hs_ep->dir_in || !hs_req) {
2658		/**
2659		 * if request is not enqueued, we disable interrupts
2660		 * for endpoints, excepting ep0
2661		 */
2662		if (hs_ep->index != 0)
2663			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2664					      hs_ep->dir_in, 0);
2665		return 0;
2666	}
2667
2668	if (hs_req->req.actual < hs_req->req.length) {
2669		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2670			hs_ep->index);
2671		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2672	}
2673
2674	return 0;
2675}
2676
2677/**
2678 * dwc2_hsotg_complete_in - complete IN transfer
2679 * @hsotg: The device state.
2680 * @hs_ep: The endpoint that has just completed.
2681 *
2682 * An IN transfer has been completed, update the transfer's state and then
2683 * call the relevant completion routines.
2684 */
2685static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2686				   struct dwc2_hsotg_ep *hs_ep)
2687{
2688	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2689	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2690	int size_left, size_done;
2691
2692	if (!hs_req) {
2693		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2694		return;
2695	}
2696
2697	/* Finish ZLP handling for IN EP0 transactions */
2698	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2699		dev_dbg(hsotg->dev, "zlp packet sent\n");
2700
2701		/*
2702		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2703		 * changed to IN. Change back to complete OUT transfer request
2704		 */
2705		hs_ep->dir_in = 0;
2706
2707		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2708		if (hsotg->test_mode) {
2709			int ret;
2710
2711			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2712			if (ret < 0) {
2713				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2714					hsotg->test_mode);
2715				dwc2_hsotg_stall_ep0(hsotg);
2716				return;
2717			}
2718		}
2719		dwc2_hsotg_enqueue_setup(hsotg);
2720		return;
2721	}
2722
2723	/*
2724	 * Calculate the size of the transfer by checking how much is left
2725	 * in the endpoint size register and then working it out from
2726	 * the amount we loaded for the transfer.
2727	 *
2728	 * We do this even for DMA, as the transfer may have incremented
2729	 * past the end of the buffer (DMA transfers are always 32bit
2730	 * aligned).
2731	 */
2732	if (using_desc_dma(hsotg)) {
2733		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2734		if (size_left < 0)
2735			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2736				size_left);
2737	} else {
2738		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2739	}
2740
2741	size_done = hs_ep->size_loaded - size_left;
2742	size_done += hs_ep->last_load;
2743
2744	if (hs_req->req.actual != size_done)
2745		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2746			__func__, hs_req->req.actual, size_done);
2747
2748	hs_req->req.actual = size_done;
2749	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2750		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2751
2752	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2753		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2754		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2755		return;
2756	}
2757
2758	/* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2759	if (hs_ep->send_zlp) {
2760		hs_ep->send_zlp = 0;
2761		if (!using_desc_dma(hsotg)) {
2762			dwc2_hsotg_program_zlp(hsotg, hs_ep);
2763			/* transfer will be completed on next complete interrupt */
2764			return;
2765		}
2766	}
2767
2768	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2769		/* Move to STATUS OUT */
2770		dwc2_hsotg_ep0_zlp(hsotg, false);
2771		return;
2772	}
2773
2774	/* Set actual frame number for completed transfers */
2775	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2776		hs_req->req.frame_number = hs_ep->target_frame;
2777		dwc2_gadget_incr_frame_num(hs_ep);
2778	}
2779
2780	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2781}
2782
2783/**
2784 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2785 * @hsotg: The device state.
2786 * @idx: Index of ep.
2787 * @dir_in: Endpoint direction 1-in 0-out.
2788 *
2789 * Reads for endpoint with given index and direction, by masking
2790 * epint_reg with coresponding mask.
2791 */
2792static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2793					  unsigned int idx, int dir_in)
2794{
2795	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2796	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2797	u32 ints;
2798	u32 mask;
2799	u32 diepempmsk;
2800
2801	mask = dwc2_readl(hsotg, epmsk_reg);
2802	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2803	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2804	mask |= DXEPINT_SETUP_RCVD;
2805
2806	ints = dwc2_readl(hsotg, epint_reg);
2807	ints &= mask;
2808	return ints;
2809}
2810
2811/**
2812 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2813 * @hs_ep: The endpoint on which interrupt is asserted.
2814 *
2815 * This interrupt indicates that the endpoint has been disabled per the
2816 * application's request.
2817 *
2818 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2819 * in case of ISOC completes current request.
2820 *
2821 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2822 * request starts it.
2823 */
2824static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2825{
2826	struct dwc2_hsotg *hsotg = hs_ep->parent;
2827	struct dwc2_hsotg_req *hs_req;
2828	unsigned char idx = hs_ep->index;
2829	int dir_in = hs_ep->dir_in;
2830	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2831	int dctl = dwc2_readl(hsotg, DCTL);
2832
2833	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2834
2835	if (dir_in) {
2836		int epctl = dwc2_readl(hsotg, epctl_reg);
2837
2838		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2839
2840		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2841			int dctl = dwc2_readl(hsotg, DCTL);
2842
2843			dctl |= DCTL_CGNPINNAK;
2844			dwc2_writel(hsotg, dctl, DCTL);
2845		}
2846	} else {
2847
2848		if (dctl & DCTL_GOUTNAKSTS) {
2849			dctl |= DCTL_CGOUTNAK;
2850			dwc2_writel(hsotg, dctl, DCTL);
2851		}
2852	}
2853
2854	if (!hs_ep->isochronous)
2855		return;
2856
2857	if (list_empty(&hs_ep->queue)) {
2858		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2859			__func__, hs_ep);
2860		return;
2861	}
2862
2863	do {
2864		hs_req = get_ep_head(hs_ep);
2865		if (hs_req) {
2866			hs_req->req.frame_number = hs_ep->target_frame;
2867			hs_req->req.actual = 0;
2868			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2869						    -ENODATA);
2870		}
2871		dwc2_gadget_incr_frame_num(hs_ep);
2872		/* Update current frame number value. */
2873		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2874	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2875}
2876
2877/**
2878 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2879 * @ep: The endpoint on which interrupt is asserted.
2880 *
2881 * This is starting point for ISOC-OUT transfer, synchronization done with
2882 * first out token received from host while corresponding EP is disabled.
2883 *
2884 * Device does not know initial frame in which out token will come. For this
2885 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2886 * getting this interrupt SW starts calculation for next transfer frame.
2887 */
2888static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2889{
2890	struct dwc2_hsotg *hsotg = ep->parent;
2891	struct dwc2_hsotg_req *hs_req;
2892	int dir_in = ep->dir_in;
2893
2894	if (dir_in || !ep->isochronous)
2895		return;
2896
2897	if (using_desc_dma(hsotg)) {
2898		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2899			/* Start first ISO Out */
2900			ep->target_frame = hsotg->frame_number;
2901			dwc2_gadget_start_isoc_ddma(ep);
2902		}
2903		return;
2904	}
2905
2906	if (ep->target_frame == TARGET_FRAME_INITIAL) {
2907		u32 ctrl;
2908
2909		ep->target_frame = hsotg->frame_number;
2910		if (ep->interval > 1) {
2911			ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2912			if (ep->target_frame & 0x1)
2913				ctrl |= DXEPCTL_SETODDFR;
2914			else
2915				ctrl |= DXEPCTL_SETEVENFR;
2916
2917			dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2918		}
2919	}
2920
2921	while (dwc2_gadget_target_frame_elapsed(ep)) {
2922		hs_req = get_ep_head(ep);
2923		if (hs_req) {
2924			hs_req->req.frame_number = ep->target_frame;
2925			hs_req->req.actual = 0;
2926			dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA);
2927		}
2928
2929		dwc2_gadget_incr_frame_num(ep);
2930		/* Update current frame number value. */
2931		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2932	}
2933
2934	if (!ep->req)
2935		dwc2_gadget_start_next_request(ep);
2936
2937}
2938
2939static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2940				   struct dwc2_hsotg_ep *hs_ep);
2941
2942/**
2943 * dwc2_gadget_handle_nak - handle NAK interrupt
2944 * @hs_ep: The endpoint on which interrupt is asserted.
2945 *
2946 * This is starting point for ISOC-IN transfer, synchronization done with
2947 * first IN token received from host while corresponding EP is disabled.
2948 *
2949 * Device does not know when first one token will arrive from host. On first
2950 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2951 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2952 * sent in response to that as there was no data in FIFO. SW is basing on this
2953 * interrupt to obtain frame in which token has come and then based on the
2954 * interval calculates next frame for transfer.
2955 */
2956static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2957{
2958	struct dwc2_hsotg *hsotg = hs_ep->parent;
2959	struct dwc2_hsotg_req *hs_req;
2960	int dir_in = hs_ep->dir_in;
2961	u32 ctrl;
2962
2963	if (!dir_in || !hs_ep->isochronous)
2964		return;
2965
2966	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2967
2968		if (using_desc_dma(hsotg)) {
2969			hs_ep->target_frame = hsotg->frame_number;
2970			dwc2_gadget_incr_frame_num(hs_ep);
2971
2972			/* In service interval mode target_frame must
2973			 * be set to last (u)frame of the service interval.
2974			 */
2975			if (hsotg->params.service_interval) {
2976				/* Set target_frame to the first (u)frame of
2977				 * the service interval
2978				 */
2979				hs_ep->target_frame &= ~hs_ep->interval + 1;
2980
2981				/* Set target_frame to the last (u)frame of
2982				 * the service interval
2983				 */
2984				dwc2_gadget_incr_frame_num(hs_ep);
2985				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2986			}
2987
2988			dwc2_gadget_start_isoc_ddma(hs_ep);
2989			return;
2990		}
2991
2992		hs_ep->target_frame = hsotg->frame_number;
2993		if (hs_ep->interval > 1) {
2994			u32 ctrl = dwc2_readl(hsotg,
2995					      DIEPCTL(hs_ep->index));
2996			if (hs_ep->target_frame & 0x1)
2997				ctrl |= DXEPCTL_SETODDFR;
2998			else
2999				ctrl |= DXEPCTL_SETEVENFR;
3000
3001			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
3002		}
3003	}
3004
3005	if (using_desc_dma(hsotg))
3006		return;
3007
3008	ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index));
3009	if (ctrl & DXEPCTL_EPENA)
3010		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3011	else
3012		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
3013
3014	while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
3015		hs_req = get_ep_head(hs_ep);
3016		if (hs_req) {
3017			hs_req->req.frame_number = hs_ep->target_frame;
3018			hs_req->req.actual = 0;
3019			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
3020		}
3021
3022		dwc2_gadget_incr_frame_num(hs_ep);
3023		/* Update current frame number value. */
3024		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
3025	}
3026
3027	if (!hs_ep->req)
3028		dwc2_gadget_start_next_request(hs_ep);
3029}
3030
3031/**
3032 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3033 * @hsotg: The driver state
3034 * @idx: The index for the endpoint (0..15)
3035 * @dir_in: Set if this is an IN endpoint
3036 *
3037 * Process and clear any interrupt pending for an individual endpoint
3038 */
3039static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3040			     int dir_in)
3041{
3042	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3043	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3044	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3045	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3046	u32 ints;
3047
3048	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3049
3050	/* Clear endpoint interrupts */
3051	dwc2_writel(hsotg, ints, epint_reg);
3052
3053	if (!hs_ep) {
3054		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3055			__func__, idx, dir_in ? "in" : "out");
3056		return;
3057	}
3058
3059	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3060		__func__, idx, dir_in ? "in" : "out", ints);
3061
3062	/* Don't process XferCompl interrupt if it is a setup packet */
3063	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3064		ints &= ~DXEPINT_XFERCOMPL;
3065
3066	/*
3067	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3068	 * stage and xfercomplete was generated without SETUP phase done
3069	 * interrupt. SW should parse received setup packet only after host's
3070	 * exit from setup phase of control transfer.
3071	 */
3072	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3073	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3074		ints &= ~DXEPINT_XFERCOMPL;
3075
3076	if (ints & DXEPINT_XFERCOMPL) {
3077		dev_dbg(hsotg->dev,
3078			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3079			__func__, dwc2_readl(hsotg, epctl_reg),
3080			dwc2_readl(hsotg, epsiz_reg));
3081
3082		/* In DDMA handle isochronous requests separately */
3083		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3084			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3085		} else if (dir_in) {
3086			/*
3087			 * We get OutDone from the FIFO, so we only
3088			 * need to look at completing IN requests here
3089			 * if operating slave mode
3090			 */
3091			if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT))
3092				dwc2_hsotg_complete_in(hsotg, hs_ep);
3093
3094			if (idx == 0 && !hs_ep->req)
3095				dwc2_hsotg_enqueue_setup(hsotg);
3096		} else if (using_dma(hsotg)) {
3097			/*
3098			 * We're using DMA, we need to fire an OutDone here
3099			 * as we ignore the RXFIFO.
3100			 */
3101			if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS))
3102				dwc2_hsotg_handle_outdone(hsotg, idx);
3103		}
3104	}
3105
3106	if (ints & DXEPINT_EPDISBLD)
3107		dwc2_gadget_handle_ep_disabled(hs_ep);
3108
3109	if (ints & DXEPINT_OUTTKNEPDIS)
3110		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3111
3112	if (ints & DXEPINT_NAKINTRPT)
3113		dwc2_gadget_handle_nak(hs_ep);
3114
3115	if (ints & DXEPINT_AHBERR)
3116		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3117
3118	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3119		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3120
3121		if (using_dma(hsotg) && idx == 0) {
3122			/*
3123			 * this is the notification we've received a
3124			 * setup packet. In non-DMA mode we'd get this
3125			 * from the RXFIFO, instead we need to process
3126			 * the setup here.
3127			 */
3128
3129			if (dir_in)
3130				WARN_ON_ONCE(1);
3131			else
3132				dwc2_hsotg_handle_outdone(hsotg, 0);
3133		}
3134	}
3135
3136	if (ints & DXEPINT_STSPHSERCVD) {
3137		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3138
3139		/* Safety check EP0 state when STSPHSERCVD asserted */
3140		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3141			/* Move to STATUS IN for DDMA */
3142			if (using_desc_dma(hsotg)) {
3143				if (!hsotg->delayed_status)
3144					dwc2_hsotg_ep0_zlp(hsotg, true);
3145				else
3146				/* In case of 3 stage Control Write with delayed
3147				 * status, when Status IN transfer started
3148				 * before STSPHSERCVD asserted, NAKSTS bit not
3149				 * cleared by CNAK in dwc2_hsotg_start_req()
3150				 * function. Clear now NAKSTS to allow complete
3151				 * transfer.
3152				 */
3153					dwc2_set_bit(hsotg, DIEPCTL(0),
3154						     DXEPCTL_CNAK);
3155			}
3156		}
3157
3158	}
3159
3160	if (ints & DXEPINT_BACK2BACKSETUP)
3161		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3162
3163	if (ints & DXEPINT_BNAINTR) {
3164		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3165		if (hs_ep->isochronous)
3166			dwc2_gadget_handle_isoc_bna(hs_ep);
3167	}
3168
3169	if (dir_in && !hs_ep->isochronous) {
3170		/* not sure if this is important, but we'll clear it anyway */
3171		if (ints & DXEPINT_INTKNTXFEMP) {
3172			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3173				__func__, idx);
3174		}
3175
3176		/* this probably means something bad is happening */
3177		if (ints & DXEPINT_INTKNEPMIS) {
3178			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3179				 __func__, idx);
3180		}
3181
3182		/* FIFO has space or is empty (see GAHBCFG) */
3183		if (hsotg->dedicated_fifos &&
3184		    ints & DXEPINT_TXFEMP) {
3185			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3186				__func__, idx);
3187			if (!using_dma(hsotg))
3188				dwc2_hsotg_trytx(hsotg, hs_ep);
3189		}
3190	}
3191}
3192
3193/**
3194 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3195 * @hsotg: The device state.
3196 *
3197 * Handle updating the device settings after the enumeration phase has
3198 * been completed.
3199 */
3200static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3201{
3202	u32 dsts = dwc2_readl(hsotg, DSTS);
3203	int ep0_mps = 0, ep_mps = 8;
3204
3205	/*
3206	 * This should signal the finish of the enumeration phase
3207	 * of the USB handshaking, so we should now know what rate
3208	 * we connected at.
3209	 */
3210
3211	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3212
3213	/*
3214	 * note, since we're limited by the size of transfer on EP0, and
3215	 * it seems IN transfers must be a even number of packets we do
3216	 * not advertise a 64byte MPS on EP0.
3217	 */
3218
3219	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3220	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3221	case DSTS_ENUMSPD_FS:
3222	case DSTS_ENUMSPD_FS48:
3223		hsotg->gadget.speed = USB_SPEED_FULL;
3224		ep0_mps = EP0_MPS_LIMIT;
3225		ep_mps = 1023;
3226		break;
3227
3228	case DSTS_ENUMSPD_HS:
3229		hsotg->gadget.speed = USB_SPEED_HIGH;
3230		ep0_mps = EP0_MPS_LIMIT;
3231		ep_mps = 1024;
3232		break;
3233
3234	case DSTS_ENUMSPD_LS:
3235		hsotg->gadget.speed = USB_SPEED_LOW;
3236		ep0_mps = 8;
3237		ep_mps = 8;
3238		/*
3239		 * note, we don't actually support LS in this driver at the
3240		 * moment, and the documentation seems to imply that it isn't
3241		 * supported by the PHYs on some of the devices.
3242		 */
3243		break;
3244	}
3245	dev_info(hsotg->dev, "new device is %s\n",
3246		 usb_speed_string(hsotg->gadget.speed));
3247
3248	/*
3249	 * we should now know the maximum packet size for an
3250	 * endpoint, so set the endpoints to a default value.
3251	 */
3252
3253	if (ep0_mps) {
3254		int i;
3255		/* Initialize ep0 for both in and out directions */
3256		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3257		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3258		for (i = 1; i < hsotg->num_of_eps; i++) {
3259			if (hsotg->eps_in[i])
3260				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3261							    0, 1);
3262			if (hsotg->eps_out[i])
3263				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3264							    0, 0);
3265		}
3266	}
3267
3268	/* ensure after enumeration our EP0 is active */
3269
3270	dwc2_hsotg_enqueue_setup(hsotg);
3271
3272	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3273		dwc2_readl(hsotg, DIEPCTL0),
3274		dwc2_readl(hsotg, DOEPCTL0));
3275}
3276
3277/**
3278 * kill_all_requests - remove all requests from the endpoint's queue
3279 * @hsotg: The device state.
3280 * @ep: The endpoint the requests may be on.
3281 * @result: The result code to use.
3282 *
3283 * Go through the requests on the given endpoint and mark them
3284 * completed with the given result code.
3285 */
3286static void kill_all_requests(struct dwc2_hsotg *hsotg,
3287			      struct dwc2_hsotg_ep *ep,
3288			      int result)
3289{
3290	unsigned int size;
3291
3292	ep->req = NULL;
3293
3294	while (!list_empty(&ep->queue)) {
3295		struct dwc2_hsotg_req *req = get_ep_head(ep);
3296
3297		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3298	}
3299
3300	if (!hsotg->dedicated_fifos)
3301		return;
3302	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3303	if (size < ep->fifo_size)
3304		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3305}
3306
3307/**
3308 * dwc2_hsotg_disconnect - disconnect service
3309 * @hsotg: The device state.
3310 *
3311 * The device has been disconnected. Remove all current
3312 * transactions and signal the gadget driver that this
3313 * has happened.
3314 */
3315void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3316{
3317	unsigned int ep;
3318
3319	if (!hsotg->connected)
3320		return;
3321
3322	hsotg->connected = 0;
3323	hsotg->test_mode = 0;
3324
3325	/* all endpoints should be shutdown */
3326	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3327		if (hsotg->eps_in[ep])
3328			kill_all_requests(hsotg, hsotg->eps_in[ep],
3329					  -ESHUTDOWN);
3330		if (hsotg->eps_out[ep])
3331			kill_all_requests(hsotg, hsotg->eps_out[ep],
3332					  -ESHUTDOWN);
3333	}
3334
3335	call_gadget(hsotg, disconnect);
3336	hsotg->lx_state = DWC2_L3;
3337
3338	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3339}
3340
3341/**
3342 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3343 * @hsotg: The device state:
3344 * @periodic: True if this is a periodic FIFO interrupt
3345 */
3346static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3347{
3348	struct dwc2_hsotg_ep *ep;
3349	int epno, ret;
3350
3351	/* look through for any more data to transmit */
3352	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3353		ep = index_to_ep(hsotg, epno, 1);
3354
3355		if (!ep)
3356			continue;
3357
3358		if (!ep->dir_in)
3359			continue;
3360
3361		if ((periodic && !ep->periodic) ||
3362		    (!periodic && ep->periodic))
3363			continue;
3364
3365		ret = dwc2_hsotg_trytx(hsotg, ep);
3366		if (ret < 0)
3367			break;
3368	}
3369}
3370
3371/* IRQ flags which will trigger a retry around the IRQ loop */
3372#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3373			GINTSTS_PTXFEMP |  \
3374			GINTSTS_RXFLVL)
3375
3376static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3377/**
3378 * dwc2_hsotg_core_init_disconnected - issue softreset to the core
3379 * @hsotg: The device state
3380 * @is_usb_reset: Usb resetting flag
3381 *
3382 * Issue a soft reset to the core, and await the core finishing it.
3383 */
3384void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3385				       bool is_usb_reset)
3386{
3387	u32 intmsk;
3388	u32 val;
3389	u32 usbcfg;
3390	u32 dcfg = 0;
3391	int ep;
3392
3393	/* Kill any ep0 requests as controller will be reinitialized */
3394	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3395
3396	if (!is_usb_reset) {
3397		if (dwc2_core_reset(hsotg, true))
3398			return;
3399	} else {
3400		/* all endpoints should be shutdown */
3401		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3402			if (hsotg->eps_in[ep])
3403				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3404			if (hsotg->eps_out[ep])
3405				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3406		}
3407	}
3408
3409	/*
3410	 * we must now enable ep0 ready for host detection and then
3411	 * set configuration.
3412	 */
3413
3414	/* keep other bits untouched (so e.g. forced modes are not lost) */
3415	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3416	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3417	usbcfg |= GUSBCFG_TOUTCAL(7);
3418
3419	/* remove the HNP/SRP and set the PHY */
3420	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3421        dwc2_writel(hsotg, usbcfg, GUSBCFG);
3422
3423	dwc2_phy_init(hsotg, true);
3424
3425	dwc2_hsotg_init_fifo(hsotg);
3426
3427	if (!is_usb_reset)
3428		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3429
3430	dcfg |= DCFG_EPMISCNT(1);
3431
3432	switch (hsotg->params.speed) {
3433	case DWC2_SPEED_PARAM_LOW:
3434		dcfg |= DCFG_DEVSPD_LS;
3435		break;
3436	case DWC2_SPEED_PARAM_FULL:
3437		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3438			dcfg |= DCFG_DEVSPD_FS48;
3439		else
3440			dcfg |= DCFG_DEVSPD_FS;
3441		break;
3442	default:
3443		dcfg |= DCFG_DEVSPD_HS;
3444	}
3445
3446	if (hsotg->params.ipg_isoc_en)
3447		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3448
3449	dwc2_writel(hsotg, dcfg,  DCFG);
3450
3451	/* Clear any pending OTG interrupts */
3452	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3453
3454	/* Clear any pending interrupts */
3455	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3456	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3457		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3458		GINTSTS_USBRST | GINTSTS_RESETDET |
3459		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3460		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3461		GINTSTS_LPMTRANRCVD;
3462
3463	if (!using_desc_dma(hsotg))
3464		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3465
3466	if (!hsotg->params.external_id_pin_ctl)
3467		intmsk |= GINTSTS_CONIDSTSCHNG;
3468
3469	dwc2_writel(hsotg, intmsk, GINTMSK);
3470
3471	if (using_dma(hsotg)) {
3472		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3473			    hsotg->params.ahbcfg,
3474			    GAHBCFG);
3475
3476		/* Set DDMA mode support in the core if needed */
3477		if (using_desc_dma(hsotg))
3478			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3479
3480	} else {
3481		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3482						(GAHBCFG_NP_TXF_EMP_LVL |
3483						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3484			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3485	}
3486
3487	/*
3488	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3489	 * when we have no data to transfer. Otherwise we get being flooded by
3490	 * interrupts.
3491	 */
3492
3493	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3494		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3495		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3496		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3497		DIEPMSK);
3498
3499	/*
3500	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3501	 * DMA mode we may need this and StsPhseRcvd.
3502	 */
3503	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3504		DOEPMSK_STSPHSERCVDMSK) : 0) |
3505		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3506		DOEPMSK_SETUPMSK,
3507		DOEPMSK);
3508
3509	/* Enable BNA interrupt for DDMA */
3510	if (using_desc_dma(hsotg)) {
3511		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3512		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3513	}
3514
3515	/* Enable Service Interval mode if supported */
3516	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3517		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3518
3519	dwc2_writel(hsotg, 0, DAINTMSK);
3520
3521	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3522		dwc2_readl(hsotg, DIEPCTL0),
3523		dwc2_readl(hsotg, DOEPCTL0));
3524
3525	/* enable in and out endpoint interrupts */
3526	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3527
3528	/*
3529	 * Enable the RXFIFO when in slave mode, as this is how we collect
3530	 * the data. In DMA mode, we get events from the FIFO but also
3531	 * things we cannot process, so do not use it.
3532	 */
3533	if (!using_dma(hsotg))
3534		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3535
3536	/* Enable interrupts for EP0 in and out */
3537	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3538	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3539
3540	if (!is_usb_reset) {
3541		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3542		udelay(10);  /* see openiboot */
3543		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3544	}
3545
3546	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3547
3548	/*
3549	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3550	 * writing to the EPCTL register..
3551	 */
3552
3553	/* set to read 1 8byte packet */
3554	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3555	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3556
3557	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3558	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3559	       DXEPCTL_USBACTEP,
3560	       DOEPCTL0);
3561
3562	/* enable, but don't activate EP0in */
3563	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3564	       DXEPCTL_USBACTEP, DIEPCTL0);
3565
3566	/* clear global NAKs */
3567	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3568	if (!is_usb_reset)
3569		val |= DCTL_SFTDISCON;
3570	dwc2_set_bit(hsotg, DCTL, val);
3571
3572	/* configure the core to support LPM */
3573	dwc2_gadget_init_lpm(hsotg);
3574
3575	/* program GREFCLK register if needed */
3576	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3577		dwc2_gadget_program_ref_clk(hsotg);
3578
3579	/* must be at-least 3ms to allow bus to see disconnect */
3580	mdelay(3);
3581
3582	hsotg->lx_state = DWC2_L0;
3583
3584	dwc2_hsotg_enqueue_setup(hsotg);
3585
3586	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3587		dwc2_readl(hsotg, DIEPCTL0),
3588		dwc2_readl(hsotg, DOEPCTL0));
3589}
3590
3591void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3592{
3593	/* set the soft-disconnect bit */
3594	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3595}
3596
3597void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3598{
3599	/* remove the soft-disconnect and let's go */
3600	if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD))
3601		dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3602}
3603
3604/**
3605 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3606 * @hsotg: The device state:
3607 *
3608 * This interrupt indicates one of the following conditions occurred while
3609 * transmitting an ISOC transaction.
3610 * - Corrupted IN Token for ISOC EP.
3611 * - Packet not complete in FIFO.
3612 *
3613 * The following actions will be taken:
3614 * - Determine the EP
3615 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3616 */
3617static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3618{
3619	struct dwc2_hsotg_ep *hs_ep;
3620	u32 epctrl;
3621	u32 daintmsk;
3622	u32 idx;
3623
3624	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3625
3626	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3627
3628	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3629		hs_ep = hsotg->eps_in[idx];
3630		/* Proceed only unmasked ISOC EPs */
3631		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3632			continue;
3633
3634		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3635		if ((epctrl & DXEPCTL_EPENA) &&
3636		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3637			epctrl |= DXEPCTL_SNAK;
3638			epctrl |= DXEPCTL_EPDIS;
3639			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3640		}
3641	}
3642
3643	/* Clear interrupt */
3644	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3645}
3646
3647/**
3648 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3649 * @hsotg: The device state:
3650 *
3651 * This interrupt indicates one of the following conditions occurred while
3652 * transmitting an ISOC transaction.
3653 * - Corrupted OUT Token for ISOC EP.
3654 * - Packet not complete in FIFO.
3655 *
3656 * The following actions will be taken:
3657 * - Determine the EP
3658 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3659 */
3660static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3661{
3662	u32 gintsts;
3663	u32 gintmsk;
3664	u32 daintmsk;
3665	u32 epctrl;
3666	struct dwc2_hsotg_ep *hs_ep;
3667	int idx;
3668
3669	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3670
3671	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3672	daintmsk >>= DAINT_OUTEP_SHIFT;
3673
3674	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3675		hs_ep = hsotg->eps_out[idx];
3676		/* Proceed only unmasked ISOC EPs */
3677		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3678			continue;
3679
3680		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3681		if ((epctrl & DXEPCTL_EPENA) &&
3682		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3683			/* Unmask GOUTNAKEFF interrupt */
3684			gintmsk = dwc2_readl(hsotg, GINTMSK);
3685			gintmsk |= GINTSTS_GOUTNAKEFF;
3686			dwc2_writel(hsotg, gintmsk, GINTMSK);
3687
3688			gintsts = dwc2_readl(hsotg, GINTSTS);
3689			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3690				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3691				break;
3692			}
3693		}
3694	}
3695
3696	/* Clear interrupt */
3697	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3698}
3699
3700/**
3701 * dwc2_hsotg_irq - handle device interrupt
3702 * @irq: The IRQ number triggered
3703 * @pw: The pw value when registered the handler.
3704 */
3705static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3706{
3707	struct dwc2_hsotg *hsotg = pw;
3708	int retry_count = 8;
3709	u32 gintsts;
3710	u32 gintmsk;
3711
3712	if (!dwc2_is_device_mode(hsotg))
3713		return IRQ_NONE;
3714
3715	spin_lock(&hsotg->lock);
3716irq_retry:
3717	gintsts = dwc2_readl(hsotg, GINTSTS);
3718	gintmsk = dwc2_readl(hsotg, GINTMSK);
3719
3720	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3721		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3722
3723	gintsts &= gintmsk;
3724
3725	if (gintsts & GINTSTS_RESETDET) {
3726		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3727
3728		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3729
3730		/* This event must be used only if controller is suspended */
3731		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3732			dwc2_exit_partial_power_down(hsotg, 0, true);
3733
3734		/* Exit gadget mode clock gating. */
3735		if (hsotg->params.power_down ==
3736		    DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended &&
3737		    !hsotg->params.no_clock_gating)
3738			dwc2_gadget_exit_clock_gating(hsotg, 0);
3739
3740		hsotg->lx_state = DWC2_L0;
3741	}
3742
3743	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3744		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3745		u32 connected = hsotg->connected;
3746
3747		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3748		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3749			dwc2_readl(hsotg, GNPTXSTS));
3750
3751		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3752
3753		/* Report disconnection if it is not already done. */
3754		dwc2_hsotg_disconnect(hsotg);
3755
3756		/* Reset device address to zero */
3757		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3758
3759		if (usb_status & GOTGCTL_BSESVLD && connected)
3760			dwc2_hsotg_core_init_disconnected(hsotg, true);
3761	}
3762
3763	if (gintsts & GINTSTS_ENUMDONE) {
3764		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3765
3766		dwc2_hsotg_irq_enumdone(hsotg);
3767	}
3768
3769	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3770		u32 daint = dwc2_readl(hsotg, DAINT);
3771		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3772		u32 daint_out, daint_in;
3773		int ep;
3774
3775		daint &= daintmsk;
3776		daint_out = daint >> DAINT_OUTEP_SHIFT;
3777		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3778
3779		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3780
3781		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3782						ep++, daint_out >>= 1) {
3783			if (daint_out & 1)
3784				dwc2_hsotg_epint(hsotg, ep, 0);
3785		}
3786
3787		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3788						ep++, daint_in >>= 1) {
3789			if (daint_in & 1)
3790				dwc2_hsotg_epint(hsotg, ep, 1);
3791		}
3792	}
3793
3794	/* check both FIFOs */
3795
3796	if (gintsts & GINTSTS_NPTXFEMP) {
3797		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3798
3799		/*
3800		 * Disable the interrupt to stop it happening again
3801		 * unless one of these endpoint routines decides that
3802		 * it needs re-enabling
3803		 */
3804
3805		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3806		dwc2_hsotg_irq_fifoempty(hsotg, false);
3807	}
3808
3809	if (gintsts & GINTSTS_PTXFEMP) {
3810		dev_dbg(hsotg->dev, "PTxFEmp\n");
3811
3812		/* See note in GINTSTS_NPTxFEmp */
3813
3814		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3815		dwc2_hsotg_irq_fifoempty(hsotg, true);
3816	}
3817
3818	if (gintsts & GINTSTS_RXFLVL) {
3819		/*
3820		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3821		 * we need to retry dwc2_hsotg_handle_rx if this is still
3822		 * set.
3823		 */
3824
3825		dwc2_hsotg_handle_rx(hsotg);
3826	}
3827
3828	if (gintsts & GINTSTS_ERLYSUSP) {
3829		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3830		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3831	}
3832
3833	/*
3834	 * these next two seem to crop-up occasionally causing the core
3835	 * to shutdown the USB transfer, so try clearing them and logging
3836	 * the occurrence.
3837	 */
3838
3839	if (gintsts & GINTSTS_GOUTNAKEFF) {
3840		u8 idx;
3841		u32 epctrl;
3842		u32 gintmsk;
3843		u32 daintmsk;
3844		struct dwc2_hsotg_ep *hs_ep;
3845
3846		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3847		daintmsk >>= DAINT_OUTEP_SHIFT;
3848		/* Mask this interrupt */
3849		gintmsk = dwc2_readl(hsotg, GINTMSK);
3850		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3851		dwc2_writel(hsotg, gintmsk, GINTMSK);
3852
3853		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3854		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3855			hs_ep = hsotg->eps_out[idx];
3856			/* Proceed only unmasked ISOC EPs */
3857			if (BIT(idx) & ~daintmsk)
3858				continue;
3859
3860			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3861
3862			//ISOC Ep's only
3863			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3864				epctrl |= DXEPCTL_SNAK;
3865				epctrl |= DXEPCTL_EPDIS;
3866				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3867				continue;
3868			}
3869
3870			//Non-ISOC EP's
3871			if (hs_ep->halted) {
3872				if (!(epctrl & DXEPCTL_EPENA))
3873					epctrl |= DXEPCTL_EPENA;
3874				epctrl |= DXEPCTL_EPDIS;
3875				epctrl |= DXEPCTL_STALL;
3876				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3877			}
3878		}
3879
3880		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3881	}
3882
3883	if (gintsts & GINTSTS_GINNAKEFF) {
3884		dev_info(hsotg->dev, "GINNakEff triggered\n");
3885
3886		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3887
3888		dwc2_hsotg_dump(hsotg);
3889	}
3890
3891	if (gintsts & GINTSTS_INCOMPL_SOIN)
3892		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3893
3894	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3895		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3896
3897	/*
3898	 * if we've had fifo events, we should try and go around the
3899	 * loop again to see if there's any point in returning yet.
3900	 */
3901
3902	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3903		goto irq_retry;
3904
3905	/* Check WKUP_ALERT interrupt*/
3906	if (hsotg->params.service_interval)
3907		dwc2_gadget_wkup_alert_handler(hsotg);
3908
3909	spin_unlock(&hsotg->lock);
3910
3911	return IRQ_HANDLED;
3912}
3913
3914static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3915				   struct dwc2_hsotg_ep *hs_ep)
3916{
3917	u32 epctrl_reg;
3918	u32 epint_reg;
3919
3920	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3921		DOEPCTL(hs_ep->index);
3922	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3923		DOEPINT(hs_ep->index);
3924
3925	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3926		hs_ep->name);
3927
3928	if (hs_ep->dir_in) {
3929		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3930			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3931			/* Wait for Nak effect */
3932			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3933						    DXEPINT_INEPNAKEFF, 100))
3934				dev_warn(hsotg->dev,
3935					 "%s: timeout DIEPINT.NAKEFF\n",
3936					 __func__);
3937		} else {
3938			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3939			/* Wait for Nak effect */
3940			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3941						    GINTSTS_GINNAKEFF, 100))
3942				dev_warn(hsotg->dev,
3943					 "%s: timeout GINTSTS.GINNAKEFF\n",
3944					 __func__);
3945		}
3946	} else {
3947		/* Mask GINTSTS_GOUTNAKEFF interrupt */
3948		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3949
3950		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3951			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3952
3953		if (!using_dma(hsotg)) {
3954			/* Wait for GINTSTS_RXFLVL interrupt */
3955			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3956						    GINTSTS_RXFLVL, 100)) {
3957				dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3958					 __func__);
3959			} else {
3960				/*
3961				 * Pop GLOBAL OUT NAK status packet from RxFIFO
3962				 * to assert GOUTNAKEFF interrupt
3963				 */
3964				dwc2_readl(hsotg, GRXSTSP);
3965			}
3966		}
3967
3968		/* Wait for global nak to take effect */
3969		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3970					    GINTSTS_GOUTNAKEFF, 100))
3971			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3972				 __func__);
3973	}
3974
3975	/* Disable ep */
3976	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3977
3978	/* Wait for ep to be disabled */
3979	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3980		dev_warn(hsotg->dev,
3981			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3982
3983	/* Clear EPDISBLD interrupt */
3984	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3985
3986	if (hs_ep->dir_in) {
3987		unsigned short fifo_index;
3988
3989		if (hsotg->dedicated_fifos || hs_ep->periodic)
3990			fifo_index = hs_ep->fifo_index;
3991		else
3992			fifo_index = 0;
3993
3994		/* Flush TX FIFO */
3995		dwc2_flush_tx_fifo(hsotg, fifo_index);
3996
3997		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3998		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3999			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
4000
4001	} else {
4002		/* Remove global NAKs */
4003		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
4004	}
4005}
4006
4007/**
4008 * dwc2_hsotg_ep_enable - enable the given endpoint
4009 * @ep: The USB endpint to configure
4010 * @desc: The USB endpoint descriptor to configure with.
4011 *
4012 * This is called from the USB gadget code's usb_ep_enable().
4013 */
4014static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
4015				const struct usb_endpoint_descriptor *desc)
4016{
4017	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4018	struct dwc2_hsotg *hsotg = hs_ep->parent;
4019	unsigned long flags;
4020	unsigned int index = hs_ep->index;
4021	u32 epctrl_reg;
4022	u32 epctrl;
4023	u32 mps;
4024	u32 mc;
4025	u32 mask;
4026	unsigned int dir_in;
4027	unsigned int i, val, size;
4028	int ret = 0;
4029	unsigned char ep_type;
4030	int desc_num;
4031
4032	dev_dbg(hsotg->dev,
4033		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4034		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
4035		desc->wMaxPacketSize, desc->bInterval);
4036
4037	/* not to be called for EP0 */
4038	if (index == 0) {
4039		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
4040		return -EINVAL;
4041	}
4042
4043	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4044	if (dir_in != hs_ep->dir_in) {
4045		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4046		return -EINVAL;
4047	}
4048
4049	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4050	mps = usb_endpoint_maxp(desc);
4051	mc = usb_endpoint_maxp_mult(desc);
4052
4053	/* ISOC IN in DDMA supported bInterval up to 10 */
4054	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4055	    dir_in && desc->bInterval > 10) {
4056		dev_err(hsotg->dev,
4057			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4058		return -EINVAL;
4059	}
4060
4061	/* High bandwidth ISOC OUT in DDMA not supported */
4062	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4063	    !dir_in && mc > 1) {
4064		dev_err(hsotg->dev,
4065			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4066		return -EINVAL;
4067	}
4068
4069	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4070
4071	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4072	epctrl = dwc2_readl(hsotg, epctrl_reg);
4073
4074	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4075		__func__, epctrl, epctrl_reg);
4076
4077	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4078		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4079	else
4080		desc_num = MAX_DMA_DESC_NUM_GENERIC;
4081
4082	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4083	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4084		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4085			desc_num * sizeof(struct dwc2_dma_desc),
4086			&hs_ep->desc_list_dma, GFP_ATOMIC);
4087		if (!hs_ep->desc_list) {
4088			ret = -ENOMEM;
4089			goto error2;
4090		}
4091	}
4092
4093	spin_lock_irqsave(&hsotg->lock, flags);
4094
4095	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4096	epctrl |= DXEPCTL_MPS(mps);
4097
4098	/*
4099	 * mark the endpoint as active, otherwise the core may ignore
4100	 * transactions entirely for this endpoint
4101	 */
4102	epctrl |= DXEPCTL_USBACTEP;
4103
4104	/* update the endpoint state */
4105	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4106
4107	/* default, set to non-periodic */
4108	hs_ep->isochronous = 0;
4109	hs_ep->periodic = 0;
4110	hs_ep->halted = 0;
4111	hs_ep->wedged = 0;
4112	hs_ep->interval = desc->bInterval;
4113
4114	switch (ep_type) {
4115	case USB_ENDPOINT_XFER_ISOC:
4116		epctrl |= DXEPCTL_EPTYPE_ISO;
4117		epctrl |= DXEPCTL_SETEVENFR;
4118		hs_ep->isochronous = 1;
4119		hs_ep->interval = 1 << (desc->bInterval - 1);
4120		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4121		hs_ep->next_desc = 0;
4122		hs_ep->compl_desc = 0;
4123		if (dir_in) {
4124			hs_ep->periodic = 1;
4125			mask = dwc2_readl(hsotg, DIEPMSK);
4126			mask |= DIEPMSK_NAKMSK;
4127			dwc2_writel(hsotg, mask, DIEPMSK);
4128		} else {
4129			epctrl |= DXEPCTL_SNAK;
4130			mask = dwc2_readl(hsotg, DOEPMSK);
4131			mask |= DOEPMSK_OUTTKNEPDISMSK;
4132			dwc2_writel(hsotg, mask, DOEPMSK);
4133		}
4134		break;
4135
4136	case USB_ENDPOINT_XFER_BULK:
4137		epctrl |= DXEPCTL_EPTYPE_BULK;
4138		break;
4139
4140	case USB_ENDPOINT_XFER_INT:
4141		if (dir_in)
4142			hs_ep->periodic = 1;
4143
4144		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4145			hs_ep->interval = 1 << (desc->bInterval - 1);
4146
4147		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4148		break;
4149
4150	case USB_ENDPOINT_XFER_CONTROL:
4151		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4152		break;
4153	}
4154
4155	/*
4156	 * if the hardware has dedicated fifos, we must give each IN EP
4157	 * a unique tx-fifo even if it is non-periodic.
4158	 */
4159	if (dir_in && hsotg->dedicated_fifos) {
4160		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4161		u32 fifo_index = 0;
4162		u32 fifo_size = UINT_MAX;
4163
4164		size = hs_ep->ep.maxpacket * hs_ep->mc;
4165		for (i = 1; i <= fifo_count; ++i) {
4166			if (hsotg->fifo_map & (1 << i))
4167				continue;
4168			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4169			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4170			if (val < size)
4171				continue;
4172			/* Search for smallest acceptable fifo */
4173			if (val < fifo_size) {
4174				fifo_size = val;
4175				fifo_index = i;
4176			}
4177		}
4178		if (!fifo_index) {
4179			dev_err(hsotg->dev,
4180				"%s: No suitable fifo found\n", __func__);
4181			ret = -ENOMEM;
4182			goto error1;
4183		}
4184		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4185		hsotg->fifo_map |= 1 << fifo_index;
4186		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4187		hs_ep->fifo_index = fifo_index;
4188		hs_ep->fifo_size = fifo_size;
4189	}
4190
4191	/* for non control endpoints, set PID to D0 */
4192	if (index && !hs_ep->isochronous)
4193		epctrl |= DXEPCTL_SETD0PID;
4194
4195	/* WA for Full speed ISOC IN in DDMA mode.
4196	 * By Clear NAK status of EP, core will send ZLP
4197	 * to IN token and assert NAK interrupt relying
4198	 * on TxFIFO status only
4199	 */
4200
4201	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4202	    hs_ep->isochronous && dir_in) {
4203		/* The WA applies only to core versions from 2.72a
4204		 * to 4.00a (including both). Also for FS_IOT_1.00a
4205		 * and HS_IOT_1.00a.
4206		 */
4207		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4208
4209		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4210		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4211		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4212		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4213			epctrl |= DXEPCTL_CNAK;
4214	}
4215
4216	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4217		__func__, epctrl);
4218
4219	dwc2_writel(hsotg, epctrl, epctrl_reg);
4220	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4221		__func__, dwc2_readl(hsotg, epctrl_reg));
4222
4223	/* enable the endpoint interrupt */
4224	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4225
4226error1:
4227	spin_unlock_irqrestore(&hsotg->lock, flags);
4228
4229error2:
4230	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4231		dmam_free_coherent(hsotg->dev, desc_num *
4232			sizeof(struct dwc2_dma_desc),
4233			hs_ep->desc_list, hs_ep->desc_list_dma);
4234		hs_ep->desc_list = NULL;
4235	}
4236
4237	return ret;
4238}
4239
4240/**
4241 * dwc2_hsotg_ep_disable - disable given endpoint
4242 * @ep: The endpoint to disable.
4243 */
4244static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4245{
4246	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4247	struct dwc2_hsotg *hsotg = hs_ep->parent;
4248	int dir_in = hs_ep->dir_in;
4249	int index = hs_ep->index;
4250	u32 epctrl_reg;
4251	u32 ctrl;
4252
4253	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4254
4255	if (ep == &hsotg->eps_out[0]->ep) {
4256		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4257		return -EINVAL;
4258	}
4259
4260	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4261		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4262		return -EINVAL;
4263	}
4264
4265	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4266
4267	ctrl = dwc2_readl(hsotg, epctrl_reg);
4268
4269	if (ctrl & DXEPCTL_EPENA)
4270		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4271
4272	ctrl &= ~DXEPCTL_EPENA;
4273	ctrl &= ~DXEPCTL_USBACTEP;
4274	ctrl |= DXEPCTL_SNAK;
4275
4276	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4277	dwc2_writel(hsotg, ctrl, epctrl_reg);
4278
4279	/* disable endpoint interrupts */
4280	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4281
4282	/* terminate all requests with shutdown */
4283	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4284
4285	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4286	hs_ep->fifo_index = 0;
4287	hs_ep->fifo_size = 0;
4288
4289	return 0;
4290}
4291
4292static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4293{
4294	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4295	struct dwc2_hsotg *hsotg = hs_ep->parent;
4296	unsigned long flags;
4297	int ret;
4298
4299	spin_lock_irqsave(&hsotg->lock, flags);
4300	ret = dwc2_hsotg_ep_disable(ep);
4301	spin_unlock_irqrestore(&hsotg->lock, flags);
4302	return ret;
4303}
4304
4305/**
4306 * on_list - check request is on the given endpoint
4307 * @ep: The endpoint to check.
4308 * @test: The request to test if it is on the endpoint.
4309 */
4310static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4311{
4312	struct dwc2_hsotg_req *req, *treq;
4313
4314	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4315		if (req == test)
4316			return true;
4317	}
4318
4319	return false;
4320}
4321
4322/**
4323 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4324 * @ep: The endpoint to dequeue.
4325 * @req: The request to be removed from a queue.
4326 */
4327static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4328{
4329	struct dwc2_hsotg_req *hs_req = our_req(req);
4330	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4331	struct dwc2_hsotg *hs = hs_ep->parent;
4332	unsigned long flags;
4333
4334	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4335
4336	spin_lock_irqsave(&hs->lock, flags);
4337
4338	if (!on_list(hs_ep, hs_req)) {
4339		spin_unlock_irqrestore(&hs->lock, flags);
4340		return -EINVAL;
4341	}
4342
4343	/* Dequeue already started request */
4344	if (req == &hs_ep->req->req)
4345		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4346
4347	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4348	spin_unlock_irqrestore(&hs->lock, flags);
4349
4350	return 0;
4351}
4352
4353/**
4354 * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint
4355 * @ep: The endpoint to be wedged.
4356 *
4357 */
4358static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep)
4359{
4360	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4361	struct dwc2_hsotg *hs = hs_ep->parent;
4362
4363	unsigned long	flags;
4364	int		ret;
4365
4366	spin_lock_irqsave(&hs->lock, flags);
4367	hs_ep->wedged = 1;
4368	ret = dwc2_hsotg_ep_sethalt(ep, 1, false);
4369	spin_unlock_irqrestore(&hs->lock, flags);
4370
4371	return ret;
4372}
4373
4374/**
4375 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4376 * @ep: The endpoint to set halt.
4377 * @value: Set or unset the halt.
4378 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4379 *       the endpoint is busy processing requests.
4380 *
4381 * We need to stall the endpoint immediately if request comes from set_feature
4382 * protocol command handler.
4383 */
4384static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4385{
4386	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4387	struct dwc2_hsotg *hs = hs_ep->parent;
4388	int index = hs_ep->index;
4389	u32 epreg;
4390	u32 epctl;
4391	u32 xfertype;
4392
4393	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4394
4395	if (index == 0) {
4396		if (value)
4397			dwc2_hsotg_stall_ep0(hs);
4398		else
4399			dev_warn(hs->dev,
4400				 "%s: can't clear halt on ep0\n", __func__);
4401		return 0;
4402	}
4403
4404	if (hs_ep->isochronous) {
4405		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4406		return -EINVAL;
4407	}
4408
4409	if (!now && value && !list_empty(&hs_ep->queue)) {
4410		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4411			ep->name);
4412		return -EAGAIN;
4413	}
4414
4415	if (hs_ep->dir_in) {
4416		epreg = DIEPCTL(index);
4417		epctl = dwc2_readl(hs, epreg);
4418
4419		if (value) {
4420			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4421			if (epctl & DXEPCTL_EPENA)
4422				epctl |= DXEPCTL_EPDIS;
4423		} else {
4424			epctl &= ~DXEPCTL_STALL;
4425			hs_ep->wedged = 0;
4426			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4427			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4428			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4429				epctl |= DXEPCTL_SETD0PID;
4430		}
4431		dwc2_writel(hs, epctl, epreg);
4432	} else {
4433		epreg = DOEPCTL(index);
4434		epctl = dwc2_readl(hs, epreg);
4435
4436		if (value) {
4437			/* Unmask GOUTNAKEFF interrupt */
4438			dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4439
4440			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4441				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4442			// STALL bit will be set in GOUTNAKEFF interrupt handler
4443		} else {
4444			epctl &= ~DXEPCTL_STALL;
4445			hs_ep->wedged = 0;
4446			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4447			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4448			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4449				epctl |= DXEPCTL_SETD0PID;
4450			dwc2_writel(hs, epctl, epreg);
4451		}
4452	}
4453
4454	hs_ep->halted = value;
4455	return 0;
4456}
4457
4458/**
4459 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4460 * @ep: The endpoint to set halt.
4461 * @value: Set or unset the halt.
4462 */
4463static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4464{
4465	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4466	struct dwc2_hsotg *hs = hs_ep->parent;
4467	unsigned long flags;
4468	int ret;
4469
4470	spin_lock_irqsave(&hs->lock, flags);
4471	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4472	spin_unlock_irqrestore(&hs->lock, flags);
4473
4474	return ret;
4475}
4476
4477static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4478	.enable		= dwc2_hsotg_ep_enable,
4479	.disable	= dwc2_hsotg_ep_disable_lock,
4480	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4481	.free_request	= dwc2_hsotg_ep_free_request,
4482	.queue		= dwc2_hsotg_ep_queue_lock,
4483	.dequeue	= dwc2_hsotg_ep_dequeue,
4484	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4485	.set_wedge	= dwc2_gadget_ep_set_wedge,
4486	/* note, don't believe we have any call for the fifo routines */
4487};
4488
4489/**
4490 * dwc2_hsotg_init - initialize the usb core
4491 * @hsotg: The driver state
4492 */
4493static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4494{
4495	/* unmask subset of endpoint interrupts */
4496
4497	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4498		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4499		    DIEPMSK);
4500
4501	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4502		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4503		    DOEPMSK);
4504
4505	dwc2_writel(hsotg, 0, DAINTMSK);
4506
4507	/* Be in disconnected state until gadget is registered */
4508	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4509
4510	/* setup fifos */
4511
4512	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4513		dwc2_readl(hsotg, GRXFSIZ),
4514		dwc2_readl(hsotg, GNPTXFSIZ));
4515
4516	dwc2_hsotg_init_fifo(hsotg);
4517
4518	if (using_dma(hsotg))
4519		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4520}
4521
4522/**
4523 * dwc2_hsotg_udc_start - prepare the udc for work
4524 * @gadget: The usb gadget state
4525 * @driver: The usb gadget driver
4526 *
4527 * Perform initialization to prepare udc device and driver
4528 * to work.
4529 */
4530static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4531				struct usb_gadget_driver *driver)
4532{
4533	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4534	unsigned long flags;
4535	int ret;
4536
4537	if (!hsotg) {
4538		pr_err("%s: called with no device\n", __func__);
4539		return -ENODEV;
4540	}
4541
4542	if (!driver) {
4543		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4544		return -EINVAL;
4545	}
4546
4547	if (driver->max_speed < USB_SPEED_FULL)
4548		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4549
4550	if (!driver->setup) {
4551		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4552		return -EINVAL;
4553	}
4554
4555	WARN_ON(hsotg->driver);
4556
4557	hsotg->driver = driver;
4558	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4559	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4560
4561	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4562		ret = dwc2_lowlevel_hw_enable(hsotg);
4563		if (ret)
4564			goto err;
4565	}
4566
4567	if (!IS_ERR_OR_NULL(hsotg->uphy))
4568		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4569
4570	spin_lock_irqsave(&hsotg->lock, flags);
4571	if (dwc2_hw_is_device(hsotg)) {
4572		dwc2_hsotg_init(hsotg);
4573		dwc2_hsotg_core_init_disconnected(hsotg, false);
4574	}
4575
4576	hsotg->enabled = 0;
4577	spin_unlock_irqrestore(&hsotg->lock, flags);
4578
4579	gadget->sg_supported = using_desc_dma(hsotg);
4580	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4581
4582	return 0;
4583
4584err:
4585	hsotg->driver = NULL;
4586	return ret;
4587}
4588
4589/**
4590 * dwc2_hsotg_udc_stop - stop the udc
4591 * @gadget: The usb gadget state
4592 *
4593 * Stop udc hw block and stay tunned for future transmissions
4594 */
4595static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4596{
4597	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4598	unsigned long flags;
4599	int ep;
4600
4601	if (!hsotg)
4602		return -ENODEV;
4603
4604	/* all endpoints should be shutdown */
4605	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4606		if (hsotg->eps_in[ep])
4607			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4608		if (hsotg->eps_out[ep])
4609			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4610	}
4611
4612	spin_lock_irqsave(&hsotg->lock, flags);
4613
4614	hsotg->driver = NULL;
4615	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4616	hsotg->enabled = 0;
4617
4618	spin_unlock_irqrestore(&hsotg->lock, flags);
4619
4620	if (!IS_ERR_OR_NULL(hsotg->uphy))
4621		otg_set_peripheral(hsotg->uphy->otg, NULL);
4622
4623	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4624		dwc2_lowlevel_hw_disable(hsotg);
4625
4626	return 0;
4627}
4628
4629/**
4630 * dwc2_hsotg_gadget_getframe - read the frame number
4631 * @gadget: The usb gadget state
4632 *
4633 * Read the {micro} frame number
4634 */
4635static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4636{
4637	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4638}
4639
4640/**
4641 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4642 * @gadget: The usb gadget state
4643 * @is_selfpowered: Whether the device is self-powered
4644 *
4645 * Set if the device is self or bus powered.
4646 */
4647static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4648				      int is_selfpowered)
4649{
4650	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4651	unsigned long flags;
4652
4653	spin_lock_irqsave(&hsotg->lock, flags);
4654	gadget->is_selfpowered = !!is_selfpowered;
4655	spin_unlock_irqrestore(&hsotg->lock, flags);
4656
4657	return 0;
4658}
4659
4660/**
4661 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4662 * @gadget: The usb gadget state
4663 * @is_on: Current state of the USB PHY
4664 *
4665 * Connect/Disconnect the USB PHY pullup
4666 */
4667static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4668{
4669	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4670	unsigned long flags;
4671
4672	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4673		hsotg->op_state);
4674
4675	/* Don't modify pullup state while in host mode */
4676	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4677		hsotg->enabled = is_on;
4678		return 0;
4679	}
4680
4681	spin_lock_irqsave(&hsotg->lock, flags);
4682	if (is_on) {
4683		hsotg->enabled = 1;
4684		dwc2_hsotg_core_init_disconnected(hsotg, false);
4685		/* Enable ACG feature in device mode,if supported */
4686		dwc2_enable_acg(hsotg);
4687		dwc2_hsotg_core_connect(hsotg);
4688	} else {
4689		dwc2_hsotg_core_disconnect(hsotg);
4690		dwc2_hsotg_disconnect(hsotg);
4691		hsotg->enabled = 0;
4692	}
4693
4694	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4695	spin_unlock_irqrestore(&hsotg->lock, flags);
4696
4697	return 0;
4698}
4699
4700static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4701{
4702	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4703	unsigned long flags;
4704
4705	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4706	spin_lock_irqsave(&hsotg->lock, flags);
4707
4708	/*
4709	 * If controller is in partial power down state, it must exit from
4710	 * that state before being initialized / de-initialized
4711	 */
4712	if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd)
4713		/*
4714		 * No need to check the return value as
4715		 * registers are not being restored.
4716		 */
4717		dwc2_exit_partial_power_down(hsotg, 0, false);
4718
4719	if (is_active) {
4720		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4721
4722		dwc2_hsotg_core_init_disconnected(hsotg, false);
4723		if (hsotg->enabled) {
4724			/* Enable ACG feature in device mode,if supported */
4725			dwc2_enable_acg(hsotg);
4726			dwc2_hsotg_core_connect(hsotg);
4727		}
4728	} else {
4729		dwc2_hsotg_core_disconnect(hsotg);
4730		dwc2_hsotg_disconnect(hsotg);
4731	}
4732
4733	spin_unlock_irqrestore(&hsotg->lock, flags);
4734	return 0;
4735}
4736
4737/**
4738 * dwc2_hsotg_vbus_draw - report bMaxPower field
4739 * @gadget: The usb gadget state
4740 * @mA: Amount of current
4741 *
4742 * Report how much power the device may consume to the phy.
4743 */
4744static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4745{
4746	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4747
4748	if (IS_ERR_OR_NULL(hsotg->uphy))
4749		return -ENOTSUPP;
4750	return usb_phy_set_power(hsotg->uphy, mA);
4751}
4752
4753static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed)
4754{
4755	struct dwc2_hsotg *hsotg = to_hsotg(g);
4756	unsigned long		flags;
4757
4758	spin_lock_irqsave(&hsotg->lock, flags);
4759	switch (speed) {
4760	case USB_SPEED_HIGH:
4761		hsotg->params.speed = DWC2_SPEED_PARAM_HIGH;
4762		break;
4763	case USB_SPEED_FULL:
4764		hsotg->params.speed = DWC2_SPEED_PARAM_FULL;
4765		break;
4766	case USB_SPEED_LOW:
4767		hsotg->params.speed = DWC2_SPEED_PARAM_LOW;
4768		break;
4769	default:
4770		dev_err(hsotg->dev, "invalid speed (%d)\n", speed);
4771	}
4772	spin_unlock_irqrestore(&hsotg->lock, flags);
4773}
4774
4775static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4776	.get_frame	= dwc2_hsotg_gadget_getframe,
4777	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4778	.udc_start		= dwc2_hsotg_udc_start,
4779	.udc_stop		= dwc2_hsotg_udc_stop,
4780	.pullup                 = dwc2_hsotg_pullup,
4781	.udc_set_speed		= dwc2_gadget_set_speed,
4782	.vbus_session		= dwc2_hsotg_vbus_session,
4783	.vbus_draw		= dwc2_hsotg_vbus_draw,
4784};
4785
4786/**
4787 * dwc2_hsotg_initep - initialise a single endpoint
4788 * @hsotg: The device state.
4789 * @hs_ep: The endpoint to be initialised.
4790 * @epnum: The endpoint number
4791 * @dir_in: True if direction is in.
4792 *
4793 * Initialise the given endpoint (as part of the probe and device state
4794 * creation) to give to the gadget driver. Setup the endpoint name, any
4795 * direction information and other state that may be required.
4796 */
4797static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4798			      struct dwc2_hsotg_ep *hs_ep,
4799				       int epnum,
4800				       bool dir_in)
4801{
4802	char *dir;
4803
4804	if (epnum == 0)
4805		dir = "";
4806	else if (dir_in)
4807		dir = "in";
4808	else
4809		dir = "out";
4810
4811	hs_ep->dir_in = dir_in;
4812	hs_ep->index = epnum;
4813
4814	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4815
4816	INIT_LIST_HEAD(&hs_ep->queue);
4817	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4818
4819	/* add to the list of endpoints known by the gadget driver */
4820	if (epnum)
4821		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4822
4823	hs_ep->parent = hsotg;
4824	hs_ep->ep.name = hs_ep->name;
4825
4826	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4827		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4828	else
4829		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4830					   epnum ? 1024 : EP0_MPS_LIMIT);
4831	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4832
4833	if (epnum == 0) {
4834		hs_ep->ep.caps.type_control = true;
4835	} else {
4836		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4837			hs_ep->ep.caps.type_iso = true;
4838			hs_ep->ep.caps.type_bulk = true;
4839		}
4840		hs_ep->ep.caps.type_int = true;
4841	}
4842
4843	if (dir_in)
4844		hs_ep->ep.caps.dir_in = true;
4845	else
4846		hs_ep->ep.caps.dir_out = true;
4847
4848	/*
4849	 * if we're using dma, we need to set the next-endpoint pointer
4850	 * to be something valid.
4851	 */
4852
4853	if (using_dma(hsotg)) {
4854		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4855
4856		if (dir_in)
4857			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4858		else
4859			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4860	}
4861}
4862
4863/**
4864 * dwc2_hsotg_hw_cfg - read HW configuration registers
4865 * @hsotg: Programming view of the DWC_otg controller
4866 *
4867 * Read the USB core HW configuration registers
4868 */
4869static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4870{
4871	u32 cfg;
4872	u32 ep_type;
4873	u32 i;
4874
4875	/* check hardware configuration */
4876
4877	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4878
4879	/* Add ep0 */
4880	hsotg->num_of_eps++;
4881
4882	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4883					sizeof(struct dwc2_hsotg_ep),
4884					GFP_KERNEL);
4885	if (!hsotg->eps_in[0])
4886		return -ENOMEM;
4887	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4888	hsotg->eps_out[0] = hsotg->eps_in[0];
4889
4890	cfg = hsotg->hw_params.dev_ep_dirs;
4891	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4892		ep_type = cfg & 3;
4893		/* Direction in or both */
4894		if (!(ep_type & 2)) {
4895			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4896				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4897			if (!hsotg->eps_in[i])
4898				return -ENOMEM;
4899		}
4900		/* Direction out or both */
4901		if (!(ep_type & 1)) {
4902			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4903				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4904			if (!hsotg->eps_out[i])
4905				return -ENOMEM;
4906		}
4907	}
4908
4909	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4910	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4911
4912	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4913		 hsotg->num_of_eps,
4914		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4915		 hsotg->fifo_mem);
4916	return 0;
4917}
4918
4919/**
4920 * dwc2_hsotg_dump - dump state of the udc
4921 * @hsotg: Programming view of the DWC_otg controller
4922 *
4923 */
4924static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4925{
4926#ifdef DEBUG
4927	struct device *dev = hsotg->dev;
4928	u32 val;
4929	int idx;
4930
4931	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4932		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4933		 dwc2_readl(hsotg, DIEPMSK));
4934
4935	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4936		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4937
4938	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4939		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4940
4941	/* show periodic fifo settings */
4942
4943	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4944		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4945		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4946			 val >> FIFOSIZE_DEPTH_SHIFT,
4947			 val & FIFOSIZE_STARTADDR_MASK);
4948	}
4949
4950	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4951		dev_info(dev,
4952			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4953			 dwc2_readl(hsotg, DIEPCTL(idx)),
4954			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4955			 dwc2_readl(hsotg, DIEPDMA(idx)));
4956
4957		val = dwc2_readl(hsotg, DOEPCTL(idx));
4958		dev_info(dev,
4959			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4960			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4961			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4962			 dwc2_readl(hsotg, DOEPDMA(idx)));
4963	}
4964
4965	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4966		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4967#endif
4968}
4969
4970/**
4971 * dwc2_gadget_init - init function for gadget
4972 * @hsotg: Programming view of the DWC_otg controller
4973 *
4974 */
4975int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4976{
4977	struct device *dev = hsotg->dev;
4978	int epnum;
4979	int ret;
4980
4981	/* Dump fifo information */
4982	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4983		hsotg->params.g_np_tx_fifo_size);
4984	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4985
4986	switch (hsotg->params.speed) {
4987	case DWC2_SPEED_PARAM_LOW:
4988		hsotg->gadget.max_speed = USB_SPEED_LOW;
4989		break;
4990	case DWC2_SPEED_PARAM_FULL:
4991		hsotg->gadget.max_speed = USB_SPEED_FULL;
4992		break;
4993	default:
4994		hsotg->gadget.max_speed = USB_SPEED_HIGH;
4995		break;
4996	}
4997
4998	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4999	hsotg->gadget.name = dev_name(dev);
5000	hsotg->gadget.otg_caps = &hsotg->params.otg_caps;
5001	hsotg->remote_wakeup_allowed = 0;
5002
5003	if (hsotg->params.lpm)
5004		hsotg->gadget.lpm_capable = true;
5005
5006	if (hsotg->dr_mode == USB_DR_MODE_OTG)
5007		hsotg->gadget.is_otg = 1;
5008	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
5009		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
5010
5011	ret = dwc2_hsotg_hw_cfg(hsotg);
5012	if (ret) {
5013		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
5014		return ret;
5015	}
5016
5017	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
5018			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5019	if (!hsotg->ctrl_buff)
5020		return -ENOMEM;
5021
5022	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
5023			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5024	if (!hsotg->ep0_buff)
5025		return -ENOMEM;
5026
5027	if (using_desc_dma(hsotg)) {
5028		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
5029		if (ret < 0)
5030			return ret;
5031	}
5032
5033	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
5034			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
5035	if (ret < 0) {
5036		dev_err(dev, "cannot claim IRQ for gadget\n");
5037		return ret;
5038	}
5039
5040	/* hsotg->num_of_eps holds number of EPs other than ep0 */
5041
5042	if (hsotg->num_of_eps == 0) {
5043		dev_err(dev, "wrong number of EPs (zero)\n");
5044		return -EINVAL;
5045	}
5046
5047	/* setup endpoint information */
5048
5049	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
5050	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
5051
5052	/* allocate EP0 request */
5053
5054	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
5055						     GFP_KERNEL);
5056	if (!hsotg->ctrl_req) {
5057		dev_err(dev, "failed to allocate ctrl req\n");
5058		return -ENOMEM;
5059	}
5060
5061	/* initialise the endpoints now the core has been initialised */
5062	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
5063		if (hsotg->eps_in[epnum])
5064			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
5065					  epnum, 1);
5066		if (hsotg->eps_out[epnum])
5067			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
5068					  epnum, 0);
5069	}
5070
5071	dwc2_hsotg_dump(hsotg);
5072
5073	return 0;
5074}
5075
5076/**
5077 * dwc2_hsotg_remove - remove function for hsotg driver
5078 * @hsotg: Programming view of the DWC_otg controller
5079 *
5080 */
5081int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
5082{
5083	usb_del_gadget_udc(&hsotg->gadget);
5084	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
5085
5086	return 0;
5087}
5088
5089int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
5090{
5091	unsigned long flags;
5092
5093	if (hsotg->lx_state != DWC2_L0)
5094		return 0;
5095
5096	if (hsotg->driver) {
5097		int ep;
5098
5099		dev_info(hsotg->dev, "suspending usb gadget %s\n",
5100			 hsotg->driver->driver.name);
5101
5102		spin_lock_irqsave(&hsotg->lock, flags);
5103		if (hsotg->enabled)
5104			dwc2_hsotg_core_disconnect(hsotg);
5105		dwc2_hsotg_disconnect(hsotg);
5106		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5107		spin_unlock_irqrestore(&hsotg->lock, flags);
5108
5109		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
5110			if (hsotg->eps_in[ep])
5111				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5112			if (hsotg->eps_out[ep])
5113				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5114		}
5115	}
5116
5117	return 0;
5118}
5119
5120int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5121{
5122	unsigned long flags;
5123
5124	if (hsotg->lx_state == DWC2_L2)
5125		return 0;
5126
5127	if (hsotg->driver) {
5128		dev_info(hsotg->dev, "resuming usb gadget %s\n",
5129			 hsotg->driver->driver.name);
5130
5131		spin_lock_irqsave(&hsotg->lock, flags);
5132		dwc2_hsotg_core_init_disconnected(hsotg, false);
5133		if (hsotg->enabled) {
5134			/* Enable ACG feature in device mode,if supported */
5135			dwc2_enable_acg(hsotg);
5136			dwc2_hsotg_core_connect(hsotg);
5137		}
5138		spin_unlock_irqrestore(&hsotg->lock, flags);
5139	}
5140
5141	return 0;
5142}
5143
5144/**
5145 * dwc2_backup_device_registers() - Backup controller device registers.
5146 * When suspending usb bus, registers needs to be backuped
5147 * if controller power is disabled once suspended.
5148 *
5149 * @hsotg: Programming view of the DWC_otg controller
5150 */
5151int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5152{
5153	struct dwc2_dregs_backup *dr;
5154	int i;
5155
5156	dev_dbg(hsotg->dev, "%s\n", __func__);
5157
5158	/* Backup dev regs */
5159	dr = &hsotg->dr_backup;
5160
5161	dr->dcfg = dwc2_readl(hsotg, DCFG);
5162	dr->dctl = dwc2_readl(hsotg, DCTL);
5163	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5164	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5165	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5166
5167	for (i = 0; i < hsotg->num_of_eps; i++) {
5168		/* Backup IN EPs */
5169		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5170
5171		/* Ensure DATA PID is correctly configured */
5172		if (dr->diepctl[i] & DXEPCTL_DPID)
5173			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5174		else
5175			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5176
5177		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5178		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5179
5180		/* Backup OUT EPs */
5181		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5182
5183		/* Ensure DATA PID is correctly configured */
5184		if (dr->doepctl[i] & DXEPCTL_DPID)
5185			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5186		else
5187			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5188
5189		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5190		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5191		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5192	}
5193	dr->valid = true;
5194	return 0;
5195}
5196
5197/**
5198 * dwc2_restore_device_registers() - Restore controller device registers.
5199 * When resuming usb bus, device registers needs to be restored
5200 * if controller power were disabled.
5201 *
5202 * @hsotg: Programming view of the DWC_otg controller
5203 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5204 *
5205 * Return: 0 if successful, negative error code otherwise
5206 */
5207int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5208{
5209	struct dwc2_dregs_backup *dr;
5210	int i;
5211
5212	dev_dbg(hsotg->dev, "%s\n", __func__);
5213
5214	/* Restore dev regs */
5215	dr = &hsotg->dr_backup;
5216	if (!dr->valid) {
5217		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5218			__func__);
5219		return -EINVAL;
5220	}
5221	dr->valid = false;
5222
5223	if (!remote_wakeup)
5224		dwc2_writel(hsotg, dr->dctl, DCTL);
5225
5226	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5227	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5228	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5229
5230	for (i = 0; i < hsotg->num_of_eps; i++) {
5231		/* Restore IN EPs */
5232		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5233		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5234		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5235		/** WA for enabled EPx's IN in DDMA mode. On entering to
5236		 * hibernation wrong value read and saved from DIEPDMAx,
5237		 * as result BNA interrupt asserted on hibernation exit
5238		 * by restoring from saved area.
5239		 */
5240		if (using_desc_dma(hsotg) &&
5241		    (dr->diepctl[i] & DXEPCTL_EPENA))
5242			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5243		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5244		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5245		/* Restore OUT EPs */
5246		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5247		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5248		 * hibernation wrong value read and saved from DOEPDMAx,
5249		 * as result BNA interrupt asserted on hibernation exit
5250		 * by restoring from saved area.
5251		 */
5252		if (using_desc_dma(hsotg) &&
5253		    (dr->doepctl[i] & DXEPCTL_EPENA))
5254			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5255		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5256		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5257	}
5258
5259	return 0;
5260}
5261
5262/**
5263 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5264 *
5265 * @hsotg: Programming view of DWC_otg controller
5266 *
5267 */
5268void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5269{
5270	u32 val;
5271
5272	if (!hsotg->params.lpm)
5273		return;
5274
5275	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5276	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5277	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5278	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5279	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5280	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5281	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5282	dwc2_writel(hsotg, val, GLPMCFG);
5283	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5284
5285	/* Unmask WKUP_ALERT Interrupt */
5286	if (hsotg->params.service_interval)
5287		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5288}
5289
5290/**
5291 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5292 *
5293 * @hsotg: Programming view of DWC_otg controller
5294 *
5295 */
5296void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5297{
5298	u32 val = 0;
5299
5300	val |= GREFCLK_REF_CLK_MODE;
5301	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5302	val |= hsotg->params.sof_cnt_wkup_alert <<
5303	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5304
5305	dwc2_writel(hsotg, val, GREFCLK);
5306	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5307}
5308
5309/**
5310 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5311 *
5312 * @hsotg: Programming view of the DWC_otg controller
5313 *
5314 * Return non-zero if failed to enter to hibernation.
5315 */
5316int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5317{
5318	u32 gpwrdn;
5319	int ret = 0;
5320
5321	/* Change to L2(suspend) state */
5322	hsotg->lx_state = DWC2_L2;
5323	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5324	ret = dwc2_backup_global_registers(hsotg);
5325	if (ret) {
5326		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5327			__func__);
5328		return ret;
5329	}
5330	ret = dwc2_backup_device_registers(hsotg);
5331	if (ret) {
5332		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5333			__func__);
5334		return ret;
5335	}
5336
5337	gpwrdn = GPWRDN_PWRDNRSTN;
5338	gpwrdn |= GPWRDN_PMUACTV;
5339	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5340	udelay(10);
5341
5342	/* Set flag to indicate that we are in hibernation */
5343	hsotg->hibernated = 1;
5344
5345	/* Enable interrupts from wake up logic */
5346	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5347	gpwrdn |= GPWRDN_PMUINTSEL;
5348	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5349	udelay(10);
5350
5351	/* Unmask device mode interrupts in GPWRDN */
5352	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5353	gpwrdn |= GPWRDN_RST_DET_MSK;
5354	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5355	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5356	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5357	udelay(10);
5358
5359	/* Enable Power Down Clamp */
5360	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5361	gpwrdn |= GPWRDN_PWRDNCLMP;
5362	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5363	udelay(10);
5364
5365	/* Switch off VDD */
5366	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5367	gpwrdn |= GPWRDN_PWRDNSWTCH;
5368	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5369	udelay(10);
5370
5371	/* Save gpwrdn register for further usage if stschng interrupt */
5372	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5373	dev_dbg(hsotg->dev, "Hibernation completed\n");
5374
5375	return ret;
5376}
5377
5378/**
5379 * dwc2_gadget_exit_hibernation()
5380 * This function is for exiting from Device mode hibernation by host initiated
5381 * resume/reset and device initiated remote-wakeup.
5382 *
5383 * @hsotg: Programming view of the DWC_otg controller
5384 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5385 * @reset: indicates whether resume is initiated by Reset.
5386 *
5387 * Return non-zero if failed to exit from hibernation.
5388 */
5389int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5390				 int rem_wakeup, int reset)
5391{
5392	u32 pcgcctl;
5393	u32 gpwrdn;
5394	u32 dctl;
5395	int ret = 0;
5396	struct dwc2_gregs_backup *gr;
5397	struct dwc2_dregs_backup *dr;
5398
5399	gr = &hsotg->gr_backup;
5400	dr = &hsotg->dr_backup;
5401
5402	if (!hsotg->hibernated) {
5403		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5404		return 1;
5405	}
5406	dev_dbg(hsotg->dev,
5407		"%s: called with rem_wakeup = %d reset = %d\n",
5408		__func__, rem_wakeup, reset);
5409
5410	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5411
5412	if (!reset) {
5413		/* Clear all pending interupts */
5414		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5415	}
5416
5417	/* De-assert Restore */
5418	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5419	gpwrdn &= ~GPWRDN_RESTORE;
5420	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5421	udelay(10);
5422
5423	if (!rem_wakeup) {
5424		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5425		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5426		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5427	}
5428
5429	/* Restore GUSBCFG, DCFG and DCTL */
5430	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5431	dwc2_writel(hsotg, dr->dcfg, DCFG);
5432	dwc2_writel(hsotg, dr->dctl, DCTL);
5433
5434	/* On USB Reset, reset device address to zero */
5435	if (reset)
5436		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
5437
5438	/* De-assert Wakeup Logic */
5439	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5440	gpwrdn &= ~GPWRDN_PMUACTV;
5441	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5442
5443	if (rem_wakeup) {
5444		udelay(10);
5445		/* Start Remote Wakeup Signaling */
5446		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5447	} else {
5448		udelay(50);
5449		/* Set Device programming done bit */
5450		dctl = dwc2_readl(hsotg, DCTL);
5451		dctl |= DCTL_PWRONPRGDONE;
5452		dwc2_writel(hsotg, dctl, DCTL);
5453	}
5454	/* Wait for interrupts which must be cleared */
5455	mdelay(2);
5456	/* Clear all pending interupts */
5457	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5458
5459	/* Restore global registers */
5460	ret = dwc2_restore_global_registers(hsotg);
5461	if (ret) {
5462		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5463			__func__);
5464		return ret;
5465	}
5466
5467	/* Restore device registers */
5468	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5469	if (ret) {
5470		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5471			__func__);
5472		return ret;
5473	}
5474
5475	if (rem_wakeup) {
5476		mdelay(10);
5477		dctl = dwc2_readl(hsotg, DCTL);
5478		dctl &= ~DCTL_RMTWKUPSIG;
5479		dwc2_writel(hsotg, dctl, DCTL);
5480	}
5481
5482	hsotg->hibernated = 0;
5483	hsotg->lx_state = DWC2_L0;
5484	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5485
5486	return ret;
5487}
5488
5489/**
5490 * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5491 * power down.
5492 *
5493 * @hsotg: Programming view of the DWC_otg controller
5494 *
5495 * Return: non-zero if failed to enter device partial power down.
5496 *
5497 * This function is for entering device mode partial power down.
5498 */
5499int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5500{
5501	u32 pcgcctl;
5502	int ret = 0;
5503
5504	dev_dbg(hsotg->dev, "Entering device partial power down started.\n");
5505
5506	/* Backup all registers */
5507	ret = dwc2_backup_global_registers(hsotg);
5508	if (ret) {
5509		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5510			__func__);
5511		return ret;
5512	}
5513
5514	ret = dwc2_backup_device_registers(hsotg);
5515	if (ret) {
5516		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5517			__func__);
5518		return ret;
5519	}
5520
5521	/*
5522	 * Clear any pending interrupts since dwc2 will not be able to
5523	 * clear them after entering partial_power_down.
5524	 */
5525	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5526
5527	/* Put the controller in low power state */
5528	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5529
5530	pcgcctl |= PCGCTL_PWRCLMP;
5531	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5532	udelay(5);
5533
5534	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5535	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5536	udelay(5);
5537
5538	pcgcctl |= PCGCTL_STOPPCLK;
5539	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5540
5541	/* Set in_ppd flag to 1 as here core enters suspend. */
5542	hsotg->in_ppd = 1;
5543	hsotg->lx_state = DWC2_L2;
5544
5545	dev_dbg(hsotg->dev, "Entering device partial power down completed.\n");
5546
5547	return ret;
5548}
5549
5550/*
5551 * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5552 * power down.
5553 *
5554 * @hsotg: Programming view of the DWC_otg controller
5555 * @restore: indicates whether need to restore the registers or not.
5556 *
5557 * Return: non-zero if failed to exit device partial power down.
5558 *
5559 * This function is for exiting from device mode partial power down.
5560 */
5561int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5562					bool restore)
5563{
5564	u32 pcgcctl;
5565	u32 dctl;
5566	struct dwc2_dregs_backup *dr;
5567	int ret = 0;
5568
5569	dr = &hsotg->dr_backup;
5570
5571	dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n");
5572
5573	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5574	pcgcctl &= ~PCGCTL_STOPPCLK;
5575	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5576
5577	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5578	pcgcctl &= ~PCGCTL_PWRCLMP;
5579	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5580
5581	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5582	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5583	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5584
5585	udelay(100);
5586	if (restore) {
5587		ret = dwc2_restore_global_registers(hsotg);
5588		if (ret) {
5589			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5590				__func__);
5591			return ret;
5592		}
5593		/* Restore DCFG */
5594		dwc2_writel(hsotg, dr->dcfg, DCFG);
5595
5596		ret = dwc2_restore_device_registers(hsotg, 0);
5597		if (ret) {
5598			dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5599				__func__);
5600			return ret;
5601		}
5602	}
5603
5604	/* Set the Power-On Programming done bit */
5605	dctl = dwc2_readl(hsotg, DCTL);
5606	dctl |= DCTL_PWRONPRGDONE;
5607	dwc2_writel(hsotg, dctl, DCTL);
5608
5609	/* Set in_ppd flag to 0 as here core exits from suspend. */
5610	hsotg->in_ppd = 0;
5611	hsotg->lx_state = DWC2_L0;
5612
5613	dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n");
5614	return ret;
5615}
5616
5617/**
5618 * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5619 *
5620 * @hsotg: Programming view of the DWC_otg controller
5621 *
5622 * Return: non-zero if failed to enter device partial power down.
5623 *
5624 * This function is for entering device mode clock gating.
5625 */
5626void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg)
5627{
5628	u32 pcgctl;
5629
5630	dev_dbg(hsotg->dev, "Entering device clock gating.\n");
5631
5632	/* Set the Phy Clock bit as suspend is received. */
5633	pcgctl = dwc2_readl(hsotg, PCGCTL);
5634	pcgctl |= PCGCTL_STOPPCLK;
5635	dwc2_writel(hsotg, pcgctl, PCGCTL);
5636	udelay(5);
5637
5638	/* Set the Gate hclk as suspend is received. */
5639	pcgctl = dwc2_readl(hsotg, PCGCTL);
5640	pcgctl |= PCGCTL_GATEHCLK;
5641	dwc2_writel(hsotg, pcgctl, PCGCTL);
5642	udelay(5);
5643
5644	hsotg->lx_state = DWC2_L2;
5645	hsotg->bus_suspended = true;
5646}
5647
5648/*
5649 * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5650 *
5651 * @hsotg: Programming view of the DWC_otg controller
5652 * @rem_wakeup: indicates whether remote wake up is enabled.
5653 *
5654 * This function is for exiting from device mode clock gating.
5655 */
5656void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5657{
5658	u32 pcgctl;
5659	u32 dctl;
5660
5661	dev_dbg(hsotg->dev, "Exiting device clock gating.\n");
5662
5663	/* Clear the Gate hclk. */
5664	pcgctl = dwc2_readl(hsotg, PCGCTL);
5665	pcgctl &= ~PCGCTL_GATEHCLK;
5666	dwc2_writel(hsotg, pcgctl, PCGCTL);
5667	udelay(5);
5668
5669	/* Phy Clock bit. */
5670	pcgctl = dwc2_readl(hsotg, PCGCTL);
5671	pcgctl &= ~PCGCTL_STOPPCLK;
5672	dwc2_writel(hsotg, pcgctl, PCGCTL);
5673	udelay(5);
5674
5675	if (rem_wakeup) {
5676		/* Set Remote Wakeup Signaling */
5677		dctl = dwc2_readl(hsotg, DCTL);
5678		dctl |= DCTL_RMTWKUPSIG;
5679		dwc2_writel(hsotg, dctl, DCTL);
5680	}
5681
5682	/* Change to L0 state */
5683	call_gadget(hsotg, resume);
5684	hsotg->lx_state = DWC2_L0;
5685	hsotg->bus_suspended = false;
5686}
5687