1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Released under the GPLv2 only.
4 */
5
6#include <linux/module.h>
7#include <linux/string.h>
8#include <linux/bitops.h>
9#include <linux/slab.h>
10#include <linux/log2.h>
11#include <linux/kmsan.h>
12#include <linux/usb.h>
13#include <linux/wait.h>
14#include <linux/usb/hcd.h>
15#include <linux/scatterlist.h>
16
17#define to_urb(d) container_of(d, struct urb, kref)
18
19
20static void urb_destroy(struct kref *kref)
21{
22	struct urb *urb = to_urb(kref);
23
24	if (urb->transfer_flags & URB_FREE_BUFFER)
25		kfree(urb->transfer_buffer);
26
27	kfree(urb);
28}
29
30/**
31 * usb_init_urb - initializes a urb so that it can be used by a USB driver
32 * @urb: pointer to the urb to initialize
33 *
34 * Initializes a urb so that the USB subsystem can use it properly.
35 *
36 * If a urb is created with a call to usb_alloc_urb() it is not
37 * necessary to call this function.  Only use this if you allocate the
38 * space for a struct urb on your own.  If you call this function, be
39 * careful when freeing the memory for your urb that it is no longer in
40 * use by the USB core.
41 *
42 * Only use this function if you _really_ understand what you are doing.
43 */
44void usb_init_urb(struct urb *urb)
45{
46	if (urb) {
47		memset(urb, 0, sizeof(*urb));
48		kref_init(&urb->kref);
49		INIT_LIST_HEAD(&urb->urb_list);
50		INIT_LIST_HEAD(&urb->anchor_list);
51	}
52}
53EXPORT_SYMBOL_GPL(usb_init_urb);
54
55/**
56 * usb_alloc_urb - creates a new urb for a USB driver to use
57 * @iso_packets: number of iso packets for this urb
58 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
59 *	valid options for this.
60 *
61 * Creates an urb for the USB driver to use, initializes a few internal
62 * structures, increments the usage counter, and returns a pointer to it.
63 *
64 * If the driver want to use this urb for interrupt, control, or bulk
65 * endpoints, pass '0' as the number of iso packets.
66 *
67 * The driver must call usb_free_urb() when it is finished with the urb.
68 *
69 * Return: A pointer to the new urb, or %NULL if no memory is available.
70 */
71struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
72{
73	struct urb *urb;
74
75	urb = kmalloc(struct_size(urb, iso_frame_desc, iso_packets),
76		      mem_flags);
77	if (!urb)
78		return NULL;
79	usb_init_urb(urb);
80	return urb;
81}
82EXPORT_SYMBOL_GPL(usb_alloc_urb);
83
84/**
85 * usb_free_urb - frees the memory used by a urb when all users of it are finished
86 * @urb: pointer to the urb to free, may be NULL
87 *
88 * Must be called when a user of a urb is finished with it.  When the last user
89 * of the urb calls this function, the memory of the urb is freed.
90 *
91 * Note: The transfer buffer associated with the urb is not freed unless the
92 * URB_FREE_BUFFER transfer flag is set.
93 */
94void usb_free_urb(struct urb *urb)
95{
96	if (urb)
97		kref_put(&urb->kref, urb_destroy);
98}
99EXPORT_SYMBOL_GPL(usb_free_urb);
100
101/**
102 * usb_get_urb - increments the reference count of the urb
103 * @urb: pointer to the urb to modify, may be NULL
104 *
105 * This must be  called whenever a urb is transferred from a device driver to a
106 * host controller driver.  This allows proper reference counting to happen
107 * for urbs.
108 *
109 * Return: A pointer to the urb with the incremented reference counter.
110 */
111struct urb *usb_get_urb(struct urb *urb)
112{
113	if (urb)
114		kref_get(&urb->kref);
115	return urb;
116}
117EXPORT_SYMBOL_GPL(usb_get_urb);
118
119/**
120 * usb_anchor_urb - anchors an URB while it is processed
121 * @urb: pointer to the urb to anchor
122 * @anchor: pointer to the anchor
123 *
124 * This can be called to have access to URBs which are to be executed
125 * without bothering to track them
126 */
127void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
128{
129	unsigned long flags;
130
131	spin_lock_irqsave(&anchor->lock, flags);
132	usb_get_urb(urb);
133	list_add_tail(&urb->anchor_list, &anchor->urb_list);
134	urb->anchor = anchor;
135
136	if (unlikely(anchor->poisoned))
137		atomic_inc(&urb->reject);
138
139	spin_unlock_irqrestore(&anchor->lock, flags);
140}
141EXPORT_SYMBOL_GPL(usb_anchor_urb);
142
143static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
144{
145	return atomic_read(&anchor->suspend_wakeups) == 0 &&
146		list_empty(&anchor->urb_list);
147}
148
149/* Callers must hold anchor->lock */
150static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
151{
152	urb->anchor = NULL;
153	list_del(&urb->anchor_list);
154	usb_put_urb(urb);
155	if (usb_anchor_check_wakeup(anchor))
156		wake_up(&anchor->wait);
157}
158
159/**
160 * usb_unanchor_urb - unanchors an URB
161 * @urb: pointer to the urb to anchor
162 *
163 * Call this to stop the system keeping track of this URB
164 */
165void usb_unanchor_urb(struct urb *urb)
166{
167	unsigned long flags;
168	struct usb_anchor *anchor;
169
170	if (!urb)
171		return;
172
173	anchor = urb->anchor;
174	if (!anchor)
175		return;
176
177	spin_lock_irqsave(&anchor->lock, flags);
178	/*
179	 * At this point, we could be competing with another thread which
180	 * has the same intention. To protect the urb from being unanchored
181	 * twice, only the winner of the race gets the job.
182	 */
183	if (likely(anchor == urb->anchor))
184		__usb_unanchor_urb(urb, anchor);
185	spin_unlock_irqrestore(&anchor->lock, flags);
186}
187EXPORT_SYMBOL_GPL(usb_unanchor_urb);
188
189/*-------------------------------------------------------------------*/
190
191static const int pipetypes[4] = {
192	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
193};
194
195/**
196 * usb_pipe_type_check - sanity check of a specific pipe for a usb device
197 * @dev: struct usb_device to be checked
198 * @pipe: pipe to check
199 *
200 * This performs a light-weight sanity check for the endpoint in the
201 * given usb device.  It returns 0 if the pipe is valid for the specific usb
202 * device, otherwise a negative error code.
203 */
204int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe)
205{
206	const struct usb_host_endpoint *ep;
207
208	ep = usb_pipe_endpoint(dev, pipe);
209	if (!ep)
210		return -EINVAL;
211	if (usb_pipetype(pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
212		return -EINVAL;
213	return 0;
214}
215EXPORT_SYMBOL_GPL(usb_pipe_type_check);
216
217/**
218 * usb_urb_ep_type_check - sanity check of endpoint in the given urb
219 * @urb: urb to be checked
220 *
221 * This performs a light-weight sanity check for the endpoint in the
222 * given urb.  It returns 0 if the urb contains a valid endpoint, otherwise
223 * a negative error code.
224 */
225int usb_urb_ep_type_check(const struct urb *urb)
226{
227	return usb_pipe_type_check(urb->dev, urb->pipe);
228}
229EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
230
231/**
232 * usb_submit_urb - issue an asynchronous transfer request for an endpoint
233 * @urb: pointer to the urb describing the request
234 * @mem_flags: the type of memory to allocate, see kmalloc() for a list
235 *	of valid options for this.
236 *
237 * This submits a transfer request, and transfers control of the URB
238 * describing that request to the USB subsystem.  Request completion will
239 * be indicated later, asynchronously, by calling the completion handler.
240 * The three types of completion are success, error, and unlink
241 * (a software-induced fault, also called "request cancellation").
242 *
243 * URBs may be submitted in interrupt context.
244 *
245 * The caller must have correctly initialized the URB before submitting
246 * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
247 * available to ensure that most fields are correctly initialized, for
248 * the particular kind of transfer, although they will not initialize
249 * any transfer flags.
250 *
251 * If the submission is successful, the complete() callback from the URB
252 * will be called exactly once, when the USB core and Host Controller Driver
253 * (HCD) are finished with the URB.  When the completion function is called,
254 * control of the URB is returned to the device driver which issued the
255 * request.  The completion handler may then immediately free or reuse that
256 * URB.
257 *
258 * With few exceptions, USB device drivers should never access URB fields
259 * provided by usbcore or the HCD until its complete() is called.
260 * The exceptions relate to periodic transfer scheduling.  For both
261 * interrupt and isochronous urbs, as part of successful URB submission
262 * urb->interval is modified to reflect the actual transfer period used
263 * (normally some power of two units).  And for isochronous urbs,
264 * urb->start_frame is modified to reflect when the URB's transfers were
265 * scheduled to start.
266 *
267 * Not all isochronous transfer scheduling policies will work, but most
268 * host controller drivers should easily handle ISO queues going from now
269 * until 10-200 msec into the future.  Drivers should try to keep at
270 * least one or two msec of data in the queue; many controllers require
271 * that new transfers start at least 1 msec in the future when they are
272 * added.  If the driver is unable to keep up and the queue empties out,
273 * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
274 * If the flag is set, or if the queue is idle, then the URB is always
275 * assigned to the first available (and not yet expired) slot in the
276 * endpoint's schedule.  If the flag is not set and the queue is active
277 * then the URB is always assigned to the next slot in the schedule
278 * following the end of the endpoint's previous URB, even if that slot is
279 * in the past.  When a packet is assigned in this way to a slot that has
280 * already expired, the packet is not transmitted and the corresponding
281 * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
282 * would happen to all the packets in the URB, submission fails with a
283 * -EXDEV error code.
284 *
285 * For control endpoints, the synchronous usb_control_msg() call is
286 * often used (in non-interrupt context) instead of this call.
287 * That is often used through convenience wrappers, for the requests
288 * that are standardized in the USB 2.0 specification.  For bulk
289 * endpoints, a synchronous usb_bulk_msg() call is available.
290 *
291 * Return:
292 * 0 on successful submissions. A negative error number otherwise.
293 *
294 * Request Queuing:
295 *
296 * URBs may be submitted to endpoints before previous ones complete, to
297 * minimize the impact of interrupt latencies and system overhead on data
298 * throughput.  With that queuing policy, an endpoint's queue would never
299 * be empty.  This is required for continuous isochronous data streams,
300 * and may also be required for some kinds of interrupt transfers. Such
301 * queuing also maximizes bandwidth utilization by letting USB controllers
302 * start work on later requests before driver software has finished the
303 * completion processing for earlier (successful) requests.
304 *
305 * As of Linux 2.6, all USB endpoint transfer queues support depths greater
306 * than one.  This was previously a HCD-specific behavior, except for ISO
307 * transfers.  Non-isochronous endpoint queues are inactive during cleanup
308 * after faults (transfer errors or cancellation).
309 *
310 * Reserved Bandwidth Transfers:
311 *
312 * Periodic transfers (interrupt or isochronous) are performed repeatedly,
313 * using the interval specified in the urb.  Submitting the first urb to
314 * the endpoint reserves the bandwidth necessary to make those transfers.
315 * If the USB subsystem can't allocate sufficient bandwidth to perform
316 * the periodic request, submitting such a periodic request should fail.
317 *
318 * For devices under xHCI, the bandwidth is reserved at configuration time, or
319 * when the alt setting is selected.  If there is not enough bus bandwidth, the
320 * configuration/alt setting request will fail.  Therefore, submissions to
321 * periodic endpoints on devices under xHCI should never fail due to bandwidth
322 * constraints.
323 *
324 * Device drivers must explicitly request that repetition, by ensuring that
325 * some URB is always on the endpoint's queue (except possibly for short
326 * periods during completion callbacks).  When there is no longer an urb
327 * queued, the endpoint's bandwidth reservation is canceled.  This means
328 * drivers can use their completion handlers to ensure they keep bandwidth
329 * they need, by reinitializing and resubmitting the just-completed urb
330 * until the driver longer needs that periodic bandwidth.
331 *
332 * Memory Flags:
333 *
334 * The general rules for how to decide which mem_flags to use
335 * are the same as for kmalloc.  There are four
336 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
337 * GFP_ATOMIC.
338 *
339 * GFP_NOFS is not ever used, as it has not been implemented yet.
340 *
341 * GFP_ATOMIC is used when
342 *   (a) you are inside a completion handler, an interrupt, bottom half,
343 *       tasklet or timer, or
344 *   (b) you are holding a spinlock or rwlock (does not apply to
345 *       semaphores), or
346 *   (c) current->state != TASK_RUNNING, this is the case only after
347 *       you've changed it.
348 *
349 * GFP_NOIO is used in the block io path and error handling of storage
350 * devices.
351 *
352 * All other situations use GFP_KERNEL.
353 *
354 * Some more specific rules for mem_flags can be inferred, such as
355 *  (1) start_xmit, timeout, and receive methods of network drivers must
356 *      use GFP_ATOMIC (they are called with a spinlock held);
357 *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
358 *      called with a spinlock held);
359 *  (3) If you use a kernel thread with a network driver you must use
360 *      GFP_NOIO, unless (b) or (c) apply;
361 *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
362 *      apply or your are in a storage driver's block io path;
363 *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
364 *  (6) changing firmware on a running storage or net device uses
365 *      GFP_NOIO, unless b) or c) apply
366 *
367 */
368int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
369{
370	int				xfertype, max;
371	struct usb_device		*dev;
372	struct usb_host_endpoint	*ep;
373	int				is_out;
374	unsigned int			allowed;
375
376	if (!urb || !urb->complete)
377		return -EINVAL;
378	if (urb->hcpriv) {
379		WARN_ONCE(1, "URB %pK submitted while active\n", urb);
380		return -EBUSY;
381	}
382
383	dev = urb->dev;
384	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
385		return -ENODEV;
386
387	/* For now, get the endpoint from the pipe.  Eventually drivers
388	 * will be required to set urb->ep directly and we will eliminate
389	 * urb->pipe.
390	 */
391	ep = usb_pipe_endpoint(dev, urb->pipe);
392	if (!ep)
393		return -ENOENT;
394
395	urb->ep = ep;
396	urb->status = -EINPROGRESS;
397	urb->actual_length = 0;
398
399	/* Lots of sanity checks, so HCDs can rely on clean data
400	 * and don't need to duplicate tests
401	 */
402	xfertype = usb_endpoint_type(&ep->desc);
403	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
404		struct usb_ctrlrequest *setup =
405				(struct usb_ctrlrequest *) urb->setup_packet;
406
407		if (!setup)
408			return -ENOEXEC;
409		is_out = !(setup->bRequestType & USB_DIR_IN) ||
410				!setup->wLength;
411		dev_WARN_ONCE(&dev->dev, (usb_pipeout(urb->pipe) != is_out),
412				"BOGUS control dir, pipe %x doesn't match bRequestType %x\n",
413				urb->pipe, setup->bRequestType);
414		if (le16_to_cpu(setup->wLength) != urb->transfer_buffer_length) {
415			dev_dbg(&dev->dev, "BOGUS control len %d doesn't match transfer length %d\n",
416					le16_to_cpu(setup->wLength),
417					urb->transfer_buffer_length);
418			return -EBADR;
419		}
420	} else {
421		is_out = usb_endpoint_dir_out(&ep->desc);
422	}
423
424	/* Clear the internal flags and cache the direction for later use */
425	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
426			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
427			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
428			URB_DMA_SG_COMBINED);
429	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
430	kmsan_handle_urb(urb, is_out);
431
432	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
433			dev->state < USB_STATE_CONFIGURED)
434		return -ENODEV;
435
436	max = usb_endpoint_maxp(&ep->desc);
437	if (max <= 0) {
438		dev_dbg(&dev->dev,
439			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
440			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
441			__func__, max);
442		return -EMSGSIZE;
443	}
444
445	/* periodic transfers limit size per frame/uframe,
446	 * but drivers only control those sizes for ISO.
447	 * while we're checking, initialize return status.
448	 */
449	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
450		int	n, len;
451
452		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
453		 * 3 packets each
454		 */
455		if (dev->speed >= USB_SPEED_SUPER) {
456			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
457			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
458			max *= burst;
459			max *= mult;
460		}
461
462		if (dev->speed == USB_SPEED_SUPER_PLUS &&
463		    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) {
464			struct usb_ssp_isoc_ep_comp_descriptor *isoc_ep_comp;
465
466			isoc_ep_comp = &ep->ssp_isoc_ep_comp;
467			max = le32_to_cpu(isoc_ep_comp->dwBytesPerInterval);
468		}
469
470		/* "high bandwidth" mode, 1-3 packets/uframe? */
471		if (dev->speed == USB_SPEED_HIGH)
472			max *= usb_endpoint_maxp_mult(&ep->desc);
473
474		if (urb->number_of_packets <= 0)
475			return -EINVAL;
476		for (n = 0; n < urb->number_of_packets; n++) {
477			len = urb->iso_frame_desc[n].length;
478			if (len < 0 || len > max)
479				return -EMSGSIZE;
480			urb->iso_frame_desc[n].status = -EXDEV;
481			urb->iso_frame_desc[n].actual_length = 0;
482		}
483	} else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint) {
484		struct scatterlist *sg;
485		int i;
486
487		for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
488			if (sg->length % max)
489				return -EINVAL;
490	}
491
492	/* the I/O buffer must be mapped/unmapped, except when length=0 */
493	if (urb->transfer_buffer_length > INT_MAX)
494		return -EMSGSIZE;
495
496	/*
497	 * stuff that drivers shouldn't do, but which shouldn't
498	 * cause problems in HCDs if they get it wrong.
499	 */
500
501	/* Check that the pipe's type matches the endpoint's type */
502	if (usb_pipe_type_check(urb->dev, urb->pipe))
503		dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
504			usb_pipetype(urb->pipe), pipetypes[xfertype]);
505
506	/* Check against a simple/standard policy */
507	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
508			URB_FREE_BUFFER);
509	switch (xfertype) {
510	case USB_ENDPOINT_XFER_BULK:
511	case USB_ENDPOINT_XFER_INT:
512		if (is_out)
513			allowed |= URB_ZERO_PACKET;
514		fallthrough;
515	default:			/* all non-iso endpoints */
516		if (!is_out)
517			allowed |= URB_SHORT_NOT_OK;
518		break;
519	case USB_ENDPOINT_XFER_ISOC:
520		allowed |= URB_ISO_ASAP;
521		break;
522	}
523	allowed &= urb->transfer_flags;
524
525	/* warn if submitter gave bogus flags */
526	if (allowed != urb->transfer_flags)
527		dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
528			urb->transfer_flags, allowed);
529
530	/*
531	 * Force periodic transfer intervals to be legal values that are
532	 * a power of two (so HCDs don't need to).
533	 *
534	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
535	 * supports different values... this uses EHCI/UHCI defaults (and
536	 * EHCI can use smaller non-default values).
537	 */
538	switch (xfertype) {
539	case USB_ENDPOINT_XFER_ISOC:
540	case USB_ENDPOINT_XFER_INT:
541		/* too small? */
542		if (urb->interval <= 0)
543			return -EINVAL;
544
545		/* too big? */
546		switch (dev->speed) {
547		case USB_SPEED_SUPER_PLUS:
548		case USB_SPEED_SUPER:	/* units are 125us */
549			/* Handle up to 2^(16-1) microframes */
550			if (urb->interval > (1 << 15))
551				return -EINVAL;
552			max = 1 << 15;
553			break;
554		case USB_SPEED_HIGH:	/* units are microframes */
555			/* NOTE usb handles 2^15 */
556			if (urb->interval > (1024 * 8))
557				urb->interval = 1024 * 8;
558			max = 1024 * 8;
559			break;
560		case USB_SPEED_FULL:	/* units are frames/msec */
561		case USB_SPEED_LOW:
562			if (xfertype == USB_ENDPOINT_XFER_INT) {
563				if (urb->interval > 255)
564					return -EINVAL;
565				/* NOTE ohci only handles up to 32 */
566				max = 128;
567			} else {
568				if (urb->interval > 1024)
569					urb->interval = 1024;
570				/* NOTE usb and ohci handle up to 2^15 */
571				max = 1024;
572			}
573			break;
574		default:
575			return -EINVAL;
576		}
577		/* Round down to a power of 2, no more than max */
578		urb->interval = min(max, 1 << ilog2(urb->interval));
579	}
580
581	return usb_hcd_submit_urb(urb, mem_flags);
582}
583EXPORT_SYMBOL_GPL(usb_submit_urb);
584
585/*-------------------------------------------------------------------*/
586
587/**
588 * usb_unlink_urb - abort/cancel a transfer request for an endpoint
589 * @urb: pointer to urb describing a previously submitted request,
590 *	may be NULL
591 *
592 * This routine cancels an in-progress request.  URBs complete only once
593 * per submission, and may be canceled only once per submission.
594 * Successful cancellation means termination of @urb will be expedited
595 * and the completion handler will be called with a status code
596 * indicating that the request has been canceled (rather than any other
597 * code).
598 *
599 * Drivers should not call this routine or related routines, such as
600 * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
601 * method has returned.  The disconnect function should synchronize with
602 * a driver's I/O routines to insure that all URB-related activity has
603 * completed before it returns.
604 *
605 * This request is asynchronous, however the HCD might call the ->complete()
606 * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
607 * must not hold any locks that may be taken by the completion function.
608 * Success is indicated by returning -EINPROGRESS, at which time the URB will
609 * probably not yet have been given back to the device driver. When it is
610 * eventually called, the completion function will see @urb->status ==
611 * -ECONNRESET.
612 * Failure is indicated by usb_unlink_urb() returning any other value.
613 * Unlinking will fail when @urb is not currently "linked" (i.e., it was
614 * never submitted, or it was unlinked before, or the hardware is already
615 * finished with it), even if the completion handler has not yet run.
616 *
617 * The URB must not be deallocated while this routine is running.  In
618 * particular, when a driver calls this routine, it must insure that the
619 * completion handler cannot deallocate the URB.
620 *
621 * Return: -EINPROGRESS on success. See description for other values on
622 * failure.
623 *
624 * Unlinking and Endpoint Queues:
625 *
626 * [The behaviors and guarantees described below do not apply to virtual
627 * root hubs but only to endpoint queues for physical USB devices.]
628 *
629 * Host Controller Drivers (HCDs) place all the URBs for a particular
630 * endpoint in a queue.  Normally the queue advances as the controller
631 * hardware processes each request.  But when an URB terminates with an
632 * error its queue generally stops (see below), at least until that URB's
633 * completion routine returns.  It is guaranteed that a stopped queue
634 * will not restart until all its unlinked URBs have been fully retired,
635 * with their completion routines run, even if that's not until some time
636 * after the original completion handler returns.  The same behavior and
637 * guarantee apply when an URB terminates because it was unlinked.
638 *
639 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
640 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
641 * and -EREMOTEIO.  Control endpoint queues behave the same way except
642 * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
643 * for isochronous endpoints are treated differently, because they must
644 * advance at fixed rates.  Such queues do not stop when an URB
645 * encounters an error or is unlinked.  An unlinked isochronous URB may
646 * leave a gap in the stream of packets; it is undefined whether such
647 * gaps can be filled in.
648 *
649 * Note that early termination of an URB because a short packet was
650 * received will generate a -EREMOTEIO error if and only if the
651 * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
652 * drivers can build deep queues for large or complex bulk transfers
653 * and clean them up reliably after any sort of aborted transfer by
654 * unlinking all pending URBs at the first fault.
655 *
656 * When a control URB terminates with an error other than -EREMOTEIO, it
657 * is quite likely that the status stage of the transfer will not take
658 * place.
659 */
660int usb_unlink_urb(struct urb *urb)
661{
662	if (!urb)
663		return -EINVAL;
664	if (!urb->dev)
665		return -ENODEV;
666	if (!urb->ep)
667		return -EIDRM;
668	return usb_hcd_unlink_urb(urb, -ECONNRESET);
669}
670EXPORT_SYMBOL_GPL(usb_unlink_urb);
671
672/**
673 * usb_kill_urb - cancel a transfer request and wait for it to finish
674 * @urb: pointer to URB describing a previously submitted request,
675 *	may be NULL
676 *
677 * This routine cancels an in-progress request.  It is guaranteed that
678 * upon return all completion handlers will have finished and the URB
679 * will be totally idle and available for reuse.  These features make
680 * this an ideal way to stop I/O in a disconnect() callback or close()
681 * function.  If the request has not already finished or been unlinked
682 * the completion handler will see urb->status == -ENOENT.
683 *
684 * While the routine is running, attempts to resubmit the URB will fail
685 * with error -EPERM.  Thus even if the URB's completion handler always
686 * tries to resubmit, it will not succeed and the URB will become idle.
687 *
688 * The URB must not be deallocated while this routine is running.  In
689 * particular, when a driver calls this routine, it must insure that the
690 * completion handler cannot deallocate the URB.
691 *
692 * This routine may not be used in an interrupt context (such as a bottom
693 * half or a completion handler), or when holding a spinlock, or in other
694 * situations where the caller can't schedule().
695 *
696 * This routine should not be called by a driver after its disconnect
697 * method has returned.
698 */
699void usb_kill_urb(struct urb *urb)
700{
701	might_sleep();
702	if (!(urb && urb->dev && urb->ep))
703		return;
704	atomic_inc(&urb->reject);
705	/*
706	 * Order the write of urb->reject above before the read
707	 * of urb->use_count below.  Pairs with the barriers in
708	 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
709	 */
710	smp_mb__after_atomic();
711
712	usb_hcd_unlink_urb(urb, -ENOENT);
713	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
714
715	atomic_dec(&urb->reject);
716}
717EXPORT_SYMBOL_GPL(usb_kill_urb);
718
719/**
720 * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
721 * @urb: pointer to URB describing a previously submitted request,
722 *	may be NULL
723 *
724 * This routine cancels an in-progress request.  It is guaranteed that
725 * upon return all completion handlers will have finished and the URB
726 * will be totally idle and cannot be reused.  These features make
727 * this an ideal way to stop I/O in a disconnect() callback.
728 * If the request has not already finished or been unlinked
729 * the completion handler will see urb->status == -ENOENT.
730 *
731 * After and while the routine runs, attempts to resubmit the URB will fail
732 * with error -EPERM.  Thus even if the URB's completion handler always
733 * tries to resubmit, it will not succeed and the URB will become idle.
734 *
735 * The URB must not be deallocated while this routine is running.  In
736 * particular, when a driver calls this routine, it must insure that the
737 * completion handler cannot deallocate the URB.
738 *
739 * This routine may not be used in an interrupt context (such as a bottom
740 * half or a completion handler), or when holding a spinlock, or in other
741 * situations where the caller can't schedule().
742 *
743 * This routine should not be called by a driver after its disconnect
744 * method has returned.
745 */
746void usb_poison_urb(struct urb *urb)
747{
748	might_sleep();
749	if (!urb)
750		return;
751	atomic_inc(&urb->reject);
752	/*
753	 * Order the write of urb->reject above before the read
754	 * of urb->use_count below.  Pairs with the barriers in
755	 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
756	 */
757	smp_mb__after_atomic();
758
759	if (!urb->dev || !urb->ep)
760		return;
761
762	usb_hcd_unlink_urb(urb, -ENOENT);
763	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
764}
765EXPORT_SYMBOL_GPL(usb_poison_urb);
766
767void usb_unpoison_urb(struct urb *urb)
768{
769	if (!urb)
770		return;
771
772	atomic_dec(&urb->reject);
773}
774EXPORT_SYMBOL_GPL(usb_unpoison_urb);
775
776/**
777 * usb_block_urb - reliably prevent further use of an URB
778 * @urb: pointer to URB to be blocked, may be NULL
779 *
780 * After the routine has run, attempts to resubmit the URB will fail
781 * with error -EPERM.  Thus even if the URB's completion handler always
782 * tries to resubmit, it will not succeed and the URB will become idle.
783 *
784 * The URB must not be deallocated while this routine is running.  In
785 * particular, when a driver calls this routine, it must insure that the
786 * completion handler cannot deallocate the URB.
787 */
788void usb_block_urb(struct urb *urb)
789{
790	if (!urb)
791		return;
792
793	atomic_inc(&urb->reject);
794}
795EXPORT_SYMBOL_GPL(usb_block_urb);
796
797/**
798 * usb_kill_anchored_urbs - kill all URBs associated with an anchor
799 * @anchor: anchor the requests are bound to
800 *
801 * This kills all outstanding URBs starting from the back of the queue,
802 * with guarantee that no completer callbacks will take place from the
803 * anchor after this function returns.
804 *
805 * This routine should not be called by a driver after its disconnect
806 * method has returned.
807 */
808void usb_kill_anchored_urbs(struct usb_anchor *anchor)
809{
810	struct urb *victim;
811	int surely_empty;
812
813	do {
814		spin_lock_irq(&anchor->lock);
815		while (!list_empty(&anchor->urb_list)) {
816			victim = list_entry(anchor->urb_list.prev,
817					    struct urb, anchor_list);
818			/* make sure the URB isn't freed before we kill it */
819			usb_get_urb(victim);
820			spin_unlock_irq(&anchor->lock);
821			/* this will unanchor the URB */
822			usb_kill_urb(victim);
823			usb_put_urb(victim);
824			spin_lock_irq(&anchor->lock);
825		}
826		surely_empty = usb_anchor_check_wakeup(anchor);
827
828		spin_unlock_irq(&anchor->lock);
829		cpu_relax();
830	} while (!surely_empty);
831}
832EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
833
834
835/**
836 * usb_poison_anchored_urbs - cease all traffic from an anchor
837 * @anchor: anchor the requests are bound to
838 *
839 * this allows all outstanding URBs to be poisoned starting
840 * from the back of the queue. Newly added URBs will also be
841 * poisoned
842 *
843 * This routine should not be called by a driver after its disconnect
844 * method has returned.
845 */
846void usb_poison_anchored_urbs(struct usb_anchor *anchor)
847{
848	struct urb *victim;
849	int surely_empty;
850
851	do {
852		spin_lock_irq(&anchor->lock);
853		anchor->poisoned = 1;
854		while (!list_empty(&anchor->urb_list)) {
855			victim = list_entry(anchor->urb_list.prev,
856					    struct urb, anchor_list);
857			/* make sure the URB isn't freed before we kill it */
858			usb_get_urb(victim);
859			spin_unlock_irq(&anchor->lock);
860			/* this will unanchor the URB */
861			usb_poison_urb(victim);
862			usb_put_urb(victim);
863			spin_lock_irq(&anchor->lock);
864		}
865		surely_empty = usb_anchor_check_wakeup(anchor);
866
867		spin_unlock_irq(&anchor->lock);
868		cpu_relax();
869	} while (!surely_empty);
870}
871EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
872
873/**
874 * usb_unpoison_anchored_urbs - let an anchor be used successfully again
875 * @anchor: anchor the requests are bound to
876 *
877 * Reverses the effect of usb_poison_anchored_urbs
878 * the anchor can be used normally after it returns
879 */
880void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
881{
882	unsigned long flags;
883	struct urb *lazarus;
884
885	spin_lock_irqsave(&anchor->lock, flags);
886	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
887		usb_unpoison_urb(lazarus);
888	}
889	anchor->poisoned = 0;
890	spin_unlock_irqrestore(&anchor->lock, flags);
891}
892EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
893/**
894 * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
895 * @anchor: anchor the requests are bound to
896 *
897 * this allows all outstanding URBs to be unlinked starting
898 * from the back of the queue. This function is asynchronous.
899 * The unlinking is just triggered. It may happen after this
900 * function has returned.
901 *
902 * This routine should not be called by a driver after its disconnect
903 * method has returned.
904 */
905void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
906{
907	struct urb *victim;
908
909	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
910		usb_unlink_urb(victim);
911		usb_put_urb(victim);
912	}
913}
914EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
915
916/**
917 * usb_anchor_suspend_wakeups
918 * @anchor: the anchor you want to suspend wakeups on
919 *
920 * Call this to stop the last urb being unanchored from waking up any
921 * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
922 * back path to delay waking up until after the completion handler has run.
923 */
924void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
925{
926	if (anchor)
927		atomic_inc(&anchor->suspend_wakeups);
928}
929EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
930
931/**
932 * usb_anchor_resume_wakeups
933 * @anchor: the anchor you want to resume wakeups on
934 *
935 * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
936 * wake up any current waiters if the anchor is empty.
937 */
938void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
939{
940	if (!anchor)
941		return;
942
943	atomic_dec(&anchor->suspend_wakeups);
944	if (usb_anchor_check_wakeup(anchor))
945		wake_up(&anchor->wait);
946}
947EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
948
949/**
950 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
951 * @anchor: the anchor you want to become unused
952 * @timeout: how long you are willing to wait in milliseconds
953 *
954 * Call this is you want to be sure all an anchor's
955 * URBs have finished
956 *
957 * Return: Non-zero if the anchor became unused. Zero on timeout.
958 */
959int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
960				  unsigned int timeout)
961{
962	return wait_event_timeout(anchor->wait,
963				  usb_anchor_check_wakeup(anchor),
964				  msecs_to_jiffies(timeout));
965}
966EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
967
968/**
969 * usb_get_from_anchor - get an anchor's oldest urb
970 * @anchor: the anchor whose urb you want
971 *
972 * This will take the oldest urb from an anchor,
973 * unanchor and return it
974 *
975 * Return: The oldest urb from @anchor, or %NULL if @anchor has no
976 * urbs associated with it.
977 */
978struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
979{
980	struct urb *victim;
981	unsigned long flags;
982
983	spin_lock_irqsave(&anchor->lock, flags);
984	if (!list_empty(&anchor->urb_list)) {
985		victim = list_entry(anchor->urb_list.next, struct urb,
986				    anchor_list);
987		usb_get_urb(victim);
988		__usb_unanchor_urb(victim, anchor);
989	} else {
990		victim = NULL;
991	}
992	spin_unlock_irqrestore(&anchor->lock, flags);
993
994	return victim;
995}
996
997EXPORT_SYMBOL_GPL(usb_get_from_anchor);
998
999/**
1000 * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
1001 * @anchor: the anchor whose urbs you want to unanchor
1002 *
1003 * use this to get rid of all an anchor's urbs
1004 */
1005void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
1006{
1007	struct urb *victim;
1008	unsigned long flags;
1009	int surely_empty;
1010
1011	do {
1012		spin_lock_irqsave(&anchor->lock, flags);
1013		while (!list_empty(&anchor->urb_list)) {
1014			victim = list_entry(anchor->urb_list.prev,
1015					    struct urb, anchor_list);
1016			__usb_unanchor_urb(victim, anchor);
1017		}
1018		surely_empty = usb_anchor_check_wakeup(anchor);
1019
1020		spin_unlock_irqrestore(&anchor->lock, flags);
1021		cpu_relax();
1022	} while (!surely_empty);
1023}
1024
1025EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
1026
1027/**
1028 * usb_anchor_empty - is an anchor empty
1029 * @anchor: the anchor you want to query
1030 *
1031 * Return: 1 if the anchor has no urbs associated with it.
1032 */
1033int usb_anchor_empty(struct usb_anchor *anchor)
1034{
1035	return list_empty(&anchor->urb_list);
1036}
1037
1038EXPORT_SYMBOL_GPL(usb_anchor_empty);
1039
1040