1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
4 *
5 *  Copyright (C) 2002 - 2011  Paul Mundt
6 *  Copyright (C) 2015 Glider bvba
7 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8 *
9 * based off of the old drivers/char/sh-sci.c by:
10 *
11 *   Copyright (C) 1999, 2000  Niibe Yutaka
12 *   Copyright (C) 2000  Sugioka Toshinobu
13 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
14 *   Modified to support SecureEdge. David McCullough (2002)
15 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16 *   Removed SH7300 support (Jul 2007).
17 */
18#undef DEBUG
19
20#include <linux/clk.h>
21#include <linux/console.h>
22#include <linux/ctype.h>
23#include <linux/cpufreq.h>
24#include <linux/delay.h>
25#include <linux/dmaengine.h>
26#include <linux/dma-mapping.h>
27#include <linux/err.h>
28#include <linux/errno.h>
29#include <linux/init.h>
30#include <linux/interrupt.h>
31#include <linux/ioport.h>
32#include <linux/ktime.h>
33#include <linux/major.h>
34#include <linux/minmax.h>
35#include <linux/module.h>
36#include <linux/mm.h>
37#include <linux/of.h>
38#include <linux/platform_device.h>
39#include <linux/pm_runtime.h>
40#include <linux/reset.h>
41#include <linux/scatterlist.h>
42#include <linux/serial.h>
43#include <linux/serial_sci.h>
44#include <linux/sh_dma.h>
45#include <linux/slab.h>
46#include <linux/string.h>
47#include <linux/sysrq.h>
48#include <linux/timer.h>
49#include <linux/tty.h>
50#include <linux/tty_flip.h>
51
52#ifdef CONFIG_SUPERH
53#include <asm/sh_bios.h>
54#include <asm/platform_early.h>
55#endif
56
57#include "serial_mctrl_gpio.h"
58#include "sh-sci.h"
59
60/* Offsets into the sci_port->irqs array */
61enum {
62	SCIx_ERI_IRQ,
63	SCIx_RXI_IRQ,
64	SCIx_TXI_IRQ,
65	SCIx_BRI_IRQ,
66	SCIx_DRI_IRQ,
67	SCIx_TEI_IRQ,
68	SCIx_NR_IRQS,
69
70	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
71};
72
73#define SCIx_IRQ_IS_MUXED(port)			\
74	((port)->irqs[SCIx_ERI_IRQ] ==	\
75	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
76	((port)->irqs[SCIx_ERI_IRQ] &&	\
77	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78
79enum SCI_CLKS {
80	SCI_FCK,		/* Functional Clock */
81	SCI_SCK,		/* Optional External Clock */
82	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
83	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
84	SCI_NUM_CLKS
85};
86
87/* Bit x set means sampling rate x + 1 is supported */
88#define SCI_SR(x)		BIT((x) - 1)
89#define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
90
91#define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
92				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
93				SCI_SR(19) | SCI_SR(27)
94
95#define min_sr(_port)		ffs((_port)->sampling_rate_mask)
96#define max_sr(_port)		fls((_port)->sampling_rate_mask)
97
98/* Iterate over all supported sampling rates, from high to low */
99#define for_each_sr(_sr, _port)						\
100	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
101		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
102
103struct plat_sci_reg {
104	u8 offset, size;
105};
106
107struct sci_port_params {
108	const struct plat_sci_reg regs[SCIx_NR_REGS];
109	unsigned int fifosize;
110	unsigned int overrun_reg;
111	unsigned int overrun_mask;
112	unsigned int sampling_rate_mask;
113	unsigned int error_mask;
114	unsigned int error_clear;
115};
116
117struct sci_port {
118	struct uart_port	port;
119
120	/* Platform configuration */
121	const struct sci_port_params *params;
122	const struct plat_sci_port *cfg;
123	unsigned int		sampling_rate_mask;
124	resource_size_t		reg_size;
125	struct mctrl_gpios	*gpios;
126
127	/* Clocks */
128	struct clk		*clks[SCI_NUM_CLKS];
129	unsigned long		clk_rates[SCI_NUM_CLKS];
130
131	int			irqs[SCIx_NR_IRQS];
132	char			*irqstr[SCIx_NR_IRQS];
133
134	struct dma_chan			*chan_tx;
135	struct dma_chan			*chan_rx;
136
137#ifdef CONFIG_SERIAL_SH_SCI_DMA
138	struct dma_chan			*chan_tx_saved;
139	struct dma_chan			*chan_rx_saved;
140	dma_cookie_t			cookie_tx;
141	dma_cookie_t			cookie_rx[2];
142	dma_cookie_t			active_rx;
143	dma_addr_t			tx_dma_addr;
144	unsigned int			tx_dma_len;
145	struct scatterlist		sg_rx[2];
146	void				*rx_buf[2];
147	size_t				buf_len_rx;
148	struct work_struct		work_tx;
149	struct hrtimer			rx_timer;
150	unsigned int			rx_timeout;	/* microseconds */
151#endif
152	unsigned int			rx_frame;
153	int				rx_trigger;
154	struct timer_list		rx_fifo_timer;
155	int				rx_fifo_timeout;
156	u16				hscif_tot;
157
158	bool has_rtscts;
159	bool autorts;
160};
161
162#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
163
164static struct sci_port sci_ports[SCI_NPORTS];
165static unsigned long sci_ports_in_use;
166static struct uart_driver sci_uart_driver;
167
168static inline struct sci_port *
169to_sci_port(struct uart_port *uart)
170{
171	return container_of(uart, struct sci_port, port);
172}
173
174static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
175	/*
176	 * Common SCI definitions, dependent on the port's regshift
177	 * value.
178	 */
179	[SCIx_SCI_REGTYPE] = {
180		.regs = {
181			[SCSMR]		= { 0x00,  8 },
182			[SCBRR]		= { 0x01,  8 },
183			[SCSCR]		= { 0x02,  8 },
184			[SCxTDR]	= { 0x03,  8 },
185			[SCxSR]		= { 0x04,  8 },
186			[SCxRDR]	= { 0x05,  8 },
187		},
188		.fifosize = 1,
189		.overrun_reg = SCxSR,
190		.overrun_mask = SCI_ORER,
191		.sampling_rate_mask = SCI_SR(32),
192		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
193		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
194	},
195
196	/*
197	 * Common definitions for legacy IrDA ports.
198	 */
199	[SCIx_IRDA_REGTYPE] = {
200		.regs = {
201			[SCSMR]		= { 0x00,  8 },
202			[SCBRR]		= { 0x02,  8 },
203			[SCSCR]		= { 0x04,  8 },
204			[SCxTDR]	= { 0x06,  8 },
205			[SCxSR]		= { 0x08, 16 },
206			[SCxRDR]	= { 0x0a,  8 },
207			[SCFCR]		= { 0x0c,  8 },
208			[SCFDR]		= { 0x0e, 16 },
209		},
210		.fifosize = 1,
211		.overrun_reg = SCxSR,
212		.overrun_mask = SCI_ORER,
213		.sampling_rate_mask = SCI_SR(32),
214		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
215		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
216	},
217
218	/*
219	 * Common SCIFA definitions.
220	 */
221	[SCIx_SCIFA_REGTYPE] = {
222		.regs = {
223			[SCSMR]		= { 0x00, 16 },
224			[SCBRR]		= { 0x04,  8 },
225			[SCSCR]		= { 0x08, 16 },
226			[SCxTDR]	= { 0x20,  8 },
227			[SCxSR]		= { 0x14, 16 },
228			[SCxRDR]	= { 0x24,  8 },
229			[SCFCR]		= { 0x18, 16 },
230			[SCFDR]		= { 0x1c, 16 },
231			[SCPCR]		= { 0x30, 16 },
232			[SCPDR]		= { 0x34, 16 },
233		},
234		.fifosize = 64,
235		.overrun_reg = SCxSR,
236		.overrun_mask = SCIFA_ORER,
237		.sampling_rate_mask = SCI_SR_SCIFAB,
238		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
239		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
240	},
241
242	/*
243	 * Common SCIFB definitions.
244	 */
245	[SCIx_SCIFB_REGTYPE] = {
246		.regs = {
247			[SCSMR]		= { 0x00, 16 },
248			[SCBRR]		= { 0x04,  8 },
249			[SCSCR]		= { 0x08, 16 },
250			[SCxTDR]	= { 0x40,  8 },
251			[SCxSR]		= { 0x14, 16 },
252			[SCxRDR]	= { 0x60,  8 },
253			[SCFCR]		= { 0x18, 16 },
254			[SCTFDR]	= { 0x38, 16 },
255			[SCRFDR]	= { 0x3c, 16 },
256			[SCPCR]		= { 0x30, 16 },
257			[SCPDR]		= { 0x34, 16 },
258		},
259		.fifosize = 256,
260		.overrun_reg = SCxSR,
261		.overrun_mask = SCIFA_ORER,
262		.sampling_rate_mask = SCI_SR_SCIFAB,
263		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
264		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
265	},
266
267	/*
268	 * Common SH-2(A) SCIF definitions for ports with FIFO data
269	 * count registers.
270	 */
271	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
272		.regs = {
273			[SCSMR]		= { 0x00, 16 },
274			[SCBRR]		= { 0x04,  8 },
275			[SCSCR]		= { 0x08, 16 },
276			[SCxTDR]	= { 0x0c,  8 },
277			[SCxSR]		= { 0x10, 16 },
278			[SCxRDR]	= { 0x14,  8 },
279			[SCFCR]		= { 0x18, 16 },
280			[SCFDR]		= { 0x1c, 16 },
281			[SCSPTR]	= { 0x20, 16 },
282			[SCLSR]		= { 0x24, 16 },
283		},
284		.fifosize = 16,
285		.overrun_reg = SCLSR,
286		.overrun_mask = SCLSR_ORER,
287		.sampling_rate_mask = SCI_SR(32),
288		.error_mask = SCIF_DEFAULT_ERROR_MASK,
289		.error_clear = SCIF_ERROR_CLEAR,
290	},
291
292	/*
293	 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T.
294	 * It looks like a normal SCIF with FIFO data, but with a
295	 * compressed address space. Also, the break out of interrupts
296	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
297	 */
298	[SCIx_RZ_SCIFA_REGTYPE] = {
299		.regs = {
300			[SCSMR]		= { 0x00, 16 },
301			[SCBRR]		= { 0x02,  8 },
302			[SCSCR]		= { 0x04, 16 },
303			[SCxTDR]	= { 0x06,  8 },
304			[SCxSR]		= { 0x08, 16 },
305			[SCxRDR]	= { 0x0A,  8 },
306			[SCFCR]		= { 0x0C, 16 },
307			[SCFDR]		= { 0x0E, 16 },
308			[SCSPTR]	= { 0x10, 16 },
309			[SCLSR]		= { 0x12, 16 },
310			[SEMR]		= { 0x14, 8 },
311		},
312		.fifosize = 16,
313		.overrun_reg = SCLSR,
314		.overrun_mask = SCLSR_ORER,
315		.sampling_rate_mask = SCI_SR(32),
316		.error_mask = SCIF_DEFAULT_ERROR_MASK,
317		.error_clear = SCIF_ERROR_CLEAR,
318	},
319
320	/*
321	 * Common SH-3 SCIF definitions.
322	 */
323	[SCIx_SH3_SCIF_REGTYPE] = {
324		.regs = {
325			[SCSMR]		= { 0x00,  8 },
326			[SCBRR]		= { 0x02,  8 },
327			[SCSCR]		= { 0x04,  8 },
328			[SCxTDR]	= { 0x06,  8 },
329			[SCxSR]		= { 0x08, 16 },
330			[SCxRDR]	= { 0x0a,  8 },
331			[SCFCR]		= { 0x0c,  8 },
332			[SCFDR]		= { 0x0e, 16 },
333		},
334		.fifosize = 16,
335		.overrun_reg = SCLSR,
336		.overrun_mask = SCLSR_ORER,
337		.sampling_rate_mask = SCI_SR(32),
338		.error_mask = SCIF_DEFAULT_ERROR_MASK,
339		.error_clear = SCIF_ERROR_CLEAR,
340	},
341
342	/*
343	 * Common SH-4(A) SCIF(B) definitions.
344	 */
345	[SCIx_SH4_SCIF_REGTYPE] = {
346		.regs = {
347			[SCSMR]		= { 0x00, 16 },
348			[SCBRR]		= { 0x04,  8 },
349			[SCSCR]		= { 0x08, 16 },
350			[SCxTDR]	= { 0x0c,  8 },
351			[SCxSR]		= { 0x10, 16 },
352			[SCxRDR]	= { 0x14,  8 },
353			[SCFCR]		= { 0x18, 16 },
354			[SCFDR]		= { 0x1c, 16 },
355			[SCSPTR]	= { 0x20, 16 },
356			[SCLSR]		= { 0x24, 16 },
357		},
358		.fifosize = 16,
359		.overrun_reg = SCLSR,
360		.overrun_mask = SCLSR_ORER,
361		.sampling_rate_mask = SCI_SR(32),
362		.error_mask = SCIF_DEFAULT_ERROR_MASK,
363		.error_clear = SCIF_ERROR_CLEAR,
364	},
365
366	/*
367	 * Common SCIF definitions for ports with a Baud Rate Generator for
368	 * External Clock (BRG).
369	 */
370	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
371		.regs = {
372			[SCSMR]		= { 0x00, 16 },
373			[SCBRR]		= { 0x04,  8 },
374			[SCSCR]		= { 0x08, 16 },
375			[SCxTDR]	= { 0x0c,  8 },
376			[SCxSR]		= { 0x10, 16 },
377			[SCxRDR]	= { 0x14,  8 },
378			[SCFCR]		= { 0x18, 16 },
379			[SCFDR]		= { 0x1c, 16 },
380			[SCSPTR]	= { 0x20, 16 },
381			[SCLSR]		= { 0x24, 16 },
382			[SCDL]		= { 0x30, 16 },
383			[SCCKS]		= { 0x34, 16 },
384		},
385		.fifosize = 16,
386		.overrun_reg = SCLSR,
387		.overrun_mask = SCLSR_ORER,
388		.sampling_rate_mask = SCI_SR(32),
389		.error_mask = SCIF_DEFAULT_ERROR_MASK,
390		.error_clear = SCIF_ERROR_CLEAR,
391	},
392
393	/*
394	 * Common HSCIF definitions.
395	 */
396	[SCIx_HSCIF_REGTYPE] = {
397		.regs = {
398			[SCSMR]		= { 0x00, 16 },
399			[SCBRR]		= { 0x04,  8 },
400			[SCSCR]		= { 0x08, 16 },
401			[SCxTDR]	= { 0x0c,  8 },
402			[SCxSR]		= { 0x10, 16 },
403			[SCxRDR]	= { 0x14,  8 },
404			[SCFCR]		= { 0x18, 16 },
405			[SCFDR]		= { 0x1c, 16 },
406			[SCSPTR]	= { 0x20, 16 },
407			[SCLSR]		= { 0x24, 16 },
408			[HSSRR]		= { 0x40, 16 },
409			[SCDL]		= { 0x30, 16 },
410			[SCCKS]		= { 0x34, 16 },
411			[HSRTRGR]	= { 0x54, 16 },
412			[HSTTRGR]	= { 0x58, 16 },
413		},
414		.fifosize = 128,
415		.overrun_reg = SCLSR,
416		.overrun_mask = SCLSR_ORER,
417		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
418		.error_mask = SCIF_DEFAULT_ERROR_MASK,
419		.error_clear = SCIF_ERROR_CLEAR,
420	},
421
422	/*
423	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
424	 * register.
425	 */
426	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
427		.regs = {
428			[SCSMR]		= { 0x00, 16 },
429			[SCBRR]		= { 0x04,  8 },
430			[SCSCR]		= { 0x08, 16 },
431			[SCxTDR]	= { 0x0c,  8 },
432			[SCxSR]		= { 0x10, 16 },
433			[SCxRDR]	= { 0x14,  8 },
434			[SCFCR]		= { 0x18, 16 },
435			[SCFDR]		= { 0x1c, 16 },
436			[SCLSR]		= { 0x24, 16 },
437		},
438		.fifosize = 16,
439		.overrun_reg = SCLSR,
440		.overrun_mask = SCLSR_ORER,
441		.sampling_rate_mask = SCI_SR(32),
442		.error_mask = SCIF_DEFAULT_ERROR_MASK,
443		.error_clear = SCIF_ERROR_CLEAR,
444	},
445
446	/*
447	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
448	 * count registers.
449	 */
450	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
451		.regs = {
452			[SCSMR]		= { 0x00, 16 },
453			[SCBRR]		= { 0x04,  8 },
454			[SCSCR]		= { 0x08, 16 },
455			[SCxTDR]	= { 0x0c,  8 },
456			[SCxSR]		= { 0x10, 16 },
457			[SCxRDR]	= { 0x14,  8 },
458			[SCFCR]		= { 0x18, 16 },
459			[SCFDR]		= { 0x1c, 16 },
460			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
461			[SCRFDR]	= { 0x20, 16 },
462			[SCSPTR]	= { 0x24, 16 },
463			[SCLSR]		= { 0x28, 16 },
464		},
465		.fifosize = 16,
466		.overrun_reg = SCLSR,
467		.overrun_mask = SCLSR_ORER,
468		.sampling_rate_mask = SCI_SR(32),
469		.error_mask = SCIF_DEFAULT_ERROR_MASK,
470		.error_clear = SCIF_ERROR_CLEAR,
471	},
472
473	/*
474	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
475	 * registers.
476	 */
477	[SCIx_SH7705_SCIF_REGTYPE] = {
478		.regs = {
479			[SCSMR]		= { 0x00, 16 },
480			[SCBRR]		= { 0x04,  8 },
481			[SCSCR]		= { 0x08, 16 },
482			[SCxTDR]	= { 0x20,  8 },
483			[SCxSR]		= { 0x14, 16 },
484			[SCxRDR]	= { 0x24,  8 },
485			[SCFCR]		= { 0x18, 16 },
486			[SCFDR]		= { 0x1c, 16 },
487		},
488		.fifosize = 64,
489		.overrun_reg = SCxSR,
490		.overrun_mask = SCIFA_ORER,
491		.sampling_rate_mask = SCI_SR(16),
492		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
493		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
494	},
495};
496
497#define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
498
499/*
500 * The "offset" here is rather misleading, in that it refers to an enum
501 * value relative to the port mapping rather than the fixed offset
502 * itself, which needs to be manually retrieved from the platform's
503 * register map for the given port.
504 */
505static unsigned int sci_serial_in(struct uart_port *p, int offset)
506{
507	const struct plat_sci_reg *reg = sci_getreg(p, offset);
508
509	if (reg->size == 8)
510		return ioread8(p->membase + (reg->offset << p->regshift));
511	else if (reg->size == 16)
512		return ioread16(p->membase + (reg->offset << p->regshift));
513	else
514		WARN(1, "Invalid register access\n");
515
516	return 0;
517}
518
519static void sci_serial_out(struct uart_port *p, int offset, int value)
520{
521	const struct plat_sci_reg *reg = sci_getreg(p, offset);
522
523	if (reg->size == 8)
524		iowrite8(value, p->membase + (reg->offset << p->regshift));
525	else if (reg->size == 16)
526		iowrite16(value, p->membase + (reg->offset << p->regshift));
527	else
528		WARN(1, "Invalid register access\n");
529}
530
531static void sci_port_enable(struct sci_port *sci_port)
532{
533	unsigned int i;
534
535	if (!sci_port->port.dev)
536		return;
537
538	pm_runtime_get_sync(sci_port->port.dev);
539
540	for (i = 0; i < SCI_NUM_CLKS; i++) {
541		clk_prepare_enable(sci_port->clks[i]);
542		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
543	}
544	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
545}
546
547static void sci_port_disable(struct sci_port *sci_port)
548{
549	unsigned int i;
550
551	if (!sci_port->port.dev)
552		return;
553
554	for (i = SCI_NUM_CLKS; i-- > 0; )
555		clk_disable_unprepare(sci_port->clks[i]);
556
557	pm_runtime_put_sync(sci_port->port.dev);
558}
559
560static inline unsigned long port_rx_irq_mask(struct uart_port *port)
561{
562	/*
563	 * Not all ports (such as SCIFA) will support REIE. Rather than
564	 * special-casing the port type, we check the port initialization
565	 * IRQ enable mask to see whether the IRQ is desired at all. If
566	 * it's unset, it's logically inferred that there's no point in
567	 * testing for it.
568	 */
569	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
570}
571
572static void sci_start_tx(struct uart_port *port)
573{
574	struct sci_port *s = to_sci_port(port);
575	unsigned short ctrl;
576
577#ifdef CONFIG_SERIAL_SH_SCI_DMA
578	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
579		u16 new, scr = sci_serial_in(port, SCSCR);
580		if (s->chan_tx)
581			new = scr | SCSCR_TDRQE;
582		else
583			new = scr & ~SCSCR_TDRQE;
584		if (new != scr)
585			sci_serial_out(port, SCSCR, new);
586	}
587
588	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
589	    dma_submit_error(s->cookie_tx)) {
590		if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
591			/* Switch irq from SCIF to DMA */
592			disable_irq_nosync(s->irqs[SCIx_TXI_IRQ]);
593
594		s->cookie_tx = 0;
595		schedule_work(&s->work_tx);
596	}
597#endif
598
599	if (!s->chan_tx || s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE ||
600	    port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
601		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
602		ctrl = sci_serial_in(port, SCSCR);
603
604		/*
605		 * For SCI, TE (transmit enable) must be set after setting TIE
606		 * (transmit interrupt enable) or in the same instruction to start
607		 * the transmit process.
608		 */
609		if (port->type == PORT_SCI)
610			ctrl |= SCSCR_TE;
611
612		sci_serial_out(port, SCSCR, ctrl | SCSCR_TIE);
613	}
614}
615
616static void sci_stop_tx(struct uart_port *port)
617{
618	unsigned short ctrl;
619
620	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
621	ctrl = sci_serial_in(port, SCSCR);
622
623	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
624		ctrl &= ~SCSCR_TDRQE;
625
626	ctrl &= ~SCSCR_TIE;
627
628	sci_serial_out(port, SCSCR, ctrl);
629
630#ifdef CONFIG_SERIAL_SH_SCI_DMA
631	if (to_sci_port(port)->chan_tx &&
632	    !dma_submit_error(to_sci_port(port)->cookie_tx)) {
633		dmaengine_terminate_async(to_sci_port(port)->chan_tx);
634		to_sci_port(port)->cookie_tx = -EINVAL;
635	}
636#endif
637}
638
639static void sci_start_rx(struct uart_port *port)
640{
641	unsigned short ctrl;
642
643	ctrl = sci_serial_in(port, SCSCR) | port_rx_irq_mask(port);
644
645	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
646		ctrl &= ~SCSCR_RDRQE;
647
648	sci_serial_out(port, SCSCR, ctrl);
649}
650
651static void sci_stop_rx(struct uart_port *port)
652{
653	unsigned short ctrl;
654
655	ctrl = sci_serial_in(port, SCSCR);
656
657	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
658		ctrl &= ~SCSCR_RDRQE;
659
660	ctrl &= ~port_rx_irq_mask(port);
661
662	sci_serial_out(port, SCSCR, ctrl);
663}
664
665static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
666{
667	if (port->type == PORT_SCI) {
668		/* Just store the mask */
669		sci_serial_out(port, SCxSR, mask);
670	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
671		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
672		/* Only clear the status bits we want to clear */
673		sci_serial_out(port, SCxSR, sci_serial_in(port, SCxSR) & mask);
674	} else {
675		/* Store the mask, clear parity/framing errors */
676		sci_serial_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
677	}
678}
679
680#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
681    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
682
683#ifdef CONFIG_CONSOLE_POLL
684static int sci_poll_get_char(struct uart_port *port)
685{
686	unsigned short status;
687	int c;
688
689	do {
690		status = sci_serial_in(port, SCxSR);
691		if (status & SCxSR_ERRORS(port)) {
692			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
693			continue;
694		}
695		break;
696	} while (1);
697
698	if (!(status & SCxSR_RDxF(port)))
699		return NO_POLL_CHAR;
700
701	c = sci_serial_in(port, SCxRDR);
702
703	/* Dummy read */
704	sci_serial_in(port, SCxSR);
705	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
706
707	return c;
708}
709#endif
710
711static void sci_poll_put_char(struct uart_port *port, unsigned char c)
712{
713	unsigned short status;
714
715	do {
716		status = sci_serial_in(port, SCxSR);
717	} while (!(status & SCxSR_TDxE(port)));
718
719	sci_serial_out(port, SCxTDR, c);
720	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
721}
722#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
723	  CONFIG_SERIAL_SH_SCI_EARLYCON */
724
725static void sci_init_pins(struct uart_port *port, unsigned int cflag)
726{
727	struct sci_port *s = to_sci_port(port);
728
729	/*
730	 * Use port-specific handler if provided.
731	 */
732	if (s->cfg->ops && s->cfg->ops->init_pins) {
733		s->cfg->ops->init_pins(port, cflag);
734		return;
735	}
736
737	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
738		u16 data = sci_serial_in(port, SCPDR);
739		u16 ctrl = sci_serial_in(port, SCPCR);
740
741		/* Enable RXD and TXD pin functions */
742		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
743		if (to_sci_port(port)->has_rtscts) {
744			/* RTS# is output, active low, unless autorts */
745			if (!(port->mctrl & TIOCM_RTS)) {
746				ctrl |= SCPCR_RTSC;
747				data |= SCPDR_RTSD;
748			} else if (!s->autorts) {
749				ctrl |= SCPCR_RTSC;
750				data &= ~SCPDR_RTSD;
751			} else {
752				/* Enable RTS# pin function */
753				ctrl &= ~SCPCR_RTSC;
754			}
755			/* Enable CTS# pin function */
756			ctrl &= ~SCPCR_CTSC;
757		}
758		sci_serial_out(port, SCPDR, data);
759		sci_serial_out(port, SCPCR, ctrl);
760	} else if (sci_getreg(port, SCSPTR)->size) {
761		u16 status = sci_serial_in(port, SCSPTR);
762
763		/* RTS# is always output; and active low, unless autorts */
764		status |= SCSPTR_RTSIO;
765		if (!(port->mctrl & TIOCM_RTS))
766			status |= SCSPTR_RTSDT;
767		else if (!s->autorts)
768			status &= ~SCSPTR_RTSDT;
769		/* CTS# and SCK are inputs */
770		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
771		sci_serial_out(port, SCSPTR, status);
772	}
773}
774
775static int sci_txfill(struct uart_port *port)
776{
777	struct sci_port *s = to_sci_port(port);
778	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
779	const struct plat_sci_reg *reg;
780
781	reg = sci_getreg(port, SCTFDR);
782	if (reg->size)
783		return sci_serial_in(port, SCTFDR) & fifo_mask;
784
785	reg = sci_getreg(port, SCFDR);
786	if (reg->size)
787		return sci_serial_in(port, SCFDR) >> 8;
788
789	return !(sci_serial_in(port, SCxSR) & SCI_TDRE);
790}
791
792static int sci_txroom(struct uart_port *port)
793{
794	return port->fifosize - sci_txfill(port);
795}
796
797static int sci_rxfill(struct uart_port *port)
798{
799	struct sci_port *s = to_sci_port(port);
800	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
801	const struct plat_sci_reg *reg;
802
803	reg = sci_getreg(port, SCRFDR);
804	if (reg->size)
805		return sci_serial_in(port, SCRFDR) & fifo_mask;
806
807	reg = sci_getreg(port, SCFDR);
808	if (reg->size)
809		return sci_serial_in(port, SCFDR) & fifo_mask;
810
811	return (sci_serial_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
812}
813
814/* ********************************************************************** *
815 *                   the interrupt related routines                       *
816 * ********************************************************************** */
817
818static void sci_transmit_chars(struct uart_port *port)
819{
820	struct circ_buf *xmit = &port->state->xmit;
821	unsigned int stopped = uart_tx_stopped(port);
822	unsigned short status;
823	unsigned short ctrl;
824	int count;
825
826	status = sci_serial_in(port, SCxSR);
827	if (!(status & SCxSR_TDxE(port))) {
828		ctrl = sci_serial_in(port, SCSCR);
829		if (uart_circ_empty(xmit))
830			ctrl &= ~SCSCR_TIE;
831		else
832			ctrl |= SCSCR_TIE;
833		sci_serial_out(port, SCSCR, ctrl);
834		return;
835	}
836
837	count = sci_txroom(port);
838
839	do {
840		unsigned char c;
841
842		if (port->x_char) {
843			c = port->x_char;
844			port->x_char = 0;
845		} else if (!uart_circ_empty(xmit) && !stopped) {
846			c = xmit->buf[xmit->tail];
847			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
848		} else if (port->type == PORT_SCI && uart_circ_empty(xmit)) {
849			ctrl = sci_serial_in(port, SCSCR);
850			ctrl &= ~SCSCR_TE;
851			sci_serial_out(port, SCSCR, ctrl);
852			return;
853		} else {
854			break;
855		}
856
857		sci_serial_out(port, SCxTDR, c);
858
859		port->icount.tx++;
860	} while (--count > 0);
861
862	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
863
864	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
865		uart_write_wakeup(port);
866	if (uart_circ_empty(xmit)) {
867		if (port->type == PORT_SCI) {
868			ctrl = sci_serial_in(port, SCSCR);
869			ctrl &= ~SCSCR_TIE;
870			ctrl |= SCSCR_TEIE;
871			sci_serial_out(port, SCSCR, ctrl);
872		}
873
874		sci_stop_tx(port);
875	}
876}
877
878static void sci_receive_chars(struct uart_port *port)
879{
880	struct tty_port *tport = &port->state->port;
881	int i, count, copied = 0;
882	unsigned short status;
883	unsigned char flag;
884
885	status = sci_serial_in(port, SCxSR);
886	if (!(status & SCxSR_RDxF(port)))
887		return;
888
889	while (1) {
890		/* Don't copy more bytes than there is room for in the buffer */
891		count = tty_buffer_request_room(tport, sci_rxfill(port));
892
893		/* If for any reason we can't copy more data, we're done! */
894		if (count == 0)
895			break;
896
897		if (port->type == PORT_SCI) {
898			char c = sci_serial_in(port, SCxRDR);
899			if (uart_handle_sysrq_char(port, c))
900				count = 0;
901			else
902				tty_insert_flip_char(tport, c, TTY_NORMAL);
903		} else {
904			for (i = 0; i < count; i++) {
905				char c;
906
907				if (port->type == PORT_SCIF ||
908				    port->type == PORT_HSCIF) {
909					status = sci_serial_in(port, SCxSR);
910					c = sci_serial_in(port, SCxRDR);
911				} else {
912					c = sci_serial_in(port, SCxRDR);
913					status = sci_serial_in(port, SCxSR);
914				}
915				if (uart_handle_sysrq_char(port, c)) {
916					count--; i--;
917					continue;
918				}
919
920				/* Store data and status */
921				if (status & SCxSR_FER(port)) {
922					flag = TTY_FRAME;
923					port->icount.frame++;
924				} else if (status & SCxSR_PER(port)) {
925					flag = TTY_PARITY;
926					port->icount.parity++;
927				} else
928					flag = TTY_NORMAL;
929
930				tty_insert_flip_char(tport, c, flag);
931			}
932		}
933
934		sci_serial_in(port, SCxSR); /* dummy read */
935		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
936
937		copied += count;
938		port->icount.rx += count;
939	}
940
941	if (copied) {
942		/* Tell the rest of the system the news. New characters! */
943		tty_flip_buffer_push(tport);
944	} else {
945		/* TTY buffers full; read from RX reg to prevent lockup */
946		sci_serial_in(port, SCxRDR);
947		sci_serial_in(port, SCxSR); /* dummy read */
948		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
949	}
950}
951
952static int sci_handle_errors(struct uart_port *port)
953{
954	int copied = 0;
955	unsigned short status = sci_serial_in(port, SCxSR);
956	struct tty_port *tport = &port->state->port;
957	struct sci_port *s = to_sci_port(port);
958
959	/* Handle overruns */
960	if (status & s->params->overrun_mask) {
961		port->icount.overrun++;
962
963		/* overrun error */
964		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
965			copied++;
966	}
967
968	if (status & SCxSR_FER(port)) {
969		/* frame error */
970		port->icount.frame++;
971
972		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
973			copied++;
974	}
975
976	if (status & SCxSR_PER(port)) {
977		/* parity error */
978		port->icount.parity++;
979
980		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
981			copied++;
982	}
983
984	if (copied)
985		tty_flip_buffer_push(tport);
986
987	return copied;
988}
989
990static int sci_handle_fifo_overrun(struct uart_port *port)
991{
992	struct tty_port *tport = &port->state->port;
993	struct sci_port *s = to_sci_port(port);
994	const struct plat_sci_reg *reg;
995	int copied = 0;
996	u16 status;
997
998	reg = sci_getreg(port, s->params->overrun_reg);
999	if (!reg->size)
1000		return 0;
1001
1002	status = sci_serial_in(port, s->params->overrun_reg);
1003	if (status & s->params->overrun_mask) {
1004		status &= ~s->params->overrun_mask;
1005		sci_serial_out(port, s->params->overrun_reg, status);
1006
1007		port->icount.overrun++;
1008
1009		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1010		tty_flip_buffer_push(tport);
1011		copied++;
1012	}
1013
1014	return copied;
1015}
1016
1017static int sci_handle_breaks(struct uart_port *port)
1018{
1019	int copied = 0;
1020	unsigned short status = sci_serial_in(port, SCxSR);
1021	struct tty_port *tport = &port->state->port;
1022
1023	if (uart_handle_break(port))
1024		return 0;
1025
1026	if (status & SCxSR_BRK(port)) {
1027		port->icount.brk++;
1028
1029		/* Notify of BREAK */
1030		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1031			copied++;
1032	}
1033
1034	if (copied)
1035		tty_flip_buffer_push(tport);
1036
1037	copied += sci_handle_fifo_overrun(port);
1038
1039	return copied;
1040}
1041
1042static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1043{
1044	unsigned int bits;
1045
1046	if (rx_trig >= port->fifosize)
1047		rx_trig = port->fifosize - 1;
1048	if (rx_trig < 1)
1049		rx_trig = 1;
1050
1051	/* HSCIF can be set to an arbitrary level. */
1052	if (sci_getreg(port, HSRTRGR)->size) {
1053		sci_serial_out(port, HSRTRGR, rx_trig);
1054		return rx_trig;
1055	}
1056
1057	switch (port->type) {
1058	case PORT_SCIF:
1059		if (rx_trig < 4) {
1060			bits = 0;
1061			rx_trig = 1;
1062		} else if (rx_trig < 8) {
1063			bits = SCFCR_RTRG0;
1064			rx_trig = 4;
1065		} else if (rx_trig < 14) {
1066			bits = SCFCR_RTRG1;
1067			rx_trig = 8;
1068		} else {
1069			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1070			rx_trig = 14;
1071		}
1072		break;
1073	case PORT_SCIFA:
1074	case PORT_SCIFB:
1075		if (rx_trig < 16) {
1076			bits = 0;
1077			rx_trig = 1;
1078		} else if (rx_trig < 32) {
1079			bits = SCFCR_RTRG0;
1080			rx_trig = 16;
1081		} else if (rx_trig < 48) {
1082			bits = SCFCR_RTRG1;
1083			rx_trig = 32;
1084		} else {
1085			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1086			rx_trig = 48;
1087		}
1088		break;
1089	default:
1090		WARN(1, "unknown FIFO configuration");
1091		return 1;
1092	}
1093
1094	sci_serial_out(port, SCFCR,
1095		       (sci_serial_in(port, SCFCR) &
1096			~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1097
1098	return rx_trig;
1099}
1100
1101static int scif_rtrg_enabled(struct uart_port *port)
1102{
1103	if (sci_getreg(port, HSRTRGR)->size)
1104		return sci_serial_in(port, HSRTRGR) != 0;
1105	else
1106		return (sci_serial_in(port, SCFCR) &
1107			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1108}
1109
1110static void rx_fifo_timer_fn(struct timer_list *t)
1111{
1112	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1113	struct uart_port *port = &s->port;
1114
1115	dev_dbg(port->dev, "Rx timed out\n");
1116	scif_set_rtrg(port, 1);
1117}
1118
1119static ssize_t rx_fifo_trigger_show(struct device *dev,
1120				    struct device_attribute *attr, char *buf)
1121{
1122	struct uart_port *port = dev_get_drvdata(dev);
1123	struct sci_port *sci = to_sci_port(port);
1124
1125	return sprintf(buf, "%d\n", sci->rx_trigger);
1126}
1127
1128static ssize_t rx_fifo_trigger_store(struct device *dev,
1129				     struct device_attribute *attr,
1130				     const char *buf, size_t count)
1131{
1132	struct uart_port *port = dev_get_drvdata(dev);
1133	struct sci_port *sci = to_sci_port(port);
1134	int ret;
1135	long r;
1136
1137	ret = kstrtol(buf, 0, &r);
1138	if (ret)
1139		return ret;
1140
1141	sci->rx_trigger = scif_set_rtrg(port, r);
1142	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1143		scif_set_rtrg(port, 1);
1144
1145	return count;
1146}
1147
1148static DEVICE_ATTR_RW(rx_fifo_trigger);
1149
1150static ssize_t rx_fifo_timeout_show(struct device *dev,
1151			       struct device_attribute *attr,
1152			       char *buf)
1153{
1154	struct uart_port *port = dev_get_drvdata(dev);
1155	struct sci_port *sci = to_sci_port(port);
1156	int v;
1157
1158	if (port->type == PORT_HSCIF)
1159		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1160	else
1161		v = sci->rx_fifo_timeout;
1162
1163	return sprintf(buf, "%d\n", v);
1164}
1165
1166static ssize_t rx_fifo_timeout_store(struct device *dev,
1167				struct device_attribute *attr,
1168				const char *buf,
1169				size_t count)
1170{
1171	struct uart_port *port = dev_get_drvdata(dev);
1172	struct sci_port *sci = to_sci_port(port);
1173	int ret;
1174	long r;
1175
1176	ret = kstrtol(buf, 0, &r);
1177	if (ret)
1178		return ret;
1179
1180	if (port->type == PORT_HSCIF) {
1181		if (r < 0 || r > 3)
1182			return -EINVAL;
1183		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1184	} else {
1185		sci->rx_fifo_timeout = r;
1186		scif_set_rtrg(port, 1);
1187		if (r > 0)
1188			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1189	}
1190
1191	return count;
1192}
1193
1194static DEVICE_ATTR_RW(rx_fifo_timeout);
1195
1196
1197#ifdef CONFIG_SERIAL_SH_SCI_DMA
1198static void sci_dma_tx_complete(void *arg)
1199{
1200	struct sci_port *s = arg;
1201	struct uart_port *port = &s->port;
1202	struct circ_buf *xmit = &port->state->xmit;
1203	unsigned long flags;
1204
1205	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1206
1207	uart_port_lock_irqsave(port, &flags);
1208
1209	uart_xmit_advance(port, s->tx_dma_len);
1210
1211	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1212		uart_write_wakeup(port);
1213
1214	if (!uart_circ_empty(xmit)) {
1215		s->cookie_tx = 0;
1216		schedule_work(&s->work_tx);
1217	} else {
1218		s->cookie_tx = -EINVAL;
1219		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1220		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1221			u16 ctrl = sci_serial_in(port, SCSCR);
1222			sci_serial_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1223			if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1224				/* Switch irq from DMA to SCIF */
1225				dmaengine_pause(s->chan_tx_saved);
1226				enable_irq(s->irqs[SCIx_TXI_IRQ]);
1227			}
1228		}
1229	}
1230
1231	uart_port_unlock_irqrestore(port, flags);
1232}
1233
1234/* Locking: called with port lock held */
1235static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1236{
1237	struct uart_port *port = &s->port;
1238	struct tty_port *tport = &port->state->port;
1239	int copied;
1240
1241	copied = tty_insert_flip_string(tport, buf, count);
1242	if (copied < count)
1243		port->icount.buf_overrun++;
1244
1245	port->icount.rx += copied;
1246
1247	return copied;
1248}
1249
1250static int sci_dma_rx_find_active(struct sci_port *s)
1251{
1252	unsigned int i;
1253
1254	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1255		if (s->active_rx == s->cookie_rx[i])
1256			return i;
1257
1258	return -1;
1259}
1260
1261static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1262{
1263	unsigned int i;
1264
1265	s->chan_rx = NULL;
1266	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1267		s->cookie_rx[i] = -EINVAL;
1268	s->active_rx = 0;
1269}
1270
1271static void sci_dma_rx_release(struct sci_port *s)
1272{
1273	struct dma_chan *chan = s->chan_rx_saved;
1274
1275	s->chan_rx_saved = NULL;
1276	sci_dma_rx_chan_invalidate(s);
1277	dmaengine_terminate_sync(chan);
1278	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1279			  sg_dma_address(&s->sg_rx[0]));
1280	dma_release_channel(chan);
1281}
1282
1283static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1284{
1285	long sec = usec / 1000000;
1286	long nsec = (usec % 1000000) * 1000;
1287	ktime_t t = ktime_set(sec, nsec);
1288
1289	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1290}
1291
1292static void sci_dma_rx_reenable_irq(struct sci_port *s)
1293{
1294	struct uart_port *port = &s->port;
1295	u16 scr;
1296
1297	/* Direct new serial port interrupts back to CPU */
1298	scr = sci_serial_in(port, SCSCR);
1299	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1300	    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1301		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1302		if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1303			scif_set_rtrg(port, s->rx_trigger);
1304		else
1305			scr &= ~SCSCR_RDRQE;
1306	}
1307	sci_serial_out(port, SCSCR, scr | SCSCR_RIE);
1308}
1309
1310static void sci_dma_rx_complete(void *arg)
1311{
1312	struct sci_port *s = arg;
1313	struct dma_chan *chan = s->chan_rx;
1314	struct uart_port *port = &s->port;
1315	struct dma_async_tx_descriptor *desc;
1316	unsigned long flags;
1317	int active, count = 0;
1318
1319	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1320		s->active_rx);
1321
1322	uart_port_lock_irqsave(port, &flags);
1323
1324	active = sci_dma_rx_find_active(s);
1325	if (active >= 0)
1326		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1327
1328	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1329
1330	if (count)
1331		tty_flip_buffer_push(&port->state->port);
1332
1333	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1334				       DMA_DEV_TO_MEM,
1335				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1336	if (!desc)
1337		goto fail;
1338
1339	desc->callback = sci_dma_rx_complete;
1340	desc->callback_param = s;
1341	s->cookie_rx[active] = dmaengine_submit(desc);
1342	if (dma_submit_error(s->cookie_rx[active]))
1343		goto fail;
1344
1345	s->active_rx = s->cookie_rx[!active];
1346
1347	dma_async_issue_pending(chan);
1348
1349	uart_port_unlock_irqrestore(port, flags);
1350	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1351		__func__, s->cookie_rx[active], active, s->active_rx);
1352	return;
1353
1354fail:
1355	uart_port_unlock_irqrestore(port, flags);
1356	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1357	/* Switch to PIO */
1358	uart_port_lock_irqsave(port, &flags);
1359	dmaengine_terminate_async(chan);
1360	sci_dma_rx_chan_invalidate(s);
1361	sci_dma_rx_reenable_irq(s);
1362	uart_port_unlock_irqrestore(port, flags);
1363}
1364
1365static void sci_dma_tx_release(struct sci_port *s)
1366{
1367	struct dma_chan *chan = s->chan_tx_saved;
1368
1369	cancel_work_sync(&s->work_tx);
1370	s->chan_tx_saved = s->chan_tx = NULL;
1371	s->cookie_tx = -EINVAL;
1372	dmaengine_terminate_sync(chan);
1373	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1374			 DMA_TO_DEVICE);
1375	dma_release_channel(chan);
1376}
1377
1378static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1379{
1380	struct dma_chan *chan = s->chan_rx;
1381	struct uart_port *port = &s->port;
1382	unsigned long flags;
1383	int i;
1384
1385	for (i = 0; i < 2; i++) {
1386		struct scatterlist *sg = &s->sg_rx[i];
1387		struct dma_async_tx_descriptor *desc;
1388
1389		desc = dmaengine_prep_slave_sg(chan,
1390			sg, 1, DMA_DEV_TO_MEM,
1391			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1392		if (!desc)
1393			goto fail;
1394
1395		desc->callback = sci_dma_rx_complete;
1396		desc->callback_param = s;
1397		s->cookie_rx[i] = dmaengine_submit(desc);
1398		if (dma_submit_error(s->cookie_rx[i]))
1399			goto fail;
1400
1401	}
1402
1403	s->active_rx = s->cookie_rx[0];
1404
1405	dma_async_issue_pending(chan);
1406	return 0;
1407
1408fail:
1409	/* Switch to PIO */
1410	if (!port_lock_held)
1411		uart_port_lock_irqsave(port, &flags);
1412	if (i)
1413		dmaengine_terminate_async(chan);
1414	sci_dma_rx_chan_invalidate(s);
1415	sci_start_rx(port);
1416	if (!port_lock_held)
1417		uart_port_unlock_irqrestore(port, flags);
1418	return -EAGAIN;
1419}
1420
1421static void sci_dma_tx_work_fn(struct work_struct *work)
1422{
1423	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1424	struct dma_async_tx_descriptor *desc;
1425	struct dma_chan *chan = s->chan_tx;
1426	struct uart_port *port = &s->port;
1427	struct circ_buf *xmit = &port->state->xmit;
1428	unsigned long flags;
1429	dma_addr_t buf;
1430	int head, tail;
1431
1432	/*
1433	 * DMA is idle now.
1434	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1435	 * offsets and lengths. Since it is a circular buffer, we have to
1436	 * transmit till the end, and then the rest. Take the port lock to get a
1437	 * consistent xmit buffer state.
1438	 */
1439	uart_port_lock_irq(port);
1440	head = xmit->head;
1441	tail = xmit->tail;
1442	buf = s->tx_dma_addr + tail;
1443	s->tx_dma_len = CIRC_CNT_TO_END(head, tail, UART_XMIT_SIZE);
1444	if (!s->tx_dma_len) {
1445		/* Transmit buffer has been flushed */
1446		uart_port_unlock_irq(port);
1447		return;
1448	}
1449
1450	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1451					   DMA_MEM_TO_DEV,
1452					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1453	if (!desc) {
1454		uart_port_unlock_irq(port);
1455		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1456		goto switch_to_pio;
1457	}
1458
1459	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1460				   DMA_TO_DEVICE);
1461
1462	desc->callback = sci_dma_tx_complete;
1463	desc->callback_param = s;
1464	s->cookie_tx = dmaengine_submit(desc);
1465	if (dma_submit_error(s->cookie_tx)) {
1466		uart_port_unlock_irq(port);
1467		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1468		goto switch_to_pio;
1469	}
1470
1471	uart_port_unlock_irq(port);
1472	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1473		__func__, xmit->buf, tail, head, s->cookie_tx);
1474
1475	dma_async_issue_pending(chan);
1476	return;
1477
1478switch_to_pio:
1479	uart_port_lock_irqsave(port, &flags);
1480	s->chan_tx = NULL;
1481	sci_start_tx(port);
1482	uart_port_unlock_irqrestore(port, flags);
1483	return;
1484}
1485
1486static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1487{
1488	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1489	struct dma_chan *chan = s->chan_rx;
1490	struct uart_port *port = &s->port;
1491	struct dma_tx_state state;
1492	enum dma_status status;
1493	unsigned long flags;
1494	unsigned int read;
1495	int active, count;
1496
1497	dev_dbg(port->dev, "DMA Rx timed out\n");
1498
1499	uart_port_lock_irqsave(port, &flags);
1500
1501	active = sci_dma_rx_find_active(s);
1502	if (active < 0) {
1503		uart_port_unlock_irqrestore(port, flags);
1504		return HRTIMER_NORESTART;
1505	}
1506
1507	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1508	if (status == DMA_COMPLETE) {
1509		uart_port_unlock_irqrestore(port, flags);
1510		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1511			s->active_rx, active);
1512
1513		/* Let packet complete handler take care of the packet */
1514		return HRTIMER_NORESTART;
1515	}
1516
1517	dmaengine_pause(chan);
1518
1519	/*
1520	 * sometimes DMA transfer doesn't stop even if it is stopped and
1521	 * data keeps on coming until transaction is complete so check
1522	 * for DMA_COMPLETE again
1523	 * Let packet complete handler take care of the packet
1524	 */
1525	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1526	if (status == DMA_COMPLETE) {
1527		uart_port_unlock_irqrestore(port, flags);
1528		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1529		return HRTIMER_NORESTART;
1530	}
1531
1532	/* Handle incomplete DMA receive */
1533	dmaengine_terminate_async(s->chan_rx);
1534	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1535
1536	if (read) {
1537		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1538		if (count)
1539			tty_flip_buffer_push(&port->state->port);
1540	}
1541
1542	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1543	    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1544		sci_dma_rx_submit(s, true);
1545
1546	sci_dma_rx_reenable_irq(s);
1547
1548	uart_port_unlock_irqrestore(port, flags);
1549
1550	return HRTIMER_NORESTART;
1551}
1552
1553static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1554					     enum dma_transfer_direction dir)
1555{
1556	struct dma_chan *chan;
1557	struct dma_slave_config cfg;
1558	int ret;
1559
1560	chan = dma_request_chan(port->dev, dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1561	if (IS_ERR(chan)) {
1562		dev_dbg(port->dev, "dma_request_chan failed\n");
1563		return NULL;
1564	}
1565
1566	memset(&cfg, 0, sizeof(cfg));
1567	cfg.direction = dir;
1568	cfg.dst_addr = port->mapbase +
1569		(sci_getreg(port, SCxTDR)->offset << port->regshift);
1570	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1571	cfg.src_addr = port->mapbase +
1572		(sci_getreg(port, SCxRDR)->offset << port->regshift);
1573	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1574
1575	ret = dmaengine_slave_config(chan, &cfg);
1576	if (ret) {
1577		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1578		dma_release_channel(chan);
1579		return NULL;
1580	}
1581
1582	return chan;
1583}
1584
1585static void sci_request_dma(struct uart_port *port)
1586{
1587	struct sci_port *s = to_sci_port(port);
1588	struct dma_chan *chan;
1589
1590	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1591
1592	/*
1593	 * DMA on console may interfere with Kernel log messages which use
1594	 * plain putchar(). So, simply don't use it with a console.
1595	 */
1596	if (uart_console(port))
1597		return;
1598
1599	if (!port->dev->of_node)
1600		return;
1601
1602	s->cookie_tx = -EINVAL;
1603
1604	/*
1605	 * Don't request a dma channel if no channel was specified
1606	 * in the device tree.
1607	 */
1608	if (!of_property_present(port->dev->of_node, "dmas"))
1609		return;
1610
1611	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1612	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1613	if (chan) {
1614		/* UART circular tx buffer is an aligned page. */
1615		s->tx_dma_addr = dma_map_single(chan->device->dev,
1616						port->state->xmit.buf,
1617						UART_XMIT_SIZE,
1618						DMA_TO_DEVICE);
1619		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1620			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1621			dma_release_channel(chan);
1622		} else {
1623			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1624				__func__, UART_XMIT_SIZE,
1625				port->state->xmit.buf, &s->tx_dma_addr);
1626
1627			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1628			s->chan_tx_saved = s->chan_tx = chan;
1629		}
1630	}
1631
1632	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1633	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1634	if (chan) {
1635		unsigned int i;
1636		dma_addr_t dma;
1637		void *buf;
1638
1639		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1640		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1641					 &dma, GFP_KERNEL);
1642		if (!buf) {
1643			dev_warn(port->dev,
1644				 "Failed to allocate Rx dma buffer, using PIO\n");
1645			dma_release_channel(chan);
1646			return;
1647		}
1648
1649		for (i = 0; i < 2; i++) {
1650			struct scatterlist *sg = &s->sg_rx[i];
1651
1652			sg_init_table(sg, 1);
1653			s->rx_buf[i] = buf;
1654			sg_dma_address(sg) = dma;
1655			sg_dma_len(sg) = s->buf_len_rx;
1656
1657			buf += s->buf_len_rx;
1658			dma += s->buf_len_rx;
1659		}
1660
1661		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1662		s->rx_timer.function = sci_dma_rx_timer_fn;
1663
1664		s->chan_rx_saved = s->chan_rx = chan;
1665
1666		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1667		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1668			sci_dma_rx_submit(s, false);
1669	}
1670}
1671
1672static void sci_free_dma(struct uart_port *port)
1673{
1674	struct sci_port *s = to_sci_port(port);
1675
1676	if (s->chan_tx_saved)
1677		sci_dma_tx_release(s);
1678	if (s->chan_rx_saved)
1679		sci_dma_rx_release(s);
1680}
1681
1682static void sci_flush_buffer(struct uart_port *port)
1683{
1684	struct sci_port *s = to_sci_port(port);
1685
1686	/*
1687	 * In uart_flush_buffer(), the xmit circular buffer has just been
1688	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1689	 * pending transfers
1690	 */
1691	s->tx_dma_len = 0;
1692	if (s->chan_tx) {
1693		dmaengine_terminate_async(s->chan_tx);
1694		s->cookie_tx = -EINVAL;
1695	}
1696}
1697#else /* !CONFIG_SERIAL_SH_SCI_DMA */
1698static inline void sci_request_dma(struct uart_port *port)
1699{
1700}
1701
1702static inline void sci_free_dma(struct uart_port *port)
1703{
1704}
1705
1706#define sci_flush_buffer	NULL
1707#endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1708
1709static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1710{
1711	struct uart_port *port = ptr;
1712	struct sci_port *s = to_sci_port(port);
1713
1714#ifdef CONFIG_SERIAL_SH_SCI_DMA
1715	if (s->chan_rx) {
1716		u16 scr = sci_serial_in(port, SCSCR);
1717		u16 ssr = sci_serial_in(port, SCxSR);
1718
1719		/* Disable future Rx interrupts */
1720		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1721		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1722			disable_irq_nosync(s->irqs[SCIx_RXI_IRQ]);
1723			if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1724				scif_set_rtrg(port, 1);
1725				scr |= SCSCR_RIE;
1726			} else {
1727				scr |= SCSCR_RDRQE;
1728			}
1729		} else {
1730			if (sci_dma_rx_submit(s, false) < 0)
1731				goto handle_pio;
1732
1733			scr &= ~SCSCR_RIE;
1734		}
1735		sci_serial_out(port, SCSCR, scr);
1736		/* Clear current interrupt */
1737		sci_serial_out(port, SCxSR,
1738			       ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1739		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1740			jiffies, s->rx_timeout);
1741		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1742
1743		return IRQ_HANDLED;
1744	}
1745
1746handle_pio:
1747#endif
1748
1749	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1750		if (!scif_rtrg_enabled(port))
1751			scif_set_rtrg(port, s->rx_trigger);
1752
1753		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1754			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1755	}
1756
1757	/* I think sci_receive_chars has to be called irrespective
1758	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1759	 * to be disabled?
1760	 */
1761	sci_receive_chars(port);
1762
1763	return IRQ_HANDLED;
1764}
1765
1766static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1767{
1768	struct uart_port *port = ptr;
1769	unsigned long flags;
1770
1771	uart_port_lock_irqsave(port, &flags);
1772	sci_transmit_chars(port);
1773	uart_port_unlock_irqrestore(port, flags);
1774
1775	return IRQ_HANDLED;
1776}
1777
1778static irqreturn_t sci_tx_end_interrupt(int irq, void *ptr)
1779{
1780	struct uart_port *port = ptr;
1781	unsigned long flags;
1782	unsigned short ctrl;
1783
1784	if (port->type != PORT_SCI)
1785		return sci_tx_interrupt(irq, ptr);
1786
1787	uart_port_lock_irqsave(port, &flags);
1788	ctrl = sci_serial_in(port, SCSCR);
1789	ctrl &= ~(SCSCR_TE | SCSCR_TEIE);
1790	sci_serial_out(port, SCSCR, ctrl);
1791	uart_port_unlock_irqrestore(port, flags);
1792
1793	return IRQ_HANDLED;
1794}
1795
1796static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1797{
1798	struct uart_port *port = ptr;
1799
1800	/* Handle BREAKs */
1801	sci_handle_breaks(port);
1802
1803	/* drop invalid character received before break was detected */
1804	sci_serial_in(port, SCxRDR);
1805
1806	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1807
1808	return IRQ_HANDLED;
1809}
1810
1811static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1812{
1813	struct uart_port *port = ptr;
1814	struct sci_port *s = to_sci_port(port);
1815
1816	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1817		/* Break and Error interrupts are muxed */
1818		unsigned short ssr_status = sci_serial_in(port, SCxSR);
1819
1820		/* Break Interrupt */
1821		if (ssr_status & SCxSR_BRK(port))
1822			sci_br_interrupt(irq, ptr);
1823
1824		/* Break only? */
1825		if (!(ssr_status & SCxSR_ERRORS(port)))
1826			return IRQ_HANDLED;
1827	}
1828
1829	/* Handle errors */
1830	if (port->type == PORT_SCI) {
1831		if (sci_handle_errors(port)) {
1832			/* discard character in rx buffer */
1833			sci_serial_in(port, SCxSR);
1834			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1835		}
1836	} else {
1837		sci_handle_fifo_overrun(port);
1838		if (!s->chan_rx)
1839			sci_receive_chars(port);
1840	}
1841
1842	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1843
1844	/* Kick the transmission */
1845	if (!s->chan_tx)
1846		sci_tx_interrupt(irq, ptr);
1847
1848	return IRQ_HANDLED;
1849}
1850
1851static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1852{
1853	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1854	struct uart_port *port = ptr;
1855	struct sci_port *s = to_sci_port(port);
1856	irqreturn_t ret = IRQ_NONE;
1857
1858	ssr_status = sci_serial_in(port, SCxSR);
1859	scr_status = sci_serial_in(port, SCSCR);
1860	if (s->params->overrun_reg == SCxSR)
1861		orer_status = ssr_status;
1862	else if (sci_getreg(port, s->params->overrun_reg)->size)
1863		orer_status = sci_serial_in(port, s->params->overrun_reg);
1864
1865	err_enabled = scr_status & port_rx_irq_mask(port);
1866
1867	/* Tx Interrupt */
1868	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1869	    !s->chan_tx)
1870		ret = sci_tx_interrupt(irq, ptr);
1871
1872	/*
1873	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1874	 * DR flags
1875	 */
1876	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1877	    (scr_status & SCSCR_RIE))
1878		ret = sci_rx_interrupt(irq, ptr);
1879
1880	/* Error Interrupt */
1881	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1882		ret = sci_er_interrupt(irq, ptr);
1883
1884	/* Break Interrupt */
1885	if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1886	    (ssr_status & SCxSR_BRK(port)) && err_enabled)
1887		ret = sci_br_interrupt(irq, ptr);
1888
1889	/* Overrun Interrupt */
1890	if (orer_status & s->params->overrun_mask) {
1891		sci_handle_fifo_overrun(port);
1892		ret = IRQ_HANDLED;
1893	}
1894
1895	return ret;
1896}
1897
1898static const struct sci_irq_desc {
1899	const char	*desc;
1900	irq_handler_t	handler;
1901} sci_irq_desc[] = {
1902	/*
1903	 * Split out handlers, the default case.
1904	 */
1905	[SCIx_ERI_IRQ] = {
1906		.desc = "rx err",
1907		.handler = sci_er_interrupt,
1908	},
1909
1910	[SCIx_RXI_IRQ] = {
1911		.desc = "rx full",
1912		.handler = sci_rx_interrupt,
1913	},
1914
1915	[SCIx_TXI_IRQ] = {
1916		.desc = "tx empty",
1917		.handler = sci_tx_interrupt,
1918	},
1919
1920	[SCIx_BRI_IRQ] = {
1921		.desc = "break",
1922		.handler = sci_br_interrupt,
1923	},
1924
1925	[SCIx_DRI_IRQ] = {
1926		.desc = "rx ready",
1927		.handler = sci_rx_interrupt,
1928	},
1929
1930	[SCIx_TEI_IRQ] = {
1931		.desc = "tx end",
1932		.handler = sci_tx_end_interrupt,
1933	},
1934
1935	/*
1936	 * Special muxed handler.
1937	 */
1938	[SCIx_MUX_IRQ] = {
1939		.desc = "mux",
1940		.handler = sci_mpxed_interrupt,
1941	},
1942};
1943
1944static int sci_request_irq(struct sci_port *port)
1945{
1946	struct uart_port *up = &port->port;
1947	int i, j, w, ret = 0;
1948
1949	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1950		const struct sci_irq_desc *desc;
1951		int irq;
1952
1953		/* Check if already registered (muxed) */
1954		for (w = 0; w < i; w++)
1955			if (port->irqs[w] == port->irqs[i])
1956				w = i + 1;
1957		if (w > i)
1958			continue;
1959
1960		if (SCIx_IRQ_IS_MUXED(port)) {
1961			i = SCIx_MUX_IRQ;
1962			irq = up->irq;
1963		} else {
1964			irq = port->irqs[i];
1965
1966			/*
1967			 * Certain port types won't support all of the
1968			 * available interrupt sources.
1969			 */
1970			if (unlikely(irq < 0))
1971				continue;
1972		}
1973
1974		desc = sci_irq_desc + i;
1975		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1976					    dev_name(up->dev), desc->desc);
1977		if (!port->irqstr[j]) {
1978			ret = -ENOMEM;
1979			goto out_nomem;
1980		}
1981
1982		ret = request_irq(irq, desc->handler, up->irqflags,
1983				  port->irqstr[j], port);
1984		if (unlikely(ret)) {
1985			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1986			goto out_noirq;
1987		}
1988	}
1989
1990	return 0;
1991
1992out_noirq:
1993	while (--i >= 0)
1994		free_irq(port->irqs[i], port);
1995
1996out_nomem:
1997	while (--j >= 0)
1998		kfree(port->irqstr[j]);
1999
2000	return ret;
2001}
2002
2003static void sci_free_irq(struct sci_port *port)
2004{
2005	int i, j;
2006
2007	/*
2008	 * Intentionally in reverse order so we iterate over the muxed
2009	 * IRQ first.
2010	 */
2011	for (i = 0; i < SCIx_NR_IRQS; i++) {
2012		int irq = port->irqs[i];
2013
2014		/*
2015		 * Certain port types won't support all of the available
2016		 * interrupt sources.
2017		 */
2018		if (unlikely(irq < 0))
2019			continue;
2020
2021		/* Check if already freed (irq was muxed) */
2022		for (j = 0; j < i; j++)
2023			if (port->irqs[j] == irq)
2024				j = i + 1;
2025		if (j > i)
2026			continue;
2027
2028		free_irq(port->irqs[i], port);
2029		kfree(port->irqstr[i]);
2030
2031		if (SCIx_IRQ_IS_MUXED(port)) {
2032			/* If there's only one IRQ, we're done. */
2033			return;
2034		}
2035	}
2036}
2037
2038static unsigned int sci_tx_empty(struct uart_port *port)
2039{
2040	unsigned short status = sci_serial_in(port, SCxSR);
2041	unsigned short in_tx_fifo = sci_txfill(port);
2042
2043	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2044}
2045
2046static void sci_set_rts(struct uart_port *port, bool state)
2047{
2048	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2049		u16 data = sci_serial_in(port, SCPDR);
2050
2051		/* Active low */
2052		if (state)
2053			data &= ~SCPDR_RTSD;
2054		else
2055			data |= SCPDR_RTSD;
2056		sci_serial_out(port, SCPDR, data);
2057
2058		/* RTS# is output */
2059		sci_serial_out(port, SCPCR,
2060			       sci_serial_in(port, SCPCR) | SCPCR_RTSC);
2061	} else if (sci_getreg(port, SCSPTR)->size) {
2062		u16 ctrl = sci_serial_in(port, SCSPTR);
2063
2064		/* Active low */
2065		if (state)
2066			ctrl &= ~SCSPTR_RTSDT;
2067		else
2068			ctrl |= SCSPTR_RTSDT;
2069		sci_serial_out(port, SCSPTR, ctrl);
2070	}
2071}
2072
2073static bool sci_get_cts(struct uart_port *port)
2074{
2075	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2076		/* Active low */
2077		return !(sci_serial_in(port, SCPDR) & SCPDR_CTSD);
2078	} else if (sci_getreg(port, SCSPTR)->size) {
2079		/* Active low */
2080		return !(sci_serial_in(port, SCSPTR) & SCSPTR_CTSDT);
2081	}
2082
2083	return true;
2084}
2085
2086/*
2087 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2088 * CTS/RTS is supported in hardware by at least one port and controlled
2089 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2090 * handled via the ->init_pins() op, which is a bit of a one-way street,
2091 * lacking any ability to defer pin control -- this will later be
2092 * converted over to the GPIO framework).
2093 *
2094 * Other modes (such as loopback) are supported generically on certain
2095 * port types, but not others. For these it's sufficient to test for the
2096 * existence of the support register and simply ignore the port type.
2097 */
2098static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2099{
2100	struct sci_port *s = to_sci_port(port);
2101
2102	if (mctrl & TIOCM_LOOP) {
2103		const struct plat_sci_reg *reg;
2104
2105		/*
2106		 * Standard loopback mode for SCFCR ports.
2107		 */
2108		reg = sci_getreg(port, SCFCR);
2109		if (reg->size)
2110			sci_serial_out(port, SCFCR,
2111				       sci_serial_in(port, SCFCR) | SCFCR_LOOP);
2112	}
2113
2114	mctrl_gpio_set(s->gpios, mctrl);
2115
2116	if (!s->has_rtscts)
2117		return;
2118
2119	if (!(mctrl & TIOCM_RTS)) {
2120		/* Disable Auto RTS */
2121		sci_serial_out(port, SCFCR,
2122			       sci_serial_in(port, SCFCR) & ~SCFCR_MCE);
2123
2124		/* Clear RTS */
2125		sci_set_rts(port, 0);
2126	} else if (s->autorts) {
2127		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2128			/* Enable RTS# pin function */
2129			sci_serial_out(port, SCPCR,
2130				sci_serial_in(port, SCPCR) & ~SCPCR_RTSC);
2131		}
2132
2133		/* Enable Auto RTS */
2134		sci_serial_out(port, SCFCR,
2135			       sci_serial_in(port, SCFCR) | SCFCR_MCE);
2136	} else {
2137		/* Set RTS */
2138		sci_set_rts(port, 1);
2139	}
2140}
2141
2142static unsigned int sci_get_mctrl(struct uart_port *port)
2143{
2144	struct sci_port *s = to_sci_port(port);
2145	struct mctrl_gpios *gpios = s->gpios;
2146	unsigned int mctrl = 0;
2147
2148	mctrl_gpio_get(gpios, &mctrl);
2149
2150	/*
2151	 * CTS/RTS is handled in hardware when supported, while nothing
2152	 * else is wired up.
2153	 */
2154	if (s->autorts) {
2155		if (sci_get_cts(port))
2156			mctrl |= TIOCM_CTS;
2157	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2158		mctrl |= TIOCM_CTS;
2159	}
2160	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2161		mctrl |= TIOCM_DSR;
2162	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2163		mctrl |= TIOCM_CAR;
2164
2165	return mctrl;
2166}
2167
2168static void sci_enable_ms(struct uart_port *port)
2169{
2170	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2171}
2172
2173static void sci_break_ctl(struct uart_port *port, int break_state)
2174{
2175	unsigned short scscr, scsptr;
2176	unsigned long flags;
2177
2178	/* check whether the port has SCSPTR */
2179	if (!sci_getreg(port, SCSPTR)->size) {
2180		/*
2181		 * Not supported by hardware. Most parts couple break and rx
2182		 * interrupts together, with break detection always enabled.
2183		 */
2184		return;
2185	}
2186
2187	uart_port_lock_irqsave(port, &flags);
2188	scsptr = sci_serial_in(port, SCSPTR);
2189	scscr = sci_serial_in(port, SCSCR);
2190
2191	if (break_state == -1) {
2192		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2193		scscr &= ~SCSCR_TE;
2194	} else {
2195		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2196		scscr |= SCSCR_TE;
2197	}
2198
2199	sci_serial_out(port, SCSPTR, scsptr);
2200	sci_serial_out(port, SCSCR, scscr);
2201	uart_port_unlock_irqrestore(port, flags);
2202}
2203
2204static int sci_startup(struct uart_port *port)
2205{
2206	struct sci_port *s = to_sci_port(port);
2207	int ret;
2208
2209	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2210
2211	sci_request_dma(port);
2212
2213	ret = sci_request_irq(s);
2214	if (unlikely(ret < 0)) {
2215		sci_free_dma(port);
2216		return ret;
2217	}
2218
2219	return 0;
2220}
2221
2222static void sci_shutdown(struct uart_port *port)
2223{
2224	struct sci_port *s = to_sci_port(port);
2225	unsigned long flags;
2226	u16 scr;
2227
2228	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2229
2230	s->autorts = false;
2231	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2232
2233	uart_port_lock_irqsave(port, &flags);
2234	sci_stop_rx(port);
2235	sci_stop_tx(port);
2236	/*
2237	 * Stop RX and TX, disable related interrupts, keep clock source
2238	 * and HSCIF TOT bits
2239	 */
2240	scr = sci_serial_in(port, SCSCR);
2241	sci_serial_out(port, SCSCR,
2242		       scr & (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2243	uart_port_unlock_irqrestore(port, flags);
2244
2245#ifdef CONFIG_SERIAL_SH_SCI_DMA
2246	if (s->chan_rx_saved) {
2247		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2248			port->line);
2249		hrtimer_cancel(&s->rx_timer);
2250	}
2251#endif
2252
2253	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2254		del_timer_sync(&s->rx_fifo_timer);
2255	sci_free_irq(s);
2256	sci_free_dma(port);
2257}
2258
2259static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2260			unsigned int *srr)
2261{
2262	unsigned long freq = s->clk_rates[SCI_SCK];
2263	int err, min_err = INT_MAX;
2264	unsigned int sr;
2265
2266	if (s->port.type != PORT_HSCIF)
2267		freq *= 2;
2268
2269	for_each_sr(sr, s) {
2270		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2271		if (abs(err) >= abs(min_err))
2272			continue;
2273
2274		min_err = err;
2275		*srr = sr - 1;
2276
2277		if (!err)
2278			break;
2279	}
2280
2281	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2282		*srr + 1);
2283	return min_err;
2284}
2285
2286static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2287			unsigned long freq, unsigned int *dlr,
2288			unsigned int *srr)
2289{
2290	int err, min_err = INT_MAX;
2291	unsigned int sr, dl;
2292
2293	if (s->port.type != PORT_HSCIF)
2294		freq *= 2;
2295
2296	for_each_sr(sr, s) {
2297		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2298		dl = clamp(dl, 1U, 65535U);
2299
2300		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2301		if (abs(err) >= abs(min_err))
2302			continue;
2303
2304		min_err = err;
2305		*dlr = dl;
2306		*srr = sr - 1;
2307
2308		if (!err)
2309			break;
2310	}
2311
2312	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2313		min_err, *dlr, *srr + 1);
2314	return min_err;
2315}
2316
2317/* calculate sample rate, BRR, and clock select */
2318static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2319			  unsigned int *brr, unsigned int *srr,
2320			  unsigned int *cks)
2321{
2322	unsigned long freq = s->clk_rates[SCI_FCK];
2323	unsigned int sr, br, prediv, scrate, c;
2324	int err, min_err = INT_MAX;
2325
2326	if (s->port.type != PORT_HSCIF)
2327		freq *= 2;
2328
2329	/*
2330	 * Find the combination of sample rate and clock select with the
2331	 * smallest deviation from the desired baud rate.
2332	 * Prefer high sample rates to maximise the receive margin.
2333	 *
2334	 * M: Receive margin (%)
2335	 * N: Ratio of bit rate to clock (N = sampling rate)
2336	 * D: Clock duty (D = 0 to 1.0)
2337	 * L: Frame length (L = 9 to 12)
2338	 * F: Absolute value of clock frequency deviation
2339	 *
2340	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2341	 *      (|D - 0.5| / N * (1 + F))|
2342	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2343	 */
2344	for_each_sr(sr, s) {
2345		for (c = 0; c <= 3; c++) {
2346			/* integerized formulas from HSCIF documentation */
2347			prediv = sr << (2 * c + 1);
2348
2349			/*
2350			 * We need to calculate:
2351			 *
2352			 *     br = freq / (prediv * bps) clamped to [1..256]
2353			 *     err = freq / (br * prediv) - bps
2354			 *
2355			 * Watch out for overflow when calculating the desired
2356			 * sampling clock rate!
2357			 */
2358			if (bps > UINT_MAX / prediv)
2359				break;
2360
2361			scrate = prediv * bps;
2362			br = DIV_ROUND_CLOSEST(freq, scrate);
2363			br = clamp(br, 1U, 256U);
2364
2365			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2366			if (abs(err) >= abs(min_err))
2367				continue;
2368
2369			min_err = err;
2370			*brr = br - 1;
2371			*srr = sr - 1;
2372			*cks = c;
2373
2374			if (!err)
2375				goto found;
2376		}
2377	}
2378
2379found:
2380	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2381		min_err, *brr, *srr + 1, *cks);
2382	return min_err;
2383}
2384
2385static void sci_reset(struct uart_port *port)
2386{
2387	const struct plat_sci_reg *reg;
2388	unsigned int status;
2389	struct sci_port *s = to_sci_port(port);
2390
2391	sci_serial_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2392
2393	reg = sci_getreg(port, SCFCR);
2394	if (reg->size)
2395		sci_serial_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2396
2397	sci_clear_SCxSR(port,
2398			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2399			SCxSR_BREAK_CLEAR(port));
2400	if (sci_getreg(port, SCLSR)->size) {
2401		status = sci_serial_in(port, SCLSR);
2402		status &= ~(SCLSR_TO | SCLSR_ORER);
2403		sci_serial_out(port, SCLSR, status);
2404	}
2405
2406	if (s->rx_trigger > 1) {
2407		if (s->rx_fifo_timeout) {
2408			scif_set_rtrg(port, 1);
2409			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2410		} else {
2411			if (port->type == PORT_SCIFA ||
2412			    port->type == PORT_SCIFB)
2413				scif_set_rtrg(port, 1);
2414			else
2415				scif_set_rtrg(port, s->rx_trigger);
2416		}
2417	}
2418}
2419
2420static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2421		            const struct ktermios *old)
2422{
2423	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2424	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2425	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2426	struct sci_port *s = to_sci_port(port);
2427	const struct plat_sci_reg *reg;
2428	int min_err = INT_MAX, err;
2429	unsigned long max_freq = 0;
2430	int best_clk = -1;
2431	unsigned long flags;
2432
2433	if ((termios->c_cflag & CSIZE) == CS7) {
2434		smr_val |= SCSMR_CHR;
2435	} else {
2436		termios->c_cflag &= ~CSIZE;
2437		termios->c_cflag |= CS8;
2438	}
2439	if (termios->c_cflag & PARENB)
2440		smr_val |= SCSMR_PE;
2441	if (termios->c_cflag & PARODD)
2442		smr_val |= SCSMR_PE | SCSMR_ODD;
2443	if (termios->c_cflag & CSTOPB)
2444		smr_val |= SCSMR_STOP;
2445
2446	/*
2447	 * earlyprintk comes here early on with port->uartclk set to zero.
2448	 * the clock framework is not up and running at this point so here
2449	 * we assume that 115200 is the maximum baud rate. please note that
2450	 * the baud rate is not programmed during earlyprintk - it is assumed
2451	 * that the previous boot loader has enabled required clocks and
2452	 * setup the baud rate generator hardware for us already.
2453	 */
2454	if (!port->uartclk) {
2455		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2456		goto done;
2457	}
2458
2459	for (i = 0; i < SCI_NUM_CLKS; i++)
2460		max_freq = max(max_freq, s->clk_rates[i]);
2461
2462	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2463	if (!baud)
2464		goto done;
2465
2466	/*
2467	 * There can be multiple sources for the sampling clock.  Find the one
2468	 * that gives us the smallest deviation from the desired baud rate.
2469	 */
2470
2471	/* Optional Undivided External Clock */
2472	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2473	    port->type != PORT_SCIFB) {
2474		err = sci_sck_calc(s, baud, &srr1);
2475		if (abs(err) < abs(min_err)) {
2476			best_clk = SCI_SCK;
2477			scr_val = SCSCR_CKE1;
2478			sccks = SCCKS_CKS;
2479			min_err = err;
2480			srr = srr1;
2481			if (!err)
2482				goto done;
2483		}
2484	}
2485
2486	/* Optional BRG Frequency Divided External Clock */
2487	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2488		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2489				   &srr1);
2490		if (abs(err) < abs(min_err)) {
2491			best_clk = SCI_SCIF_CLK;
2492			scr_val = SCSCR_CKE1;
2493			sccks = 0;
2494			min_err = err;
2495			dl = dl1;
2496			srr = srr1;
2497			if (!err)
2498				goto done;
2499		}
2500	}
2501
2502	/* Optional BRG Frequency Divided Internal Clock */
2503	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2504		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2505				   &srr1);
2506		if (abs(err) < abs(min_err)) {
2507			best_clk = SCI_BRG_INT;
2508			scr_val = SCSCR_CKE1;
2509			sccks = SCCKS_XIN;
2510			min_err = err;
2511			dl = dl1;
2512			srr = srr1;
2513			if (!min_err)
2514				goto done;
2515		}
2516	}
2517
2518	/* Divided Functional Clock using standard Bit Rate Register */
2519	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2520	if (abs(err) < abs(min_err)) {
2521		best_clk = SCI_FCK;
2522		scr_val = 0;
2523		min_err = err;
2524		brr = brr1;
2525		srr = srr1;
2526		cks = cks1;
2527	}
2528
2529done:
2530	if (best_clk >= 0)
2531		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2532			s->clks[best_clk], baud, min_err);
2533
2534	sci_port_enable(s);
2535
2536	/*
2537	 * Program the optional External Baud Rate Generator (BRG) first.
2538	 * It controls the mux to select (H)SCK or frequency divided clock.
2539	 */
2540	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2541		sci_serial_out(port, SCDL, dl);
2542		sci_serial_out(port, SCCKS, sccks);
2543	}
2544
2545	uart_port_lock_irqsave(port, &flags);
2546
2547	sci_reset(port);
2548
2549	uart_update_timeout(port, termios->c_cflag, baud);
2550
2551	/* byte size and parity */
2552	bits = tty_get_frame_size(termios->c_cflag);
2553
2554	if (sci_getreg(port, SEMR)->size)
2555		sci_serial_out(port, SEMR, 0);
2556
2557	if (best_clk >= 0) {
2558		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2559			switch (srr + 1) {
2560			case 5:  smr_val |= SCSMR_SRC_5;  break;
2561			case 7:  smr_val |= SCSMR_SRC_7;  break;
2562			case 11: smr_val |= SCSMR_SRC_11; break;
2563			case 13: smr_val |= SCSMR_SRC_13; break;
2564			case 16: smr_val |= SCSMR_SRC_16; break;
2565			case 17: smr_val |= SCSMR_SRC_17; break;
2566			case 19: smr_val |= SCSMR_SRC_19; break;
2567			case 27: smr_val |= SCSMR_SRC_27; break;
2568			}
2569		smr_val |= cks;
2570		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2571		sci_serial_out(port, SCSMR, smr_val);
2572		sci_serial_out(port, SCBRR, brr);
2573		if (sci_getreg(port, HSSRR)->size) {
2574			unsigned int hssrr = srr | HSCIF_SRE;
2575			/* Calculate deviation from intended rate at the
2576			 * center of the last stop bit in sampling clocks.
2577			 */
2578			int last_stop = bits * 2 - 1;
2579			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2580							  (int)(srr + 1),
2581							  2 * (int)baud);
2582
2583			if (abs(deviation) >= 2) {
2584				/* At least two sampling clocks off at the
2585				 * last stop bit; we can increase the error
2586				 * margin by shifting the sampling point.
2587				 */
2588				int shift = clamp(deviation / 2, -8, 7);
2589
2590				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2591					 HSCIF_SRHP_MASK;
2592				hssrr |= HSCIF_SRDE;
2593			}
2594			sci_serial_out(port, HSSRR, hssrr);
2595		}
2596
2597		/* Wait one bit interval */
2598		udelay((1000000 + (baud - 1)) / baud);
2599	} else {
2600		/* Don't touch the bit rate configuration */
2601		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2602		smr_val |= sci_serial_in(port, SCSMR) &
2603			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2604		sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2605		sci_serial_out(port, SCSMR, smr_val);
2606	}
2607
2608	sci_init_pins(port, termios->c_cflag);
2609
2610	port->status &= ~UPSTAT_AUTOCTS;
2611	s->autorts = false;
2612	reg = sci_getreg(port, SCFCR);
2613	if (reg->size) {
2614		unsigned short ctrl = sci_serial_in(port, SCFCR);
2615
2616		if ((port->flags & UPF_HARD_FLOW) &&
2617		    (termios->c_cflag & CRTSCTS)) {
2618			/* There is no CTS interrupt to restart the hardware */
2619			port->status |= UPSTAT_AUTOCTS;
2620			/* MCE is enabled when RTS is raised */
2621			s->autorts = true;
2622		}
2623
2624		/*
2625		 * As we've done a sci_reset() above, ensure we don't
2626		 * interfere with the FIFOs while toggling MCE. As the
2627		 * reset values could still be set, simply mask them out.
2628		 */
2629		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2630
2631		sci_serial_out(port, SCFCR, ctrl);
2632	}
2633	if (port->flags & UPF_HARD_FLOW) {
2634		/* Refresh (Auto) RTS */
2635		sci_set_mctrl(port, port->mctrl);
2636	}
2637
2638	/*
2639	 * For SCI, TE (transmit enable) must be set after setting TIE
2640	 * (transmit interrupt enable) or in the same instruction to
2641	 * start the transmitting process. So skip setting TE here for SCI.
2642	 */
2643	if (port->type != PORT_SCI)
2644		scr_val |= SCSCR_TE;
2645	scr_val |= SCSCR_RE | (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2646	sci_serial_out(port, SCSCR, scr_val | s->hscif_tot);
2647	if ((srr + 1 == 5) &&
2648	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2649		/*
2650		 * In asynchronous mode, when the sampling rate is 1/5, first
2651		 * received data may become invalid on some SCIFA and SCIFB.
2652		 * To avoid this problem wait more than 1 serial data time (1
2653		 * bit time x serial data number) after setting SCSCR.RE = 1.
2654		 */
2655		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2656	}
2657
2658	/* Calculate delay for 2 DMA buffers (4 FIFO). */
2659	s->rx_frame = (10000 * bits) / (baud / 100);
2660#ifdef CONFIG_SERIAL_SH_SCI_DMA
2661	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2662#endif
2663
2664	if ((termios->c_cflag & CREAD) != 0)
2665		sci_start_rx(port);
2666
2667	uart_port_unlock_irqrestore(port, flags);
2668
2669	sci_port_disable(s);
2670
2671	if (UART_ENABLE_MS(port, termios->c_cflag))
2672		sci_enable_ms(port);
2673}
2674
2675static void sci_pm(struct uart_port *port, unsigned int state,
2676		   unsigned int oldstate)
2677{
2678	struct sci_port *sci_port = to_sci_port(port);
2679
2680	switch (state) {
2681	case UART_PM_STATE_OFF:
2682		sci_port_disable(sci_port);
2683		break;
2684	default:
2685		sci_port_enable(sci_port);
2686		break;
2687	}
2688}
2689
2690static const char *sci_type(struct uart_port *port)
2691{
2692	switch (port->type) {
2693	case PORT_IRDA:
2694		return "irda";
2695	case PORT_SCI:
2696		return "sci";
2697	case PORT_SCIF:
2698		return "scif";
2699	case PORT_SCIFA:
2700		return "scifa";
2701	case PORT_SCIFB:
2702		return "scifb";
2703	case PORT_HSCIF:
2704		return "hscif";
2705	}
2706
2707	return NULL;
2708}
2709
2710static int sci_remap_port(struct uart_port *port)
2711{
2712	struct sci_port *sport = to_sci_port(port);
2713
2714	/*
2715	 * Nothing to do if there's already an established membase.
2716	 */
2717	if (port->membase)
2718		return 0;
2719
2720	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2721		port->membase = ioremap(port->mapbase, sport->reg_size);
2722		if (unlikely(!port->membase)) {
2723			dev_err(port->dev, "can't remap port#%d\n", port->line);
2724			return -ENXIO;
2725		}
2726	} else {
2727		/*
2728		 * For the simple (and majority of) cases where we don't
2729		 * need to do any remapping, just cast the cookie
2730		 * directly.
2731		 */
2732		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2733	}
2734
2735	return 0;
2736}
2737
2738static void sci_release_port(struct uart_port *port)
2739{
2740	struct sci_port *sport = to_sci_port(port);
2741
2742	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2743		iounmap(port->membase);
2744		port->membase = NULL;
2745	}
2746
2747	release_mem_region(port->mapbase, sport->reg_size);
2748}
2749
2750static int sci_request_port(struct uart_port *port)
2751{
2752	struct resource *res;
2753	struct sci_port *sport = to_sci_port(port);
2754	int ret;
2755
2756	res = request_mem_region(port->mapbase, sport->reg_size,
2757				 dev_name(port->dev));
2758	if (unlikely(res == NULL)) {
2759		dev_err(port->dev, "request_mem_region failed.");
2760		return -EBUSY;
2761	}
2762
2763	ret = sci_remap_port(port);
2764	if (unlikely(ret != 0)) {
2765		release_resource(res);
2766		return ret;
2767	}
2768
2769	return 0;
2770}
2771
2772static void sci_config_port(struct uart_port *port, int flags)
2773{
2774	if (flags & UART_CONFIG_TYPE) {
2775		struct sci_port *sport = to_sci_port(port);
2776
2777		port->type = sport->cfg->type;
2778		sci_request_port(port);
2779	}
2780}
2781
2782static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2783{
2784	if (ser->baud_base < 2400)
2785		/* No paper tape reader for Mitch.. */
2786		return -EINVAL;
2787
2788	return 0;
2789}
2790
2791static const struct uart_ops sci_uart_ops = {
2792	.tx_empty	= sci_tx_empty,
2793	.set_mctrl	= sci_set_mctrl,
2794	.get_mctrl	= sci_get_mctrl,
2795	.start_tx	= sci_start_tx,
2796	.stop_tx	= sci_stop_tx,
2797	.stop_rx	= sci_stop_rx,
2798	.enable_ms	= sci_enable_ms,
2799	.break_ctl	= sci_break_ctl,
2800	.startup	= sci_startup,
2801	.shutdown	= sci_shutdown,
2802	.flush_buffer	= sci_flush_buffer,
2803	.set_termios	= sci_set_termios,
2804	.pm		= sci_pm,
2805	.type		= sci_type,
2806	.release_port	= sci_release_port,
2807	.request_port	= sci_request_port,
2808	.config_port	= sci_config_port,
2809	.verify_port	= sci_verify_port,
2810#ifdef CONFIG_CONSOLE_POLL
2811	.poll_get_char	= sci_poll_get_char,
2812	.poll_put_char	= sci_poll_put_char,
2813#endif
2814};
2815
2816static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2817{
2818	const char *clk_names[] = {
2819		[SCI_FCK] = "fck",
2820		[SCI_SCK] = "sck",
2821		[SCI_BRG_INT] = "brg_int",
2822		[SCI_SCIF_CLK] = "scif_clk",
2823	};
2824	struct clk *clk;
2825	unsigned int i;
2826
2827	if (sci_port->cfg->type == PORT_HSCIF)
2828		clk_names[SCI_SCK] = "hsck";
2829
2830	for (i = 0; i < SCI_NUM_CLKS; i++) {
2831		clk = devm_clk_get_optional(dev, clk_names[i]);
2832		if (IS_ERR(clk))
2833			return PTR_ERR(clk);
2834
2835		if (!clk && i == SCI_FCK) {
2836			/*
2837			 * Not all SH platforms declare a clock lookup entry
2838			 * for SCI devices, in which case we need to get the
2839			 * global "peripheral_clk" clock.
2840			 */
2841			clk = devm_clk_get(dev, "peripheral_clk");
2842			if (IS_ERR(clk))
2843				return dev_err_probe(dev, PTR_ERR(clk),
2844						     "failed to get %s\n",
2845						     clk_names[i]);
2846		}
2847
2848		if (!clk)
2849			dev_dbg(dev, "failed to get %s\n", clk_names[i]);
2850		else
2851			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2852				clk, clk_get_rate(clk));
2853		sci_port->clks[i] = clk;
2854	}
2855	return 0;
2856}
2857
2858static const struct sci_port_params *
2859sci_probe_regmap(const struct plat_sci_port *cfg)
2860{
2861	unsigned int regtype;
2862
2863	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2864		return &sci_port_params[cfg->regtype];
2865
2866	switch (cfg->type) {
2867	case PORT_SCI:
2868		regtype = SCIx_SCI_REGTYPE;
2869		break;
2870	case PORT_IRDA:
2871		regtype = SCIx_IRDA_REGTYPE;
2872		break;
2873	case PORT_SCIFA:
2874		regtype = SCIx_SCIFA_REGTYPE;
2875		break;
2876	case PORT_SCIFB:
2877		regtype = SCIx_SCIFB_REGTYPE;
2878		break;
2879	case PORT_SCIF:
2880		/*
2881		 * The SH-4 is a bit of a misnomer here, although that's
2882		 * where this particular port layout originated. This
2883		 * configuration (or some slight variation thereof)
2884		 * remains the dominant model for all SCIFs.
2885		 */
2886		regtype = SCIx_SH4_SCIF_REGTYPE;
2887		break;
2888	case PORT_HSCIF:
2889		regtype = SCIx_HSCIF_REGTYPE;
2890		break;
2891	default:
2892		pr_err("Can't probe register map for given port\n");
2893		return NULL;
2894	}
2895
2896	return &sci_port_params[regtype];
2897}
2898
2899static int sci_init_single(struct platform_device *dev,
2900			   struct sci_port *sci_port, unsigned int index,
2901			   const struct plat_sci_port *p, bool early)
2902{
2903	struct uart_port *port = &sci_port->port;
2904	const struct resource *res;
2905	unsigned int i;
2906	int ret;
2907
2908	sci_port->cfg	= p;
2909
2910	port->ops	= &sci_uart_ops;
2911	port->iotype	= UPIO_MEM;
2912	port->line	= index;
2913	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
2914
2915	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2916	if (res == NULL)
2917		return -ENOMEM;
2918
2919	port->mapbase = res->start;
2920	sci_port->reg_size = resource_size(res);
2921
2922	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2923		if (i)
2924			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2925		else
2926			sci_port->irqs[i] = platform_get_irq(dev, i);
2927	}
2928
2929	/*
2930	 * The fourth interrupt on SCI port is transmit end interrupt, so
2931	 * shuffle the interrupts.
2932	 */
2933	if (p->type == PORT_SCI)
2934		swap(sci_port->irqs[SCIx_BRI_IRQ], sci_port->irqs[SCIx_TEI_IRQ]);
2935
2936	/* The SCI generates several interrupts. They can be muxed together or
2937	 * connected to different interrupt lines. In the muxed case only one
2938	 * interrupt resource is specified as there is only one interrupt ID.
2939	 * In the non-muxed case, up to 6 interrupt signals might be generated
2940	 * from the SCI, however those signals might have their own individual
2941	 * interrupt ID numbers, or muxed together with another interrupt.
2942	 */
2943	if (sci_port->irqs[0] < 0)
2944		return -ENXIO;
2945
2946	if (sci_port->irqs[1] < 0)
2947		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2948			sci_port->irqs[i] = sci_port->irqs[0];
2949
2950	sci_port->params = sci_probe_regmap(p);
2951	if (unlikely(sci_port->params == NULL))
2952		return -EINVAL;
2953
2954	switch (p->type) {
2955	case PORT_SCIFB:
2956		sci_port->rx_trigger = 48;
2957		break;
2958	case PORT_HSCIF:
2959		sci_port->rx_trigger = 64;
2960		break;
2961	case PORT_SCIFA:
2962		sci_port->rx_trigger = 32;
2963		break;
2964	case PORT_SCIF:
2965		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2966			/* RX triggering not implemented for this IP */
2967			sci_port->rx_trigger = 1;
2968		else
2969			sci_port->rx_trigger = 8;
2970		break;
2971	default:
2972		sci_port->rx_trigger = 1;
2973		break;
2974	}
2975
2976	sci_port->rx_fifo_timeout = 0;
2977	sci_port->hscif_tot = 0;
2978
2979	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2980	 * match the SoC datasheet, this should be investigated. Let platform
2981	 * data override the sampling rate for now.
2982	 */
2983	sci_port->sampling_rate_mask = p->sampling_rate
2984				     ? SCI_SR(p->sampling_rate)
2985				     : sci_port->params->sampling_rate_mask;
2986
2987	if (!early) {
2988		ret = sci_init_clocks(sci_port, &dev->dev);
2989		if (ret < 0)
2990			return ret;
2991
2992		port->dev = &dev->dev;
2993
2994		pm_runtime_enable(&dev->dev);
2995	}
2996
2997	port->type		= p->type;
2998	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2999	port->fifosize		= sci_port->params->fifosize;
3000
3001	if (port->type == PORT_SCI && !dev->dev.of_node) {
3002		if (sci_port->reg_size >= 0x20)
3003			port->regshift = 2;
3004		else
3005			port->regshift = 1;
3006	}
3007
3008	/*
3009	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
3010	 * for the multi-IRQ ports, which is where we are primarily
3011	 * concerned with the shutdown path synchronization.
3012	 *
3013	 * For the muxed case there's nothing more to do.
3014	 */
3015	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
3016	port->irqflags		= 0;
3017
3018	return 0;
3019}
3020
3021static void sci_cleanup_single(struct sci_port *port)
3022{
3023	pm_runtime_disable(port->port.dev);
3024}
3025
3026#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3027    defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
3028static void serial_console_putchar(struct uart_port *port, unsigned char ch)
3029{
3030	sci_poll_put_char(port, ch);
3031}
3032
3033/*
3034 *	Print a string to the serial port trying not to disturb
3035 *	any possible real use of the port...
3036 */
3037static void serial_console_write(struct console *co, const char *s,
3038				 unsigned count)
3039{
3040	struct sci_port *sci_port = &sci_ports[co->index];
3041	struct uart_port *port = &sci_port->port;
3042	unsigned short bits, ctrl, ctrl_temp;
3043	unsigned long flags;
3044	int locked = 1;
3045
3046	if (port->sysrq)
3047		locked = 0;
3048	else if (oops_in_progress)
3049		locked = uart_port_trylock_irqsave(port, &flags);
3050	else
3051		uart_port_lock_irqsave(port, &flags);
3052
3053	/* first save SCSCR then disable interrupts, keep clock source */
3054	ctrl = sci_serial_in(port, SCSCR);
3055	ctrl_temp = SCSCR_RE | SCSCR_TE |
3056		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3057		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3058	sci_serial_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3059
3060	uart_console_write(port, s, count, serial_console_putchar);
3061
3062	/* wait until fifo is empty and last bit has been transmitted */
3063	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3064	while ((sci_serial_in(port, SCxSR) & bits) != bits)
3065		cpu_relax();
3066
3067	/* restore the SCSCR */
3068	sci_serial_out(port, SCSCR, ctrl);
3069
3070	if (locked)
3071		uart_port_unlock_irqrestore(port, flags);
3072}
3073
3074static int serial_console_setup(struct console *co, char *options)
3075{
3076	struct sci_port *sci_port;
3077	struct uart_port *port;
3078	int baud = 115200;
3079	int bits = 8;
3080	int parity = 'n';
3081	int flow = 'n';
3082	int ret;
3083
3084	/*
3085	 * Refuse to handle any bogus ports.
3086	 */
3087	if (co->index < 0 || co->index >= SCI_NPORTS)
3088		return -ENODEV;
3089
3090	sci_port = &sci_ports[co->index];
3091	port = &sci_port->port;
3092
3093	/*
3094	 * Refuse to handle uninitialized ports.
3095	 */
3096	if (!port->ops)
3097		return -ENODEV;
3098
3099	ret = sci_remap_port(port);
3100	if (unlikely(ret != 0))
3101		return ret;
3102
3103	if (options)
3104		uart_parse_options(options, &baud, &parity, &bits, &flow);
3105
3106	return uart_set_options(port, co, baud, parity, bits, flow);
3107}
3108
3109static struct console serial_console = {
3110	.name		= "ttySC",
3111	.device		= uart_console_device,
3112	.write		= serial_console_write,
3113	.setup		= serial_console_setup,
3114	.flags		= CON_PRINTBUFFER,
3115	.index		= -1,
3116	.data		= &sci_uart_driver,
3117};
3118
3119#ifdef CONFIG_SUPERH
3120static char early_serial_buf[32];
3121
3122static int early_serial_console_setup(struct console *co, char *options)
3123{
3124	/*
3125	 * This early console is always registered using the earlyprintk=
3126	 * parameter, which does not call add_preferred_console(). Thus
3127	 * @options is always NULL and the options for this early console
3128	 * are passed using a custom buffer.
3129	 */
3130	WARN_ON(options);
3131
3132	return serial_console_setup(co, early_serial_buf);
3133}
3134
3135static struct console early_serial_console = {
3136	.name           = "early_ttySC",
3137	.write          = serial_console_write,
3138	.setup		= early_serial_console_setup,
3139	.flags          = CON_PRINTBUFFER,
3140	.index		= -1,
3141};
3142
3143static int sci_probe_earlyprintk(struct platform_device *pdev)
3144{
3145	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3146
3147	if (early_serial_console.data)
3148		return -EEXIST;
3149
3150	early_serial_console.index = pdev->id;
3151
3152	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3153
3154	if (!strstr(early_serial_buf, "keep"))
3155		early_serial_console.flags |= CON_BOOT;
3156
3157	register_console(&early_serial_console);
3158	return 0;
3159}
3160#endif
3161
3162#define SCI_CONSOLE	(&serial_console)
3163
3164#else
3165static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3166{
3167	return -EINVAL;
3168}
3169
3170#define SCI_CONSOLE	NULL
3171
3172#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3173
3174static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3175
3176static DEFINE_MUTEX(sci_uart_registration_lock);
3177static struct uart_driver sci_uart_driver = {
3178	.owner		= THIS_MODULE,
3179	.driver_name	= "sci",
3180	.dev_name	= "ttySC",
3181	.major		= SCI_MAJOR,
3182	.minor		= SCI_MINOR_START,
3183	.nr		= SCI_NPORTS,
3184	.cons		= SCI_CONSOLE,
3185};
3186
3187static void sci_remove(struct platform_device *dev)
3188{
3189	struct sci_port *port = platform_get_drvdata(dev);
3190	unsigned int type = port->port.type;	/* uart_remove_... clears it */
3191
3192	sci_ports_in_use &= ~BIT(port->port.line);
3193	uart_remove_one_port(&sci_uart_driver, &port->port);
3194
3195	sci_cleanup_single(port);
3196
3197	if (port->port.fifosize > 1)
3198		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3199	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3200		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3201}
3202
3203
3204#define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3205#define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3206#define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3207
3208static const struct of_device_id of_sci_match[] __maybe_unused = {
3209	/* SoC-specific types */
3210	{
3211		.compatible = "renesas,scif-r7s72100",
3212		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3213	},
3214	{
3215		.compatible = "renesas,scif-r7s9210",
3216		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3217	},
3218	{
3219		.compatible = "renesas,scif-r9a07g044",
3220		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3221	},
3222	/* Family-specific types */
3223	{
3224		.compatible = "renesas,rcar-gen1-scif",
3225		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3226	}, {
3227		.compatible = "renesas,rcar-gen2-scif",
3228		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3229	}, {
3230		.compatible = "renesas,rcar-gen3-scif",
3231		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3232	}, {
3233		.compatible = "renesas,rcar-gen4-scif",
3234		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3235	},
3236	/* Generic types */
3237	{
3238		.compatible = "renesas,scif",
3239		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3240	}, {
3241		.compatible = "renesas,scifa",
3242		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3243	}, {
3244		.compatible = "renesas,scifb",
3245		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3246	}, {
3247		.compatible = "renesas,hscif",
3248		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3249	}, {
3250		.compatible = "renesas,sci",
3251		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3252	}, {
3253		/* Terminator */
3254	},
3255};
3256MODULE_DEVICE_TABLE(of, of_sci_match);
3257
3258static void sci_reset_control_assert(void *data)
3259{
3260	reset_control_assert(data);
3261}
3262
3263static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3264					  unsigned int *dev_id)
3265{
3266	struct device_node *np = pdev->dev.of_node;
3267	struct reset_control *rstc;
3268	struct plat_sci_port *p;
3269	struct sci_port *sp;
3270	const void *data;
3271	int id, ret;
3272
3273	if (!IS_ENABLED(CONFIG_OF) || !np)
3274		return ERR_PTR(-EINVAL);
3275
3276	data = of_device_get_match_data(&pdev->dev);
3277
3278	rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
3279	if (IS_ERR(rstc))
3280		return ERR_PTR(dev_err_probe(&pdev->dev, PTR_ERR(rstc),
3281					     "failed to get reset ctrl\n"));
3282
3283	ret = reset_control_deassert(rstc);
3284	if (ret) {
3285		dev_err(&pdev->dev, "failed to deassert reset %d\n", ret);
3286		return ERR_PTR(ret);
3287	}
3288
3289	ret = devm_add_action_or_reset(&pdev->dev, sci_reset_control_assert, rstc);
3290	if (ret) {
3291		dev_err(&pdev->dev, "failed to register assert devm action, %d\n",
3292			ret);
3293		return ERR_PTR(ret);
3294	}
3295
3296	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3297	if (!p)
3298		return ERR_PTR(-ENOMEM);
3299
3300	/* Get the line number from the aliases node. */
3301	id = of_alias_get_id(np, "serial");
3302	if (id < 0 && ~sci_ports_in_use)
3303		id = ffz(sci_ports_in_use);
3304	if (id < 0) {
3305		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3306		return ERR_PTR(-EINVAL);
3307	}
3308	if (id >= ARRAY_SIZE(sci_ports)) {
3309		dev_err(&pdev->dev, "serial%d out of range\n", id);
3310		return ERR_PTR(-EINVAL);
3311	}
3312
3313	sp = &sci_ports[id];
3314	*dev_id = id;
3315
3316	p->type = SCI_OF_TYPE(data);
3317	p->regtype = SCI_OF_REGTYPE(data);
3318
3319	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3320
3321	return p;
3322}
3323
3324static int sci_probe_single(struct platform_device *dev,
3325				      unsigned int index,
3326				      struct plat_sci_port *p,
3327				      struct sci_port *sciport)
3328{
3329	int ret;
3330
3331	/* Sanity check */
3332	if (unlikely(index >= SCI_NPORTS)) {
3333		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3334			   index+1, SCI_NPORTS);
3335		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3336		return -EINVAL;
3337	}
3338	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3339	if (sci_ports_in_use & BIT(index))
3340		return -EBUSY;
3341
3342	mutex_lock(&sci_uart_registration_lock);
3343	if (!sci_uart_driver.state) {
3344		ret = uart_register_driver(&sci_uart_driver);
3345		if (ret) {
3346			mutex_unlock(&sci_uart_registration_lock);
3347			return ret;
3348		}
3349	}
3350	mutex_unlock(&sci_uart_registration_lock);
3351
3352	ret = sci_init_single(dev, sciport, index, p, false);
3353	if (ret)
3354		return ret;
3355
3356	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3357	if (IS_ERR(sciport->gpios))
3358		return PTR_ERR(sciport->gpios);
3359
3360	if (sciport->has_rtscts) {
3361		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3362		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3363			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3364			return -EINVAL;
3365		}
3366		sciport->port.flags |= UPF_HARD_FLOW;
3367	}
3368
3369	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3370	if (ret) {
3371		sci_cleanup_single(sciport);
3372		return ret;
3373	}
3374
3375	return 0;
3376}
3377
3378static int sci_probe(struct platform_device *dev)
3379{
3380	struct plat_sci_port *p;
3381	struct sci_port *sp;
3382	unsigned int dev_id;
3383	int ret;
3384
3385	/*
3386	 * If we've come here via earlyprintk initialization, head off to
3387	 * the special early probe. We don't have sufficient device state
3388	 * to make it beyond this yet.
3389	 */
3390#ifdef CONFIG_SUPERH
3391	if (is_sh_early_platform_device(dev))
3392		return sci_probe_earlyprintk(dev);
3393#endif
3394
3395	if (dev->dev.of_node) {
3396		p = sci_parse_dt(dev, &dev_id);
3397		if (IS_ERR(p))
3398			return PTR_ERR(p);
3399	} else {
3400		p = dev->dev.platform_data;
3401		if (p == NULL) {
3402			dev_err(&dev->dev, "no platform data supplied\n");
3403			return -EINVAL;
3404		}
3405
3406		dev_id = dev->id;
3407	}
3408
3409	sp = &sci_ports[dev_id];
3410	platform_set_drvdata(dev, sp);
3411
3412	ret = sci_probe_single(dev, dev_id, p, sp);
3413	if (ret)
3414		return ret;
3415
3416	if (sp->port.fifosize > 1) {
3417		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3418		if (ret)
3419			return ret;
3420	}
3421	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3422	    sp->port.type == PORT_HSCIF) {
3423		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3424		if (ret) {
3425			if (sp->port.fifosize > 1) {
3426				device_remove_file(&dev->dev,
3427						   &dev_attr_rx_fifo_trigger);
3428			}
3429			return ret;
3430		}
3431	}
3432
3433#ifdef CONFIG_SH_STANDARD_BIOS
3434	sh_bios_gdb_detach();
3435#endif
3436
3437	sci_ports_in_use |= BIT(dev_id);
3438	return 0;
3439}
3440
3441static __maybe_unused int sci_suspend(struct device *dev)
3442{
3443	struct sci_port *sport = dev_get_drvdata(dev);
3444
3445	if (sport)
3446		uart_suspend_port(&sci_uart_driver, &sport->port);
3447
3448	return 0;
3449}
3450
3451static __maybe_unused int sci_resume(struct device *dev)
3452{
3453	struct sci_port *sport = dev_get_drvdata(dev);
3454
3455	if (sport)
3456		uart_resume_port(&sci_uart_driver, &sport->port);
3457
3458	return 0;
3459}
3460
3461static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3462
3463static struct platform_driver sci_driver = {
3464	.probe		= sci_probe,
3465	.remove_new	= sci_remove,
3466	.driver		= {
3467		.name	= "sh-sci",
3468		.pm	= &sci_dev_pm_ops,
3469		.of_match_table = of_match_ptr(of_sci_match),
3470	},
3471};
3472
3473static int __init sci_init(void)
3474{
3475	pr_info("%s\n", banner);
3476
3477	return platform_driver_register(&sci_driver);
3478}
3479
3480static void __exit sci_exit(void)
3481{
3482	platform_driver_unregister(&sci_driver);
3483
3484	if (sci_uart_driver.state)
3485		uart_unregister_driver(&sci_uart_driver);
3486}
3487
3488#if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3489sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3490			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3491#endif
3492#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3493static struct plat_sci_port port_cfg __initdata;
3494
3495static int __init early_console_setup(struct earlycon_device *device,
3496				      int type)
3497{
3498	if (!device->port.membase)
3499		return -ENODEV;
3500
3501	device->port.type = type;
3502	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3503	port_cfg.type = type;
3504	sci_ports[0].cfg = &port_cfg;
3505	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3506	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3507	sci_serial_out(&sci_ports[0].port, SCSCR,
3508		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3509
3510	device->con->write = serial_console_write;
3511	return 0;
3512}
3513static int __init sci_early_console_setup(struct earlycon_device *device,
3514					  const char *opt)
3515{
3516	return early_console_setup(device, PORT_SCI);
3517}
3518static int __init scif_early_console_setup(struct earlycon_device *device,
3519					  const char *opt)
3520{
3521	return early_console_setup(device, PORT_SCIF);
3522}
3523static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3524					  const char *opt)
3525{
3526	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3527	return early_console_setup(device, PORT_SCIF);
3528}
3529
3530static int __init scifa_early_console_setup(struct earlycon_device *device,
3531					  const char *opt)
3532{
3533	return early_console_setup(device, PORT_SCIFA);
3534}
3535static int __init scifb_early_console_setup(struct earlycon_device *device,
3536					  const char *opt)
3537{
3538	return early_console_setup(device, PORT_SCIFB);
3539}
3540static int __init hscif_early_console_setup(struct earlycon_device *device,
3541					  const char *opt)
3542{
3543	return early_console_setup(device, PORT_HSCIF);
3544}
3545
3546OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3547OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3548OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3549OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
3550OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3551OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3552OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3553#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3554
3555module_init(sci_init);
3556module_exit(sci_exit);
3557
3558MODULE_LICENSE("GPL");
3559MODULE_ALIAS("platform:sh-sci");
3560MODULE_AUTHOR("Paul Mundt");
3561MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3562