1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * SPI bus driver for the Topcliff PCH used by Intel SoCs
4 *
5 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
6 */
7
8#include <linux/delay.h>
9#include <linux/pci.h>
10#include <linux/wait.h>
11#include <linux/spi/spi.h>
12#include <linux/interrupt.h>
13#include <linux/sched.h>
14#include <linux/spi/spidev.h>
15#include <linux/module.h>
16#include <linux/device.h>
17#include <linux/platform_device.h>
18
19#include <linux/dmaengine.h>
20#include <linux/pch_dma.h>
21
22/* Register offsets */
23#define PCH_SPCR		0x00	/* SPI control register */
24#define PCH_SPBRR		0x04	/* SPI baud rate register */
25#define PCH_SPSR		0x08	/* SPI status register */
26#define PCH_SPDWR		0x0C	/* SPI write data register */
27#define PCH_SPDRR		0x10	/* SPI read data register */
28#define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
29#define PCH_SRST		0x1C	/* SPI reset register */
30#define PCH_ADDRESS_SIZE	0x20
31
32#define PCH_SPSR_TFD		0x000007C0
33#define PCH_SPSR_RFD		0x0000F800
34
35#define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
36#define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
37
38#define PCH_RX_THOLD		7
39#define PCH_RX_THOLD_MAX	15
40
41#define PCH_TX_THOLD		2
42
43#define PCH_MAX_BAUDRATE	5000000
44#define PCH_MAX_FIFO_DEPTH	16
45
46#define STATUS_RUNNING		1
47#define STATUS_EXITING		2
48#define PCH_SLEEP_TIME		10
49
50#define SSN_LOW			0x02U
51#define SSN_HIGH		0x03U
52#define SSN_NO_CONTROL		0x00U
53#define PCH_MAX_CS		0xFF
54#define PCI_DEVICE_ID_GE_SPI	0x8816
55
56#define SPCR_SPE_BIT		(1 << 0)
57#define SPCR_MSTR_BIT		(1 << 1)
58#define SPCR_LSBF_BIT		(1 << 4)
59#define SPCR_CPHA_BIT		(1 << 5)
60#define SPCR_CPOL_BIT		(1 << 6)
61#define SPCR_TFIE_BIT		(1 << 8)
62#define SPCR_RFIE_BIT		(1 << 9)
63#define SPCR_FIE_BIT		(1 << 10)
64#define SPCR_ORIE_BIT		(1 << 11)
65#define SPCR_MDFIE_BIT		(1 << 12)
66#define SPCR_FICLR_BIT		(1 << 24)
67#define SPSR_TFI_BIT		(1 << 0)
68#define SPSR_RFI_BIT		(1 << 1)
69#define SPSR_FI_BIT		(1 << 2)
70#define SPSR_ORF_BIT		(1 << 3)
71#define SPBRR_SIZE_BIT		(1 << 10)
72
73#define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
74				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
75
76#define SPCR_RFIC_FIELD		20
77#define SPCR_TFIC_FIELD		16
78
79#define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
80#define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
81#define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
82
83#define PCH_CLOCK_HZ		50000000
84#define PCH_MAX_SPBR		1023
85
86/* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
87#define PCI_DEVICE_ID_ML7213_SPI	0x802c
88#define PCI_DEVICE_ID_ML7223_SPI	0x800F
89#define PCI_DEVICE_ID_ML7831_SPI	0x8816
90
91/*
92 * Set the number of SPI instance max
93 * Intel EG20T PCH :		1ch
94 * LAPIS Semiconductor ML7213 IOH :	2ch
95 * LAPIS Semiconductor ML7223 IOH :	1ch
96 * LAPIS Semiconductor ML7831 IOH :	1ch
97*/
98#define PCH_SPI_MAX_DEV			2
99
100#define PCH_BUF_SIZE		4096
101#define PCH_DMA_TRANS_SIZE	12
102
103static int use_dma = 1;
104
105struct pch_spi_dma_ctrl {
106	struct pci_dev		*dma_dev;
107	struct dma_async_tx_descriptor	*desc_tx;
108	struct dma_async_tx_descriptor	*desc_rx;
109	struct pch_dma_slave		param_tx;
110	struct pch_dma_slave		param_rx;
111	struct dma_chan		*chan_tx;
112	struct dma_chan		*chan_rx;
113	struct scatterlist		*sg_tx_p;
114	struct scatterlist		*sg_rx_p;
115	struct scatterlist		sg_tx;
116	struct scatterlist		sg_rx;
117	int				nent;
118	void				*tx_buf_virt;
119	void				*rx_buf_virt;
120	dma_addr_t			tx_buf_dma;
121	dma_addr_t			rx_buf_dma;
122};
123/**
124 * struct pch_spi_data - Holds the SPI channel specific details
125 * @io_remap_addr:		The remapped PCI base address
126 * @io_base_addr:		Base address
127 * @host:			Pointer to the SPI controller structure
128 * @work:			Reference to work queue handler
129 * @wait:			Wait queue for waking up upon receiving an
130 *				interrupt.
131 * @transfer_complete:		Status of SPI Transfer
132 * @bcurrent_msg_processing:	Status flag for message processing
133 * @lock:			Lock for protecting this structure
134 * @queue:			SPI Message queue
135 * @status:			Status of the SPI driver
136 * @bpw_len:			Length of data to be transferred in bits per
137 *				word
138 * @transfer_active:		Flag showing active transfer
139 * @tx_index:			Transmit data count; for bookkeeping during
140 *				transfer
141 * @rx_index:			Receive data count; for bookkeeping during
142 *				transfer
143 * @pkt_tx_buff:		Buffer for data to be transmitted
144 * @pkt_rx_buff:		Buffer for received data
145 * @n_curnt_chip:		The chip number that this SPI driver currently
146 *				operates on
147 * @current_chip:		Reference to the current chip that this SPI
148 *				driver currently operates on
149 * @current_msg:		The current message that this SPI driver is
150 *				handling
151 * @cur_trans:			The current transfer that this SPI driver is
152 *				handling
153 * @board_dat:			Reference to the SPI device data structure
154 * @plat_dev:			platform_device structure
155 * @ch:				SPI channel number
156 * @dma:			Local DMA information
157 * @use_dma:			True if DMA is to be used
158 * @irq_reg_sts:		Status of IRQ registration
159 * @save_total_len:		Save length while data is being transferred
160 */
161struct pch_spi_data {
162	void __iomem *io_remap_addr;
163	unsigned long io_base_addr;
164	struct spi_controller *host;
165	struct work_struct work;
166	wait_queue_head_t wait;
167	u8 transfer_complete;
168	u8 bcurrent_msg_processing;
169	spinlock_t lock;
170	struct list_head queue;
171	u8 status;
172	u32 bpw_len;
173	u8 transfer_active;
174	u32 tx_index;
175	u32 rx_index;
176	u16 *pkt_tx_buff;
177	u16 *pkt_rx_buff;
178	u8 n_curnt_chip;
179	struct spi_device *current_chip;
180	struct spi_message *current_msg;
181	struct spi_transfer *cur_trans;
182	struct pch_spi_board_data *board_dat;
183	struct platform_device	*plat_dev;
184	int ch;
185	struct pch_spi_dma_ctrl dma;
186	int use_dma;
187	u8 irq_reg_sts;
188	int save_total_len;
189};
190
191/**
192 * struct pch_spi_board_data - Holds the SPI device specific details
193 * @pdev:		Pointer to the PCI device
194 * @suspend_sts:	Status of suspend
195 * @num:		The number of SPI device instance
196 */
197struct pch_spi_board_data {
198	struct pci_dev *pdev;
199	u8 suspend_sts;
200	int num;
201};
202
203struct pch_pd_dev_save {
204	int num;
205	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
206	struct pch_spi_board_data *board_dat;
207};
208
209static const struct pci_device_id pch_spi_pcidev_id[] = {
210	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
211	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
212	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
213	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
214	{ }
215};
216
217/**
218 * pch_spi_writereg() - Performs  register writes
219 * @host:	Pointer to struct spi_controller.
220 * @idx:	Register offset.
221 * @val:	Value to be written to register.
222 */
223static inline void pch_spi_writereg(struct spi_controller *host, int idx, u32 val)
224{
225	struct pch_spi_data *data = spi_controller_get_devdata(host);
226	iowrite32(val, (data->io_remap_addr + idx));
227}
228
229/**
230 * pch_spi_readreg() - Performs register reads
231 * @host:	Pointer to struct spi_controller.
232 * @idx:	Register offset.
233 */
234static inline u32 pch_spi_readreg(struct spi_controller *host, int idx)
235{
236	struct pch_spi_data *data = spi_controller_get_devdata(host);
237	return ioread32(data->io_remap_addr + idx);
238}
239
240static inline void pch_spi_setclr_reg(struct spi_controller *host, int idx,
241				      u32 set, u32 clr)
242{
243	u32 tmp = pch_spi_readreg(host, idx);
244	tmp = (tmp & ~clr) | set;
245	pch_spi_writereg(host, idx, tmp);
246}
247
248static void pch_spi_set_host_mode(struct spi_controller *host)
249{
250	pch_spi_setclr_reg(host, PCH_SPCR, SPCR_MSTR_BIT, 0);
251}
252
253/**
254 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
255 * @host:	Pointer to struct spi_controller.
256 */
257static void pch_spi_clear_fifo(struct spi_controller *host)
258{
259	pch_spi_setclr_reg(host, PCH_SPCR, SPCR_FICLR_BIT, 0);
260	pch_spi_setclr_reg(host, PCH_SPCR, 0, SPCR_FICLR_BIT);
261}
262
263static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
264				void __iomem *io_remap_addr)
265{
266	u32 n_read, tx_index, rx_index, bpw_len;
267	u16 *pkt_rx_buffer, *pkt_tx_buff;
268	int read_cnt;
269	u32 reg_spcr_val;
270	void __iomem *spsr;
271	void __iomem *spdrr;
272	void __iomem *spdwr;
273
274	spsr = io_remap_addr + PCH_SPSR;
275	iowrite32(reg_spsr_val, spsr);
276
277	if (data->transfer_active) {
278		rx_index = data->rx_index;
279		tx_index = data->tx_index;
280		bpw_len = data->bpw_len;
281		pkt_rx_buffer = data->pkt_rx_buff;
282		pkt_tx_buff = data->pkt_tx_buff;
283
284		spdrr = io_remap_addr + PCH_SPDRR;
285		spdwr = io_remap_addr + PCH_SPDWR;
286
287		n_read = PCH_READABLE(reg_spsr_val);
288
289		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
290			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
291			if (tx_index < bpw_len)
292				iowrite32(pkt_tx_buff[tx_index++], spdwr);
293		}
294
295		/* disable RFI if not needed */
296		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
297			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
298			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
299
300			/* reset rx threshold */
301			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
302			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
303
304			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
305		}
306
307		/* update counts */
308		data->tx_index = tx_index;
309		data->rx_index = rx_index;
310
311		/* if transfer complete interrupt */
312		if (reg_spsr_val & SPSR_FI_BIT) {
313			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
314				/* disable interrupts */
315				pch_spi_setclr_reg(data->host, PCH_SPCR, 0,
316						   PCH_ALL);
317
318				/* transfer is completed;
319				   inform pch_spi_process_messages */
320				data->transfer_complete = true;
321				data->transfer_active = false;
322				wake_up(&data->wait);
323			} else {
324				dev_vdbg(&data->host->dev,
325					"%s : Transfer is not completed",
326					__func__);
327			}
328		}
329	}
330}
331
332/**
333 * pch_spi_handler() - Interrupt handler
334 * @irq:	The interrupt number.
335 * @dev_id:	Pointer to struct pch_spi_board_data.
336 */
337static irqreturn_t pch_spi_handler(int irq, void *dev_id)
338{
339	u32 reg_spsr_val;
340	void __iomem *spsr;
341	void __iomem *io_remap_addr;
342	irqreturn_t ret = IRQ_NONE;
343	struct pch_spi_data *data = dev_id;
344	struct pch_spi_board_data *board_dat = data->board_dat;
345
346	if (board_dat->suspend_sts) {
347		dev_dbg(&board_dat->pdev->dev,
348			"%s returning due to suspend\n", __func__);
349		return IRQ_NONE;
350	}
351
352	io_remap_addr = data->io_remap_addr;
353	spsr = io_remap_addr + PCH_SPSR;
354
355	reg_spsr_val = ioread32(spsr);
356
357	if (reg_spsr_val & SPSR_ORF_BIT) {
358		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
359		if (data->current_msg->complete) {
360			data->transfer_complete = true;
361			data->current_msg->status = -EIO;
362			data->current_msg->complete(data->current_msg->context);
363			data->bcurrent_msg_processing = false;
364			data->current_msg = NULL;
365			data->cur_trans = NULL;
366		}
367	}
368
369	if (data->use_dma)
370		return IRQ_NONE;
371
372	/* Check if the interrupt is for SPI device */
373	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
374		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
375		ret = IRQ_HANDLED;
376	}
377
378	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
379		__func__, ret);
380
381	return ret;
382}
383
384/**
385 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
386 * @host:	Pointer to struct spi_controller.
387 * @speed_hz:	Baud rate.
388 */
389static void pch_spi_set_baud_rate(struct spi_controller *host, u32 speed_hz)
390{
391	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
392
393	/* if baud rate is less than we can support limit it */
394	if (n_spbr > PCH_MAX_SPBR)
395		n_spbr = PCH_MAX_SPBR;
396
397	pch_spi_setclr_reg(host, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
398}
399
400/**
401 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
402 * @host:		Pointer to struct spi_controller.
403 * @bits_per_word:	Bits per word for SPI transfer.
404 */
405static void pch_spi_set_bits_per_word(struct spi_controller *host,
406				      u8 bits_per_word)
407{
408	if (bits_per_word == 8)
409		pch_spi_setclr_reg(host, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
410	else
411		pch_spi_setclr_reg(host, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
412}
413
414/**
415 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
416 * @spi:	Pointer to struct spi_device.
417 */
418static void pch_spi_setup_transfer(struct spi_device *spi)
419{
420	u32 flags = 0;
421
422	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
423		__func__, pch_spi_readreg(spi->controller, PCH_SPBRR),
424		spi->max_speed_hz);
425	pch_spi_set_baud_rate(spi->controller, spi->max_speed_hz);
426
427	/* set bits per word */
428	pch_spi_set_bits_per_word(spi->controller, spi->bits_per_word);
429
430	if (!(spi->mode & SPI_LSB_FIRST))
431		flags |= SPCR_LSBF_BIT;
432	if (spi->mode & SPI_CPOL)
433		flags |= SPCR_CPOL_BIT;
434	if (spi->mode & SPI_CPHA)
435		flags |= SPCR_CPHA_BIT;
436	pch_spi_setclr_reg(spi->controller, PCH_SPCR, flags,
437			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
438
439	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
440	pch_spi_clear_fifo(spi->controller);
441}
442
443/**
444 * pch_spi_reset() - Clears SPI registers
445 * @host:	Pointer to struct spi_controller.
446 */
447static void pch_spi_reset(struct spi_controller *host)
448{
449	/* write 1 to reset SPI */
450	pch_spi_writereg(host, PCH_SRST, 0x1);
451
452	/* clear reset */
453	pch_spi_writereg(host, PCH_SRST, 0x0);
454}
455
456static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
457{
458	struct pch_spi_data *data = spi_controller_get_devdata(pspi->controller);
459	int retval;
460	unsigned long flags;
461
462	/* We won't process any messages if we have been asked to terminate */
463	if (data->status == STATUS_EXITING) {
464		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
465		retval = -ESHUTDOWN;
466		goto err_out;
467	}
468
469	/* If suspended ,return -EINVAL */
470	if (data->board_dat->suspend_sts) {
471		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
472		retval = -EINVAL;
473		goto err_out;
474	}
475
476	/* set status of message */
477	pmsg->actual_length = 0;
478	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
479
480	pmsg->status = -EINPROGRESS;
481	spin_lock_irqsave(&data->lock, flags);
482	/* add message to queue */
483	list_add_tail(&pmsg->queue, &data->queue);
484	spin_unlock_irqrestore(&data->lock, flags);
485
486	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
487
488	schedule_work(&data->work);
489	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
490
491	retval = 0;
492
493err_out:
494	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
495	return retval;
496}
497
498static inline void pch_spi_select_chip(struct pch_spi_data *data,
499				       struct spi_device *pspi)
500{
501	if (data->current_chip != NULL) {
502		if (spi_get_chipselect(pspi, 0) != data->n_curnt_chip) {
503			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
504			data->current_chip = NULL;
505		}
506	}
507
508	data->current_chip = pspi;
509
510	data->n_curnt_chip = spi_get_chipselect(data->current_chip, 0);
511
512	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
513	pch_spi_setup_transfer(pspi);
514}
515
516static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
517{
518	int size;
519	u32 n_writes;
520	int j;
521	struct spi_message *pmsg, *tmp;
522	const u8 *tx_buf;
523	const u16 *tx_sbuf;
524
525	/* set baud rate if needed */
526	if (data->cur_trans->speed_hz) {
527		dev_dbg(&data->host->dev, "%s:setting baud rate\n", __func__);
528		pch_spi_set_baud_rate(data->host, data->cur_trans->speed_hz);
529	}
530
531	/* set bits per word if needed */
532	if (data->cur_trans->bits_per_word &&
533	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
534		dev_dbg(&data->host->dev, "%s:set bits per word\n", __func__);
535		pch_spi_set_bits_per_word(data->host,
536					  data->cur_trans->bits_per_word);
537		*bpw = data->cur_trans->bits_per_word;
538	} else {
539		*bpw = data->current_msg->spi->bits_per_word;
540	}
541
542	/* reset Tx/Rx index */
543	data->tx_index = 0;
544	data->rx_index = 0;
545
546	data->bpw_len = data->cur_trans->len / (*bpw / 8);
547
548	/* find alloc size */
549	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
550
551	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
552	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
553	if (data->pkt_tx_buff != NULL) {
554		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
555		if (!data->pkt_rx_buff) {
556			kfree(data->pkt_tx_buff);
557			data->pkt_tx_buff = NULL;
558		}
559	}
560
561	if (!data->pkt_rx_buff) {
562		/* flush queue and set status of all transfers to -ENOMEM */
563		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
564			pmsg->status = -ENOMEM;
565
566			if (pmsg->complete)
567				pmsg->complete(pmsg->context);
568
569			/* delete from queue */
570			list_del_init(&pmsg->queue);
571		}
572		return;
573	}
574
575	/* copy Tx Data */
576	if (data->cur_trans->tx_buf != NULL) {
577		if (*bpw == 8) {
578			tx_buf = data->cur_trans->tx_buf;
579			for (j = 0; j < data->bpw_len; j++)
580				data->pkt_tx_buff[j] = *tx_buf++;
581		} else {
582			tx_sbuf = data->cur_trans->tx_buf;
583			for (j = 0; j < data->bpw_len; j++)
584				data->pkt_tx_buff[j] = *tx_sbuf++;
585		}
586	}
587
588	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
589	n_writes = data->bpw_len;
590	if (n_writes > PCH_MAX_FIFO_DEPTH)
591		n_writes = PCH_MAX_FIFO_DEPTH;
592
593	dev_dbg(&data->host->dev,
594		"\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
595		__func__);
596	pch_spi_writereg(data->host, PCH_SSNXCR, SSN_LOW);
597
598	for (j = 0; j < n_writes; j++)
599		pch_spi_writereg(data->host, PCH_SPDWR, data->pkt_tx_buff[j]);
600
601	/* update tx_index */
602	data->tx_index = j;
603
604	/* reset transfer complete flag */
605	data->transfer_complete = false;
606	data->transfer_active = true;
607}
608
609static void pch_spi_nomore_transfer(struct pch_spi_data *data)
610{
611	struct spi_message *pmsg, *tmp;
612	dev_dbg(&data->host->dev, "%s called\n", __func__);
613	/* Invoke complete callback
614	 * [To the spi core..indicating end of transfer] */
615	data->current_msg->status = 0;
616
617	if (data->current_msg->complete) {
618		dev_dbg(&data->host->dev,
619			"%s:Invoking callback of SPI core\n", __func__);
620		data->current_msg->complete(data->current_msg->context);
621	}
622
623	/* update status in global variable */
624	data->bcurrent_msg_processing = false;
625
626	dev_dbg(&data->host->dev,
627		"%s:data->bcurrent_msg_processing = false\n", __func__);
628
629	data->current_msg = NULL;
630	data->cur_trans = NULL;
631
632	/* check if we have items in list and not suspending
633	 * return 1 if list empty */
634	if ((list_empty(&data->queue) == 0) &&
635	    (!data->board_dat->suspend_sts) &&
636	    (data->status != STATUS_EXITING)) {
637		/* We have some more work to do (either there is more tranint
638		 * bpw;sfer requests in the current message or there are
639		 *more messages)
640		 */
641		dev_dbg(&data->host->dev, "%s:Invoke queue_work\n", __func__);
642		schedule_work(&data->work);
643	} else if (data->board_dat->suspend_sts ||
644		   data->status == STATUS_EXITING) {
645		dev_dbg(&data->host->dev,
646			"%s suspend/remove initiated, flushing queue\n",
647			__func__);
648		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
649			pmsg->status = -EIO;
650
651			if (pmsg->complete)
652				pmsg->complete(pmsg->context);
653
654			/* delete from queue */
655			list_del_init(&pmsg->queue);
656		}
657	}
658}
659
660static void pch_spi_set_ir(struct pch_spi_data *data)
661{
662	/* enable interrupts, set threshold, enable SPI */
663	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
664		/* set receive threshold to PCH_RX_THOLD */
665		pch_spi_setclr_reg(data->host, PCH_SPCR,
666				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
667				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
668				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
669				   MASK_RFIC_SPCR_BITS | PCH_ALL);
670	else
671		/* set receive threshold to maximum */
672		pch_spi_setclr_reg(data->host, PCH_SPCR,
673				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
674				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
675				   SPCR_SPE_BIT,
676				   MASK_RFIC_SPCR_BITS | PCH_ALL);
677
678	/* Wait until the transfer completes; go to sleep after
679				 initiating the transfer. */
680	dev_dbg(&data->host->dev,
681		"%s:waiting for transfer to get over\n", __func__);
682
683	wait_event_interruptible(data->wait, data->transfer_complete);
684
685	/* clear all interrupts */
686	pch_spi_writereg(data->host, PCH_SPSR,
687			 pch_spi_readreg(data->host, PCH_SPSR));
688	/* Disable interrupts and SPI transfer */
689	pch_spi_setclr_reg(data->host, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
690	/* clear FIFO */
691	pch_spi_clear_fifo(data->host);
692}
693
694static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
695{
696	int j;
697	u8 *rx_buf;
698	u16 *rx_sbuf;
699
700	/* copy Rx Data */
701	if (!data->cur_trans->rx_buf)
702		return;
703
704	if (bpw == 8) {
705		rx_buf = data->cur_trans->rx_buf;
706		for (j = 0; j < data->bpw_len; j++)
707			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
708	} else {
709		rx_sbuf = data->cur_trans->rx_buf;
710		for (j = 0; j < data->bpw_len; j++)
711			*rx_sbuf++ = data->pkt_rx_buff[j];
712	}
713}
714
715static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
716{
717	int j;
718	u8 *rx_buf;
719	u16 *rx_sbuf;
720	const u8 *rx_dma_buf;
721	const u16 *rx_dma_sbuf;
722
723	/* copy Rx Data */
724	if (!data->cur_trans->rx_buf)
725		return;
726
727	if (bpw == 8) {
728		rx_buf = data->cur_trans->rx_buf;
729		rx_dma_buf = data->dma.rx_buf_virt;
730		for (j = 0; j < data->bpw_len; j++)
731			*rx_buf++ = *rx_dma_buf++ & 0xFF;
732		data->cur_trans->rx_buf = rx_buf;
733	} else {
734		rx_sbuf = data->cur_trans->rx_buf;
735		rx_dma_sbuf = data->dma.rx_buf_virt;
736		for (j = 0; j < data->bpw_len; j++)
737			*rx_sbuf++ = *rx_dma_sbuf++;
738		data->cur_trans->rx_buf = rx_sbuf;
739	}
740}
741
742static int pch_spi_start_transfer(struct pch_spi_data *data)
743{
744	struct pch_spi_dma_ctrl *dma;
745	unsigned long flags;
746	int rtn;
747
748	dma = &data->dma;
749
750	spin_lock_irqsave(&data->lock, flags);
751
752	/* disable interrupts, SPI set enable */
753	pch_spi_setclr_reg(data->host, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
754
755	spin_unlock_irqrestore(&data->lock, flags);
756
757	/* Wait until the transfer completes; go to sleep after
758				 initiating the transfer. */
759	dev_dbg(&data->host->dev,
760		"%s:waiting for transfer to get over\n", __func__);
761	rtn = wait_event_interruptible_timeout(data->wait,
762					       data->transfer_complete,
763					       msecs_to_jiffies(2 * HZ));
764	if (!rtn)
765		dev_err(&data->host->dev,
766			"%s wait-event timeout\n", __func__);
767
768	dma_sync_sg_for_cpu(&data->host->dev, dma->sg_rx_p, dma->nent,
769			    DMA_FROM_DEVICE);
770
771	dma_sync_sg_for_cpu(&data->host->dev, dma->sg_tx_p, dma->nent,
772			    DMA_FROM_DEVICE);
773	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
774
775	async_tx_ack(dma->desc_rx);
776	async_tx_ack(dma->desc_tx);
777	kfree(dma->sg_tx_p);
778	kfree(dma->sg_rx_p);
779
780	spin_lock_irqsave(&data->lock, flags);
781
782	/* clear fifo threshold, disable interrupts, disable SPI transfer */
783	pch_spi_setclr_reg(data->host, PCH_SPCR, 0,
784			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
785			   SPCR_SPE_BIT);
786	/* clear all interrupts */
787	pch_spi_writereg(data->host, PCH_SPSR,
788			 pch_spi_readreg(data->host, PCH_SPSR));
789	/* clear FIFO */
790	pch_spi_clear_fifo(data->host);
791
792	spin_unlock_irqrestore(&data->lock, flags);
793
794	return rtn;
795}
796
797static void pch_dma_rx_complete(void *arg)
798{
799	struct pch_spi_data *data = arg;
800
801	/* transfer is completed;inform pch_spi_process_messages_dma */
802	data->transfer_complete = true;
803	wake_up_interruptible(&data->wait);
804}
805
806static bool pch_spi_filter(struct dma_chan *chan, void *slave)
807{
808	struct pch_dma_slave *param = slave;
809
810	if ((chan->chan_id == param->chan_id) &&
811	    (param->dma_dev == chan->device->dev)) {
812		chan->private = param;
813		return true;
814	} else {
815		return false;
816	}
817}
818
819static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
820{
821	dma_cap_mask_t mask;
822	struct dma_chan *chan;
823	struct pci_dev *dma_dev;
824	struct pch_dma_slave *param;
825	struct pch_spi_dma_ctrl *dma;
826	unsigned int width;
827
828	if (bpw == 8)
829		width = PCH_DMA_WIDTH_1_BYTE;
830	else
831		width = PCH_DMA_WIDTH_2_BYTES;
832
833	dma = &data->dma;
834	dma_cap_zero(mask);
835	dma_cap_set(DMA_SLAVE, mask);
836
837	/* Get DMA's dev information */
838	dma_dev = pci_get_slot(data->board_dat->pdev->bus,
839			PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
840
841	/* Set Tx DMA */
842	param = &dma->param_tx;
843	param->dma_dev = &dma_dev->dev;
844	param->chan_id = data->ch * 2; /* Tx = 0, 2 */
845	param->tx_reg = data->io_base_addr + PCH_SPDWR;
846	param->width = width;
847	chan = dma_request_channel(mask, pch_spi_filter, param);
848	if (!chan) {
849		dev_err(&data->host->dev,
850			"ERROR: dma_request_channel FAILS(Tx)\n");
851		goto out;
852	}
853	dma->chan_tx = chan;
854
855	/* Set Rx DMA */
856	param = &dma->param_rx;
857	param->dma_dev = &dma_dev->dev;
858	param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */
859	param->rx_reg = data->io_base_addr + PCH_SPDRR;
860	param->width = width;
861	chan = dma_request_channel(mask, pch_spi_filter, param);
862	if (!chan) {
863		dev_err(&data->host->dev,
864			"ERROR: dma_request_channel FAILS(Rx)\n");
865		dma_release_channel(dma->chan_tx);
866		dma->chan_tx = NULL;
867		goto out;
868	}
869	dma->chan_rx = chan;
870
871	dma->dma_dev = dma_dev;
872	return;
873out:
874	pci_dev_put(dma_dev);
875	data->use_dma = 0;
876}
877
878static void pch_spi_release_dma(struct pch_spi_data *data)
879{
880	struct pch_spi_dma_ctrl *dma;
881
882	dma = &data->dma;
883	if (dma->chan_tx) {
884		dma_release_channel(dma->chan_tx);
885		dma->chan_tx = NULL;
886	}
887	if (dma->chan_rx) {
888		dma_release_channel(dma->chan_rx);
889		dma->chan_rx = NULL;
890	}
891
892	pci_dev_put(dma->dma_dev);
893}
894
895static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
896{
897	const u8 *tx_buf;
898	const u16 *tx_sbuf;
899	u8 *tx_dma_buf;
900	u16 *tx_dma_sbuf;
901	struct scatterlist *sg;
902	struct dma_async_tx_descriptor *desc_tx;
903	struct dma_async_tx_descriptor *desc_rx;
904	int num;
905	int i;
906	int size;
907	int rem;
908	int head;
909	unsigned long flags;
910	struct pch_spi_dma_ctrl *dma;
911
912	dma = &data->dma;
913
914	/* set baud rate if needed */
915	if (data->cur_trans->speed_hz) {
916		dev_dbg(&data->host->dev, "%s:setting baud rate\n", __func__);
917		spin_lock_irqsave(&data->lock, flags);
918		pch_spi_set_baud_rate(data->host, data->cur_trans->speed_hz);
919		spin_unlock_irqrestore(&data->lock, flags);
920	}
921
922	/* set bits per word if needed */
923	if (data->cur_trans->bits_per_word &&
924	    (data->current_msg->spi->bits_per_word !=
925	     data->cur_trans->bits_per_word)) {
926		dev_dbg(&data->host->dev, "%s:set bits per word\n", __func__);
927		spin_lock_irqsave(&data->lock, flags);
928		pch_spi_set_bits_per_word(data->host,
929					  data->cur_trans->bits_per_word);
930		spin_unlock_irqrestore(&data->lock, flags);
931		*bpw = data->cur_trans->bits_per_word;
932	} else {
933		*bpw = data->current_msg->spi->bits_per_word;
934	}
935	data->bpw_len = data->cur_trans->len / (*bpw / 8);
936
937	if (data->bpw_len > PCH_BUF_SIZE) {
938		data->bpw_len = PCH_BUF_SIZE;
939		data->cur_trans->len -= PCH_BUF_SIZE;
940	}
941
942	/* copy Tx Data */
943	if (data->cur_trans->tx_buf != NULL) {
944		if (*bpw == 8) {
945			tx_buf = data->cur_trans->tx_buf;
946			tx_dma_buf = dma->tx_buf_virt;
947			for (i = 0; i < data->bpw_len; i++)
948				*tx_dma_buf++ = *tx_buf++;
949		} else {
950			tx_sbuf = data->cur_trans->tx_buf;
951			tx_dma_sbuf = dma->tx_buf_virt;
952			for (i = 0; i < data->bpw_len; i++)
953				*tx_dma_sbuf++ = *tx_sbuf++;
954		}
955	}
956
957	/* Calculate Rx parameter for DMA transmitting */
958	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
959		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
960			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
961			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
962		} else {
963			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
964			rem = PCH_DMA_TRANS_SIZE;
965		}
966		size = PCH_DMA_TRANS_SIZE;
967	} else {
968		num = 1;
969		size = data->bpw_len;
970		rem = data->bpw_len;
971	}
972	dev_dbg(&data->host->dev, "%s num=%d size=%d rem=%d\n",
973		__func__, num, size, rem);
974	spin_lock_irqsave(&data->lock, flags);
975
976	/* set receive fifo threshold and transmit fifo threshold */
977	pch_spi_setclr_reg(data->host, PCH_SPCR,
978			   ((size - 1) << SPCR_RFIC_FIELD) |
979			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
980			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
981
982	spin_unlock_irqrestore(&data->lock, flags);
983
984	/* RX */
985	dma->sg_rx_p = kmalloc_array(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
986	if (!dma->sg_rx_p)
987		return;
988
989	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
990	/* offset, length setting */
991	sg = dma->sg_rx_p;
992	for (i = 0; i < num; i++, sg++) {
993		if (i == (num - 2)) {
994			sg->offset = size * i;
995			sg->offset = sg->offset * (*bpw / 8);
996			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
997				    sg->offset);
998			sg_dma_len(sg) = rem;
999		} else if (i == (num - 1)) {
1000			sg->offset = size * (i - 1) + rem;
1001			sg->offset = sg->offset * (*bpw / 8);
1002			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1003				    sg->offset);
1004			sg_dma_len(sg) = size;
1005		} else {
1006			sg->offset = size * i;
1007			sg->offset = sg->offset * (*bpw / 8);
1008			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1009				    sg->offset);
1010			sg_dma_len(sg) = size;
1011		}
1012		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1013	}
1014	sg = dma->sg_rx_p;
1015	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1016					num, DMA_DEV_TO_MEM,
1017					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1018	if (!desc_rx) {
1019		dev_err(&data->host->dev,
1020			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1021		return;
1022	}
1023	dma_sync_sg_for_device(&data->host->dev, sg, num, DMA_FROM_DEVICE);
1024	desc_rx->callback = pch_dma_rx_complete;
1025	desc_rx->callback_param = data;
1026	dma->nent = num;
1027	dma->desc_rx = desc_rx;
1028
1029	/* Calculate Tx parameter for DMA transmitting */
1030	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1031		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1032		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1033			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1034			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1035		} else {
1036			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1037			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1038			      PCH_DMA_TRANS_SIZE - head;
1039		}
1040		size = PCH_DMA_TRANS_SIZE;
1041	} else {
1042		num = 1;
1043		size = data->bpw_len;
1044		rem = data->bpw_len;
1045		head = 0;
1046	}
1047
1048	dma->sg_tx_p = kmalloc_array(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1049	if (!dma->sg_tx_p)
1050		return;
1051
1052	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1053	/* offset, length setting */
1054	sg = dma->sg_tx_p;
1055	for (i = 0; i < num; i++, sg++) {
1056		if (i == 0) {
1057			sg->offset = 0;
1058			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1059				    sg->offset);
1060			sg_dma_len(sg) = size + head;
1061		} else if (i == (num - 1)) {
1062			sg->offset = head + size * i;
1063			sg->offset = sg->offset * (*bpw / 8);
1064			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1065				    sg->offset);
1066			sg_dma_len(sg) = rem;
1067		} else {
1068			sg->offset = head + size * i;
1069			sg->offset = sg->offset * (*bpw / 8);
1070			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1071				    sg->offset);
1072			sg_dma_len(sg) = size;
1073		}
1074		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1075	}
1076	sg = dma->sg_tx_p;
1077	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1078					sg, num, DMA_MEM_TO_DEV,
1079					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1080	if (!desc_tx) {
1081		dev_err(&data->host->dev,
1082			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1083		return;
1084	}
1085	dma_sync_sg_for_device(&data->host->dev, sg, num, DMA_TO_DEVICE);
1086	desc_tx->callback = NULL;
1087	desc_tx->callback_param = data;
1088	dma->nent = num;
1089	dma->desc_tx = desc_tx;
1090
1091	dev_dbg(&data->host->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1092
1093	spin_lock_irqsave(&data->lock, flags);
1094	pch_spi_writereg(data->host, PCH_SSNXCR, SSN_LOW);
1095	desc_rx->tx_submit(desc_rx);
1096	desc_tx->tx_submit(desc_tx);
1097	spin_unlock_irqrestore(&data->lock, flags);
1098
1099	/* reset transfer complete flag */
1100	data->transfer_complete = false;
1101}
1102
1103static void pch_spi_process_messages(struct work_struct *pwork)
1104{
1105	struct spi_message *pmsg, *tmp;
1106	struct pch_spi_data *data;
1107	int bpw;
1108
1109	data = container_of(pwork, struct pch_spi_data, work);
1110	dev_dbg(&data->host->dev, "%s data initialized\n", __func__);
1111
1112	spin_lock(&data->lock);
1113	/* check if suspend has been initiated;if yes flush queue */
1114	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1115		dev_dbg(&data->host->dev,
1116			"%s suspend/remove initiated, flushing queue\n", __func__);
1117		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1118			pmsg->status = -EIO;
1119
1120			if (pmsg->complete) {
1121				spin_unlock(&data->lock);
1122				pmsg->complete(pmsg->context);
1123				spin_lock(&data->lock);
1124			}
1125
1126			/* delete from queue */
1127			list_del_init(&pmsg->queue);
1128		}
1129
1130		spin_unlock(&data->lock);
1131		return;
1132	}
1133
1134	data->bcurrent_msg_processing = true;
1135	dev_dbg(&data->host->dev,
1136		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1137
1138	/* Get the message from the queue and delete it from there. */
1139	data->current_msg = list_entry(data->queue.next, struct spi_message,
1140					queue);
1141
1142	list_del_init(&data->current_msg->queue);
1143
1144	data->current_msg->status = 0;
1145
1146	pch_spi_select_chip(data, data->current_msg->spi);
1147
1148	spin_unlock(&data->lock);
1149
1150	if (data->use_dma)
1151		pch_spi_request_dma(data,
1152				    data->current_msg->spi->bits_per_word);
1153	pch_spi_writereg(data->host, PCH_SSNXCR, SSN_NO_CONTROL);
1154	do {
1155		int cnt;
1156		/* If we are already processing a message get the next
1157		transfer structure from the message otherwise retrieve
1158		the 1st transfer request from the message. */
1159		spin_lock(&data->lock);
1160		if (data->cur_trans == NULL) {
1161			data->cur_trans =
1162				list_entry(data->current_msg->transfers.next,
1163					   struct spi_transfer, transfer_list);
1164			dev_dbg(&data->host->dev,
1165				"%s :Getting 1st transfer message\n",
1166				__func__);
1167		} else {
1168			data->cur_trans =
1169				list_entry(data->cur_trans->transfer_list.next,
1170					   struct spi_transfer, transfer_list);
1171			dev_dbg(&data->host->dev,
1172				"%s :Getting next transfer message\n",
1173				__func__);
1174		}
1175		spin_unlock(&data->lock);
1176
1177		if (!data->cur_trans->len)
1178			goto out;
1179		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1180		data->save_total_len = data->cur_trans->len;
1181		if (data->use_dma) {
1182			int i;
1183			char *save_rx_buf = data->cur_trans->rx_buf;
1184
1185			for (i = 0; i < cnt; i++) {
1186				pch_spi_handle_dma(data, &bpw);
1187				if (!pch_spi_start_transfer(data)) {
1188					data->transfer_complete = true;
1189					data->current_msg->status = -EIO;
1190					data->current_msg->complete
1191						   (data->current_msg->context);
1192					data->bcurrent_msg_processing = false;
1193					data->current_msg = NULL;
1194					data->cur_trans = NULL;
1195					goto out;
1196				}
1197				pch_spi_copy_rx_data_for_dma(data, bpw);
1198			}
1199			data->cur_trans->rx_buf = save_rx_buf;
1200		} else {
1201			pch_spi_set_tx(data, &bpw);
1202			pch_spi_set_ir(data);
1203			pch_spi_copy_rx_data(data, bpw);
1204			kfree(data->pkt_rx_buff);
1205			data->pkt_rx_buff = NULL;
1206			kfree(data->pkt_tx_buff);
1207			data->pkt_tx_buff = NULL;
1208		}
1209		/* increment message count */
1210		data->cur_trans->len = data->save_total_len;
1211		data->current_msg->actual_length += data->cur_trans->len;
1212
1213		dev_dbg(&data->host->dev,
1214			"%s:data->current_msg->actual_length=%d\n",
1215			__func__, data->current_msg->actual_length);
1216
1217		spi_transfer_delay_exec(data->cur_trans);
1218
1219		spin_lock(&data->lock);
1220
1221		/* No more transfer in this message. */
1222		if ((data->cur_trans->transfer_list.next) ==
1223		    &(data->current_msg->transfers)) {
1224			pch_spi_nomore_transfer(data);
1225		}
1226
1227		spin_unlock(&data->lock);
1228
1229	} while (data->cur_trans != NULL);
1230
1231out:
1232	pch_spi_writereg(data->host, PCH_SSNXCR, SSN_HIGH);
1233	if (data->use_dma)
1234		pch_spi_release_dma(data);
1235}
1236
1237static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1238				   struct pch_spi_data *data)
1239{
1240	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1241
1242	flush_work(&data->work);
1243}
1244
1245static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1246				 struct pch_spi_data *data)
1247{
1248	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1249
1250	/* reset PCH SPI h/w */
1251	pch_spi_reset(data->host);
1252	dev_dbg(&board_dat->pdev->dev,
1253		"%s pch_spi_reset invoked successfully\n", __func__);
1254
1255	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1256
1257	return 0;
1258}
1259
1260static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1261			     struct pch_spi_data *data)
1262{
1263	struct pch_spi_dma_ctrl *dma;
1264
1265	dma = &data->dma;
1266	if (dma->tx_buf_dma)
1267		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1268				  dma->tx_buf_virt, dma->tx_buf_dma);
1269	if (dma->rx_buf_dma)
1270		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1271				  dma->rx_buf_virt, dma->rx_buf_dma);
1272}
1273
1274static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1275			      struct pch_spi_data *data)
1276{
1277	struct pch_spi_dma_ctrl *dma;
1278	int ret;
1279
1280	dma = &data->dma;
1281	ret = 0;
1282	/* Get Consistent memory for Tx DMA */
1283	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1284				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1285	if (!dma->tx_buf_virt)
1286		ret = -ENOMEM;
1287
1288	/* Get Consistent memory for Rx DMA */
1289	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1290				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1291	if (!dma->rx_buf_virt)
1292		ret = -ENOMEM;
1293
1294	return ret;
1295}
1296
1297static int pch_spi_pd_probe(struct platform_device *plat_dev)
1298{
1299	int ret;
1300	struct spi_controller *host;
1301	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1302	struct pch_spi_data *data;
1303
1304	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1305
1306	host = spi_alloc_host(&board_dat->pdev->dev,
1307				  sizeof(struct pch_spi_data));
1308	if (!host) {
1309		dev_err(&plat_dev->dev, "spi_alloc_host[%d] failed.\n",
1310			plat_dev->id);
1311		return -ENOMEM;
1312	}
1313
1314	data = spi_controller_get_devdata(host);
1315	data->host = host;
1316
1317	platform_set_drvdata(plat_dev, data);
1318
1319	/* baseaddress + address offset) */
1320	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1321					 PCH_ADDRESS_SIZE * plat_dev->id;
1322	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1323	if (!data->io_remap_addr) {
1324		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1325		ret = -ENOMEM;
1326		goto err_pci_iomap;
1327	}
1328	data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1329
1330	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1331		plat_dev->id, data->io_remap_addr);
1332
1333	/* initialize members of SPI host */
1334	host->num_chipselect = PCH_MAX_CS;
1335	host->transfer = pch_spi_transfer;
1336	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1337	host->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1338	host->max_speed_hz = PCH_MAX_BAUDRATE;
1339	host->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1340
1341	data->board_dat = board_dat;
1342	data->plat_dev = plat_dev;
1343	data->n_curnt_chip = 255;
1344	data->status = STATUS_RUNNING;
1345	data->ch = plat_dev->id;
1346	data->use_dma = use_dma;
1347
1348	INIT_LIST_HEAD(&data->queue);
1349	spin_lock_init(&data->lock);
1350	INIT_WORK(&data->work, pch_spi_process_messages);
1351	init_waitqueue_head(&data->wait);
1352
1353	ret = pch_spi_get_resources(board_dat, data);
1354	if (ret) {
1355		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1356		goto err_spi_get_resources;
1357	}
1358
1359	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1360			  IRQF_SHARED, KBUILD_MODNAME, data);
1361	if (ret) {
1362		dev_err(&plat_dev->dev,
1363			"%s request_irq failed\n", __func__);
1364		goto err_request_irq;
1365	}
1366	data->irq_reg_sts = true;
1367
1368	pch_spi_set_host_mode(host);
1369
1370	if (use_dma) {
1371		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1372		ret = pch_alloc_dma_buf(board_dat, data);
1373		if (ret)
1374			goto err_spi_register_controller;
1375	}
1376
1377	ret = spi_register_controller(host);
1378	if (ret != 0) {
1379		dev_err(&plat_dev->dev,
1380			"%s spi_register_controller FAILED\n", __func__);
1381		goto err_spi_register_controller;
1382	}
1383
1384	return 0;
1385
1386err_spi_register_controller:
1387	pch_free_dma_buf(board_dat, data);
1388	free_irq(board_dat->pdev->irq, data);
1389err_request_irq:
1390	pch_spi_free_resources(board_dat, data);
1391err_spi_get_resources:
1392	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1393err_pci_iomap:
1394	spi_controller_put(host);
1395
1396	return ret;
1397}
1398
1399static void pch_spi_pd_remove(struct platform_device *plat_dev)
1400{
1401	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1402	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1403	int count;
1404	unsigned long flags;
1405
1406	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1407		__func__, plat_dev->id, board_dat->pdev->irq);
1408
1409	if (use_dma)
1410		pch_free_dma_buf(board_dat, data);
1411
1412	/* check for any pending messages; no action is taken if the queue
1413	 * is still full; but at least we tried.  Unload anyway */
1414	count = 500;
1415	spin_lock_irqsave(&data->lock, flags);
1416	data->status = STATUS_EXITING;
1417	while ((list_empty(&data->queue) == 0) && --count) {
1418		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1419			__func__);
1420		spin_unlock_irqrestore(&data->lock, flags);
1421		msleep(PCH_SLEEP_TIME);
1422		spin_lock_irqsave(&data->lock, flags);
1423	}
1424	spin_unlock_irqrestore(&data->lock, flags);
1425
1426	pch_spi_free_resources(board_dat, data);
1427	/* disable interrupts & free IRQ */
1428	if (data->irq_reg_sts) {
1429		/* disable interrupts */
1430		pch_spi_setclr_reg(data->host, PCH_SPCR, 0, PCH_ALL);
1431		data->irq_reg_sts = false;
1432		free_irq(board_dat->pdev->irq, data);
1433	}
1434
1435	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1436	spi_unregister_controller(data->host);
1437}
1438#ifdef CONFIG_PM
1439static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1440			      pm_message_t state)
1441{
1442	u8 count;
1443	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1444	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1445
1446	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1447
1448	if (!board_dat) {
1449		dev_err(&pd_dev->dev,
1450			"%s pci_get_drvdata returned NULL\n", __func__);
1451		return -EFAULT;
1452	}
1453
1454	/* check if the current message is processed:
1455	   Only after thats done the transfer will be suspended */
1456	count = 255;
1457	while ((--count) > 0) {
1458		if (!(data->bcurrent_msg_processing))
1459			break;
1460		msleep(PCH_SLEEP_TIME);
1461	}
1462
1463	/* Free IRQ */
1464	if (data->irq_reg_sts) {
1465		/* disable all interrupts */
1466		pch_spi_setclr_reg(data->host, PCH_SPCR, 0, PCH_ALL);
1467		pch_spi_reset(data->host);
1468		free_irq(board_dat->pdev->irq, data);
1469
1470		data->irq_reg_sts = false;
1471		dev_dbg(&pd_dev->dev,
1472			"%s free_irq invoked successfully.\n", __func__);
1473	}
1474
1475	return 0;
1476}
1477
1478static int pch_spi_pd_resume(struct platform_device *pd_dev)
1479{
1480	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1481	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1482	int retval;
1483
1484	if (!board_dat) {
1485		dev_err(&pd_dev->dev,
1486			"%s pci_get_drvdata returned NULL\n", __func__);
1487		return -EFAULT;
1488	}
1489
1490	if (!data->irq_reg_sts) {
1491		/* register IRQ */
1492		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1493				     IRQF_SHARED, KBUILD_MODNAME, data);
1494		if (retval < 0) {
1495			dev_err(&pd_dev->dev,
1496				"%s request_irq failed\n", __func__);
1497			return retval;
1498		}
1499
1500		/* reset PCH SPI h/w */
1501		pch_spi_reset(data->host);
1502		pch_spi_set_host_mode(data->host);
1503		data->irq_reg_sts = true;
1504	}
1505	return 0;
1506}
1507#else
1508#define pch_spi_pd_suspend NULL
1509#define pch_spi_pd_resume NULL
1510#endif
1511
1512static struct platform_driver pch_spi_pd_driver = {
1513	.driver = {
1514		.name = "pch-spi",
1515	},
1516	.probe = pch_spi_pd_probe,
1517	.remove_new = pch_spi_pd_remove,
1518	.suspend = pch_spi_pd_suspend,
1519	.resume = pch_spi_pd_resume
1520};
1521
1522static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1523{
1524	struct pch_spi_board_data *board_dat;
1525	struct platform_device *pd_dev = NULL;
1526	int retval;
1527	int i;
1528	struct pch_pd_dev_save *pd_dev_save;
1529
1530	pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1531	if (!pd_dev_save)
1532		return -ENOMEM;
1533
1534	board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1535	if (!board_dat) {
1536		retval = -ENOMEM;
1537		goto err_no_mem;
1538	}
1539
1540	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1541	if (retval) {
1542		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1543		goto pci_request_regions;
1544	}
1545
1546	board_dat->pdev = pdev;
1547	board_dat->num = id->driver_data;
1548	pd_dev_save->num = id->driver_data;
1549	pd_dev_save->board_dat = board_dat;
1550
1551	retval = pci_enable_device(pdev);
1552	if (retval) {
1553		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1554		goto pci_enable_device;
1555	}
1556
1557	for (i = 0; i < board_dat->num; i++) {
1558		pd_dev = platform_device_alloc("pch-spi", i);
1559		if (!pd_dev) {
1560			dev_err(&pdev->dev, "platform_device_alloc failed\n");
1561			retval = -ENOMEM;
1562			goto err_platform_device;
1563		}
1564		pd_dev_save->pd_save[i] = pd_dev;
1565		pd_dev->dev.parent = &pdev->dev;
1566
1567		retval = platform_device_add_data(pd_dev, board_dat,
1568						  sizeof(*board_dat));
1569		if (retval) {
1570			dev_err(&pdev->dev,
1571				"platform_device_add_data failed\n");
1572			platform_device_put(pd_dev);
1573			goto err_platform_device;
1574		}
1575
1576		retval = platform_device_add(pd_dev);
1577		if (retval) {
1578			dev_err(&pdev->dev, "platform_device_add failed\n");
1579			platform_device_put(pd_dev);
1580			goto err_platform_device;
1581		}
1582	}
1583
1584	pci_set_drvdata(pdev, pd_dev_save);
1585
1586	return 0;
1587
1588err_platform_device:
1589	while (--i >= 0)
1590		platform_device_unregister(pd_dev_save->pd_save[i]);
1591	pci_disable_device(pdev);
1592pci_enable_device:
1593	pci_release_regions(pdev);
1594pci_request_regions:
1595	kfree(board_dat);
1596err_no_mem:
1597	kfree(pd_dev_save);
1598
1599	return retval;
1600}
1601
1602static void pch_spi_remove(struct pci_dev *pdev)
1603{
1604	int i;
1605	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1606
1607	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1608
1609	for (i = 0; i < pd_dev_save->num; i++)
1610		platform_device_unregister(pd_dev_save->pd_save[i]);
1611
1612	pci_disable_device(pdev);
1613	pci_release_regions(pdev);
1614	kfree(pd_dev_save->board_dat);
1615	kfree(pd_dev_save);
1616}
1617
1618static int __maybe_unused pch_spi_suspend(struct device *dev)
1619{
1620	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1621
1622	dev_dbg(dev, "%s ENTRY\n", __func__);
1623
1624	pd_dev_save->board_dat->suspend_sts = true;
1625
1626	return 0;
1627}
1628
1629static int __maybe_unused pch_spi_resume(struct device *dev)
1630{
1631	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1632
1633	dev_dbg(dev, "%s ENTRY\n", __func__);
1634
1635	/* set suspend status to false */
1636	pd_dev_save->board_dat->suspend_sts = false;
1637
1638	return 0;
1639}
1640
1641static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume);
1642
1643static struct pci_driver pch_spi_pcidev_driver = {
1644	.name = "pch_spi",
1645	.id_table = pch_spi_pcidev_id,
1646	.probe = pch_spi_probe,
1647	.remove = pch_spi_remove,
1648	.driver.pm = &pch_spi_pm_ops,
1649};
1650
1651static int __init pch_spi_init(void)
1652{
1653	int ret;
1654	ret = platform_driver_register(&pch_spi_pd_driver);
1655	if (ret)
1656		return ret;
1657
1658	ret = pci_register_driver(&pch_spi_pcidev_driver);
1659	if (ret) {
1660		platform_driver_unregister(&pch_spi_pd_driver);
1661		return ret;
1662	}
1663
1664	return 0;
1665}
1666module_init(pch_spi_init);
1667
1668static void __exit pch_spi_exit(void)
1669{
1670	pci_unregister_driver(&pch_spi_pcidev_driver);
1671	platform_driver_unregister(&pch_spi_pd_driver);
1672}
1673module_exit(pch_spi_exit);
1674
1675module_param(use_dma, int, 0644);
1676MODULE_PARM_DESC(use_dma,
1677		 "to use DMA for data transfers pass 1 else 0; default 1");
1678
1679MODULE_LICENSE("GPL");
1680MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1681MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1682
1683