1// SPDX-License-Identifier: GPL-2.0
2// Copyright (C) 2018 Spreadtrum Communications Inc.
3
4#include <linux/clk.h>
5#include <linux/dmaengine.h>
6#include <linux/dma-mapping.h>
7#include <linux/dma/sprd-dma.h>
8#include <linux/interrupt.h>
9#include <linux/io.h>
10#include <linux/iopoll.h>
11#include <linux/kernel.h>
12#include <linux/module.h>
13#include <linux/of.h>
14#include <linux/of_dma.h>
15#include <linux/platform_device.h>
16#include <linux/pm_runtime.h>
17#include <linux/spi/spi.h>
18
19#define SPRD_SPI_TXD			0x0
20#define SPRD_SPI_CLKD			0x4
21#define SPRD_SPI_CTL0			0x8
22#define SPRD_SPI_CTL1			0xc
23#define SPRD_SPI_CTL2			0x10
24#define SPRD_SPI_CTL3			0x14
25#define SPRD_SPI_CTL4			0x18
26#define SPRD_SPI_CTL5			0x1c
27#define SPRD_SPI_INT_EN			0x20
28#define SPRD_SPI_INT_CLR		0x24
29#define SPRD_SPI_INT_RAW_STS		0x28
30#define SPRD_SPI_INT_MASK_STS		0x2c
31#define SPRD_SPI_STS1			0x30
32#define SPRD_SPI_STS2			0x34
33#define SPRD_SPI_DSP_WAIT		0x38
34#define SPRD_SPI_STS3			0x3c
35#define SPRD_SPI_CTL6			0x40
36#define SPRD_SPI_STS4			0x44
37#define SPRD_SPI_FIFO_RST		0x48
38#define SPRD_SPI_CTL7			0x4c
39#define SPRD_SPI_STS5			0x50
40#define SPRD_SPI_CTL8			0x54
41#define SPRD_SPI_CTL9			0x58
42#define SPRD_SPI_CTL10			0x5c
43#define SPRD_SPI_CTL11			0x60
44#define SPRD_SPI_CTL12			0x64
45#define SPRD_SPI_STS6			0x68
46#define SPRD_SPI_STS7			0x6c
47#define SPRD_SPI_STS8			0x70
48#define SPRD_SPI_STS9			0x74
49
50/* Bits & mask definition for register CTL0 */
51#define SPRD_SPI_SCK_REV		BIT(13)
52#define SPRD_SPI_NG_TX			BIT(1)
53#define SPRD_SPI_NG_RX			BIT(0)
54#define SPRD_SPI_CHNL_LEN_MASK		GENMASK(4, 0)
55#define SPRD_SPI_CSN_MASK		GENMASK(11, 8)
56#define SPRD_SPI_CS0_VALID		BIT(8)
57
58/* Bits & mask definition for register SPI_INT_EN */
59#define SPRD_SPI_TX_END_INT_EN		BIT(8)
60#define SPRD_SPI_RX_END_INT_EN		BIT(9)
61
62/* Bits & mask definition for register SPI_INT_RAW_STS */
63#define SPRD_SPI_TX_END_RAW		BIT(8)
64#define SPRD_SPI_RX_END_RAW		BIT(9)
65
66/* Bits & mask definition for register SPI_INT_CLR */
67#define SPRD_SPI_TX_END_CLR		BIT(8)
68#define SPRD_SPI_RX_END_CLR		BIT(9)
69
70/* Bits & mask definition for register INT_MASK_STS */
71#define SPRD_SPI_MASK_RX_END		BIT(9)
72#define SPRD_SPI_MASK_TX_END		BIT(8)
73
74/* Bits & mask definition for register STS2 */
75#define SPRD_SPI_TX_BUSY		BIT(8)
76
77/* Bits & mask definition for register CTL1 */
78#define SPRD_SPI_RX_MODE		BIT(12)
79#define SPRD_SPI_TX_MODE		BIT(13)
80#define SPRD_SPI_RTX_MD_MASK		GENMASK(13, 12)
81
82/* Bits & mask definition for register CTL2 */
83#define SPRD_SPI_DMA_EN			BIT(6)
84
85/* Bits & mask definition for register CTL4 */
86#define SPRD_SPI_START_RX		BIT(9)
87#define SPRD_SPI_ONLY_RECV_MASK		GENMASK(8, 0)
88
89/* Bits & mask definition for register SPI_INT_CLR */
90#define SPRD_SPI_RX_END_INT_CLR		BIT(9)
91#define SPRD_SPI_TX_END_INT_CLR		BIT(8)
92
93/* Bits & mask definition for register SPI_INT_RAW */
94#define SPRD_SPI_RX_END_IRQ		BIT(9)
95#define SPRD_SPI_TX_END_IRQ		BIT(8)
96
97/* Bits & mask definition for register CTL12 */
98#define SPRD_SPI_SW_RX_REQ		BIT(0)
99#define SPRD_SPI_SW_TX_REQ		BIT(1)
100
101/* Bits & mask definition for register CTL7 */
102#define SPRD_SPI_DATA_LINE2_EN		BIT(15)
103#define SPRD_SPI_MODE_MASK		GENMASK(5, 3)
104#define SPRD_SPI_MODE_OFFSET		3
105#define SPRD_SPI_3WIRE_MODE		4
106#define SPRD_SPI_4WIRE_MODE		0
107
108/* Bits & mask definition for register CTL8 */
109#define SPRD_SPI_TX_MAX_LEN_MASK	GENMASK(19, 0)
110#define SPRD_SPI_TX_LEN_H_MASK		GENMASK(3, 0)
111#define SPRD_SPI_TX_LEN_H_OFFSET	16
112
113/* Bits & mask definition for register CTL9 */
114#define SPRD_SPI_TX_LEN_L_MASK		GENMASK(15, 0)
115
116/* Bits & mask definition for register CTL10 */
117#define SPRD_SPI_RX_MAX_LEN_MASK	GENMASK(19, 0)
118#define SPRD_SPI_RX_LEN_H_MASK		GENMASK(3, 0)
119#define SPRD_SPI_RX_LEN_H_OFFSET	16
120
121/* Bits & mask definition for register CTL11 */
122#define SPRD_SPI_RX_LEN_L_MASK		GENMASK(15, 0)
123
124/* Default & maximum word delay cycles */
125#define SPRD_SPI_MIN_DELAY_CYCLE	14
126#define SPRD_SPI_MAX_DELAY_CYCLE	130
127
128#define SPRD_SPI_FIFO_SIZE		32
129#define SPRD_SPI_CHIP_CS_NUM		0x4
130#define SPRD_SPI_CHNL_LEN		2
131#define SPRD_SPI_DEFAULT_SOURCE		26000000
132#define SPRD_SPI_MAX_SPEED_HZ		48000000
133#define SPRD_SPI_AUTOSUSPEND_DELAY	100
134#define SPRD_SPI_DMA_STEP		8
135
136enum sprd_spi_dma_channel {
137	SPRD_SPI_RX,
138	SPRD_SPI_TX,
139	SPRD_SPI_MAX,
140};
141
142struct sprd_spi_dma {
143	bool enable;
144	struct dma_chan *dma_chan[SPRD_SPI_MAX];
145	enum dma_slave_buswidth width;
146	u32 fragmens_len;
147	u32 rx_len;
148};
149
150struct sprd_spi {
151	void __iomem *base;
152	phys_addr_t phy_base;
153	struct device *dev;
154	struct clk *clk;
155	int irq;
156	u32 src_clk;
157	u32 hw_mode;
158	u32 trans_len;
159	u32 trans_mode;
160	u32 word_delay;
161	u32 hw_speed_hz;
162	u32 len;
163	int status;
164	struct sprd_spi_dma dma;
165	struct completion xfer_completion;
166	const void *tx_buf;
167	void *rx_buf;
168	int (*read_bufs)(struct sprd_spi *ss, u32 len);
169	int (*write_bufs)(struct sprd_spi *ss, u32 len);
170};
171
172static u32 sprd_spi_transfer_max_timeout(struct sprd_spi *ss,
173					 struct spi_transfer *t)
174{
175	/*
176	 * The time spent on transmission of the full FIFO data is the maximum
177	 * SPI transmission time.
178	 */
179	u32 size = t->bits_per_word * SPRD_SPI_FIFO_SIZE;
180	u32 bit_time_us = DIV_ROUND_UP(USEC_PER_SEC, ss->hw_speed_hz);
181	u32 total_time_us = size * bit_time_us;
182	/*
183	 * There is an interval between data and the data in our SPI hardware,
184	 * so the total transmission time need add the interval time.
185	 */
186	u32 interval_cycle = SPRD_SPI_FIFO_SIZE * ss->word_delay;
187	u32 interval_time_us = DIV_ROUND_UP(interval_cycle * USEC_PER_SEC,
188					    ss->src_clk);
189
190	return total_time_us + interval_time_us;
191}
192
193static int sprd_spi_wait_for_tx_end(struct sprd_spi *ss, struct spi_transfer *t)
194{
195	u32 val, us;
196	int ret;
197
198	us = sprd_spi_transfer_max_timeout(ss, t);
199	ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val,
200					 val & SPRD_SPI_TX_END_IRQ, 0, us);
201	if (ret) {
202		dev_err(ss->dev, "SPI error, spi send timeout!\n");
203		return ret;
204	}
205
206	ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_STS2, val,
207					 !(val & SPRD_SPI_TX_BUSY), 0, us);
208	if (ret) {
209		dev_err(ss->dev, "SPI error, spi busy timeout!\n");
210		return ret;
211	}
212
213	writel_relaxed(SPRD_SPI_TX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR);
214
215	return 0;
216}
217
218static int sprd_spi_wait_for_rx_end(struct sprd_spi *ss, struct spi_transfer *t)
219{
220	u32 val, us;
221	int ret;
222
223	us = sprd_spi_transfer_max_timeout(ss, t);
224	ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val,
225					 val & SPRD_SPI_RX_END_IRQ, 0, us);
226	if (ret) {
227		dev_err(ss->dev, "SPI error, spi rx timeout!\n");
228		return ret;
229	}
230
231	writel_relaxed(SPRD_SPI_RX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR);
232
233	return 0;
234}
235
236static void sprd_spi_tx_req(struct sprd_spi *ss)
237{
238	writel_relaxed(SPRD_SPI_SW_TX_REQ, ss->base + SPRD_SPI_CTL12);
239}
240
241static void sprd_spi_rx_req(struct sprd_spi *ss)
242{
243	writel_relaxed(SPRD_SPI_SW_RX_REQ, ss->base + SPRD_SPI_CTL12);
244}
245
246static void sprd_spi_enter_idle(struct sprd_spi *ss)
247{
248	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL1);
249
250	val &= ~SPRD_SPI_RTX_MD_MASK;
251	writel_relaxed(val, ss->base + SPRD_SPI_CTL1);
252}
253
254static void sprd_spi_set_transfer_bits(struct sprd_spi *ss, u32 bits)
255{
256	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
257
258	/* Set the valid bits for every transaction */
259	val &= ~(SPRD_SPI_CHNL_LEN_MASK << SPRD_SPI_CHNL_LEN);
260	val |= bits << SPRD_SPI_CHNL_LEN;
261	writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
262}
263
264static void sprd_spi_set_tx_length(struct sprd_spi *ss, u32 length)
265{
266	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL8);
267
268	length &= SPRD_SPI_TX_MAX_LEN_MASK;
269	val &= ~SPRD_SPI_TX_LEN_H_MASK;
270	val |= length >> SPRD_SPI_TX_LEN_H_OFFSET;
271	writel_relaxed(val, ss->base + SPRD_SPI_CTL8);
272
273	val = length & SPRD_SPI_TX_LEN_L_MASK;
274	writel_relaxed(val, ss->base + SPRD_SPI_CTL9);
275}
276
277static void sprd_spi_set_rx_length(struct sprd_spi *ss, u32 length)
278{
279	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL10);
280
281	length &= SPRD_SPI_RX_MAX_LEN_MASK;
282	val &= ~SPRD_SPI_RX_LEN_H_MASK;
283	val |= length >> SPRD_SPI_RX_LEN_H_OFFSET;
284	writel_relaxed(val, ss->base + SPRD_SPI_CTL10);
285
286	val = length & SPRD_SPI_RX_LEN_L_MASK;
287	writel_relaxed(val, ss->base + SPRD_SPI_CTL11);
288}
289
290static void sprd_spi_chipselect(struct spi_device *sdev, bool cs)
291{
292	struct spi_controller *sctlr = sdev->controller;
293	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
294	u32 val;
295
296	val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
297	/*  The SPI controller will pull down CS pin if cs is 0 */
298	if (!cs) {
299		val &= ~SPRD_SPI_CS0_VALID;
300		writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
301	} else {
302		val |= SPRD_SPI_CSN_MASK;
303		writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
304	}
305}
306
307static int sprd_spi_write_only_receive(struct sprd_spi *ss, u32 len)
308{
309	u32 val;
310
311	/* Clear the start receive bit and reset receive data number */
312	val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
313	val &= ~(SPRD_SPI_START_RX | SPRD_SPI_ONLY_RECV_MASK);
314	writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
315
316	/* Set the receive data length */
317	val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
318	val |= len & SPRD_SPI_ONLY_RECV_MASK;
319	writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
320
321	/* Trigger to receive data */
322	val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
323	val |= SPRD_SPI_START_RX;
324	writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
325
326	return len;
327}
328
329static int sprd_spi_write_bufs_u8(struct sprd_spi *ss, u32 len)
330{
331	u8 *tx_p = (u8 *)ss->tx_buf;
332	int i;
333
334	for (i = 0; i < len; i++)
335		writeb_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
336
337	ss->tx_buf += i;
338	return i;
339}
340
341static int sprd_spi_write_bufs_u16(struct sprd_spi *ss, u32 len)
342{
343	u16 *tx_p = (u16 *)ss->tx_buf;
344	int i;
345
346	for (i = 0; i < len; i++)
347		writew_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
348
349	ss->tx_buf += i << 1;
350	return i << 1;
351}
352
353static int sprd_spi_write_bufs_u32(struct sprd_spi *ss, u32 len)
354{
355	u32 *tx_p = (u32 *)ss->tx_buf;
356	int i;
357
358	for (i = 0; i < len; i++)
359		writel_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
360
361	ss->tx_buf += i << 2;
362	return i << 2;
363}
364
365static int sprd_spi_read_bufs_u8(struct sprd_spi *ss, u32 len)
366{
367	u8 *rx_p = (u8 *)ss->rx_buf;
368	int i;
369
370	for (i = 0; i < len; i++)
371		rx_p[i] = readb_relaxed(ss->base + SPRD_SPI_TXD);
372
373	ss->rx_buf += i;
374	return i;
375}
376
377static int sprd_spi_read_bufs_u16(struct sprd_spi *ss, u32 len)
378{
379	u16 *rx_p = (u16 *)ss->rx_buf;
380	int i;
381
382	for (i = 0; i < len; i++)
383		rx_p[i] = readw_relaxed(ss->base + SPRD_SPI_TXD);
384
385	ss->rx_buf += i << 1;
386	return i << 1;
387}
388
389static int sprd_spi_read_bufs_u32(struct sprd_spi *ss, u32 len)
390{
391	u32 *rx_p = (u32 *)ss->rx_buf;
392	int i;
393
394	for (i = 0; i < len; i++)
395		rx_p[i] = readl_relaxed(ss->base + SPRD_SPI_TXD);
396
397	ss->rx_buf += i << 2;
398	return i << 2;
399}
400
401static int sprd_spi_txrx_bufs(struct spi_device *sdev, struct spi_transfer *t)
402{
403	struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller);
404	u32 trans_len = ss->trans_len, len;
405	int ret, write_size = 0, read_size = 0;
406
407	while (trans_len) {
408		len = trans_len > SPRD_SPI_FIFO_SIZE ? SPRD_SPI_FIFO_SIZE :
409			trans_len;
410		if (ss->trans_mode & SPRD_SPI_TX_MODE) {
411			sprd_spi_set_tx_length(ss, len);
412			write_size += ss->write_bufs(ss, len);
413
414			/*
415			 * For our 3 wires mode or dual TX line mode, we need
416			 * to request the controller to transfer.
417			 */
418			if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
419				sprd_spi_tx_req(ss);
420
421			ret = sprd_spi_wait_for_tx_end(ss, t);
422		} else {
423			sprd_spi_set_rx_length(ss, len);
424
425			/*
426			 * For our 3 wires mode or dual TX line mode, we need
427			 * to request the controller to read.
428			 */
429			if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
430				sprd_spi_rx_req(ss);
431			else
432				write_size += ss->write_bufs(ss, len);
433
434			ret = sprd_spi_wait_for_rx_end(ss, t);
435		}
436
437		if (ret)
438			goto complete;
439
440		if (ss->trans_mode & SPRD_SPI_RX_MODE)
441			read_size += ss->read_bufs(ss, len);
442
443		trans_len -= len;
444	}
445
446	if (ss->trans_mode & SPRD_SPI_TX_MODE)
447		ret = write_size;
448	else
449		ret = read_size;
450complete:
451	sprd_spi_enter_idle(ss);
452
453	return ret;
454}
455
456static void sprd_spi_irq_enable(struct sprd_spi *ss)
457{
458	u32 val;
459
460	/* Clear interrupt status before enabling interrupt. */
461	writel_relaxed(SPRD_SPI_TX_END_CLR | SPRD_SPI_RX_END_CLR,
462		ss->base + SPRD_SPI_INT_CLR);
463	/* Enable SPI interrupt only in DMA mode. */
464	val = readl_relaxed(ss->base + SPRD_SPI_INT_EN);
465	writel_relaxed(val | SPRD_SPI_TX_END_INT_EN |
466		       SPRD_SPI_RX_END_INT_EN,
467		       ss->base + SPRD_SPI_INT_EN);
468}
469
470static void sprd_spi_irq_disable(struct sprd_spi *ss)
471{
472	writel_relaxed(0, ss->base + SPRD_SPI_INT_EN);
473}
474
475static void sprd_spi_dma_enable(struct sprd_spi *ss, bool enable)
476{
477	u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL2);
478
479	if (enable)
480		val |= SPRD_SPI_DMA_EN;
481	else
482		val &= ~SPRD_SPI_DMA_EN;
483
484	writel_relaxed(val, ss->base + SPRD_SPI_CTL2);
485}
486
487static int sprd_spi_dma_submit(struct dma_chan *dma_chan,
488			       struct dma_slave_config *c,
489			       struct sg_table *sg,
490			       enum dma_transfer_direction dir)
491{
492	struct dma_async_tx_descriptor *desc;
493	dma_cookie_t cookie;
494	unsigned long flags;
495	int ret;
496
497	ret = dmaengine_slave_config(dma_chan, c);
498	if (ret < 0)
499		return ret;
500
501	flags = SPRD_DMA_FLAGS(SPRD_DMA_CHN_MODE_NONE, SPRD_DMA_NO_TRG,
502			       SPRD_DMA_FRAG_REQ, SPRD_DMA_TRANS_INT);
503	desc = dmaengine_prep_slave_sg(dma_chan, sg->sgl, sg->nents, dir, flags);
504	if (!desc)
505		return  -ENODEV;
506
507	cookie = dmaengine_submit(desc);
508	if (dma_submit_error(cookie))
509		return dma_submit_error(cookie);
510
511	dma_async_issue_pending(dma_chan);
512
513	return 0;
514}
515
516static int sprd_spi_dma_rx_config(struct sprd_spi *ss, struct spi_transfer *t)
517{
518	struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_RX];
519	struct dma_slave_config config = {
520		.src_addr = ss->phy_base,
521		.src_addr_width = ss->dma.width,
522		.dst_addr_width = ss->dma.width,
523		.dst_maxburst = ss->dma.fragmens_len,
524	};
525	int ret;
526
527	ret = sprd_spi_dma_submit(dma_chan, &config, &t->rx_sg, DMA_DEV_TO_MEM);
528	if (ret)
529		return ret;
530
531	return ss->dma.rx_len;
532}
533
534static int sprd_spi_dma_tx_config(struct sprd_spi *ss, struct spi_transfer *t)
535{
536	struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_TX];
537	struct dma_slave_config config = {
538		.dst_addr = ss->phy_base,
539		.src_addr_width = ss->dma.width,
540		.dst_addr_width = ss->dma.width,
541		.src_maxburst = ss->dma.fragmens_len,
542	};
543	int ret;
544
545	ret = sprd_spi_dma_submit(dma_chan, &config, &t->tx_sg, DMA_MEM_TO_DEV);
546	if (ret)
547		return ret;
548
549	return t->len;
550}
551
552static int sprd_spi_dma_request(struct sprd_spi *ss)
553{
554	ss->dma.dma_chan[SPRD_SPI_RX] = dma_request_chan(ss->dev, "rx_chn");
555	if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_RX]))
556		return dev_err_probe(ss->dev, PTR_ERR(ss->dma.dma_chan[SPRD_SPI_RX]),
557				     "request RX DMA channel failed!\n");
558
559	ss->dma.dma_chan[SPRD_SPI_TX]  = dma_request_chan(ss->dev, "tx_chn");
560	if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_TX])) {
561		dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]);
562		return dev_err_probe(ss->dev, PTR_ERR(ss->dma.dma_chan[SPRD_SPI_TX]),
563				     "request TX DMA channel failed!\n");
564	}
565
566	return 0;
567}
568
569static void sprd_spi_dma_release(struct sprd_spi *ss)
570{
571	if (ss->dma.dma_chan[SPRD_SPI_RX])
572		dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]);
573
574	if (ss->dma.dma_chan[SPRD_SPI_TX])
575		dma_release_channel(ss->dma.dma_chan[SPRD_SPI_TX]);
576}
577
578static int sprd_spi_dma_txrx_bufs(struct spi_device *sdev,
579				  struct spi_transfer *t)
580{
581	struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller);
582	u32 trans_len = ss->trans_len;
583	int ret, write_size = 0;
584
585	reinit_completion(&ss->xfer_completion);
586	sprd_spi_irq_enable(ss);
587	if (ss->trans_mode & SPRD_SPI_TX_MODE) {
588		write_size = sprd_spi_dma_tx_config(ss, t);
589		sprd_spi_set_tx_length(ss, trans_len);
590
591		/*
592		 * For our 3 wires mode or dual TX line mode, we need
593		 * to request the controller to transfer.
594		 */
595		if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
596			sprd_spi_tx_req(ss);
597	} else {
598		sprd_spi_set_rx_length(ss, trans_len);
599
600		/*
601		 * For our 3 wires mode or dual TX line mode, we need
602		 * to request the controller to read.
603		 */
604		if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
605			sprd_spi_rx_req(ss);
606		else
607			write_size = ss->write_bufs(ss, trans_len);
608	}
609
610	if (write_size < 0) {
611		ret = write_size;
612		dev_err(ss->dev, "failed to write, ret = %d\n", ret);
613		goto trans_complete;
614	}
615
616	if (ss->trans_mode & SPRD_SPI_RX_MODE) {
617		/*
618		 * Set up the DMA receive data length, which must be an
619		 * integral multiple of fragment length. But when the length
620		 * of received data is less than fragment length, DMA can be
621		 * configured to receive data according to the actual length
622		 * of received data.
623		 */
624		ss->dma.rx_len = t->len > ss->dma.fragmens_len ?
625			(t->len - t->len % ss->dma.fragmens_len) :
626			 t->len;
627		ret = sprd_spi_dma_rx_config(ss, t);
628		if (ret < 0) {
629			dev_err(&sdev->dev,
630				"failed to configure rx DMA, ret = %d\n", ret);
631			goto trans_complete;
632		}
633	}
634
635	sprd_spi_dma_enable(ss, true);
636	wait_for_completion(&(ss->xfer_completion));
637
638	if (ss->trans_mode & SPRD_SPI_TX_MODE)
639		ret = write_size;
640	else
641		ret = ss->dma.rx_len;
642
643trans_complete:
644	sprd_spi_dma_enable(ss, false);
645	sprd_spi_enter_idle(ss);
646	sprd_spi_irq_disable(ss);
647
648	return ret;
649}
650
651static void sprd_spi_set_speed(struct sprd_spi *ss, u32 speed_hz)
652{
653	/*
654	 * From SPI datasheet, the prescale calculation formula:
655	 * prescale = SPI source clock / (2 * SPI_freq) - 1;
656	 */
657	u32 clk_div = DIV_ROUND_UP(ss->src_clk, speed_hz << 1) - 1;
658
659	/* Save the real hardware speed */
660	ss->hw_speed_hz = (ss->src_clk >> 1) / (clk_div + 1);
661	writel_relaxed(clk_div, ss->base + SPRD_SPI_CLKD);
662}
663
664static int sprd_spi_init_hw(struct sprd_spi *ss, struct spi_transfer *t)
665{
666	struct spi_delay *d = &t->word_delay;
667	u16 word_delay, interval;
668	u32 val;
669
670	if (d->unit != SPI_DELAY_UNIT_SCK)
671		return -EINVAL;
672
673	val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
674	val &= ~(SPRD_SPI_SCK_REV | SPRD_SPI_NG_TX | SPRD_SPI_NG_RX);
675	/* Set default chip selection, clock phase and clock polarity */
676	val |= ss->hw_mode & SPI_CPHA ? SPRD_SPI_NG_RX : SPRD_SPI_NG_TX;
677	val |= ss->hw_mode & SPI_CPOL ? SPRD_SPI_SCK_REV : 0;
678	writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
679
680	/*
681	 * Set the intervals of two SPI frames, and the inteval calculation
682	 * formula as below per datasheet:
683	 * interval time (source clock cycles) = interval * 4 + 10.
684	 */
685	word_delay = clamp_t(u16, d->value, SPRD_SPI_MIN_DELAY_CYCLE,
686			     SPRD_SPI_MAX_DELAY_CYCLE);
687	interval = DIV_ROUND_UP(word_delay - 10, 4);
688	ss->word_delay = interval * 4 + 10;
689	writel_relaxed(interval, ss->base + SPRD_SPI_CTL5);
690
691	/* Reset SPI fifo */
692	writel_relaxed(1, ss->base + SPRD_SPI_FIFO_RST);
693	writel_relaxed(0, ss->base + SPRD_SPI_FIFO_RST);
694
695	/* Set SPI work mode */
696	val = readl_relaxed(ss->base + SPRD_SPI_CTL7);
697	val &= ~SPRD_SPI_MODE_MASK;
698
699	if (ss->hw_mode & SPI_3WIRE)
700		val |= SPRD_SPI_3WIRE_MODE << SPRD_SPI_MODE_OFFSET;
701	else
702		val |= SPRD_SPI_4WIRE_MODE << SPRD_SPI_MODE_OFFSET;
703
704	if (ss->hw_mode & SPI_TX_DUAL)
705		val |= SPRD_SPI_DATA_LINE2_EN;
706	else
707		val &= ~SPRD_SPI_DATA_LINE2_EN;
708
709	writel_relaxed(val, ss->base + SPRD_SPI_CTL7);
710
711	return 0;
712}
713
714static int sprd_spi_setup_transfer(struct spi_device *sdev,
715				   struct spi_transfer *t)
716{
717	struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller);
718	u8 bits_per_word = t->bits_per_word;
719	u32 val, mode = 0;
720	int ret;
721
722	ss->len = t->len;
723	ss->tx_buf = t->tx_buf;
724	ss->rx_buf = t->rx_buf;
725
726	ss->hw_mode = sdev->mode;
727	ret = sprd_spi_init_hw(ss, t);
728	if (ret)
729		return ret;
730
731	/* Set tansfer speed and valid bits */
732	sprd_spi_set_speed(ss, t->speed_hz);
733	sprd_spi_set_transfer_bits(ss, bits_per_word);
734
735	if (bits_per_word > 16)
736		bits_per_word = round_up(bits_per_word, 16);
737	else
738		bits_per_word = round_up(bits_per_word, 8);
739
740	switch (bits_per_word) {
741	case 8:
742		ss->trans_len = t->len;
743		ss->read_bufs = sprd_spi_read_bufs_u8;
744		ss->write_bufs = sprd_spi_write_bufs_u8;
745		ss->dma.width = DMA_SLAVE_BUSWIDTH_1_BYTE;
746		ss->dma.fragmens_len = SPRD_SPI_DMA_STEP;
747		break;
748	case 16:
749		ss->trans_len = t->len >> 1;
750		ss->read_bufs = sprd_spi_read_bufs_u16;
751		ss->write_bufs = sprd_spi_write_bufs_u16;
752		ss->dma.width = DMA_SLAVE_BUSWIDTH_2_BYTES;
753		ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 1;
754		break;
755	case 32:
756		ss->trans_len = t->len >> 2;
757		ss->read_bufs = sprd_spi_read_bufs_u32;
758		ss->write_bufs = sprd_spi_write_bufs_u32;
759		ss->dma.width = DMA_SLAVE_BUSWIDTH_4_BYTES;
760		ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 2;
761		break;
762	default:
763		return -EINVAL;
764	}
765
766	/* Set transfer read or write mode */
767	val = readl_relaxed(ss->base + SPRD_SPI_CTL1);
768	val &= ~SPRD_SPI_RTX_MD_MASK;
769	if (t->tx_buf)
770		mode |= SPRD_SPI_TX_MODE;
771	if (t->rx_buf)
772		mode |= SPRD_SPI_RX_MODE;
773
774	writel_relaxed(val | mode, ss->base + SPRD_SPI_CTL1);
775
776	ss->trans_mode = mode;
777
778	/*
779	 * If in only receive mode, we need to trigger the SPI controller to
780	 * receive data automatically.
781	 */
782	if (ss->trans_mode == SPRD_SPI_RX_MODE)
783		ss->write_bufs = sprd_spi_write_only_receive;
784
785	return 0;
786}
787
788static int sprd_spi_transfer_one(struct spi_controller *sctlr,
789				 struct spi_device *sdev,
790				 struct spi_transfer *t)
791{
792	int ret;
793
794	ret = sprd_spi_setup_transfer(sdev, t);
795	if (ret)
796		goto setup_err;
797
798	if (sctlr->can_dma(sctlr, sdev, t))
799		ret = sprd_spi_dma_txrx_bufs(sdev, t);
800	else
801		ret = sprd_spi_txrx_bufs(sdev, t);
802
803	if (ret == t->len)
804		ret = 0;
805	else if (ret >= 0)
806		ret = -EREMOTEIO;
807
808setup_err:
809	spi_finalize_current_transfer(sctlr);
810
811	return ret;
812}
813
814static irqreturn_t sprd_spi_handle_irq(int irq, void *data)
815{
816	struct sprd_spi *ss = (struct sprd_spi *)data;
817	u32 val = readl_relaxed(ss->base + SPRD_SPI_INT_MASK_STS);
818
819	if (val & SPRD_SPI_MASK_TX_END) {
820		writel_relaxed(SPRD_SPI_TX_END_CLR, ss->base + SPRD_SPI_INT_CLR);
821		if (!(ss->trans_mode & SPRD_SPI_RX_MODE))
822			complete(&ss->xfer_completion);
823
824		return IRQ_HANDLED;
825	}
826
827	if (val & SPRD_SPI_MASK_RX_END) {
828		writel_relaxed(SPRD_SPI_RX_END_CLR, ss->base + SPRD_SPI_INT_CLR);
829		if (ss->dma.rx_len < ss->len) {
830			ss->rx_buf += ss->dma.rx_len;
831			ss->dma.rx_len +=
832				ss->read_bufs(ss, ss->len - ss->dma.rx_len);
833		}
834		complete(&ss->xfer_completion);
835
836		return IRQ_HANDLED;
837	}
838
839	return IRQ_NONE;
840}
841
842static int sprd_spi_irq_init(struct platform_device *pdev, struct sprd_spi *ss)
843{
844	int ret;
845
846	ss->irq = platform_get_irq(pdev, 0);
847	if (ss->irq < 0)
848		return ss->irq;
849
850	ret = devm_request_irq(&pdev->dev, ss->irq, sprd_spi_handle_irq,
851				0, pdev->name, ss);
852	if (ret)
853		dev_err(&pdev->dev, "failed to request spi irq %d, ret = %d\n",
854			ss->irq, ret);
855
856	return ret;
857}
858
859static int sprd_spi_clk_init(struct platform_device *pdev, struct sprd_spi *ss)
860{
861	struct clk *clk_spi, *clk_parent;
862
863	clk_spi = devm_clk_get(&pdev->dev, "spi");
864	if (IS_ERR(clk_spi)) {
865		dev_warn(&pdev->dev, "can't get the spi clock\n");
866		clk_spi = NULL;
867	}
868
869	clk_parent = devm_clk_get(&pdev->dev, "source");
870	if (IS_ERR(clk_parent)) {
871		dev_warn(&pdev->dev, "can't get the source clock\n");
872		clk_parent = NULL;
873	}
874
875	ss->clk = devm_clk_get(&pdev->dev, "enable");
876	if (IS_ERR(ss->clk)) {
877		dev_err(&pdev->dev, "can't get the enable clock\n");
878		return PTR_ERR(ss->clk);
879	}
880
881	if (!clk_set_parent(clk_spi, clk_parent))
882		ss->src_clk = clk_get_rate(clk_spi);
883	else
884		ss->src_clk = SPRD_SPI_DEFAULT_SOURCE;
885
886	return 0;
887}
888
889static bool sprd_spi_can_dma(struct spi_controller *sctlr,
890			     struct spi_device *spi, struct spi_transfer *t)
891{
892	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
893
894	return ss->dma.enable && (t->len > SPRD_SPI_FIFO_SIZE);
895}
896
897static int sprd_spi_dma_init(struct platform_device *pdev, struct sprd_spi *ss)
898{
899	int ret;
900
901	ret = sprd_spi_dma_request(ss);
902	if (ret) {
903		if (ret == -EPROBE_DEFER)
904			return ret;
905
906		dev_warn(&pdev->dev,
907			 "failed to request dma, enter no dma mode, ret = %d\n",
908			 ret);
909
910		return 0;
911	}
912
913	ss->dma.enable = true;
914
915	return 0;
916}
917
918static int sprd_spi_probe(struct platform_device *pdev)
919{
920	struct spi_controller *sctlr;
921	struct resource *res;
922	struct sprd_spi *ss;
923	int ret;
924
925	pdev->id = of_alias_get_id(pdev->dev.of_node, "spi");
926	sctlr = spi_alloc_host(&pdev->dev, sizeof(*ss));
927	if (!sctlr)
928		return -ENOMEM;
929
930	ss = spi_controller_get_devdata(sctlr);
931	ss->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
932	if (IS_ERR(ss->base)) {
933		ret = PTR_ERR(ss->base);
934		goto free_controller;
935	}
936
937	ss->phy_base = res->start;
938	ss->dev = &pdev->dev;
939	sctlr->dev.of_node = pdev->dev.of_node;
940	sctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_3WIRE | SPI_TX_DUAL;
941	sctlr->bus_num = pdev->id;
942	sctlr->set_cs = sprd_spi_chipselect;
943	sctlr->transfer_one = sprd_spi_transfer_one;
944	sctlr->can_dma = sprd_spi_can_dma;
945	sctlr->auto_runtime_pm = true;
946	sctlr->max_speed_hz = min_t(u32, ss->src_clk >> 1,
947				    SPRD_SPI_MAX_SPEED_HZ);
948
949	init_completion(&ss->xfer_completion);
950	platform_set_drvdata(pdev, sctlr);
951	ret = sprd_spi_clk_init(pdev, ss);
952	if (ret)
953		goto free_controller;
954
955	ret = sprd_spi_irq_init(pdev, ss);
956	if (ret)
957		goto free_controller;
958
959	ret = sprd_spi_dma_init(pdev, ss);
960	if (ret)
961		goto free_controller;
962
963	ret = clk_prepare_enable(ss->clk);
964	if (ret)
965		goto release_dma;
966
967	ret = pm_runtime_set_active(&pdev->dev);
968	if (ret < 0)
969		goto disable_clk;
970
971	pm_runtime_set_autosuspend_delay(&pdev->dev,
972					 SPRD_SPI_AUTOSUSPEND_DELAY);
973	pm_runtime_use_autosuspend(&pdev->dev);
974	pm_runtime_enable(&pdev->dev);
975	ret = pm_runtime_get_sync(&pdev->dev);
976	if (ret < 0) {
977		dev_err(&pdev->dev, "failed to resume SPI controller\n");
978		goto err_rpm_put;
979	}
980
981	ret = devm_spi_register_controller(&pdev->dev, sctlr);
982	if (ret)
983		goto err_rpm_put;
984
985	pm_runtime_mark_last_busy(&pdev->dev);
986	pm_runtime_put_autosuspend(&pdev->dev);
987
988	return 0;
989
990err_rpm_put:
991	pm_runtime_put_noidle(&pdev->dev);
992	pm_runtime_disable(&pdev->dev);
993disable_clk:
994	clk_disable_unprepare(ss->clk);
995release_dma:
996	sprd_spi_dma_release(ss);
997free_controller:
998	spi_controller_put(sctlr);
999
1000	return ret;
1001}
1002
1003static void sprd_spi_remove(struct platform_device *pdev)
1004{
1005	struct spi_controller *sctlr = platform_get_drvdata(pdev);
1006	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
1007	int ret;
1008
1009	ret = pm_runtime_get_sync(ss->dev);
1010	if (ret < 0)
1011		dev_err(ss->dev, "failed to resume SPI controller\n");
1012
1013	spi_controller_suspend(sctlr);
1014
1015	if (ret >= 0) {
1016		if (ss->dma.enable)
1017			sprd_spi_dma_release(ss);
1018		clk_disable_unprepare(ss->clk);
1019	}
1020	pm_runtime_put_noidle(&pdev->dev);
1021	pm_runtime_disable(&pdev->dev);
1022}
1023
1024static int __maybe_unused sprd_spi_runtime_suspend(struct device *dev)
1025{
1026	struct spi_controller *sctlr = dev_get_drvdata(dev);
1027	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
1028
1029	if (ss->dma.enable)
1030		sprd_spi_dma_release(ss);
1031
1032	clk_disable_unprepare(ss->clk);
1033
1034	return 0;
1035}
1036
1037static int __maybe_unused sprd_spi_runtime_resume(struct device *dev)
1038{
1039	struct spi_controller *sctlr = dev_get_drvdata(dev);
1040	struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
1041	int ret;
1042
1043	ret = clk_prepare_enable(ss->clk);
1044	if (ret)
1045		return ret;
1046
1047	if (!ss->dma.enable)
1048		return 0;
1049
1050	ret = sprd_spi_dma_request(ss);
1051	if (ret)
1052		clk_disable_unprepare(ss->clk);
1053
1054	return ret;
1055}
1056
1057static const struct dev_pm_ops sprd_spi_pm_ops = {
1058	SET_RUNTIME_PM_OPS(sprd_spi_runtime_suspend,
1059			   sprd_spi_runtime_resume, NULL)
1060};
1061
1062static const struct of_device_id sprd_spi_of_match[] = {
1063	{ .compatible = "sprd,sc9860-spi", },
1064	{ /* sentinel */ }
1065};
1066MODULE_DEVICE_TABLE(of, sprd_spi_of_match);
1067
1068static struct platform_driver sprd_spi_driver = {
1069	.driver = {
1070		.name = "sprd-spi",
1071		.of_match_table = sprd_spi_of_match,
1072		.pm = &sprd_spi_pm_ops,
1073	},
1074	.probe = sprd_spi_probe,
1075	.remove_new = sprd_spi_remove,
1076};
1077
1078module_platform_driver(sprd_spi_driver);
1079
1080MODULE_DESCRIPTION("Spreadtrum SPI Controller driver");
1081MODULE_AUTHOR("Lanqing Liu <lanqing.liu@spreadtrum.com>");
1082MODULE_LICENSE("GPL v2");
1083