1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH MSIOF SPI Controller Interface
4 *
5 * Copyright (c) 2009 Magnus Damm
6 * Copyright (C) 2014 Renesas Electronics Corporation
7 * Copyright (C) 2014-2017 Glider bvba
8 */
9
10#include <linux/bitmap.h>
11#include <linux/clk.h>
12#include <linux/completion.h>
13#include <linux/delay.h>
14#include <linux/dma-mapping.h>
15#include <linux/dmaengine.h>
16#include <linux/err.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/iopoll.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/of.h>
23#include <linux/platform_device.h>
24#include <linux/pm_runtime.h>
25#include <linux/sh_dma.h>
26
27#include <linux/spi/sh_msiof.h>
28#include <linux/spi/spi.h>
29
30#include <asm/unaligned.h>
31
32#define SH_MSIOF_FLAG_FIXED_DTDL_200	BIT(0)
33
34struct sh_msiof_chipdata {
35	u32 bits_per_word_mask;
36	u16 tx_fifo_size;
37	u16 rx_fifo_size;
38	u16 ctlr_flags;
39	u16 min_div_pow;
40	u32 flags;
41};
42
43struct sh_msiof_spi_priv {
44	struct spi_controller *ctlr;
45	void __iomem *mapbase;
46	struct clk *clk;
47	struct platform_device *pdev;
48	struct sh_msiof_spi_info *info;
49	struct completion done;
50	struct completion done_txdma;
51	unsigned int tx_fifo_size;
52	unsigned int rx_fifo_size;
53	unsigned int min_div_pow;
54	void *tx_dma_page;
55	void *rx_dma_page;
56	dma_addr_t tx_dma_addr;
57	dma_addr_t rx_dma_addr;
58	bool native_cs_inited;
59	bool native_cs_high;
60	bool target_aborted;
61};
62
63#define MAX_SS	3	/* Maximum number of native chip selects */
64
65#define SITMDR1	0x00	/* Transmit Mode Register 1 */
66#define SITMDR2	0x04	/* Transmit Mode Register 2 */
67#define SITMDR3	0x08	/* Transmit Mode Register 3 */
68#define SIRMDR1	0x10	/* Receive Mode Register 1 */
69#define SIRMDR2	0x14	/* Receive Mode Register 2 */
70#define SIRMDR3	0x18	/* Receive Mode Register 3 */
71#define SITSCR	0x20	/* Transmit Clock Select Register */
72#define SIRSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
73#define SICTR	0x28	/* Control Register */
74#define SIFCTR	0x30	/* FIFO Control Register */
75#define SISTR	0x40	/* Status Register */
76#define SIIER	0x44	/* Interrupt Enable Register */
77#define SITDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
78#define SITDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
79#define SITFDR	0x50	/* Transmit FIFO Data Register */
80#define SIRDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
81#define SIRDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
82#define SIRFDR	0x60	/* Receive FIFO Data Register */
83
84/* SITMDR1 and SIRMDR1 */
85#define SIMDR1_TRMD		BIT(31)		/* Transfer Mode (1 = Master mode) */
86#define SIMDR1_SYNCMD_MASK	GENMASK(29, 28)	/* SYNC Mode */
87#define SIMDR1_SYNCMD_SPI	(2 << 28)	/*   Level mode/SPI */
88#define SIMDR1_SYNCMD_LR	(3 << 28)	/*   L/R mode */
89#define SIMDR1_SYNCAC_SHIFT	25		/* Sync Polarity (1 = Active-low) */
90#define SIMDR1_BITLSB_SHIFT	24		/* MSB/LSB First (1 = LSB first) */
91#define SIMDR1_DTDL_SHIFT	20		/* Data Pin Bit Delay for MSIOF_SYNC */
92#define SIMDR1_SYNCDL_SHIFT	16		/* Frame Sync Signal Timing Delay */
93#define SIMDR1_FLD_MASK		GENMASK(3, 2)	/* Frame Sync Signal Interval (0-3) */
94#define SIMDR1_FLD_SHIFT	2
95#define SIMDR1_XXSTP		BIT(0)		/* Transmission/Reception Stop on FIFO */
96/* SITMDR1 */
97#define SITMDR1_PCON		BIT(30)		/* Transfer Signal Connection */
98#define SITMDR1_SYNCCH_MASK	GENMASK(27, 26)	/* Sync Signal Channel Select */
99#define SITMDR1_SYNCCH_SHIFT	26		/* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
100
101/* SITMDR2 and SIRMDR2 */
102#define SIMDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
103#define SIMDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
104#define SIMDR2_GRPMASK1		BIT(0)		/* Group Output Mask 1 (SH, A1) */
105
106/* SITSCR and SIRSCR */
107#define SISCR_BRPS_MASK		GENMASK(12, 8)	/* Prescaler Setting (1-32) */
108#define SISCR_BRPS(i)		(((i) - 1) << 8)
109#define SISCR_BRDV_MASK		GENMASK(2, 0)	/* Baud Rate Generator's Division Ratio */
110#define SISCR_BRDV_DIV_2	0
111#define SISCR_BRDV_DIV_4	1
112#define SISCR_BRDV_DIV_8	2
113#define SISCR_BRDV_DIV_16	3
114#define SISCR_BRDV_DIV_32	4
115#define SISCR_BRDV_DIV_1	7
116
117/* SICTR */
118#define SICTR_TSCKIZ_MASK	GENMASK(31, 30)	/* Transmit Clock I/O Polarity Select */
119#define SICTR_TSCKIZ_SCK	BIT(31)		/*   Disable SCK when TX disabled */
120#define SICTR_TSCKIZ_POL_SHIFT	30		/*   Transmit Clock Polarity */
121#define SICTR_RSCKIZ_MASK	GENMASK(29, 28) /* Receive Clock Polarity Select */
122#define SICTR_RSCKIZ_SCK	BIT(29)		/*   Must match CTR_TSCKIZ_SCK */
123#define SICTR_RSCKIZ_POL_SHIFT	28		/*   Receive Clock Polarity */
124#define SICTR_TEDG_SHIFT	27		/* Transmit Timing (1 = falling edge) */
125#define SICTR_REDG_SHIFT	26		/* Receive Timing (1 = falling edge) */
126#define SICTR_TXDIZ_MASK	GENMASK(23, 22)	/* Pin Output When TX is Disabled */
127#define SICTR_TXDIZ_LOW		(0 << 22)	/*   0 */
128#define SICTR_TXDIZ_HIGH	(1 << 22)	/*   1 */
129#define SICTR_TXDIZ_HIZ		(2 << 22)	/*   High-impedance */
130#define SICTR_TSCKE		BIT(15)		/* Transmit Serial Clock Output Enable */
131#define SICTR_TFSE		BIT(14)		/* Transmit Frame Sync Signal Output Enable */
132#define SICTR_TXE		BIT(9)		/* Transmit Enable */
133#define SICTR_RXE		BIT(8)		/* Receive Enable */
134#define SICTR_TXRST		BIT(1)		/* Transmit Reset */
135#define SICTR_RXRST		BIT(0)		/* Receive Reset */
136
137/* SIFCTR */
138#define SIFCTR_TFWM_MASK	GENMASK(31, 29)	/* Transmit FIFO Watermark */
139#define SIFCTR_TFWM_64		(0UL << 29)	/*  Transfer Request when 64 empty stages */
140#define SIFCTR_TFWM_32		(1UL << 29)	/*  Transfer Request when 32 empty stages */
141#define SIFCTR_TFWM_24		(2UL << 29)	/*  Transfer Request when 24 empty stages */
142#define SIFCTR_TFWM_16		(3UL << 29)	/*  Transfer Request when 16 empty stages */
143#define SIFCTR_TFWM_12		(4UL << 29)	/*  Transfer Request when 12 empty stages */
144#define SIFCTR_TFWM_8		(5UL << 29)	/*  Transfer Request when 8 empty stages */
145#define SIFCTR_TFWM_4		(6UL << 29)	/*  Transfer Request when 4 empty stages */
146#define SIFCTR_TFWM_1		(7UL << 29)	/*  Transfer Request when 1 empty stage */
147#define SIFCTR_TFUA_MASK	GENMASK(26, 20) /* Transmit FIFO Usable Area */
148#define SIFCTR_TFUA_SHIFT	20
149#define SIFCTR_TFUA(i)		((i) << SIFCTR_TFUA_SHIFT)
150#define SIFCTR_RFWM_MASK	GENMASK(15, 13)	/* Receive FIFO Watermark */
151#define SIFCTR_RFWM_1		(0 << 13)	/*  Transfer Request when 1 valid stages */
152#define SIFCTR_RFWM_4		(1 << 13)	/*  Transfer Request when 4 valid stages */
153#define SIFCTR_RFWM_8		(2 << 13)	/*  Transfer Request when 8 valid stages */
154#define SIFCTR_RFWM_16		(3 << 13)	/*  Transfer Request when 16 valid stages */
155#define SIFCTR_RFWM_32		(4 << 13)	/*  Transfer Request when 32 valid stages */
156#define SIFCTR_RFWM_64		(5 << 13)	/*  Transfer Request when 64 valid stages */
157#define SIFCTR_RFWM_128		(6 << 13)	/*  Transfer Request when 128 valid stages */
158#define SIFCTR_RFWM_256		(7 << 13)	/*  Transfer Request when 256 valid stages */
159#define SIFCTR_RFUA_MASK	GENMASK(12, 4)	/* Receive FIFO Usable Area (0x40 = full) */
160#define SIFCTR_RFUA_SHIFT	4
161#define SIFCTR_RFUA(i)		((i) << SIFCTR_RFUA_SHIFT)
162
163/* SISTR */
164#define SISTR_TFEMP		BIT(29) /* Transmit FIFO Empty */
165#define SISTR_TDREQ		BIT(28) /* Transmit Data Transfer Request */
166#define SISTR_TEOF		BIT(23) /* Frame Transmission End */
167#define SISTR_TFSERR		BIT(21) /* Transmit Frame Synchronization Error */
168#define SISTR_TFOVF		BIT(20) /* Transmit FIFO Overflow */
169#define SISTR_TFUDF		BIT(19) /* Transmit FIFO Underflow */
170#define SISTR_RFFUL		BIT(13) /* Receive FIFO Full */
171#define SISTR_RDREQ		BIT(12) /* Receive Data Transfer Request */
172#define SISTR_REOF		BIT(7)  /* Frame Reception End */
173#define SISTR_RFSERR		BIT(5)  /* Receive Frame Synchronization Error */
174#define SISTR_RFUDF		BIT(4)  /* Receive FIFO Underflow */
175#define SISTR_RFOVF		BIT(3)  /* Receive FIFO Overflow */
176
177/* SIIER */
178#define SIIER_TDMAE		BIT(31) /* Transmit Data DMA Transfer Req. Enable */
179#define SIIER_TFEMPE		BIT(29) /* Transmit FIFO Empty Enable */
180#define SIIER_TDREQE		BIT(28) /* Transmit Data Transfer Request Enable */
181#define SIIER_TEOFE		BIT(23) /* Frame Transmission End Enable */
182#define SIIER_TFSERRE		BIT(21) /* Transmit Frame Sync Error Enable */
183#define SIIER_TFOVFE		BIT(20) /* Transmit FIFO Overflow Enable */
184#define SIIER_TFUDFE		BIT(19) /* Transmit FIFO Underflow Enable */
185#define SIIER_RDMAE		BIT(15) /* Receive Data DMA Transfer Req. Enable */
186#define SIIER_RFFULE		BIT(13) /* Receive FIFO Full Enable */
187#define SIIER_RDREQE		BIT(12) /* Receive Data Transfer Request Enable */
188#define SIIER_REOFE		BIT(7)  /* Frame Reception End Enable */
189#define SIIER_RFSERRE		BIT(5)  /* Receive Frame Sync Error Enable */
190#define SIIER_RFUDFE		BIT(4)  /* Receive FIFO Underflow Enable */
191#define SIIER_RFOVFE		BIT(3)  /* Receive FIFO Overflow Enable */
192
193
194static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
195{
196	switch (reg_offs) {
197	case SITSCR:
198	case SIRSCR:
199		return ioread16(p->mapbase + reg_offs);
200	default:
201		return ioread32(p->mapbase + reg_offs);
202	}
203}
204
205static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
206			   u32 value)
207{
208	switch (reg_offs) {
209	case SITSCR:
210	case SIRSCR:
211		iowrite16(value, p->mapbase + reg_offs);
212		break;
213	default:
214		iowrite32(value, p->mapbase + reg_offs);
215		break;
216	}
217}
218
219static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
220				    u32 clr, u32 set)
221{
222	u32 mask = clr | set;
223	u32 data;
224
225	data = sh_msiof_read(p, SICTR);
226	data &= ~clr;
227	data |= set;
228	sh_msiof_write(p, SICTR, data);
229
230	return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
231					 (data & mask) == set, 1, 100);
232}
233
234static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
235{
236	struct sh_msiof_spi_priv *p = data;
237
238	/* just disable the interrupt and wake up */
239	sh_msiof_write(p, SIIER, 0);
240	complete(&p->done);
241
242	return IRQ_HANDLED;
243}
244
245static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
246{
247	u32 mask = SICTR_TXRST | SICTR_RXRST;
248	u32 data;
249
250	data = sh_msiof_read(p, SICTR);
251	data |= mask;
252	sh_msiof_write(p, SICTR, data);
253
254	readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
255				  100);
256}
257
258static const u32 sh_msiof_spi_div_array[] = {
259	SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4,
260	SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32,
261};
262
263static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
264				      struct spi_transfer *t)
265{
266	unsigned long parent_rate = clk_get_rate(p->clk);
267	unsigned int div_pow = p->min_div_pow;
268	u32 spi_hz = t->speed_hz;
269	unsigned long div;
270	u32 brps, scr;
271
272	if (!spi_hz || !parent_rate) {
273		WARN(1, "Invalid clock rate parameters %lu and %u\n",
274		     parent_rate, spi_hz);
275		return;
276	}
277
278	div = DIV_ROUND_UP(parent_rate, spi_hz);
279	if (div <= 1024) {
280		/* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
281		if (!div_pow && div <= 32 && div > 2)
282			div_pow = 1;
283
284		if (div_pow)
285			brps = (div + 1) >> div_pow;
286		else
287			brps = div;
288
289		for (; brps > 32; div_pow++)
290			brps = (brps + 1) >> 1;
291	} else {
292		/* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
293		dev_err(&p->pdev->dev,
294			"Requested SPI transfer rate %d is too low\n", spi_hz);
295		div_pow = 5;
296		brps = 32;
297	}
298
299	t->effective_speed_hz = parent_rate / (brps << div_pow);
300
301	scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
302	sh_msiof_write(p, SITSCR, scr);
303	if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
304		sh_msiof_write(p, SIRSCR, scr);
305}
306
307static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
308{
309	/*
310	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
311	 * b'000		: 0
312	 * b'001		: 100
313	 * b'010		: 200
314	 * b'011 (SYNCDL only)	: 300
315	 * b'101		: 50
316	 * b'110		: 150
317	 */
318	if (dtdl_or_syncdl % 100)
319		return dtdl_or_syncdl / 100 + 5;
320	else
321		return dtdl_or_syncdl / 100;
322}
323
324static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
325{
326	u32 val;
327
328	if (!p->info)
329		return 0;
330
331	/* check if DTDL and SYNCDL is allowed value */
332	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
333		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
334		return 0;
335	}
336
337	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
338	if ((p->info->dtdl + p->info->syncdl) % 100) {
339		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
340		return 0;
341	}
342
343	val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT;
344	val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT;
345
346	return val;
347}
348
349static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
350				      u32 cpol, u32 cpha,
351				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
352{
353	u32 tmp;
354	int edge;
355
356	/*
357	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
358	 *    0    0         10     10    1    1
359	 *    0    1         10     10    0    0
360	 *    1    0         11     11    0    0
361	 *    1    1         11     11    1    1
362	 */
363	tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP;
364	tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT;
365	tmp |= lsb_first << SIMDR1_BITLSB_SHIFT;
366	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
367	if (spi_controller_is_target(p->ctlr)) {
368		sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
369	} else {
370		sh_msiof_write(p, SITMDR1,
371			       tmp | SIMDR1_TRMD | SITMDR1_PCON |
372			       (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT);
373	}
374	if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
375		/* These bits are reserved if RX needs TX */
376		tmp &= ~0x0000ffff;
377	}
378	sh_msiof_write(p, SIRMDR1, tmp);
379
380	tmp = 0;
381	tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT;
382	tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT;
383
384	edge = cpol ^ !cpha;
385
386	tmp |= edge << SICTR_TEDG_SHIFT;
387	tmp |= edge << SICTR_REDG_SHIFT;
388	tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW;
389	sh_msiof_write(p, SICTR, tmp);
390}
391
392static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
393				       const void *tx_buf, void *rx_buf,
394				       u32 bits, u32 words)
395{
396	u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words);
397
398	if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
399		sh_msiof_write(p, SITMDR2, dr2);
400	else
401		sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1);
402
403	if (rx_buf)
404		sh_msiof_write(p, SIRMDR2, dr2);
405}
406
407static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
408{
409	sh_msiof_write(p, SISTR,
410		       sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
411}
412
413static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
414				      const void *tx_buf, int words, int fs)
415{
416	const u8 *buf_8 = tx_buf;
417	int k;
418
419	for (k = 0; k < words; k++)
420		sh_msiof_write(p, SITFDR, buf_8[k] << fs);
421}
422
423static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
424				       const void *tx_buf, int words, int fs)
425{
426	const u16 *buf_16 = tx_buf;
427	int k;
428
429	for (k = 0; k < words; k++)
430		sh_msiof_write(p, SITFDR, buf_16[k] << fs);
431}
432
433static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
434					const void *tx_buf, int words, int fs)
435{
436	const u16 *buf_16 = tx_buf;
437	int k;
438
439	for (k = 0; k < words; k++)
440		sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
441}
442
443static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
444				       const void *tx_buf, int words, int fs)
445{
446	const u32 *buf_32 = tx_buf;
447	int k;
448
449	for (k = 0; k < words; k++)
450		sh_msiof_write(p, SITFDR, buf_32[k] << fs);
451}
452
453static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
454					const void *tx_buf, int words, int fs)
455{
456	const u32 *buf_32 = tx_buf;
457	int k;
458
459	for (k = 0; k < words; k++)
460		sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
461}
462
463static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
464					const void *tx_buf, int words, int fs)
465{
466	const u32 *buf_32 = tx_buf;
467	int k;
468
469	for (k = 0; k < words; k++)
470		sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
471}
472
473static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
474					 const void *tx_buf, int words, int fs)
475{
476	const u32 *buf_32 = tx_buf;
477	int k;
478
479	for (k = 0; k < words; k++)
480		sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
481}
482
483static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
484				     void *rx_buf, int words, int fs)
485{
486	u8 *buf_8 = rx_buf;
487	int k;
488
489	for (k = 0; k < words; k++)
490		buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
491}
492
493static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
494				      void *rx_buf, int words, int fs)
495{
496	u16 *buf_16 = rx_buf;
497	int k;
498
499	for (k = 0; k < words; k++)
500		buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
501}
502
503static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
504				       void *rx_buf, int words, int fs)
505{
506	u16 *buf_16 = rx_buf;
507	int k;
508
509	for (k = 0; k < words; k++)
510		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
511}
512
513static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
514				      void *rx_buf, int words, int fs)
515{
516	u32 *buf_32 = rx_buf;
517	int k;
518
519	for (k = 0; k < words; k++)
520		buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
521}
522
523static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
524				       void *rx_buf, int words, int fs)
525{
526	u32 *buf_32 = rx_buf;
527	int k;
528
529	for (k = 0; k < words; k++)
530		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
531}
532
533static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
534				       void *rx_buf, int words, int fs)
535{
536	u32 *buf_32 = rx_buf;
537	int k;
538
539	for (k = 0; k < words; k++)
540		buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
541}
542
543static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
544				       void *rx_buf, int words, int fs)
545{
546	u32 *buf_32 = rx_buf;
547	int k;
548
549	for (k = 0; k < words; k++)
550		put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
551}
552
553static int sh_msiof_spi_setup(struct spi_device *spi)
554{
555	struct sh_msiof_spi_priv *p =
556		spi_controller_get_devdata(spi->controller);
557	u32 clr, set, tmp;
558
559	if (spi_get_csgpiod(spi, 0) || spi_controller_is_target(p->ctlr))
560		return 0;
561
562	if (p->native_cs_inited &&
563	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
564		return 0;
565
566	/* Configure native chip select mode/polarity early */
567	clr = SIMDR1_SYNCMD_MASK;
568	set = SIMDR1_SYNCMD_SPI;
569	if (spi->mode & SPI_CS_HIGH)
570		clr |= BIT(SIMDR1_SYNCAC_SHIFT);
571	else
572		set |= BIT(SIMDR1_SYNCAC_SHIFT);
573	pm_runtime_get_sync(&p->pdev->dev);
574	tmp = sh_msiof_read(p, SITMDR1) & ~clr;
575	sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
576	tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
577	sh_msiof_write(p, SIRMDR1, tmp | set);
578	pm_runtime_put(&p->pdev->dev);
579	p->native_cs_high = spi->mode & SPI_CS_HIGH;
580	p->native_cs_inited = true;
581	return 0;
582}
583
584static int sh_msiof_prepare_message(struct spi_controller *ctlr,
585				    struct spi_message *msg)
586{
587	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
588	const struct spi_device *spi = msg->spi;
589	u32 ss, cs_high;
590
591	/* Configure pins before asserting CS */
592	if (spi_get_csgpiod(spi, 0)) {
593		ss = ctlr->unused_native_cs;
594		cs_high = p->native_cs_high;
595	} else {
596		ss = spi_get_chipselect(spi, 0);
597		cs_high = !!(spi->mode & SPI_CS_HIGH);
598	}
599	sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
600				  !!(spi->mode & SPI_CPHA),
601				  !!(spi->mode & SPI_3WIRE),
602				  !!(spi->mode & SPI_LSB_FIRST), cs_high);
603	return 0;
604}
605
606static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
607{
608	bool target = spi_controller_is_target(p->ctlr);
609	int ret = 0;
610
611	/* setup clock and rx/tx signals */
612	if (!target)
613		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
614	if (rx_buf && !ret)
615		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
616	if (!ret)
617		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);
618
619	/* start by setting frame bit */
620	if (!ret && !target)
621		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);
622
623	return ret;
624}
625
626static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
627{
628	bool target = spi_controller_is_target(p->ctlr);
629	int ret = 0;
630
631	/* shut down frame, rx/tx and clock signals */
632	if (!target)
633		ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
634	if (!ret)
635		ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
636	if (rx_buf && !ret)
637		ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
638	if (!ret && !target)
639		ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);
640
641	return ret;
642}
643
644static int sh_msiof_target_abort(struct spi_controller *ctlr)
645{
646	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
647
648	p->target_aborted = true;
649	complete(&p->done);
650	complete(&p->done_txdma);
651	return 0;
652}
653
654static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
655					struct completion *x)
656{
657	if (spi_controller_is_target(p->ctlr)) {
658		if (wait_for_completion_interruptible(x) ||
659		    p->target_aborted) {
660			dev_dbg(&p->pdev->dev, "interrupted\n");
661			return -EINTR;
662		}
663	} else {
664		if (!wait_for_completion_timeout(x, HZ)) {
665			dev_err(&p->pdev->dev, "timeout\n");
666			return -ETIMEDOUT;
667		}
668	}
669
670	return 0;
671}
672
673static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
674				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
675						  const void *, int, int),
676				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
677						  void *, int, int),
678				  const void *tx_buf, void *rx_buf,
679				  int words, int bits)
680{
681	int fifo_shift;
682	int ret;
683
684	/* limit maximum word transfer to rx/tx fifo size */
685	if (tx_buf)
686		words = min_t(int, words, p->tx_fifo_size);
687	if (rx_buf)
688		words = min_t(int, words, p->rx_fifo_size);
689
690	/* the fifo contents need shifting */
691	fifo_shift = 32 - bits;
692
693	/* default FIFO watermarks for PIO */
694	sh_msiof_write(p, SIFCTR, 0);
695
696	/* setup msiof transfer mode registers */
697	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
698	sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
699
700	/* write tx fifo */
701	if (tx_buf)
702		tx_fifo(p, tx_buf, words, fifo_shift);
703
704	reinit_completion(&p->done);
705	p->target_aborted = false;
706
707	ret = sh_msiof_spi_start(p, rx_buf);
708	if (ret) {
709		dev_err(&p->pdev->dev, "failed to start hardware\n");
710		goto stop_ier;
711	}
712
713	/* wait for tx fifo to be emptied / rx fifo to be filled */
714	ret = sh_msiof_wait_for_completion(p, &p->done);
715	if (ret)
716		goto stop_reset;
717
718	/* read rx fifo */
719	if (rx_buf)
720		rx_fifo(p, rx_buf, words, fifo_shift);
721
722	/* clear status bits */
723	sh_msiof_reset_str(p);
724
725	ret = sh_msiof_spi_stop(p, rx_buf);
726	if (ret) {
727		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
728		return ret;
729	}
730
731	return words;
732
733stop_reset:
734	sh_msiof_reset_str(p);
735	sh_msiof_spi_stop(p, rx_buf);
736stop_ier:
737	sh_msiof_write(p, SIIER, 0);
738	return ret;
739}
740
741static void sh_msiof_dma_complete(void *arg)
742{
743	complete(arg);
744}
745
746static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
747			     void *rx, unsigned int len)
748{
749	u32 ier_bits = 0;
750	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
751	dma_cookie_t cookie;
752	int ret;
753
754	/* First prepare and submit the DMA request(s), as this may fail */
755	if (rx) {
756		ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
757		desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
758					p->rx_dma_addr, len, DMA_DEV_TO_MEM,
759					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
760		if (!desc_rx)
761			return -EAGAIN;
762
763		desc_rx->callback = sh_msiof_dma_complete;
764		desc_rx->callback_param = &p->done;
765		cookie = dmaengine_submit(desc_rx);
766		if (dma_submit_error(cookie))
767			return cookie;
768	}
769
770	if (tx) {
771		ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
772		dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
773					   p->tx_dma_addr, len, DMA_TO_DEVICE);
774		desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
775					p->tx_dma_addr, len, DMA_MEM_TO_DEV,
776					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
777		if (!desc_tx) {
778			ret = -EAGAIN;
779			goto no_dma_tx;
780		}
781
782		desc_tx->callback = sh_msiof_dma_complete;
783		desc_tx->callback_param = &p->done_txdma;
784		cookie = dmaengine_submit(desc_tx);
785		if (dma_submit_error(cookie)) {
786			ret = cookie;
787			goto no_dma_tx;
788		}
789	}
790
791	/* 1 stage FIFO watermarks for DMA */
792	sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1);
793
794	/* setup msiof transfer mode registers (32-bit words) */
795	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
796
797	sh_msiof_write(p, SIIER, ier_bits);
798
799	reinit_completion(&p->done);
800	if (tx)
801		reinit_completion(&p->done_txdma);
802	p->target_aborted = false;
803
804	/* Now start DMA */
805	if (rx)
806		dma_async_issue_pending(p->ctlr->dma_rx);
807	if (tx)
808		dma_async_issue_pending(p->ctlr->dma_tx);
809
810	ret = sh_msiof_spi_start(p, rx);
811	if (ret) {
812		dev_err(&p->pdev->dev, "failed to start hardware\n");
813		goto stop_dma;
814	}
815
816	if (tx) {
817		/* wait for tx DMA completion */
818		ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
819		if (ret)
820			goto stop_reset;
821	}
822
823	if (rx) {
824		/* wait for rx DMA completion */
825		ret = sh_msiof_wait_for_completion(p, &p->done);
826		if (ret)
827			goto stop_reset;
828
829		sh_msiof_write(p, SIIER, 0);
830	} else {
831		/* wait for tx fifo to be emptied */
832		sh_msiof_write(p, SIIER, SIIER_TEOFE);
833		ret = sh_msiof_wait_for_completion(p, &p->done);
834		if (ret)
835			goto stop_reset;
836	}
837
838	/* clear status bits */
839	sh_msiof_reset_str(p);
840
841	ret = sh_msiof_spi_stop(p, rx);
842	if (ret) {
843		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
844		return ret;
845	}
846
847	if (rx)
848		dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
849					p->rx_dma_addr, len, DMA_FROM_DEVICE);
850
851	return 0;
852
853stop_reset:
854	sh_msiof_reset_str(p);
855	sh_msiof_spi_stop(p, rx);
856stop_dma:
857	if (tx)
858		dmaengine_terminate_sync(p->ctlr->dma_tx);
859no_dma_tx:
860	if (rx)
861		dmaengine_terminate_sync(p->ctlr->dma_rx);
862	sh_msiof_write(p, SIIER, 0);
863	return ret;
864}
865
866static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
867{
868	/* src or dst can be unaligned, but not both */
869	if ((unsigned long)src & 3) {
870		while (words--) {
871			*dst++ = swab32(get_unaligned(src));
872			src++;
873		}
874	} else if ((unsigned long)dst & 3) {
875		while (words--) {
876			put_unaligned(swab32(*src++), dst);
877			dst++;
878		}
879	} else {
880		while (words--)
881			*dst++ = swab32(*src++);
882	}
883}
884
885static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
886{
887	/* src or dst can be unaligned, but not both */
888	if ((unsigned long)src & 3) {
889		while (words--) {
890			*dst++ = swahw32(get_unaligned(src));
891			src++;
892		}
893	} else if ((unsigned long)dst & 3) {
894		while (words--) {
895			put_unaligned(swahw32(*src++), dst);
896			dst++;
897		}
898	} else {
899		while (words--)
900			*dst++ = swahw32(*src++);
901	}
902}
903
904static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
905{
906	memcpy(dst, src, words * 4);
907}
908
909static int sh_msiof_transfer_one(struct spi_controller *ctlr,
910				 struct spi_device *spi,
911				 struct spi_transfer *t)
912{
913	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
914	void (*copy32)(u32 *, const u32 *, unsigned int);
915	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
916	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
917	const void *tx_buf = t->tx_buf;
918	void *rx_buf = t->rx_buf;
919	unsigned int len = t->len;
920	unsigned int bits = t->bits_per_word;
921	unsigned int bytes_per_word;
922	unsigned int words;
923	int n;
924	bool swab;
925	int ret;
926
927	/* reset registers */
928	sh_msiof_spi_reset_regs(p);
929
930	/* setup clocks (clock already enabled in chipselect()) */
931	if (!spi_controller_is_target(p->ctlr))
932		sh_msiof_spi_set_clk_regs(p, t);
933
934	while (ctlr->dma_tx && len > 15) {
935		/*
936		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
937		 *  words, with byte resp. word swapping.
938		 */
939		unsigned int l = 0;
940
941		if (tx_buf)
942			l = min(round_down(len, 4), p->tx_fifo_size * 4);
943		if (rx_buf)
944			l = min(round_down(len, 4), p->rx_fifo_size * 4);
945
946		if (bits <= 8) {
947			copy32 = copy_bswap32;
948		} else if (bits <= 16) {
949			copy32 = copy_wswap32;
950		} else {
951			copy32 = copy_plain32;
952		}
953
954		if (tx_buf)
955			copy32(p->tx_dma_page, tx_buf, l / 4);
956
957		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
958		if (ret == -EAGAIN) {
959			dev_warn_once(&p->pdev->dev,
960				"DMA not available, falling back to PIO\n");
961			break;
962		}
963		if (ret)
964			return ret;
965
966		if (rx_buf) {
967			copy32(rx_buf, p->rx_dma_page, l / 4);
968			rx_buf += l;
969		}
970		if (tx_buf)
971			tx_buf += l;
972
973		len -= l;
974		if (!len)
975			return 0;
976	}
977
978	if (bits <= 8 && len > 15) {
979		bits = 32;
980		swab = true;
981	} else {
982		swab = false;
983	}
984
985	/* setup bytes per word and fifo read/write functions */
986	if (bits <= 8) {
987		bytes_per_word = 1;
988		tx_fifo = sh_msiof_spi_write_fifo_8;
989		rx_fifo = sh_msiof_spi_read_fifo_8;
990	} else if (bits <= 16) {
991		bytes_per_word = 2;
992		if ((unsigned long)tx_buf & 0x01)
993			tx_fifo = sh_msiof_spi_write_fifo_16u;
994		else
995			tx_fifo = sh_msiof_spi_write_fifo_16;
996
997		if ((unsigned long)rx_buf & 0x01)
998			rx_fifo = sh_msiof_spi_read_fifo_16u;
999		else
1000			rx_fifo = sh_msiof_spi_read_fifo_16;
1001	} else if (swab) {
1002		bytes_per_word = 4;
1003		if ((unsigned long)tx_buf & 0x03)
1004			tx_fifo = sh_msiof_spi_write_fifo_s32u;
1005		else
1006			tx_fifo = sh_msiof_spi_write_fifo_s32;
1007
1008		if ((unsigned long)rx_buf & 0x03)
1009			rx_fifo = sh_msiof_spi_read_fifo_s32u;
1010		else
1011			rx_fifo = sh_msiof_spi_read_fifo_s32;
1012	} else {
1013		bytes_per_word = 4;
1014		if ((unsigned long)tx_buf & 0x03)
1015			tx_fifo = sh_msiof_spi_write_fifo_32u;
1016		else
1017			tx_fifo = sh_msiof_spi_write_fifo_32;
1018
1019		if ((unsigned long)rx_buf & 0x03)
1020			rx_fifo = sh_msiof_spi_read_fifo_32u;
1021		else
1022			rx_fifo = sh_msiof_spi_read_fifo_32;
1023	}
1024
1025	/* transfer in fifo sized chunks */
1026	words = len / bytes_per_word;
1027
1028	while (words > 0) {
1029		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1030					   words, bits);
1031		if (n < 0)
1032			return n;
1033
1034		if (tx_buf)
1035			tx_buf += n * bytes_per_word;
1036		if (rx_buf)
1037			rx_buf += n * bytes_per_word;
1038		words -= n;
1039
1040		if (words == 0 && (len % bytes_per_word)) {
1041			words = len % bytes_per_word;
1042			bits = t->bits_per_word;
1043			bytes_per_word = 1;
1044			tx_fifo = sh_msiof_spi_write_fifo_8;
1045			rx_fifo = sh_msiof_spi_read_fifo_8;
1046		}
1047	}
1048
1049	return 0;
1050}
1051
1052static const struct sh_msiof_chipdata sh_data = {
1053	.bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1054	.tx_fifo_size = 64,
1055	.rx_fifo_size = 64,
1056	.ctlr_flags = 0,
1057	.min_div_pow = 0,
1058};
1059
1060static const struct sh_msiof_chipdata rcar_gen2_data = {
1061	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1062			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1063	.tx_fifo_size = 64,
1064	.rx_fifo_size = 64,
1065	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1066	.min_div_pow = 0,
1067};
1068
1069static const struct sh_msiof_chipdata rcar_gen3_data = {
1070	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1071			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1072	.tx_fifo_size = 64,
1073	.rx_fifo_size = 64,
1074	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1075	.min_div_pow = 1,
1076};
1077
1078static const struct sh_msiof_chipdata rcar_r8a7795_data = {
1079	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1080			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1081	.tx_fifo_size = 64,
1082	.rx_fifo_size = 64,
1083	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1084	.min_div_pow = 1,
1085	.flags = SH_MSIOF_FLAG_FIXED_DTDL_200,
1086};
1087
1088static const struct of_device_id sh_msiof_match[] __maybe_unused = {
1089	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1090	{ .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data },
1091	{ .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data },
1092	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
1093	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
1094	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
1095	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
1096	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
1097	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1098	{ .compatible = "renesas,msiof-r8a7795",   .data = &rcar_r8a7795_data },
1099	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
1100	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1101	{ .compatible = "renesas,rcar-gen4-msiof", .data = &rcar_gen3_data },
1102	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1103	{},
1104};
1105MODULE_DEVICE_TABLE(of, sh_msiof_match);
1106
1107#ifdef CONFIG_OF
1108static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1109{
1110	struct sh_msiof_spi_info *info;
1111	struct device_node *np = dev->of_node;
1112	u32 num_cs = 1;
1113
1114	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1115	if (!info)
1116		return NULL;
1117
1118	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_TARGET
1119							    : MSIOF_SPI_HOST;
1120
1121	/* Parse the MSIOF properties */
1122	if (info->mode == MSIOF_SPI_HOST)
1123		of_property_read_u32(np, "num-cs", &num_cs);
1124	of_property_read_u32(np, "renesas,tx-fifo-size",
1125					&info->tx_fifo_override);
1126	of_property_read_u32(np, "renesas,rx-fifo-size",
1127					&info->rx_fifo_override);
1128	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1129	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1130
1131	info->num_chipselect = num_cs;
1132
1133	return info;
1134}
1135#else
1136static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1137{
1138	return NULL;
1139}
1140#endif
1141
1142static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1143	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1144{
1145	dma_cap_mask_t mask;
1146	struct dma_chan *chan;
1147	struct dma_slave_config cfg;
1148	int ret;
1149
1150	dma_cap_zero(mask);
1151	dma_cap_set(DMA_SLAVE, mask);
1152
1153	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1154				(void *)(unsigned long)id, dev,
1155				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1156	if (!chan) {
1157		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1158		return NULL;
1159	}
1160
1161	memset(&cfg, 0, sizeof(cfg));
1162	cfg.direction = dir;
1163	if (dir == DMA_MEM_TO_DEV) {
1164		cfg.dst_addr = port_addr;
1165		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1166	} else {
1167		cfg.src_addr = port_addr;
1168		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1169	}
1170
1171	ret = dmaengine_slave_config(chan, &cfg);
1172	if (ret) {
1173		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1174		dma_release_channel(chan);
1175		return NULL;
1176	}
1177
1178	return chan;
1179}
1180
1181static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1182{
1183	struct platform_device *pdev = p->pdev;
1184	struct device *dev = &pdev->dev;
1185	const struct sh_msiof_spi_info *info = p->info;
1186	unsigned int dma_tx_id, dma_rx_id;
1187	const struct resource *res;
1188	struct spi_controller *ctlr;
1189	struct device *tx_dev, *rx_dev;
1190
1191	if (dev->of_node) {
1192		/* In the OF case we will get the slave IDs from the DT */
1193		dma_tx_id = 0;
1194		dma_rx_id = 0;
1195	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1196		dma_tx_id = info->dma_tx_id;
1197		dma_rx_id = info->dma_rx_id;
1198	} else {
1199		/* The driver assumes no error */
1200		return 0;
1201	}
1202
1203	/* The DMA engine uses the second register set, if present */
1204	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1205	if (!res)
1206		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1207
1208	ctlr = p->ctlr;
1209	ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1210						 dma_tx_id, res->start + SITFDR);
1211	if (!ctlr->dma_tx)
1212		return -ENODEV;
1213
1214	ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1215						 dma_rx_id, res->start + SIRFDR);
1216	if (!ctlr->dma_rx)
1217		goto free_tx_chan;
1218
1219	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1220	if (!p->tx_dma_page)
1221		goto free_rx_chan;
1222
1223	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1224	if (!p->rx_dma_page)
1225		goto free_tx_page;
1226
1227	tx_dev = ctlr->dma_tx->device->dev;
1228	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1229					DMA_TO_DEVICE);
1230	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1231		goto free_rx_page;
1232
1233	rx_dev = ctlr->dma_rx->device->dev;
1234	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1235					DMA_FROM_DEVICE);
1236	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1237		goto unmap_tx_page;
1238
1239	dev_info(dev, "DMA available");
1240	return 0;
1241
1242unmap_tx_page:
1243	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1244free_rx_page:
1245	free_page((unsigned long)p->rx_dma_page);
1246free_tx_page:
1247	free_page((unsigned long)p->tx_dma_page);
1248free_rx_chan:
1249	dma_release_channel(ctlr->dma_rx);
1250free_tx_chan:
1251	dma_release_channel(ctlr->dma_tx);
1252	ctlr->dma_tx = NULL;
1253	return -ENODEV;
1254}
1255
1256static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1257{
1258	struct spi_controller *ctlr = p->ctlr;
1259
1260	if (!ctlr->dma_tx)
1261		return;
1262
1263	dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1264			 DMA_FROM_DEVICE);
1265	dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1266			 DMA_TO_DEVICE);
1267	free_page((unsigned long)p->rx_dma_page);
1268	free_page((unsigned long)p->tx_dma_page);
1269	dma_release_channel(ctlr->dma_rx);
1270	dma_release_channel(ctlr->dma_tx);
1271}
1272
1273static int sh_msiof_spi_probe(struct platform_device *pdev)
1274{
1275	struct spi_controller *ctlr;
1276	const struct sh_msiof_chipdata *chipdata;
1277	struct sh_msiof_spi_info *info;
1278	struct sh_msiof_spi_priv *p;
1279	unsigned long clksrc;
1280	int i;
1281	int ret;
1282
1283	chipdata = of_device_get_match_data(&pdev->dev);
1284	if (chipdata) {
1285		info = sh_msiof_spi_parse_dt(&pdev->dev);
1286	} else {
1287		chipdata = (const void *)pdev->id_entry->driver_data;
1288		info = dev_get_platdata(&pdev->dev);
1289	}
1290
1291	if (!info) {
1292		dev_err(&pdev->dev, "failed to obtain device info\n");
1293		return -ENXIO;
1294	}
1295
1296	if (chipdata->flags & SH_MSIOF_FLAG_FIXED_DTDL_200)
1297		info->dtdl = 200;
1298
1299	if (info->mode == MSIOF_SPI_TARGET)
1300		ctlr = spi_alloc_target(&pdev->dev,
1301				        sizeof(struct sh_msiof_spi_priv));
1302	else
1303		ctlr = spi_alloc_host(&pdev->dev,
1304				      sizeof(struct sh_msiof_spi_priv));
1305	if (ctlr == NULL)
1306		return -ENOMEM;
1307
1308	p = spi_controller_get_devdata(ctlr);
1309
1310	platform_set_drvdata(pdev, p);
1311	p->ctlr = ctlr;
1312	p->info = info;
1313	p->min_div_pow = chipdata->min_div_pow;
1314
1315	init_completion(&p->done);
1316	init_completion(&p->done_txdma);
1317
1318	p->clk = devm_clk_get(&pdev->dev, NULL);
1319	if (IS_ERR(p->clk)) {
1320		dev_err(&pdev->dev, "cannot get clock\n");
1321		ret = PTR_ERR(p->clk);
1322		goto err1;
1323	}
1324
1325	i = platform_get_irq(pdev, 0);
1326	if (i < 0) {
1327		ret = i;
1328		goto err1;
1329	}
1330
1331	p->mapbase = devm_platform_ioremap_resource(pdev, 0);
1332	if (IS_ERR(p->mapbase)) {
1333		ret = PTR_ERR(p->mapbase);
1334		goto err1;
1335	}
1336
1337	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1338			       dev_name(&pdev->dev), p);
1339	if (ret) {
1340		dev_err(&pdev->dev, "unable to request irq\n");
1341		goto err1;
1342	}
1343
1344	p->pdev = pdev;
1345	pm_runtime_enable(&pdev->dev);
1346
1347	/* Platform data may override FIFO sizes */
1348	p->tx_fifo_size = chipdata->tx_fifo_size;
1349	p->rx_fifo_size = chipdata->rx_fifo_size;
1350	if (p->info->tx_fifo_override)
1351		p->tx_fifo_size = p->info->tx_fifo_override;
1352	if (p->info->rx_fifo_override)
1353		p->rx_fifo_size = p->info->rx_fifo_override;
1354
1355	/* init controller code */
1356	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1357	ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1358	clksrc = clk_get_rate(p->clk);
1359	ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024);
1360	ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow);
1361	ctlr->flags = chipdata->ctlr_flags;
1362	ctlr->bus_num = pdev->id;
1363	ctlr->num_chipselect = p->info->num_chipselect;
1364	ctlr->dev.of_node = pdev->dev.of_node;
1365	ctlr->setup = sh_msiof_spi_setup;
1366	ctlr->prepare_message = sh_msiof_prepare_message;
1367	ctlr->target_abort = sh_msiof_target_abort;
1368	ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1369	ctlr->auto_runtime_pm = true;
1370	ctlr->transfer_one = sh_msiof_transfer_one;
1371	ctlr->use_gpio_descriptors = true;
1372	ctlr->max_native_cs = MAX_SS;
1373
1374	ret = sh_msiof_request_dma(p);
1375	if (ret < 0)
1376		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1377
1378	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1379	if (ret < 0) {
1380		dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1381		goto err2;
1382	}
1383
1384	return 0;
1385
1386 err2:
1387	sh_msiof_release_dma(p);
1388	pm_runtime_disable(&pdev->dev);
1389 err1:
1390	spi_controller_put(ctlr);
1391	return ret;
1392}
1393
1394static void sh_msiof_spi_remove(struct platform_device *pdev)
1395{
1396	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1397
1398	sh_msiof_release_dma(p);
1399	pm_runtime_disable(&pdev->dev);
1400}
1401
1402static const struct platform_device_id spi_driver_ids[] = {
1403	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1404	{},
1405};
1406MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1407
1408#ifdef CONFIG_PM_SLEEP
1409static int sh_msiof_spi_suspend(struct device *dev)
1410{
1411	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1412
1413	return spi_controller_suspend(p->ctlr);
1414}
1415
1416static int sh_msiof_spi_resume(struct device *dev)
1417{
1418	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1419
1420	return spi_controller_resume(p->ctlr);
1421}
1422
1423static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1424			 sh_msiof_spi_resume);
1425#define DEV_PM_OPS	(&sh_msiof_spi_pm_ops)
1426#else
1427#define DEV_PM_OPS	NULL
1428#endif /* CONFIG_PM_SLEEP */
1429
1430static struct platform_driver sh_msiof_spi_drv = {
1431	.probe		= sh_msiof_spi_probe,
1432	.remove_new	= sh_msiof_spi_remove,
1433	.id_table	= spi_driver_ids,
1434	.driver		= {
1435		.name		= "spi_sh_msiof",
1436		.pm		= DEV_PM_OPS,
1437		.of_match_table = of_match_ptr(sh_msiof_match),
1438	},
1439};
1440module_platform_driver(sh_msiof_spi_drv);
1441
1442MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1443MODULE_AUTHOR("Magnus Damm");
1444MODULE_LICENSE("GPL v2");
1445