1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SH RSPI driver
4 *
5 * Copyright (C) 2012, 2013  Renesas Solutions Corp.
6 * Copyright (C) 2014 Glider bvba
7 *
8 * Based on spi-sh.c:
9 * Copyright (C) 2011 Renesas Solutions Corp.
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/sched.h>
15#include <linux/errno.h>
16#include <linux/interrupt.h>
17#include <linux/platform_device.h>
18#include <linux/io.h>
19#include <linux/clk.h>
20#include <linux/dmaengine.h>
21#include <linux/dma-mapping.h>
22#include <linux/of.h>
23#include <linux/pm_runtime.h>
24#include <linux/reset.h>
25#include <linux/sh_dma.h>
26#include <linux/spi/spi.h>
27#include <linux/spi/rspi.h>
28#include <linux/spinlock.h>
29
30#define RSPI_SPCR		0x00	/* Control Register */
31#define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
32#define RSPI_SPPCR		0x02	/* Pin Control Register */
33#define RSPI_SPSR		0x03	/* Status Register */
34#define RSPI_SPDR		0x04	/* Data Register */
35#define RSPI_SPSCR		0x08	/* Sequence Control Register */
36#define RSPI_SPSSR		0x09	/* Sequence Status Register */
37#define RSPI_SPBR		0x0a	/* Bit Rate Register */
38#define RSPI_SPDCR		0x0b	/* Data Control Register */
39#define RSPI_SPCKD		0x0c	/* Clock Delay Register */
40#define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
41#define RSPI_SPND		0x0e	/* Next-Access Delay Register */
42#define RSPI_SPCR2		0x0f	/* Control Register 2 (SH only) */
43#define RSPI_SPCMD0		0x10	/* Command Register 0 */
44#define RSPI_SPCMD1		0x12	/* Command Register 1 */
45#define RSPI_SPCMD2		0x14	/* Command Register 2 */
46#define RSPI_SPCMD3		0x16	/* Command Register 3 */
47#define RSPI_SPCMD4		0x18	/* Command Register 4 */
48#define RSPI_SPCMD5		0x1a	/* Command Register 5 */
49#define RSPI_SPCMD6		0x1c	/* Command Register 6 */
50#define RSPI_SPCMD7		0x1e	/* Command Register 7 */
51#define RSPI_SPCMD(i)		(RSPI_SPCMD0 + (i) * 2)
52#define RSPI_NUM_SPCMD		8
53#define RSPI_RZ_NUM_SPCMD	4
54#define QSPI_NUM_SPCMD		4
55
56/* RSPI on RZ only */
57#define RSPI_SPBFCR		0x20	/* Buffer Control Register */
58#define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
59
60/* QSPI only */
61#define QSPI_SPBFCR		0x18	/* Buffer Control Register */
62#define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
63#define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
64#define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
65#define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
66#define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
67#define QSPI_SPBMUL(i)		(QSPI_SPBMUL0 + (i) * 4)
68
69/* SPCR - Control Register */
70#define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
71#define SPCR_SPE		0x40	/* Function Enable */
72#define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
73#define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
74#define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
75#define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
76/* RSPI on SH only */
77#define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
78#define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
79/* QSPI on R-Car Gen2 only */
80#define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
81#define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
82
83/* SSLP - Slave Select Polarity Register */
84#define SSLP_SSLP(i)		BIT(i)	/* SSLi Signal Polarity Setting */
85
86/* SPPCR - Pin Control Register */
87#define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
88#define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
89#define SPPCR_SPOM		0x04
90#define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
91#define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */
92
93#define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
94#define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */
95
96/* SPSR - Status Register */
97#define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
98#define SPSR_TEND		0x40	/* Transmit End */
99#define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
100#define SPSR_PERF		0x08	/* Parity Error Flag */
101#define SPSR_MODF		0x04	/* Mode Fault Error Flag */
102#define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
103#define SPSR_OVRF		0x01	/* Overrun Error Flag (RSPI only) */
104
105/* SPSCR - Sequence Control Register */
106#define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */
107
108/* SPSSR - Sequence Status Register */
109#define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
110#define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */
111
112/* SPDCR - Data Control Register */
113#define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
114#define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
115#define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
116#define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
117#define SPDCR_SPLWORD		SPDCR_SPLW1
118#define SPDCR_SPLBYTE		SPDCR_SPLW0
119#define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
120#define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select (SH) */
121#define SPDCR_SLSEL1		0x08
122#define SPDCR_SLSEL0		0x04
123#define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select (SH) */
124#define SPDCR_SPFC1		0x02
125#define SPDCR_SPFC0		0x01
126#define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) (SH) */
127
128/* SPCKD - Clock Delay Register */
129#define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
130
131/* SSLND - Slave Select Negation Delay Register */
132#define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
133
134/* SPND - Next-Access Delay Register */
135#define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
136
137/* SPCR2 - Control Register 2 */
138#define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
139#define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
140#define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
141#define SPCR2_SPPE		0x01	/* Parity Enable */
142
143/* SPCMDn - Command Registers */
144#define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
145#define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
146#define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
147#define SPCMD_LSBF		0x1000	/* LSB First */
148#define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
149#define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
150#define SPCMD_SPB_8BIT		0x0000	/* QSPI only */
151#define SPCMD_SPB_16BIT		0x0100
152#define SPCMD_SPB_20BIT		0x0000
153#define SPCMD_SPB_24BIT		0x0100
154#define SPCMD_SPB_32BIT		0x0200
155#define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
156#define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
157#define SPCMD_SPIMOD1		0x0040
158#define SPCMD_SPIMOD0		0x0020
159#define SPCMD_SPIMOD_SINGLE	0
160#define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
161#define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
162#define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
163#define SPCMD_SSLA(i)		((i) << 4)	/* SSL Assert Signal Setting */
164#define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
165#define SPCMD_BRDV(brdv)	((brdv) << 2)
166#define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
167#define SPCMD_CPHA		0x0001	/* Clock Phase Setting */
168
169/* SPBFCR - Buffer Control Register */
170#define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset */
171#define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset */
172#define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
173#define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
174/* QSPI on R-Car Gen2 */
175#define SPBFCR_TXTRG_1B		0x00	/* 31 bytes (1 byte available) */
176#define SPBFCR_TXTRG_32B	0x30	/* 0 byte (32 bytes available) */
177#define SPBFCR_RXTRG_1B		0x00	/* 1 byte (31 bytes available) */
178#define SPBFCR_RXTRG_32B	0x07	/* 32 bytes (0 byte available) */
179
180#define QSPI_BUFFER_SIZE        32u
181
182struct rspi_data {
183	void __iomem *addr;
184	u32 speed_hz;
185	struct spi_controller *ctlr;
186	struct platform_device *pdev;
187	wait_queue_head_t wait;
188	spinlock_t lock;		/* Protects RMW-access to RSPI_SSLP */
189	struct clk *clk;
190	u16 spcmd;
191	u8 spsr;
192	u8 sppcr;
193	int rx_irq, tx_irq;
194	const struct spi_ops *ops;
195
196	unsigned dma_callbacked:1;
197	unsigned byte_access:1;
198};
199
200static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
201{
202	iowrite8(data, rspi->addr + offset);
203}
204
205static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
206{
207	iowrite16(data, rspi->addr + offset);
208}
209
210static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
211{
212	iowrite32(data, rspi->addr + offset);
213}
214
215static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
216{
217	return ioread8(rspi->addr + offset);
218}
219
220static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
221{
222	return ioread16(rspi->addr + offset);
223}
224
225static void rspi_write_data(const struct rspi_data *rspi, u16 data)
226{
227	if (rspi->byte_access)
228		rspi_write8(rspi, data, RSPI_SPDR);
229	else /* 16 bit */
230		rspi_write16(rspi, data, RSPI_SPDR);
231}
232
233static u16 rspi_read_data(const struct rspi_data *rspi)
234{
235	if (rspi->byte_access)
236		return rspi_read8(rspi, RSPI_SPDR);
237	else /* 16 bit */
238		return rspi_read16(rspi, RSPI_SPDR);
239}
240
241/* optional functions */
242struct spi_ops {
243	int (*set_config_register)(struct rspi_data *rspi, int access_size);
244	int (*transfer_one)(struct spi_controller *ctlr,
245			    struct spi_device *spi, struct spi_transfer *xfer);
246	u16 extra_mode_bits;
247	u16 min_div;
248	u16 max_div;
249	u16 flags;
250	u16 fifo_size;
251	u8 num_hw_ss;
252};
253
254static void rspi_set_rate(struct rspi_data *rspi)
255{
256	unsigned long clksrc;
257	int brdv = 0, spbr;
258
259	clksrc = clk_get_rate(rspi->clk);
260	spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
261	while (spbr > 255 && brdv < 3) {
262		brdv++;
263		spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
264	}
265
266	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
267	rspi->spcmd |= SPCMD_BRDV(brdv);
268	rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1));
269}
270
271/*
272 * functions for RSPI on legacy SH
273 */
274static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
275{
276	/* Sets output mode, MOSI signal, and (optionally) loopback */
277	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
278
279	/* Sets transfer bit rate */
280	rspi_set_rate(rspi);
281
282	/* Disable dummy transmission, set 16-bit word access, 1 frame */
283	rspi_write8(rspi, 0, RSPI_SPDCR);
284	rspi->byte_access = 0;
285
286	/* Sets RSPCK, SSL, next-access delay value */
287	rspi_write8(rspi, 0x00, RSPI_SPCKD);
288	rspi_write8(rspi, 0x00, RSPI_SSLND);
289	rspi_write8(rspi, 0x00, RSPI_SPND);
290
291	/* Sets parity, interrupt mask */
292	rspi_write8(rspi, 0x00, RSPI_SPCR2);
293
294	/* Resets sequencer */
295	rspi_write8(rspi, 0, RSPI_SPSCR);
296	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
297	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
298
299	/* Sets RSPI mode */
300	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
301
302	return 0;
303}
304
305/*
306 * functions for RSPI on RZ
307 */
308static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
309{
310	/* Sets output mode, MOSI signal, and (optionally) loopback */
311	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
312
313	/* Sets transfer bit rate */
314	rspi_set_rate(rspi);
315
316	/* Disable dummy transmission, set byte access */
317	rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
318	rspi->byte_access = 1;
319
320	/* Sets RSPCK, SSL, next-access delay value */
321	rspi_write8(rspi, 0x00, RSPI_SPCKD);
322	rspi_write8(rspi, 0x00, RSPI_SSLND);
323	rspi_write8(rspi, 0x00, RSPI_SPND);
324
325	/* Resets sequencer */
326	rspi_write8(rspi, 0, RSPI_SPSCR);
327	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
328	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
329
330	/* Sets RSPI mode */
331	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
332
333	return 0;
334}
335
336/*
337 * functions for QSPI
338 */
339static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
340{
341	unsigned long clksrc;
342	int brdv = 0, spbr;
343
344	/* Sets output mode, MOSI signal, and (optionally) loopback */
345	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
346
347	/* Sets transfer bit rate */
348	clksrc = clk_get_rate(rspi->clk);
349	if (rspi->speed_hz >= clksrc) {
350		spbr = 0;
351		rspi->speed_hz = clksrc;
352	} else {
353		spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
354		while (spbr > 255 && brdv < 3) {
355			brdv++;
356			spbr = DIV_ROUND_UP(spbr, 2);
357		}
358		spbr = clamp(spbr, 0, 255);
359		rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr);
360	}
361	rspi_write8(rspi, spbr, RSPI_SPBR);
362	rspi->spcmd |= SPCMD_BRDV(brdv);
363
364	/* Disable dummy transmission, set byte access */
365	rspi_write8(rspi, 0, RSPI_SPDCR);
366	rspi->byte_access = 1;
367
368	/* Sets RSPCK, SSL, next-access delay value */
369	rspi_write8(rspi, 0x00, RSPI_SPCKD);
370	rspi_write8(rspi, 0x00, RSPI_SSLND);
371	rspi_write8(rspi, 0x00, RSPI_SPND);
372
373	/* Data Length Setting */
374	if (access_size == 8)
375		rspi->spcmd |= SPCMD_SPB_8BIT;
376	else if (access_size == 16)
377		rspi->spcmd |= SPCMD_SPB_16BIT;
378	else
379		rspi->spcmd |= SPCMD_SPB_32BIT;
380
381	rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
382
383	/* Resets transfer data length */
384	rspi_write32(rspi, 0, QSPI_SPBMUL0);
385
386	/* Resets transmit and receive buffer */
387	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
388	/* Sets buffer to allow normal operation */
389	rspi_write8(rspi, 0x00, QSPI_SPBFCR);
390
391	/* Resets sequencer */
392	rspi_write8(rspi, 0, RSPI_SPSCR);
393	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
394
395	/* Sets RSPI mode */
396	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
397
398	return 0;
399}
400
401static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
402{
403	u8 data;
404
405	data = rspi_read8(rspi, reg);
406	data &= ~mask;
407	data |= (val & mask);
408	rspi_write8(rspi, data, reg);
409}
410
411static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
412					  unsigned int len)
413{
414	unsigned int n;
415
416	n = min(len, QSPI_BUFFER_SIZE);
417
418	if (len >= QSPI_BUFFER_SIZE) {
419		/* sets triggering number to 32 bytes */
420		qspi_update(rspi, SPBFCR_TXTRG_MASK,
421			     SPBFCR_TXTRG_32B, QSPI_SPBFCR);
422	} else {
423		/* sets triggering number to 1 byte */
424		qspi_update(rspi, SPBFCR_TXTRG_MASK,
425			     SPBFCR_TXTRG_1B, QSPI_SPBFCR);
426	}
427
428	return n;
429}
430
431static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
432{
433	unsigned int n;
434
435	n = min(len, QSPI_BUFFER_SIZE);
436
437	if (len >= QSPI_BUFFER_SIZE) {
438		/* sets triggering number to 32 bytes */
439		qspi_update(rspi, SPBFCR_RXTRG_MASK,
440			     SPBFCR_RXTRG_32B, QSPI_SPBFCR);
441	} else {
442		/* sets triggering number to 1 byte */
443		qspi_update(rspi, SPBFCR_RXTRG_MASK,
444			     SPBFCR_RXTRG_1B, QSPI_SPBFCR);
445	}
446	return n;
447}
448
449static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
450{
451	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
452}
453
454static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
455{
456	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
457}
458
459static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
460				   u8 enable_bit)
461{
462	int ret;
463
464	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
465	if (rspi->spsr & wait_mask)
466		return 0;
467
468	rspi_enable_irq(rspi, enable_bit);
469	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
470	if (ret == 0 && !(rspi->spsr & wait_mask))
471		return -ETIMEDOUT;
472
473	return 0;
474}
475
476static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
477{
478	return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
479}
480
481static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
482{
483	return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
484}
485
486static int rspi_data_out(struct rspi_data *rspi, u8 data)
487{
488	int error = rspi_wait_for_tx_empty(rspi);
489	if (error < 0) {
490		dev_err(&rspi->ctlr->dev, "transmit timeout\n");
491		return error;
492	}
493	rspi_write_data(rspi, data);
494	return 0;
495}
496
497static int rspi_data_in(struct rspi_data *rspi)
498{
499	int error;
500	u8 data;
501
502	error = rspi_wait_for_rx_full(rspi);
503	if (error < 0) {
504		dev_err(&rspi->ctlr->dev, "receive timeout\n");
505		return error;
506	}
507	data = rspi_read_data(rspi);
508	return data;
509}
510
511static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
512			     unsigned int n)
513{
514	while (n-- > 0) {
515		if (tx) {
516			int ret = rspi_data_out(rspi, *tx++);
517			if (ret < 0)
518				return ret;
519		}
520		if (rx) {
521			int ret = rspi_data_in(rspi);
522			if (ret < 0)
523				return ret;
524			*rx++ = ret;
525		}
526	}
527
528	return 0;
529}
530
531static void rspi_dma_complete(void *arg)
532{
533	struct rspi_data *rspi = arg;
534
535	rspi->dma_callbacked = 1;
536	wake_up_interruptible(&rspi->wait);
537}
538
539static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
540			     struct sg_table *rx)
541{
542	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
543	u8 irq_mask = 0;
544	unsigned int other_irq = 0;
545	dma_cookie_t cookie;
546	int ret;
547
548	/* First prepare and submit the DMA request(s), as this may fail */
549	if (rx) {
550		desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
551					rx->nents, DMA_DEV_TO_MEM,
552					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
553		if (!desc_rx) {
554			ret = -EAGAIN;
555			goto no_dma_rx;
556		}
557
558		desc_rx->callback = rspi_dma_complete;
559		desc_rx->callback_param = rspi;
560		cookie = dmaengine_submit(desc_rx);
561		if (dma_submit_error(cookie)) {
562			ret = cookie;
563			goto no_dma_rx;
564		}
565
566		irq_mask |= SPCR_SPRIE;
567	}
568
569	if (tx) {
570		desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
571					tx->nents, DMA_MEM_TO_DEV,
572					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
573		if (!desc_tx) {
574			ret = -EAGAIN;
575			goto no_dma_tx;
576		}
577
578		if (rx) {
579			/* No callback */
580			desc_tx->callback = NULL;
581		} else {
582			desc_tx->callback = rspi_dma_complete;
583			desc_tx->callback_param = rspi;
584		}
585		cookie = dmaengine_submit(desc_tx);
586		if (dma_submit_error(cookie)) {
587			ret = cookie;
588			goto no_dma_tx;
589		}
590
591		irq_mask |= SPCR_SPTIE;
592	}
593
594	/*
595	 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
596	 * called. So, this driver disables the IRQ while DMA transfer.
597	 */
598	if (tx)
599		disable_irq(other_irq = rspi->tx_irq);
600	if (rx && rspi->rx_irq != other_irq)
601		disable_irq(rspi->rx_irq);
602
603	rspi_enable_irq(rspi, irq_mask);
604	rspi->dma_callbacked = 0;
605
606	/* Now start DMA */
607	if (rx)
608		dma_async_issue_pending(rspi->ctlr->dma_rx);
609	if (tx)
610		dma_async_issue_pending(rspi->ctlr->dma_tx);
611
612	ret = wait_event_interruptible_timeout(rspi->wait,
613					       rspi->dma_callbacked, HZ);
614	if (ret > 0 && rspi->dma_callbacked) {
615		ret = 0;
616		if (tx)
617			dmaengine_synchronize(rspi->ctlr->dma_tx);
618		if (rx)
619			dmaengine_synchronize(rspi->ctlr->dma_rx);
620	} else {
621		if (!ret) {
622			dev_err(&rspi->ctlr->dev, "DMA timeout\n");
623			ret = -ETIMEDOUT;
624		}
625		if (tx)
626			dmaengine_terminate_sync(rspi->ctlr->dma_tx);
627		if (rx)
628			dmaengine_terminate_sync(rspi->ctlr->dma_rx);
629	}
630
631	rspi_disable_irq(rspi, irq_mask);
632
633	if (tx)
634		enable_irq(rspi->tx_irq);
635	if (rx && rspi->rx_irq != other_irq)
636		enable_irq(rspi->rx_irq);
637
638	return ret;
639
640no_dma_tx:
641	if (rx)
642		dmaengine_terminate_sync(rspi->ctlr->dma_rx);
643no_dma_rx:
644	if (ret == -EAGAIN) {
645		dev_warn_once(&rspi->ctlr->dev,
646			      "DMA not available, falling back to PIO\n");
647	}
648	return ret;
649}
650
651static void rspi_receive_init(const struct rspi_data *rspi)
652{
653	u8 spsr;
654
655	spsr = rspi_read8(rspi, RSPI_SPSR);
656	if (spsr & SPSR_SPRF)
657		rspi_read_data(rspi);	/* dummy read */
658	if (spsr & SPSR_OVRF)
659		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
660			    RSPI_SPSR);
661}
662
663static void rspi_rz_receive_init(const struct rspi_data *rspi)
664{
665	rspi_receive_init(rspi);
666	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
667	rspi_write8(rspi, 0, RSPI_SPBFCR);
668}
669
670static void qspi_receive_init(const struct rspi_data *rspi)
671{
672	u8 spsr;
673
674	spsr = rspi_read8(rspi, RSPI_SPSR);
675	if (spsr & SPSR_SPRF)
676		rspi_read_data(rspi);   /* dummy read */
677	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
678	rspi_write8(rspi, 0, QSPI_SPBFCR);
679}
680
681static bool __rspi_can_dma(const struct rspi_data *rspi,
682			   const struct spi_transfer *xfer)
683{
684	return xfer->len > rspi->ops->fifo_size;
685}
686
687static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
688			 struct spi_transfer *xfer)
689{
690	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
691
692	return __rspi_can_dma(rspi, xfer);
693}
694
695static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
696					 struct spi_transfer *xfer)
697{
698	if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
699		return -EAGAIN;
700
701	/* rx_buf can be NULL on RSPI on SH in TX-only Mode */
702	return rspi_dma_transfer(rspi, &xfer->tx_sg,
703				xfer->rx_buf ? &xfer->rx_sg : NULL);
704}
705
706static int rspi_common_transfer(struct rspi_data *rspi,
707				struct spi_transfer *xfer)
708{
709	int ret;
710
711	xfer->effective_speed_hz = rspi->speed_hz;
712
713	ret = rspi_dma_check_then_transfer(rspi, xfer);
714	if (ret != -EAGAIN)
715		return ret;
716
717	ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
718	if (ret < 0)
719		return ret;
720
721	/* Wait for the last transmission */
722	rspi_wait_for_tx_empty(rspi);
723
724	return 0;
725}
726
727static int rspi_transfer_one(struct spi_controller *ctlr,
728			     struct spi_device *spi, struct spi_transfer *xfer)
729{
730	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
731	u8 spcr;
732
733	spcr = rspi_read8(rspi, RSPI_SPCR);
734	if (xfer->rx_buf) {
735		rspi_receive_init(rspi);
736		spcr &= ~SPCR_TXMD;
737	} else {
738		spcr |= SPCR_TXMD;
739	}
740	rspi_write8(rspi, spcr, RSPI_SPCR);
741
742	return rspi_common_transfer(rspi, xfer);
743}
744
745static int rspi_rz_transfer_one(struct spi_controller *ctlr,
746				struct spi_device *spi,
747				struct spi_transfer *xfer)
748{
749	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
750
751	rspi_rz_receive_init(rspi);
752
753	return rspi_common_transfer(rspi, xfer);
754}
755
756static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
757					u8 *rx, unsigned int len)
758{
759	unsigned int i, n;
760	int ret;
761
762	while (len > 0) {
763		n = qspi_set_send_trigger(rspi, len);
764		qspi_set_receive_trigger(rspi, len);
765		ret = rspi_wait_for_tx_empty(rspi);
766		if (ret < 0) {
767			dev_err(&rspi->ctlr->dev, "transmit timeout\n");
768			return ret;
769		}
770		for (i = 0; i < n; i++)
771			rspi_write_data(rspi, *tx++);
772
773		ret = rspi_wait_for_rx_full(rspi);
774		if (ret < 0) {
775			dev_err(&rspi->ctlr->dev, "receive timeout\n");
776			return ret;
777		}
778		for (i = 0; i < n; i++)
779			*rx++ = rspi_read_data(rspi);
780
781		len -= n;
782	}
783
784	return 0;
785}
786
787static int qspi_transfer_out_in(struct rspi_data *rspi,
788				struct spi_transfer *xfer)
789{
790	int ret;
791
792	qspi_receive_init(rspi);
793
794	ret = rspi_dma_check_then_transfer(rspi, xfer);
795	if (ret != -EAGAIN)
796		return ret;
797
798	return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
799					    xfer->rx_buf, xfer->len);
800}
801
802static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
803{
804	const u8 *tx = xfer->tx_buf;
805	unsigned int n = xfer->len;
806	unsigned int i, len;
807	int ret;
808
809	if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
810		ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
811		if (ret != -EAGAIN)
812			return ret;
813	}
814
815	while (n > 0) {
816		len = qspi_set_send_trigger(rspi, n);
817		ret = rspi_wait_for_tx_empty(rspi);
818		if (ret < 0) {
819			dev_err(&rspi->ctlr->dev, "transmit timeout\n");
820			return ret;
821		}
822		for (i = 0; i < len; i++)
823			rspi_write_data(rspi, *tx++);
824
825		n -= len;
826	}
827
828	/* Wait for the last transmission */
829	rspi_wait_for_tx_empty(rspi);
830
831	return 0;
832}
833
834static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
835{
836	u8 *rx = xfer->rx_buf;
837	unsigned int n = xfer->len;
838	unsigned int i, len;
839	int ret;
840
841	if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
842		ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
843		if (ret != -EAGAIN)
844			return ret;
845	}
846
847	while (n > 0) {
848		len = qspi_set_receive_trigger(rspi, n);
849		ret = rspi_wait_for_rx_full(rspi);
850		if (ret < 0) {
851			dev_err(&rspi->ctlr->dev, "receive timeout\n");
852			return ret;
853		}
854		for (i = 0; i < len; i++)
855			*rx++ = rspi_read_data(rspi);
856
857		n -= len;
858	}
859
860	return 0;
861}
862
863static int qspi_transfer_one(struct spi_controller *ctlr,
864			     struct spi_device *spi, struct spi_transfer *xfer)
865{
866	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
867
868	xfer->effective_speed_hz = rspi->speed_hz;
869	if (spi->mode & SPI_LOOP) {
870		return qspi_transfer_out_in(rspi, xfer);
871	} else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
872		/* Quad or Dual SPI Write */
873		return qspi_transfer_out(rspi, xfer);
874	} else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
875		/* Quad or Dual SPI Read */
876		return qspi_transfer_in(rspi, xfer);
877	} else {
878		/* Single SPI Transfer */
879		return qspi_transfer_out_in(rspi, xfer);
880	}
881}
882
883static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
884{
885	if (xfer->tx_buf)
886		switch (xfer->tx_nbits) {
887		case SPI_NBITS_QUAD:
888			return SPCMD_SPIMOD_QUAD;
889		case SPI_NBITS_DUAL:
890			return SPCMD_SPIMOD_DUAL;
891		default:
892			return 0;
893		}
894	if (xfer->rx_buf)
895		switch (xfer->rx_nbits) {
896		case SPI_NBITS_QUAD:
897			return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
898		case SPI_NBITS_DUAL:
899			return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
900		default:
901			return 0;
902		}
903
904	return 0;
905}
906
907static int qspi_setup_sequencer(struct rspi_data *rspi,
908				const struct spi_message *msg)
909{
910	const struct spi_transfer *xfer;
911	unsigned int i = 0, len = 0;
912	u16 current_mode = 0xffff, mode;
913
914	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
915		mode = qspi_transfer_mode(xfer);
916		if (mode == current_mode) {
917			len += xfer->len;
918			continue;
919		}
920
921		/* Transfer mode change */
922		if (i) {
923			/* Set transfer data length of previous transfer */
924			rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
925		}
926
927		if (i >= QSPI_NUM_SPCMD) {
928			dev_err(&msg->spi->dev,
929				"Too many different transfer modes");
930			return -EINVAL;
931		}
932
933		/* Program transfer mode for this transfer */
934		rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
935		current_mode = mode;
936		len = xfer->len;
937		i++;
938	}
939	if (i) {
940		/* Set final transfer data length and sequence length */
941		rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
942		rspi_write8(rspi, i - 1, RSPI_SPSCR);
943	}
944
945	return 0;
946}
947
948static int rspi_setup(struct spi_device *spi)
949{
950	struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
951	u8 sslp;
952
953	if (spi_get_csgpiod(spi, 0))
954		return 0;
955
956	pm_runtime_get_sync(&rspi->pdev->dev);
957	spin_lock_irq(&rspi->lock);
958
959	sslp = rspi_read8(rspi, RSPI_SSLP);
960	if (spi->mode & SPI_CS_HIGH)
961		sslp |= SSLP_SSLP(spi_get_chipselect(spi, 0));
962	else
963		sslp &= ~SSLP_SSLP(spi_get_chipselect(spi, 0));
964	rspi_write8(rspi, sslp, RSPI_SSLP);
965
966	spin_unlock_irq(&rspi->lock);
967	pm_runtime_put(&rspi->pdev->dev);
968	return 0;
969}
970
971static int rspi_prepare_message(struct spi_controller *ctlr,
972				struct spi_message *msg)
973{
974	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
975	struct spi_device *spi = msg->spi;
976	const struct spi_transfer *xfer;
977	int ret;
978
979	/*
980	 * As the Bit Rate Register must not be changed while the device is
981	 * active, all transfers in a message must use the same bit rate.
982	 * In theory, the sequencer could be enabled, and each Command Register
983	 * could divide the base bit rate by a different value.
984	 * However, most RSPI variants do not have Transfer Data Length
985	 * Multiplier Setting Registers, so each sequence step would be limited
986	 * to a single word, making this feature unsuitable for large
987	 * transfers, which would gain most from it.
988	 */
989	rspi->speed_hz = spi->max_speed_hz;
990	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
991		if (xfer->speed_hz < rspi->speed_hz)
992			rspi->speed_hz = xfer->speed_hz;
993	}
994
995	rspi->spcmd = SPCMD_SSLKP;
996	if (spi->mode & SPI_CPOL)
997		rspi->spcmd |= SPCMD_CPOL;
998	if (spi->mode & SPI_CPHA)
999		rspi->spcmd |= SPCMD_CPHA;
1000	if (spi->mode & SPI_LSB_FIRST)
1001		rspi->spcmd |= SPCMD_LSBF;
1002
1003	/* Configure slave signal to assert */
1004	rspi->spcmd |= SPCMD_SSLA(spi_get_csgpiod(spi, 0) ? rspi->ctlr->unused_native_cs
1005						: spi_get_chipselect(spi, 0));
1006
1007	/* CMOS output mode and MOSI signal from previous transfer */
1008	rspi->sppcr = 0;
1009	if (spi->mode & SPI_LOOP)
1010		rspi->sppcr |= SPPCR_SPLP;
1011
1012	rspi->ops->set_config_register(rspi, 8);
1013
1014	if (msg->spi->mode &
1015	    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
1016		/* Setup sequencer for messages with multiple transfer modes */
1017		ret = qspi_setup_sequencer(rspi, msg);
1018		if (ret < 0)
1019			return ret;
1020	}
1021
1022	/* Enable SPI function in master mode */
1023	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
1024	return 0;
1025}
1026
1027static int rspi_unprepare_message(struct spi_controller *ctlr,
1028				  struct spi_message *msg)
1029{
1030	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
1031
1032	/* Disable SPI function */
1033	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
1034
1035	/* Reset sequencer for Single SPI Transfers */
1036	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1037	rspi_write8(rspi, 0, RSPI_SPSCR);
1038	return 0;
1039}
1040
1041static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1042{
1043	struct rspi_data *rspi = _sr;
1044	u8 spsr;
1045	irqreturn_t ret = IRQ_NONE;
1046	u8 disable_irq = 0;
1047
1048	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1049	if (spsr & SPSR_SPRF)
1050		disable_irq |= SPCR_SPRIE;
1051	if (spsr & SPSR_SPTEF)
1052		disable_irq |= SPCR_SPTIE;
1053
1054	if (disable_irq) {
1055		ret = IRQ_HANDLED;
1056		rspi_disable_irq(rspi, disable_irq);
1057		wake_up(&rspi->wait);
1058	}
1059
1060	return ret;
1061}
1062
1063static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1064{
1065	struct rspi_data *rspi = _sr;
1066	u8 spsr;
1067
1068	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1069	if (spsr & SPSR_SPRF) {
1070		rspi_disable_irq(rspi, SPCR_SPRIE);
1071		wake_up(&rspi->wait);
1072		return IRQ_HANDLED;
1073	}
1074
1075	return 0;
1076}
1077
1078static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1079{
1080	struct rspi_data *rspi = _sr;
1081	u8 spsr;
1082
1083	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1084	if (spsr & SPSR_SPTEF) {
1085		rspi_disable_irq(rspi, SPCR_SPTIE);
1086		wake_up(&rspi->wait);
1087		return IRQ_HANDLED;
1088	}
1089
1090	return 0;
1091}
1092
1093static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1094					      enum dma_transfer_direction dir,
1095					      unsigned int id,
1096					      dma_addr_t port_addr)
1097{
1098	dma_cap_mask_t mask;
1099	struct dma_chan *chan;
1100	struct dma_slave_config cfg;
1101	int ret;
1102
1103	dma_cap_zero(mask);
1104	dma_cap_set(DMA_SLAVE, mask);
1105
1106	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1107				(void *)(unsigned long)id, dev,
1108				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1109	if (!chan) {
1110		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1111		return NULL;
1112	}
1113
1114	memset(&cfg, 0, sizeof(cfg));
1115	cfg.dst_addr = port_addr + RSPI_SPDR;
1116	cfg.src_addr = port_addr + RSPI_SPDR;
1117	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1118	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1119	cfg.direction = dir;
1120
1121	ret = dmaengine_slave_config(chan, &cfg);
1122	if (ret) {
1123		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1124		dma_release_channel(chan);
1125		return NULL;
1126	}
1127
1128	return chan;
1129}
1130
1131static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1132			    const struct resource *res)
1133{
1134	const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1135	unsigned int dma_tx_id, dma_rx_id;
1136
1137	if (dev->of_node) {
1138		/* In the OF case we will get the slave IDs from the DT */
1139		dma_tx_id = 0;
1140		dma_rx_id = 0;
1141	} else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1142		dma_tx_id = rspi_pd->dma_tx_id;
1143		dma_rx_id = rspi_pd->dma_rx_id;
1144	} else {
1145		/* The driver assumes no error. */
1146		return 0;
1147	}
1148
1149	ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1150					     res->start);
1151	if (!ctlr->dma_tx)
1152		return -ENODEV;
1153
1154	ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1155					     res->start);
1156	if (!ctlr->dma_rx) {
1157		dma_release_channel(ctlr->dma_tx);
1158		ctlr->dma_tx = NULL;
1159		return -ENODEV;
1160	}
1161
1162	ctlr->can_dma = rspi_can_dma;
1163	dev_info(dev, "DMA available");
1164	return 0;
1165}
1166
1167static void rspi_release_dma(struct spi_controller *ctlr)
1168{
1169	if (ctlr->dma_tx)
1170		dma_release_channel(ctlr->dma_tx);
1171	if (ctlr->dma_rx)
1172		dma_release_channel(ctlr->dma_rx);
1173}
1174
1175static void rspi_remove(struct platform_device *pdev)
1176{
1177	struct rspi_data *rspi = platform_get_drvdata(pdev);
1178
1179	rspi_release_dma(rspi->ctlr);
1180	pm_runtime_disable(&pdev->dev);
1181}
1182
1183static const struct spi_ops rspi_ops = {
1184	.set_config_register =	rspi_set_config_register,
1185	.transfer_one =		rspi_transfer_one,
1186	.min_div =		2,
1187	.max_div =		4096,
1188	.flags =		SPI_CONTROLLER_MUST_TX,
1189	.fifo_size =		8,
1190	.num_hw_ss =		2,
1191};
1192
1193static const struct spi_ops rspi_rz_ops __maybe_unused = {
1194	.set_config_register =	rspi_rz_set_config_register,
1195	.transfer_one =		rspi_rz_transfer_one,
1196	.min_div =		2,
1197	.max_div =		4096,
1198	.flags =		SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1199	.fifo_size =		8,	/* 8 for TX, 32 for RX */
1200	.num_hw_ss =		1,
1201};
1202
1203static const struct spi_ops qspi_ops __maybe_unused = {
1204	.set_config_register =	qspi_set_config_register,
1205	.transfer_one =		qspi_transfer_one,
1206	.extra_mode_bits =	SPI_TX_DUAL | SPI_TX_QUAD |
1207				SPI_RX_DUAL | SPI_RX_QUAD,
1208	.min_div =		1,
1209	.max_div =		4080,
1210	.flags =		SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1211	.fifo_size =		32,
1212	.num_hw_ss =		1,
1213};
1214
1215static const struct of_device_id rspi_of_match[] __maybe_unused = {
1216	/* RSPI on legacy SH */
1217	{ .compatible = "renesas,rspi", .data = &rspi_ops },
1218	/* RSPI on RZ/A1H */
1219	{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1220	/* QSPI on R-Car Gen2 */
1221	{ .compatible = "renesas,qspi", .data = &qspi_ops },
1222	{ /* sentinel */ }
1223};
1224
1225MODULE_DEVICE_TABLE(of, rspi_of_match);
1226
1227#ifdef CONFIG_OF
1228static void rspi_reset_control_assert(void *data)
1229{
1230	reset_control_assert(data);
1231}
1232
1233static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1234{
1235	struct reset_control *rstc;
1236	u32 num_cs;
1237	int error;
1238
1239	/* Parse DT properties */
1240	error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1241	if (error) {
1242		dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1243		return error;
1244	}
1245
1246	ctlr->num_chipselect = num_cs;
1247
1248	rstc = devm_reset_control_get_optional_exclusive(dev, NULL);
1249	if (IS_ERR(rstc))
1250		return dev_err_probe(dev, PTR_ERR(rstc),
1251					     "failed to get reset ctrl\n");
1252
1253	error = reset_control_deassert(rstc);
1254	if (error) {
1255		dev_err(dev, "failed to deassert reset %d\n", error);
1256		return error;
1257	}
1258
1259	error = devm_add_action_or_reset(dev, rspi_reset_control_assert, rstc);
1260	if (error) {
1261		dev_err(dev, "failed to register assert devm action, %d\n", error);
1262		return error;
1263	}
1264
1265	return 0;
1266}
1267#else
1268#define rspi_of_match	NULL
1269static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1270{
1271	return -EINVAL;
1272}
1273#endif /* CONFIG_OF */
1274
1275static int rspi_request_irq(struct device *dev, unsigned int irq,
1276			    irq_handler_t handler, const char *suffix,
1277			    void *dev_id)
1278{
1279	const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1280					  dev_name(dev), suffix);
1281	if (!name)
1282		return -ENOMEM;
1283
1284	return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1285}
1286
1287static int rspi_probe(struct platform_device *pdev)
1288{
1289	struct resource *res;
1290	struct spi_controller *ctlr;
1291	struct rspi_data *rspi;
1292	int ret;
1293	const struct rspi_plat_data *rspi_pd;
1294	const struct spi_ops *ops;
1295	unsigned long clksrc;
1296
1297	ctlr = spi_alloc_host(&pdev->dev, sizeof(struct rspi_data));
1298	if (ctlr == NULL)
1299		return -ENOMEM;
1300
1301	ops = of_device_get_match_data(&pdev->dev);
1302	if (ops) {
1303		ret = rspi_parse_dt(&pdev->dev, ctlr);
1304		if (ret)
1305			goto error1;
1306	} else {
1307		ops = (struct spi_ops *)pdev->id_entry->driver_data;
1308		rspi_pd = dev_get_platdata(&pdev->dev);
1309		if (rspi_pd && rspi_pd->num_chipselect)
1310			ctlr->num_chipselect = rspi_pd->num_chipselect;
1311		else
1312			ctlr->num_chipselect = 2; /* default */
1313	}
1314
1315	rspi = spi_controller_get_devdata(ctlr);
1316	platform_set_drvdata(pdev, rspi);
1317	rspi->ops = ops;
1318	rspi->ctlr = ctlr;
1319
1320	rspi->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1321	if (IS_ERR(rspi->addr)) {
1322		ret = PTR_ERR(rspi->addr);
1323		goto error1;
1324	}
1325
1326	rspi->clk = devm_clk_get(&pdev->dev, NULL);
1327	if (IS_ERR(rspi->clk)) {
1328		dev_err(&pdev->dev, "cannot get clock\n");
1329		ret = PTR_ERR(rspi->clk);
1330		goto error1;
1331	}
1332
1333	rspi->pdev = pdev;
1334	pm_runtime_enable(&pdev->dev);
1335
1336	init_waitqueue_head(&rspi->wait);
1337	spin_lock_init(&rspi->lock);
1338
1339	ctlr->bus_num = pdev->id;
1340	ctlr->setup = rspi_setup;
1341	ctlr->auto_runtime_pm = true;
1342	ctlr->transfer_one = ops->transfer_one;
1343	ctlr->prepare_message = rspi_prepare_message;
1344	ctlr->unprepare_message = rspi_unprepare_message;
1345	ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1346			  SPI_LOOP | ops->extra_mode_bits;
1347	clksrc = clk_get_rate(rspi->clk);
1348	ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div);
1349	ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div);
1350	ctlr->flags = ops->flags;
1351	ctlr->dev.of_node = pdev->dev.of_node;
1352	ctlr->use_gpio_descriptors = true;
1353	ctlr->max_native_cs = rspi->ops->num_hw_ss;
1354
1355	ret = platform_get_irq_byname_optional(pdev, "rx");
1356	if (ret < 0) {
1357		ret = platform_get_irq_byname_optional(pdev, "mux");
1358		if (ret < 0)
1359			ret = platform_get_irq(pdev, 0);
1360		if (ret >= 0)
1361			rspi->rx_irq = rspi->tx_irq = ret;
1362	} else {
1363		rspi->rx_irq = ret;
1364		ret = platform_get_irq_byname(pdev, "tx");
1365		if (ret >= 0)
1366			rspi->tx_irq = ret;
1367	}
1368
1369	if (rspi->rx_irq == rspi->tx_irq) {
1370		/* Single multiplexed interrupt */
1371		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1372				       "mux", rspi);
1373	} else {
1374		/* Multi-interrupt mode, only SPRI and SPTI are used */
1375		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1376				       "rx", rspi);
1377		if (!ret)
1378			ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1379					       rspi_irq_tx, "tx", rspi);
1380	}
1381	if (ret < 0) {
1382		dev_err(&pdev->dev, "request_irq error\n");
1383		goto error2;
1384	}
1385
1386	ret = rspi_request_dma(&pdev->dev, ctlr, res);
1387	if (ret < 0)
1388		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1389
1390	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1391	if (ret < 0) {
1392		dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1393		goto error3;
1394	}
1395
1396	dev_info(&pdev->dev, "probed\n");
1397
1398	return 0;
1399
1400error3:
1401	rspi_release_dma(ctlr);
1402error2:
1403	pm_runtime_disable(&pdev->dev);
1404error1:
1405	spi_controller_put(ctlr);
1406
1407	return ret;
1408}
1409
1410static const struct platform_device_id spi_driver_ids[] = {
1411	{ "rspi",	(kernel_ulong_t)&rspi_ops },
1412	{},
1413};
1414
1415MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1416
1417#ifdef CONFIG_PM_SLEEP
1418static int rspi_suspend(struct device *dev)
1419{
1420	struct rspi_data *rspi = dev_get_drvdata(dev);
1421
1422	return spi_controller_suspend(rspi->ctlr);
1423}
1424
1425static int rspi_resume(struct device *dev)
1426{
1427	struct rspi_data *rspi = dev_get_drvdata(dev);
1428
1429	return spi_controller_resume(rspi->ctlr);
1430}
1431
1432static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1433#define DEV_PM_OPS	&rspi_pm_ops
1434#else
1435#define DEV_PM_OPS	NULL
1436#endif /* CONFIG_PM_SLEEP */
1437
1438static struct platform_driver rspi_driver = {
1439	.probe =	rspi_probe,
1440	.remove_new =	rspi_remove,
1441	.id_table =	spi_driver_ids,
1442	.driver		= {
1443		.name = "renesas_spi",
1444		.pm = DEV_PM_OPS,
1445		.of_match_table = of_match_ptr(rspi_of_match),
1446	},
1447};
1448module_platform_driver(rspi_driver);
1449
1450MODULE_DESCRIPTION("Renesas RSPI bus driver");
1451MODULE_LICENSE("GPL v2");
1452MODULE_AUTHOR("Yoshihiro Shimoda");
1453