1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2014, Fuzhou Rockchip Electronics Co., Ltd
4 * Author: Addy Ke <addy.ke@rock-chips.com>
5 */
6
7#include <linux/clk.h>
8#include <linux/dmaengine.h>
9#include <linux/interrupt.h>
10#include <linux/module.h>
11#include <linux/of.h>
12#include <linux/pinctrl/consumer.h>
13#include <linux/platform_device.h>
14#include <linux/spi/spi.h>
15#include <linux/pm_runtime.h>
16#include <linux/scatterlist.h>
17
18#define DRIVER_NAME "rockchip-spi"
19
20#define ROCKCHIP_SPI_CLR_BITS(reg, bits) \
21		writel_relaxed(readl_relaxed(reg) & ~(bits), reg)
22#define ROCKCHIP_SPI_SET_BITS(reg, bits) \
23		writel_relaxed(readl_relaxed(reg) | (bits), reg)
24
25/* SPI register offsets */
26#define ROCKCHIP_SPI_CTRLR0			0x0000
27#define ROCKCHIP_SPI_CTRLR1			0x0004
28#define ROCKCHIP_SPI_SSIENR			0x0008
29#define ROCKCHIP_SPI_SER			0x000c
30#define ROCKCHIP_SPI_BAUDR			0x0010
31#define ROCKCHIP_SPI_TXFTLR			0x0014
32#define ROCKCHIP_SPI_RXFTLR			0x0018
33#define ROCKCHIP_SPI_TXFLR			0x001c
34#define ROCKCHIP_SPI_RXFLR			0x0020
35#define ROCKCHIP_SPI_SR				0x0024
36#define ROCKCHIP_SPI_IPR			0x0028
37#define ROCKCHIP_SPI_IMR			0x002c
38#define ROCKCHIP_SPI_ISR			0x0030
39#define ROCKCHIP_SPI_RISR			0x0034
40#define ROCKCHIP_SPI_ICR			0x0038
41#define ROCKCHIP_SPI_DMACR			0x003c
42#define ROCKCHIP_SPI_DMATDLR			0x0040
43#define ROCKCHIP_SPI_DMARDLR			0x0044
44#define ROCKCHIP_SPI_VERSION			0x0048
45#define ROCKCHIP_SPI_TXDR			0x0400
46#define ROCKCHIP_SPI_RXDR			0x0800
47
48/* Bit fields in CTRLR0 */
49#define CR0_DFS_OFFSET				0
50#define CR0_DFS_4BIT				0x0
51#define CR0_DFS_8BIT				0x1
52#define CR0_DFS_16BIT				0x2
53
54#define CR0_CFS_OFFSET				2
55
56#define CR0_SCPH_OFFSET				6
57
58#define CR0_SCPOL_OFFSET			7
59
60#define CR0_CSM_OFFSET				8
61#define CR0_CSM_KEEP				0x0
62/* ss_n be high for half sclk_out cycles */
63#define CR0_CSM_HALF				0X1
64/* ss_n be high for one sclk_out cycle */
65#define CR0_CSM_ONE					0x2
66
67/* ss_n to sclk_out delay */
68#define CR0_SSD_OFFSET				10
69/*
70 * The period between ss_n active and
71 * sclk_out active is half sclk_out cycles
72 */
73#define CR0_SSD_HALF				0x0
74/*
75 * The period between ss_n active and
76 * sclk_out active is one sclk_out cycle
77 */
78#define CR0_SSD_ONE					0x1
79
80#define CR0_EM_OFFSET				11
81#define CR0_EM_LITTLE				0x0
82#define CR0_EM_BIG					0x1
83
84#define CR0_FBM_OFFSET				12
85#define CR0_FBM_MSB					0x0
86#define CR0_FBM_LSB					0x1
87
88#define CR0_BHT_OFFSET				13
89#define CR0_BHT_16BIT				0x0
90#define CR0_BHT_8BIT				0x1
91
92#define CR0_RSD_OFFSET				14
93#define CR0_RSD_MAX				0x3
94
95#define CR0_FRF_OFFSET				16
96#define CR0_FRF_SPI					0x0
97#define CR0_FRF_SSP					0x1
98#define CR0_FRF_MICROWIRE			0x2
99
100#define CR0_XFM_OFFSET				18
101#define CR0_XFM_MASK				(0x03 << SPI_XFM_OFFSET)
102#define CR0_XFM_TR					0x0
103#define CR0_XFM_TO					0x1
104#define CR0_XFM_RO					0x2
105
106#define CR0_OPM_OFFSET				20
107#define CR0_OPM_HOST				0x0
108#define CR0_OPM_TARGET				0x1
109
110#define CR0_SOI_OFFSET				23
111
112#define CR0_MTM_OFFSET				0x21
113
114/* Bit fields in SER, 2bit */
115#define SER_MASK					0x3
116
117/* Bit fields in BAUDR */
118#define BAUDR_SCKDV_MIN				2
119#define BAUDR_SCKDV_MAX				65534
120
121/* Bit fields in SR, 6bit */
122#define SR_MASK						0x3f
123#define SR_BUSY						(1 << 0)
124#define SR_TF_FULL					(1 << 1)
125#define SR_TF_EMPTY					(1 << 2)
126#define SR_RF_EMPTY					(1 << 3)
127#define SR_RF_FULL					(1 << 4)
128#define SR_TARGET_TX_BUSY				(1 << 5)
129
130/* Bit fields in ISR, IMR, ISR, RISR, 5bit */
131#define INT_MASK					0x1f
132#define INT_TF_EMPTY				(1 << 0)
133#define INT_TF_OVERFLOW				(1 << 1)
134#define INT_RF_UNDERFLOW			(1 << 2)
135#define INT_RF_OVERFLOW				(1 << 3)
136#define INT_RF_FULL				(1 << 4)
137#define INT_CS_INACTIVE				(1 << 6)
138
139/* Bit fields in ICR, 4bit */
140#define ICR_MASK					0x0f
141#define ICR_ALL						(1 << 0)
142#define ICR_RF_UNDERFLOW			(1 << 1)
143#define ICR_RF_OVERFLOW				(1 << 2)
144#define ICR_TF_OVERFLOW				(1 << 3)
145
146/* Bit fields in DMACR */
147#define RF_DMA_EN					(1 << 0)
148#define TF_DMA_EN					(1 << 1)
149
150/* Driver state flags */
151#define RXDMA					(1 << 0)
152#define TXDMA					(1 << 1)
153
154/* sclk_out: spi host internal logic in rk3x can support 50Mhz */
155#define MAX_SCLK_OUT				50000000U
156
157/*
158 * SPI_CTRLR1 is 16-bits, so we should support lengths of 0xffff + 1. However,
159 * the controller seems to hang when given 0x10000, so stick with this for now.
160 */
161#define ROCKCHIP_SPI_MAX_TRANLEN		0xffff
162
163#define ROCKCHIP_SPI_MAX_NATIVE_CS_NUM		2
164#define ROCKCHIP_SPI_VER2_TYPE1			0x05EC0002
165#define ROCKCHIP_SPI_VER2_TYPE2			0x00110002
166
167#define ROCKCHIP_AUTOSUSPEND_TIMEOUT		2000
168
169struct rockchip_spi {
170	struct device *dev;
171
172	struct clk *spiclk;
173	struct clk *apb_pclk;
174
175	void __iomem *regs;
176	dma_addr_t dma_addr_rx;
177	dma_addr_t dma_addr_tx;
178
179	const void *tx;
180	void *rx;
181	unsigned int tx_left;
182	unsigned int rx_left;
183
184	atomic_t state;
185
186	/*depth of the FIFO buffer */
187	u32 fifo_len;
188	/* frequency of spiclk */
189	u32 freq;
190
191	u8 n_bytes;
192	u8 rsd;
193
194	bool target_abort;
195	bool cs_inactive; /* spi target tansmition stop when cs inactive */
196	bool cs_high_supported; /* native CS supports active-high polarity */
197
198	struct spi_transfer *xfer; /* Store xfer temporarily */
199};
200
201static inline void spi_enable_chip(struct rockchip_spi *rs, bool enable)
202{
203	writel_relaxed((enable ? 1U : 0U), rs->regs + ROCKCHIP_SPI_SSIENR);
204}
205
206static inline void wait_for_tx_idle(struct rockchip_spi *rs, bool target_mode)
207{
208	unsigned long timeout = jiffies + msecs_to_jiffies(5);
209
210	do {
211		if (target_mode) {
212			if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_TARGET_TX_BUSY) &&
213			    !((readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY)))
214				return;
215		} else {
216			if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY))
217				return;
218		}
219	} while (!time_after(jiffies, timeout));
220
221	dev_warn(rs->dev, "spi controller is in busy state!\n");
222}
223
224static u32 get_fifo_len(struct rockchip_spi *rs)
225{
226	u32 ver;
227
228	ver = readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION);
229
230	switch (ver) {
231	case ROCKCHIP_SPI_VER2_TYPE1:
232	case ROCKCHIP_SPI_VER2_TYPE2:
233		return 64;
234	default:
235		return 32;
236	}
237}
238
239static void rockchip_spi_set_cs(struct spi_device *spi, bool enable)
240{
241	struct spi_controller *ctlr = spi->controller;
242	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
243	bool cs_asserted = spi->mode & SPI_CS_HIGH ? enable : !enable;
244
245	if (cs_asserted) {
246		/* Keep things powered as long as CS is asserted */
247		pm_runtime_get_sync(rs->dev);
248
249		if (spi_get_csgpiod(spi, 0))
250			ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER, 1);
251		else
252			ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER,
253					      BIT(spi_get_chipselect(spi, 0)));
254	} else {
255		if (spi_get_csgpiod(spi, 0))
256			ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER, 1);
257		else
258			ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER,
259					      BIT(spi_get_chipselect(spi, 0)));
260
261		/* Drop reference from when we first asserted CS */
262		pm_runtime_put(rs->dev);
263	}
264}
265
266static void rockchip_spi_handle_err(struct spi_controller *ctlr,
267				    struct spi_message *msg)
268{
269	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
270
271	/* stop running spi transfer
272	 * this also flushes both rx and tx fifos
273	 */
274	spi_enable_chip(rs, false);
275
276	/* make sure all interrupts are masked and status cleared */
277	writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
278	writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
279
280	if (atomic_read(&rs->state) & TXDMA)
281		dmaengine_terminate_async(ctlr->dma_tx);
282
283	if (atomic_read(&rs->state) & RXDMA)
284		dmaengine_terminate_async(ctlr->dma_rx);
285}
286
287static void rockchip_spi_pio_writer(struct rockchip_spi *rs)
288{
289	u32 tx_free = rs->fifo_len - readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFLR);
290	u32 words = min(rs->tx_left, tx_free);
291
292	rs->tx_left -= words;
293	for (; words; words--) {
294		u32 txw;
295
296		if (rs->n_bytes == 1)
297			txw = *(u8 *)rs->tx;
298		else
299			txw = *(u16 *)rs->tx;
300
301		writel_relaxed(txw, rs->regs + ROCKCHIP_SPI_TXDR);
302		rs->tx += rs->n_bytes;
303	}
304}
305
306static void rockchip_spi_pio_reader(struct rockchip_spi *rs)
307{
308	u32 words = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
309	u32 rx_left = (rs->rx_left > words) ? rs->rx_left - words : 0;
310
311	/* the hardware doesn't allow us to change fifo threshold
312	 * level while spi is enabled, so instead make sure to leave
313	 * enough words in the rx fifo to get the last interrupt
314	 * exactly when all words have been received
315	 */
316	if (rx_left) {
317		u32 ftl = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFTLR) + 1;
318
319		if (rx_left < ftl) {
320			rx_left = ftl;
321			words = rs->rx_left - rx_left;
322		}
323	}
324
325	rs->rx_left = rx_left;
326	for (; words; words--) {
327		u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
328
329		if (!rs->rx)
330			continue;
331
332		if (rs->n_bytes == 1)
333			*(u8 *)rs->rx = (u8)rxw;
334		else
335			*(u16 *)rs->rx = (u16)rxw;
336		rs->rx += rs->n_bytes;
337	}
338}
339
340static irqreturn_t rockchip_spi_isr(int irq, void *dev_id)
341{
342	struct spi_controller *ctlr = dev_id;
343	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
344
345	/* When int_cs_inactive comes, spi target abort */
346	if (rs->cs_inactive && readl_relaxed(rs->regs + ROCKCHIP_SPI_IMR) & INT_CS_INACTIVE) {
347		ctlr->target_abort(ctlr);
348		writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
349		writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
350
351		return IRQ_HANDLED;
352	}
353
354	if (rs->tx_left)
355		rockchip_spi_pio_writer(rs);
356
357	rockchip_spi_pio_reader(rs);
358	if (!rs->rx_left) {
359		spi_enable_chip(rs, false);
360		writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
361		writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
362		spi_finalize_current_transfer(ctlr);
363	}
364
365	return IRQ_HANDLED;
366}
367
368static int rockchip_spi_prepare_irq(struct rockchip_spi *rs,
369				    struct spi_controller *ctlr,
370				    struct spi_transfer *xfer)
371{
372	rs->tx = xfer->tx_buf;
373	rs->rx = xfer->rx_buf;
374	rs->tx_left = rs->tx ? xfer->len / rs->n_bytes : 0;
375	rs->rx_left = xfer->len / rs->n_bytes;
376
377	writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
378
379	spi_enable_chip(rs, true);
380
381	if (rs->tx_left)
382		rockchip_spi_pio_writer(rs);
383
384	if (rs->cs_inactive)
385		writel_relaxed(INT_RF_FULL | INT_CS_INACTIVE, rs->regs + ROCKCHIP_SPI_IMR);
386	else
387		writel_relaxed(INT_RF_FULL, rs->regs + ROCKCHIP_SPI_IMR);
388
389	/* 1 means the transfer is in progress */
390	return 1;
391}
392
393static void rockchip_spi_dma_rxcb(void *data)
394{
395	struct spi_controller *ctlr = data;
396	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
397	int state = atomic_fetch_andnot(RXDMA, &rs->state);
398
399	if (state & TXDMA && !rs->target_abort)
400		return;
401
402	if (rs->cs_inactive)
403		writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
404
405	spi_enable_chip(rs, false);
406	spi_finalize_current_transfer(ctlr);
407}
408
409static void rockchip_spi_dma_txcb(void *data)
410{
411	struct spi_controller *ctlr = data;
412	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
413	int state = atomic_fetch_andnot(TXDMA, &rs->state);
414
415	if (state & RXDMA && !rs->target_abort)
416		return;
417
418	/* Wait until the FIFO data completely. */
419	wait_for_tx_idle(rs, ctlr->target);
420
421	spi_enable_chip(rs, false);
422	spi_finalize_current_transfer(ctlr);
423}
424
425static u32 rockchip_spi_calc_burst_size(u32 data_len)
426{
427	u32 i;
428
429	/* burst size: 1, 2, 4, 8 */
430	for (i = 1; i < 8; i <<= 1) {
431		if (data_len & i)
432			break;
433	}
434
435	return i;
436}
437
438static int rockchip_spi_prepare_dma(struct rockchip_spi *rs,
439		struct spi_controller *ctlr, struct spi_transfer *xfer)
440{
441	struct dma_async_tx_descriptor *rxdesc, *txdesc;
442
443	atomic_set(&rs->state, 0);
444
445	rs->tx = xfer->tx_buf;
446	rs->rx = xfer->rx_buf;
447
448	rxdesc = NULL;
449	if (xfer->rx_buf) {
450		struct dma_slave_config rxconf = {
451			.direction = DMA_DEV_TO_MEM,
452			.src_addr = rs->dma_addr_rx,
453			.src_addr_width = rs->n_bytes,
454			.src_maxburst = rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes),
455		};
456
457		dmaengine_slave_config(ctlr->dma_rx, &rxconf);
458
459		rxdesc = dmaengine_prep_slave_sg(
460				ctlr->dma_rx,
461				xfer->rx_sg.sgl, xfer->rx_sg.nents,
462				DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
463		if (!rxdesc)
464			return -EINVAL;
465
466		rxdesc->callback = rockchip_spi_dma_rxcb;
467		rxdesc->callback_param = ctlr;
468	}
469
470	txdesc = NULL;
471	if (xfer->tx_buf) {
472		struct dma_slave_config txconf = {
473			.direction = DMA_MEM_TO_DEV,
474			.dst_addr = rs->dma_addr_tx,
475			.dst_addr_width = rs->n_bytes,
476			.dst_maxburst = rs->fifo_len / 4,
477		};
478
479		dmaengine_slave_config(ctlr->dma_tx, &txconf);
480
481		txdesc = dmaengine_prep_slave_sg(
482				ctlr->dma_tx,
483				xfer->tx_sg.sgl, xfer->tx_sg.nents,
484				DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
485		if (!txdesc) {
486			if (rxdesc)
487				dmaengine_terminate_sync(ctlr->dma_rx);
488			return -EINVAL;
489		}
490
491		txdesc->callback = rockchip_spi_dma_txcb;
492		txdesc->callback_param = ctlr;
493	}
494
495	/* rx must be started before tx due to spi instinct */
496	if (rxdesc) {
497		atomic_or(RXDMA, &rs->state);
498		ctlr->dma_rx->cookie = dmaengine_submit(rxdesc);
499		dma_async_issue_pending(ctlr->dma_rx);
500	}
501
502	if (rs->cs_inactive)
503		writel_relaxed(INT_CS_INACTIVE, rs->regs + ROCKCHIP_SPI_IMR);
504
505	spi_enable_chip(rs, true);
506
507	if (txdesc) {
508		atomic_or(TXDMA, &rs->state);
509		dmaengine_submit(txdesc);
510		dma_async_issue_pending(ctlr->dma_tx);
511	}
512
513	/* 1 means the transfer is in progress */
514	return 1;
515}
516
517static int rockchip_spi_config(struct rockchip_spi *rs,
518		struct spi_device *spi, struct spi_transfer *xfer,
519		bool use_dma, bool target_mode)
520{
521	u32 cr0 = CR0_FRF_SPI  << CR0_FRF_OFFSET
522		| CR0_BHT_8BIT << CR0_BHT_OFFSET
523		| CR0_SSD_ONE  << CR0_SSD_OFFSET
524		| CR0_EM_BIG   << CR0_EM_OFFSET;
525	u32 cr1;
526	u32 dmacr = 0;
527
528	if (target_mode)
529		cr0 |= CR0_OPM_TARGET << CR0_OPM_OFFSET;
530	rs->target_abort = false;
531
532	cr0 |= rs->rsd << CR0_RSD_OFFSET;
533	cr0 |= (spi->mode & 0x3U) << CR0_SCPH_OFFSET;
534	if (spi->mode & SPI_LSB_FIRST)
535		cr0 |= CR0_FBM_LSB << CR0_FBM_OFFSET;
536	if (spi->mode & SPI_CS_HIGH)
537		cr0 |= BIT(spi_get_chipselect(spi, 0)) << CR0_SOI_OFFSET;
538
539	if (xfer->rx_buf && xfer->tx_buf)
540		cr0 |= CR0_XFM_TR << CR0_XFM_OFFSET;
541	else if (xfer->rx_buf)
542		cr0 |= CR0_XFM_RO << CR0_XFM_OFFSET;
543	else if (use_dma)
544		cr0 |= CR0_XFM_TO << CR0_XFM_OFFSET;
545
546	switch (xfer->bits_per_word) {
547	case 4:
548		cr0 |= CR0_DFS_4BIT << CR0_DFS_OFFSET;
549		cr1 = xfer->len - 1;
550		break;
551	case 8:
552		cr0 |= CR0_DFS_8BIT << CR0_DFS_OFFSET;
553		cr1 = xfer->len - 1;
554		break;
555	case 16:
556		cr0 |= CR0_DFS_16BIT << CR0_DFS_OFFSET;
557		cr1 = xfer->len / 2 - 1;
558		break;
559	default:
560		/* we only whitelist 4, 8 and 16 bit words in
561		 * ctlr->bits_per_word_mask, so this shouldn't
562		 * happen
563		 */
564		dev_err(rs->dev, "unknown bits per word: %d\n",
565			xfer->bits_per_word);
566		return -EINVAL;
567	}
568
569	if (use_dma) {
570		if (xfer->tx_buf)
571			dmacr |= TF_DMA_EN;
572		if (xfer->rx_buf)
573			dmacr |= RF_DMA_EN;
574	}
575
576	writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0);
577	writel_relaxed(cr1, rs->regs + ROCKCHIP_SPI_CTRLR1);
578
579	/* unfortunately setting the fifo threshold level to generate an
580	 * interrupt exactly when the fifo is full doesn't seem to work,
581	 * so we need the strict inequality here
582	 */
583	if ((xfer->len / rs->n_bytes) < rs->fifo_len)
584		writel_relaxed(xfer->len / rs->n_bytes - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
585	else
586		writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
587
588	writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_DMATDLR);
589	writel_relaxed(rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes) - 1,
590		       rs->regs + ROCKCHIP_SPI_DMARDLR);
591	writel_relaxed(dmacr, rs->regs + ROCKCHIP_SPI_DMACR);
592
593	/* the hardware only supports an even clock divisor, so
594	 * round divisor = spiclk / speed up to nearest even number
595	 * so that the resulting speed is <= the requested speed
596	 */
597	writel_relaxed(2 * DIV_ROUND_UP(rs->freq, 2 * xfer->speed_hz),
598			rs->regs + ROCKCHIP_SPI_BAUDR);
599
600	return 0;
601}
602
603static size_t rockchip_spi_max_transfer_size(struct spi_device *spi)
604{
605	return ROCKCHIP_SPI_MAX_TRANLEN;
606}
607
608static int rockchip_spi_target_abort(struct spi_controller *ctlr)
609{
610	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
611	u32 rx_fifo_left;
612	struct dma_tx_state state;
613	enum dma_status status;
614
615	/* Get current dma rx point */
616	if (atomic_read(&rs->state) & RXDMA) {
617		dmaengine_pause(ctlr->dma_rx);
618		status = dmaengine_tx_status(ctlr->dma_rx, ctlr->dma_rx->cookie, &state);
619		if (status == DMA_ERROR) {
620			rs->rx = rs->xfer->rx_buf;
621			rs->xfer->len = 0;
622			rx_fifo_left = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
623			for (; rx_fifo_left; rx_fifo_left--)
624				readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
625			goto out;
626		} else {
627			rs->rx += rs->xfer->len - rs->n_bytes * state.residue;
628		}
629	}
630
631	/* Get the valid data left in rx fifo and set rs->xfer->len real rx size */
632	if (rs->rx) {
633		rx_fifo_left = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
634		for (; rx_fifo_left; rx_fifo_left--) {
635			u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
636
637			if (rs->n_bytes == 1)
638				*(u8 *)rs->rx = (u8)rxw;
639			else
640				*(u16 *)rs->rx = (u16)rxw;
641			rs->rx += rs->n_bytes;
642		}
643		rs->xfer->len = (unsigned int)(rs->rx - rs->xfer->rx_buf);
644	}
645
646out:
647	if (atomic_read(&rs->state) & RXDMA)
648		dmaengine_terminate_sync(ctlr->dma_rx);
649	if (atomic_read(&rs->state) & TXDMA)
650		dmaengine_terminate_sync(ctlr->dma_tx);
651	atomic_set(&rs->state, 0);
652	spi_enable_chip(rs, false);
653	rs->target_abort = true;
654	spi_finalize_current_transfer(ctlr);
655
656	return 0;
657}
658
659static int rockchip_spi_transfer_one(
660		struct spi_controller *ctlr,
661		struct spi_device *spi,
662		struct spi_transfer *xfer)
663{
664	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
665	int ret;
666	bool use_dma;
667
668	/* Zero length transfers won't trigger an interrupt on completion */
669	if (!xfer->len) {
670		spi_finalize_current_transfer(ctlr);
671		return 1;
672	}
673
674	WARN_ON(readl_relaxed(rs->regs + ROCKCHIP_SPI_SSIENR) &&
675		(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY));
676
677	if (!xfer->tx_buf && !xfer->rx_buf) {
678		dev_err(rs->dev, "No buffer for transfer\n");
679		return -EINVAL;
680	}
681
682	if (xfer->len > ROCKCHIP_SPI_MAX_TRANLEN) {
683		dev_err(rs->dev, "Transfer is too long (%d)\n", xfer->len);
684		return -EINVAL;
685	}
686
687	rs->n_bytes = xfer->bits_per_word <= 8 ? 1 : 2;
688	rs->xfer = xfer;
689	use_dma = ctlr->can_dma ? ctlr->can_dma(ctlr, spi, xfer) : false;
690
691	ret = rockchip_spi_config(rs, spi, xfer, use_dma, ctlr->target);
692	if (ret)
693		return ret;
694
695	if (use_dma)
696		return rockchip_spi_prepare_dma(rs, ctlr, xfer);
697
698	return rockchip_spi_prepare_irq(rs, ctlr, xfer);
699}
700
701static bool rockchip_spi_can_dma(struct spi_controller *ctlr,
702				 struct spi_device *spi,
703				 struct spi_transfer *xfer)
704{
705	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
706	unsigned int bytes_per_word = xfer->bits_per_word <= 8 ? 1 : 2;
707
708	/* if the numbor of spi words to transfer is less than the fifo
709	 * length we can just fill the fifo and wait for a single irq,
710	 * so don't bother setting up dma
711	 */
712	return xfer->len / bytes_per_word >= rs->fifo_len;
713}
714
715static int rockchip_spi_setup(struct spi_device *spi)
716{
717	struct rockchip_spi *rs = spi_controller_get_devdata(spi->controller);
718	u32 cr0;
719
720	if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH) && !rs->cs_high_supported) {
721		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
722		return -EINVAL;
723	}
724
725	pm_runtime_get_sync(rs->dev);
726
727	cr0 = readl_relaxed(rs->regs + ROCKCHIP_SPI_CTRLR0);
728
729	cr0 &= ~(0x3 << CR0_SCPH_OFFSET);
730	cr0 |= ((spi->mode & 0x3) << CR0_SCPH_OFFSET);
731	if (spi->mode & SPI_CS_HIGH && spi_get_chipselect(spi, 0) <= 1)
732		cr0 |= BIT(spi_get_chipselect(spi, 0)) << CR0_SOI_OFFSET;
733	else if (spi_get_chipselect(spi, 0) <= 1)
734		cr0 &= ~(BIT(spi_get_chipselect(spi, 0)) << CR0_SOI_OFFSET);
735
736	writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0);
737
738	pm_runtime_put(rs->dev);
739
740	return 0;
741}
742
743static int rockchip_spi_probe(struct platform_device *pdev)
744{
745	int ret;
746	struct rockchip_spi *rs;
747	struct spi_controller *ctlr;
748	struct resource *mem;
749	struct device_node *np = pdev->dev.of_node;
750	u32 rsd_nsecs, num_cs;
751	bool target_mode;
752
753	target_mode = of_property_read_bool(np, "spi-slave");
754
755	if (target_mode)
756		ctlr = spi_alloc_target(&pdev->dev,
757				sizeof(struct rockchip_spi));
758	else
759		ctlr = spi_alloc_host(&pdev->dev,
760				sizeof(struct rockchip_spi));
761
762	if (!ctlr)
763		return -ENOMEM;
764
765	platform_set_drvdata(pdev, ctlr);
766
767	rs = spi_controller_get_devdata(ctlr);
768
769	/* Get basic io resource and map it */
770	rs->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
771	if (IS_ERR(rs->regs)) {
772		ret =  PTR_ERR(rs->regs);
773		goto err_put_ctlr;
774	}
775
776	rs->apb_pclk = devm_clk_get_enabled(&pdev->dev, "apb_pclk");
777	if (IS_ERR(rs->apb_pclk)) {
778		dev_err(&pdev->dev, "Failed to get apb_pclk\n");
779		ret = PTR_ERR(rs->apb_pclk);
780		goto err_put_ctlr;
781	}
782
783	rs->spiclk = devm_clk_get_enabled(&pdev->dev, "spiclk");
784	if (IS_ERR(rs->spiclk)) {
785		dev_err(&pdev->dev, "Failed to get spi_pclk\n");
786		ret = PTR_ERR(rs->spiclk);
787		goto err_put_ctlr;
788	}
789
790	spi_enable_chip(rs, false);
791
792	ret = platform_get_irq(pdev, 0);
793	if (ret < 0)
794		goto err_put_ctlr;
795
796	ret = devm_request_threaded_irq(&pdev->dev, ret, rockchip_spi_isr, NULL,
797			IRQF_ONESHOT, dev_name(&pdev->dev), ctlr);
798	if (ret)
799		goto err_put_ctlr;
800
801	rs->dev = &pdev->dev;
802	rs->freq = clk_get_rate(rs->spiclk);
803
804	if (!of_property_read_u32(pdev->dev.of_node, "rx-sample-delay-ns",
805				  &rsd_nsecs)) {
806		/* rx sample delay is expressed in parent clock cycles (max 3) */
807		u32 rsd = DIV_ROUND_CLOSEST(rsd_nsecs * (rs->freq >> 8),
808				1000000000 >> 8);
809		if (!rsd) {
810			dev_warn(rs->dev, "%u Hz are too slow to express %u ns delay\n",
811					rs->freq, rsd_nsecs);
812		} else if (rsd > CR0_RSD_MAX) {
813			rsd = CR0_RSD_MAX;
814			dev_warn(rs->dev, "%u Hz are too fast to express %u ns delay, clamping at %u ns\n",
815					rs->freq, rsd_nsecs,
816					CR0_RSD_MAX * 1000000000U / rs->freq);
817		}
818		rs->rsd = rsd;
819	}
820
821	rs->fifo_len = get_fifo_len(rs);
822	if (!rs->fifo_len) {
823		dev_err(&pdev->dev, "Failed to get fifo length\n");
824		ret = -EINVAL;
825		goto err_put_ctlr;
826	}
827
828	pm_runtime_set_autosuspend_delay(&pdev->dev, ROCKCHIP_AUTOSUSPEND_TIMEOUT);
829	pm_runtime_use_autosuspend(&pdev->dev);
830	pm_runtime_set_active(&pdev->dev);
831	pm_runtime_enable(&pdev->dev);
832
833	ctlr->auto_runtime_pm = true;
834	ctlr->bus_num = pdev->id;
835	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_LSB_FIRST;
836	if (target_mode) {
837		ctlr->mode_bits |= SPI_NO_CS;
838		ctlr->target_abort = rockchip_spi_target_abort;
839	} else {
840		ctlr->flags = SPI_CONTROLLER_GPIO_SS;
841		ctlr->max_native_cs = ROCKCHIP_SPI_MAX_NATIVE_CS_NUM;
842		/*
843		 * rk spi0 has two native cs, spi1..5 one cs only
844		 * if num-cs is missing in the dts, default to 1
845		 */
846		if (of_property_read_u32(np, "num-cs", &num_cs))
847			num_cs = 1;
848		ctlr->num_chipselect = num_cs;
849		ctlr->use_gpio_descriptors = true;
850	}
851	ctlr->dev.of_node = pdev->dev.of_node;
852	ctlr->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8) | SPI_BPW_MASK(4);
853	ctlr->min_speed_hz = rs->freq / BAUDR_SCKDV_MAX;
854	ctlr->max_speed_hz = min(rs->freq / BAUDR_SCKDV_MIN, MAX_SCLK_OUT);
855
856	ctlr->setup = rockchip_spi_setup;
857	ctlr->set_cs = rockchip_spi_set_cs;
858	ctlr->transfer_one = rockchip_spi_transfer_one;
859	ctlr->max_transfer_size = rockchip_spi_max_transfer_size;
860	ctlr->handle_err = rockchip_spi_handle_err;
861
862	ctlr->dma_tx = dma_request_chan(rs->dev, "tx");
863	if (IS_ERR(ctlr->dma_tx)) {
864		/* Check tx to see if we need defer probing driver */
865		if (PTR_ERR(ctlr->dma_tx) == -EPROBE_DEFER) {
866			ret = -EPROBE_DEFER;
867			goto err_disable_pm_runtime;
868		}
869		dev_warn(rs->dev, "Failed to request TX DMA channel\n");
870		ctlr->dma_tx = NULL;
871	}
872
873	ctlr->dma_rx = dma_request_chan(rs->dev, "rx");
874	if (IS_ERR(ctlr->dma_rx)) {
875		if (PTR_ERR(ctlr->dma_rx) == -EPROBE_DEFER) {
876			ret = -EPROBE_DEFER;
877			goto err_free_dma_tx;
878		}
879		dev_warn(rs->dev, "Failed to request RX DMA channel\n");
880		ctlr->dma_rx = NULL;
881	}
882
883	if (ctlr->dma_tx && ctlr->dma_rx) {
884		rs->dma_addr_tx = mem->start + ROCKCHIP_SPI_TXDR;
885		rs->dma_addr_rx = mem->start + ROCKCHIP_SPI_RXDR;
886		ctlr->can_dma = rockchip_spi_can_dma;
887	}
888
889	switch (readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION)) {
890	case ROCKCHIP_SPI_VER2_TYPE2:
891		rs->cs_high_supported = true;
892		ctlr->mode_bits |= SPI_CS_HIGH;
893		if (ctlr->can_dma && target_mode)
894			rs->cs_inactive = true;
895		else
896			rs->cs_inactive = false;
897		break;
898	default:
899		rs->cs_inactive = false;
900		break;
901	}
902
903	ret = devm_spi_register_controller(&pdev->dev, ctlr);
904	if (ret < 0) {
905		dev_err(&pdev->dev, "Failed to register controller\n");
906		goto err_free_dma_rx;
907	}
908
909	return 0;
910
911err_free_dma_rx:
912	if (ctlr->dma_rx)
913		dma_release_channel(ctlr->dma_rx);
914err_free_dma_tx:
915	if (ctlr->dma_tx)
916		dma_release_channel(ctlr->dma_tx);
917err_disable_pm_runtime:
918	pm_runtime_disable(&pdev->dev);
919err_put_ctlr:
920	spi_controller_put(ctlr);
921
922	return ret;
923}
924
925static void rockchip_spi_remove(struct platform_device *pdev)
926{
927	struct spi_controller *ctlr = spi_controller_get(platform_get_drvdata(pdev));
928
929	pm_runtime_get_sync(&pdev->dev);
930
931	pm_runtime_put_noidle(&pdev->dev);
932	pm_runtime_disable(&pdev->dev);
933	pm_runtime_set_suspended(&pdev->dev);
934
935	if (ctlr->dma_tx)
936		dma_release_channel(ctlr->dma_tx);
937	if (ctlr->dma_rx)
938		dma_release_channel(ctlr->dma_rx);
939
940	spi_controller_put(ctlr);
941}
942
943#ifdef CONFIG_PM_SLEEP
944static int rockchip_spi_suspend(struct device *dev)
945{
946	int ret;
947	struct spi_controller *ctlr = dev_get_drvdata(dev);
948	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
949
950	ret = spi_controller_suspend(ctlr);
951	if (ret < 0)
952		return ret;
953
954	clk_disable_unprepare(rs->spiclk);
955	clk_disable_unprepare(rs->apb_pclk);
956
957	pinctrl_pm_select_sleep_state(dev);
958
959	return 0;
960}
961
962static int rockchip_spi_resume(struct device *dev)
963{
964	int ret;
965	struct spi_controller *ctlr = dev_get_drvdata(dev);
966	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
967
968	pinctrl_pm_select_default_state(dev);
969
970	ret = clk_prepare_enable(rs->apb_pclk);
971	if (ret < 0)
972		return ret;
973
974	ret = clk_prepare_enable(rs->spiclk);
975	if (ret < 0)
976		clk_disable_unprepare(rs->apb_pclk);
977
978	ret = spi_controller_resume(ctlr);
979	if (ret < 0) {
980		clk_disable_unprepare(rs->spiclk);
981		clk_disable_unprepare(rs->apb_pclk);
982	}
983
984	return 0;
985}
986#endif /* CONFIG_PM_SLEEP */
987
988#ifdef CONFIG_PM
989static int rockchip_spi_runtime_suspend(struct device *dev)
990{
991	struct spi_controller *ctlr = dev_get_drvdata(dev);
992	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
993
994	clk_disable_unprepare(rs->spiclk);
995	clk_disable_unprepare(rs->apb_pclk);
996
997	return 0;
998}
999
1000static int rockchip_spi_runtime_resume(struct device *dev)
1001{
1002	int ret;
1003	struct spi_controller *ctlr = dev_get_drvdata(dev);
1004	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
1005
1006	ret = clk_prepare_enable(rs->apb_pclk);
1007	if (ret < 0)
1008		return ret;
1009
1010	ret = clk_prepare_enable(rs->spiclk);
1011	if (ret < 0)
1012		clk_disable_unprepare(rs->apb_pclk);
1013
1014	return 0;
1015}
1016#endif /* CONFIG_PM */
1017
1018static const struct dev_pm_ops rockchip_spi_pm = {
1019	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(rockchip_spi_suspend, rockchip_spi_resume)
1020	SET_RUNTIME_PM_OPS(rockchip_spi_runtime_suspend,
1021			   rockchip_spi_runtime_resume, NULL)
1022};
1023
1024static const struct of_device_id rockchip_spi_dt_match[] = {
1025	{ .compatible = "rockchip,px30-spi", },
1026	{ .compatible = "rockchip,rk3036-spi", },
1027	{ .compatible = "rockchip,rk3066-spi", },
1028	{ .compatible = "rockchip,rk3188-spi", },
1029	{ .compatible = "rockchip,rk3228-spi", },
1030	{ .compatible = "rockchip,rk3288-spi", },
1031	{ .compatible = "rockchip,rk3308-spi", },
1032	{ .compatible = "rockchip,rk3328-spi", },
1033	{ .compatible = "rockchip,rk3368-spi", },
1034	{ .compatible = "rockchip,rk3399-spi", },
1035	{ .compatible = "rockchip,rv1108-spi", },
1036	{ .compatible = "rockchip,rv1126-spi", },
1037	{ },
1038};
1039MODULE_DEVICE_TABLE(of, rockchip_spi_dt_match);
1040
1041static struct platform_driver rockchip_spi_driver = {
1042	.driver = {
1043		.name	= DRIVER_NAME,
1044		.pm = &rockchip_spi_pm,
1045		.of_match_table = of_match_ptr(rockchip_spi_dt_match),
1046	},
1047	.probe = rockchip_spi_probe,
1048	.remove_new = rockchip_spi_remove,
1049};
1050
1051module_platform_driver(rockchip_spi_driver);
1052
1053MODULE_AUTHOR("Addy Ke <addy.ke@rock-chips.com>");
1054MODULE_DESCRIPTION("ROCKCHIP SPI Controller Driver");
1055MODULE_LICENSE("GPL v2");
1056