1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * Copyright (C) 2013, 2021 Intel Corporation
5 */
6
7#include <linux/acpi.h>
8#include <linux/bitops.h>
9#include <linux/clk.h>
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/dmaengine.h>
13#include <linux/err.h>
14#include <linux/errno.h>
15#include <linux/gpio/consumer.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/ioport.h>
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/mod_devicetable.h>
22#include <linux/of.h>
23#include <linux/platform_device.h>
24#include <linux/pm_runtime.h>
25#include <linux/property.h>
26#include <linux/slab.h>
27
28#include <linux/spi/pxa2xx_spi.h>
29#include <linux/spi/spi.h>
30
31#include "spi-pxa2xx.h"
32
33MODULE_AUTHOR("Stephen Street");
34MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35MODULE_LICENSE("GPL");
36MODULE_ALIAS("platform:pxa2xx-spi");
37
38#define TIMOUT_DFLT		1000
39
40/*
41 * For testing SSCR1 changes that require SSP restart, basically
42 * everything except the service and interrupt enables, the PXA270 developer
43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44 * list, but the PXA255 developer manual says all bits without really meaning
45 * the service and interrupt enables.
46 */
47#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
53
54#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
55				| QUARK_X1000_SSCR1_EFWR	\
56				| QUARK_X1000_SSCR1_RFT		\
57				| QUARK_X1000_SSCR1_TFT		\
58				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59
60#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66
67#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
68#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
69#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
70#define LPSS_CAPS_CS_EN_SHIFT			9
71#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
72
73#define LPSS_PRIV_CLOCK_GATE 0x38
74#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
75#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
76
77struct lpss_config {
78	/* LPSS offset from drv_data->ioaddr */
79	unsigned offset;
80	/* Register offsets from drv_data->lpss_base or -1 */
81	int reg_general;
82	int reg_ssp;
83	int reg_cs_ctrl;
84	int reg_capabilities;
85	/* FIFO thresholds */
86	u32 rx_threshold;
87	u32 tx_threshold_lo;
88	u32 tx_threshold_hi;
89	/* Chip select control */
90	unsigned cs_sel_shift;
91	unsigned cs_sel_mask;
92	unsigned cs_num;
93	/* Quirks */
94	unsigned cs_clk_stays_gated : 1;
95};
96
97/* Keep these sorted with enum pxa_ssp_type */
98static const struct lpss_config lpss_platforms[] = {
99	{	/* LPSS_LPT_SSP */
100		.offset = 0x800,
101		.reg_general = 0x08,
102		.reg_ssp = 0x0c,
103		.reg_cs_ctrl = 0x18,
104		.reg_capabilities = -1,
105		.rx_threshold = 64,
106		.tx_threshold_lo = 160,
107		.tx_threshold_hi = 224,
108	},
109	{	/* LPSS_BYT_SSP */
110		.offset = 0x400,
111		.reg_general = 0x08,
112		.reg_ssp = 0x0c,
113		.reg_cs_ctrl = 0x18,
114		.reg_capabilities = -1,
115		.rx_threshold = 64,
116		.tx_threshold_lo = 160,
117		.tx_threshold_hi = 224,
118	},
119	{	/* LPSS_BSW_SSP */
120		.offset = 0x400,
121		.reg_general = 0x08,
122		.reg_ssp = 0x0c,
123		.reg_cs_ctrl = 0x18,
124		.reg_capabilities = -1,
125		.rx_threshold = 64,
126		.tx_threshold_lo = 160,
127		.tx_threshold_hi = 224,
128		.cs_sel_shift = 2,
129		.cs_sel_mask = 1 << 2,
130		.cs_num = 2,
131	},
132	{	/* LPSS_SPT_SSP */
133		.offset = 0x200,
134		.reg_general = -1,
135		.reg_ssp = 0x20,
136		.reg_cs_ctrl = 0x24,
137		.reg_capabilities = -1,
138		.rx_threshold = 1,
139		.tx_threshold_lo = 32,
140		.tx_threshold_hi = 56,
141	},
142	{	/* LPSS_BXT_SSP */
143		.offset = 0x200,
144		.reg_general = -1,
145		.reg_ssp = 0x20,
146		.reg_cs_ctrl = 0x24,
147		.reg_capabilities = 0xfc,
148		.rx_threshold = 1,
149		.tx_threshold_lo = 16,
150		.tx_threshold_hi = 48,
151		.cs_sel_shift = 8,
152		.cs_sel_mask = 3 << 8,
153		.cs_clk_stays_gated = true,
154	},
155	{	/* LPSS_CNL_SSP */
156		.offset = 0x200,
157		.reg_general = -1,
158		.reg_ssp = 0x20,
159		.reg_cs_ctrl = 0x24,
160		.reg_capabilities = 0xfc,
161		.rx_threshold = 1,
162		.tx_threshold_lo = 32,
163		.tx_threshold_hi = 56,
164		.cs_sel_shift = 8,
165		.cs_sel_mask = 3 << 8,
166		.cs_clk_stays_gated = true,
167	},
168};
169
170static inline const struct lpss_config
171*lpss_get_config(const struct driver_data *drv_data)
172{
173	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
174}
175
176static bool is_lpss_ssp(const struct driver_data *drv_data)
177{
178	switch (drv_data->ssp_type) {
179	case LPSS_LPT_SSP:
180	case LPSS_BYT_SSP:
181	case LPSS_BSW_SSP:
182	case LPSS_SPT_SSP:
183	case LPSS_BXT_SSP:
184	case LPSS_CNL_SSP:
185		return true;
186	default:
187		return false;
188	}
189}
190
191static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
192{
193	return drv_data->ssp_type == QUARK_X1000_SSP;
194}
195
196static bool is_mmp2_ssp(const struct driver_data *drv_data)
197{
198	return drv_data->ssp_type == MMP2_SSP;
199}
200
201static bool is_mrfld_ssp(const struct driver_data *drv_data)
202{
203	return drv_data->ssp_type == MRFLD_SSP;
204}
205
206static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
207{
208	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
209		pxa2xx_spi_write(drv_data, reg, value & mask);
210}
211
212static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
213{
214	switch (drv_data->ssp_type) {
215	case QUARK_X1000_SSP:
216		return QUARK_X1000_SSCR1_CHANGE_MASK;
217	case CE4100_SSP:
218		return CE4100_SSCR1_CHANGE_MASK;
219	default:
220		return SSCR1_CHANGE_MASK;
221	}
222}
223
224static u32
225pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
226{
227	switch (drv_data->ssp_type) {
228	case QUARK_X1000_SSP:
229		return RX_THRESH_QUARK_X1000_DFLT;
230	case CE4100_SSP:
231		return RX_THRESH_CE4100_DFLT;
232	default:
233		return RX_THRESH_DFLT;
234	}
235}
236
237static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
238{
239	u32 mask;
240
241	switch (drv_data->ssp_type) {
242	case QUARK_X1000_SSP:
243		mask = QUARK_X1000_SSSR_TFL_MASK;
244		break;
245	case CE4100_SSP:
246		mask = CE4100_SSSR_TFL_MASK;
247		break;
248	default:
249		mask = SSSR_TFL_MASK;
250		break;
251	}
252
253	return read_SSSR_bits(drv_data, mask) == mask;
254}
255
256static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
257				     u32 *sccr1_reg)
258{
259	u32 mask;
260
261	switch (drv_data->ssp_type) {
262	case QUARK_X1000_SSP:
263		mask = QUARK_X1000_SSCR1_RFT;
264		break;
265	case CE4100_SSP:
266		mask = CE4100_SSCR1_RFT;
267		break;
268	default:
269		mask = SSCR1_RFT;
270		break;
271	}
272	*sccr1_reg &= ~mask;
273}
274
275static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
276				   u32 *sccr1_reg, u32 threshold)
277{
278	switch (drv_data->ssp_type) {
279	case QUARK_X1000_SSP:
280		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
281		break;
282	case CE4100_SSP:
283		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
284		break;
285	default:
286		*sccr1_reg |= SSCR1_RxTresh(threshold);
287		break;
288	}
289}
290
291static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
292				  u32 clk_div, u8 bits)
293{
294	switch (drv_data->ssp_type) {
295	case QUARK_X1000_SSP:
296		return clk_div
297			| QUARK_X1000_SSCR0_Motorola
298			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
299	default:
300		return clk_div
301			| SSCR0_Motorola
302			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
303			| (bits > 16 ? SSCR0_EDSS : 0);
304	}
305}
306
307/*
308 * Read and write LPSS SSP private registers. Caller must first check that
309 * is_lpss_ssp() returns true before these can be called.
310 */
311static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
312{
313	WARN_ON(!drv_data->lpss_base);
314	return readl(drv_data->lpss_base + offset);
315}
316
317static void __lpss_ssp_write_priv(struct driver_data *drv_data,
318				  unsigned offset, u32 value)
319{
320	WARN_ON(!drv_data->lpss_base);
321	writel(value, drv_data->lpss_base + offset);
322}
323
324/*
325 * lpss_ssp_setup - perform LPSS SSP specific setup
326 * @drv_data: pointer to the driver private data
327 *
328 * Perform LPSS SSP specific setup. This function must be called first if
329 * one is going to use LPSS SSP private registers.
330 */
331static void lpss_ssp_setup(struct driver_data *drv_data)
332{
333	const struct lpss_config *config;
334	u32 value;
335
336	config = lpss_get_config(drv_data);
337	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
338
339	/* Enable software chip select control */
340	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
341	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
342	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
343	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
344
345	/* Enable multiblock DMA transfers */
346	if (drv_data->controller_info->enable_dma) {
347		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
348
349		if (config->reg_general >= 0) {
350			value = __lpss_ssp_read_priv(drv_data,
351						     config->reg_general);
352			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
353			__lpss_ssp_write_priv(drv_data,
354					      config->reg_general, value);
355		}
356	}
357}
358
359static void lpss_ssp_select_cs(struct spi_device *spi,
360			       const struct lpss_config *config)
361{
362	struct driver_data *drv_data =
363		spi_controller_get_devdata(spi->controller);
364	u32 value, cs;
365
366	if (!config->cs_sel_mask)
367		return;
368
369	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
370
371	cs = spi_get_chipselect(spi, 0);
372	cs <<= config->cs_sel_shift;
373	if (cs != (value & config->cs_sel_mask)) {
374		/*
375		 * When switching another chip select output active the
376		 * output must be selected first and wait 2 ssp_clk cycles
377		 * before changing state to active. Otherwise a short
378		 * glitch will occur on the previous chip select since
379		 * output select is latched but state control is not.
380		 */
381		value &= ~config->cs_sel_mask;
382		value |= cs;
383		__lpss_ssp_write_priv(drv_data,
384				      config->reg_cs_ctrl, value);
385		ndelay(1000000000 /
386		       (drv_data->controller->max_speed_hz / 2));
387	}
388}
389
390static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
391{
392	struct driver_data *drv_data =
393		spi_controller_get_devdata(spi->controller);
394	const struct lpss_config *config;
395	u32 value;
396
397	config = lpss_get_config(drv_data);
398
399	if (enable)
400		lpss_ssp_select_cs(spi, config);
401
402	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
403	if (enable)
404		value &= ~LPSS_CS_CONTROL_CS_HIGH;
405	else
406		value |= LPSS_CS_CONTROL_CS_HIGH;
407	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
408	if (config->cs_clk_stays_gated) {
409		u32 clkgate;
410
411		/*
412		 * Changing CS alone when dynamic clock gating is on won't
413		 * actually flip CS at that time. This ruins SPI transfers
414		 * that specify delays, or have no data. Toggle the clock mode
415		 * to force on briefly to poke the CS pin to move.
416		 */
417		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
418		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
419			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
420
421		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
422		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
423	}
424}
425
426static void cs_assert(struct spi_device *spi)
427{
428	struct driver_data *drv_data =
429		spi_controller_get_devdata(spi->controller);
430
431	if (drv_data->ssp_type == CE4100_SSP) {
432		pxa2xx_spi_write(drv_data, SSSR, spi_get_chipselect(spi, 0));
433		return;
434	}
435
436	if (is_lpss_ssp(drv_data))
437		lpss_ssp_cs_control(spi, true);
438}
439
440static void cs_deassert(struct spi_device *spi)
441{
442	struct driver_data *drv_data =
443		spi_controller_get_devdata(spi->controller);
444	unsigned long timeout;
445
446	if (drv_data->ssp_type == CE4100_SSP)
447		return;
448
449	/* Wait until SSP becomes idle before deasserting the CS */
450	timeout = jiffies + msecs_to_jiffies(10);
451	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
452	       !time_after(jiffies, timeout))
453		cpu_relax();
454
455	if (is_lpss_ssp(drv_data))
456		lpss_ssp_cs_control(spi, false);
457}
458
459static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
460{
461	if (level)
462		cs_deassert(spi);
463	else
464		cs_assert(spi);
465}
466
467int pxa2xx_spi_flush(struct driver_data *drv_data)
468{
469	unsigned long limit = loops_per_jiffy << 1;
470
471	do {
472		while (read_SSSR_bits(drv_data, SSSR_RNE))
473			pxa2xx_spi_read(drv_data, SSDR);
474	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
475	write_SSSR_CS(drv_data, SSSR_ROR);
476
477	return limit;
478}
479
480static void pxa2xx_spi_off(struct driver_data *drv_data)
481{
482	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
483	if (is_mmp2_ssp(drv_data))
484		return;
485
486	pxa_ssp_disable(drv_data->ssp);
487}
488
489static int null_writer(struct driver_data *drv_data)
490{
491	u8 n_bytes = drv_data->n_bytes;
492
493	if (pxa2xx_spi_txfifo_full(drv_data)
494		|| (drv_data->tx == drv_data->tx_end))
495		return 0;
496
497	pxa2xx_spi_write(drv_data, SSDR, 0);
498	drv_data->tx += n_bytes;
499
500	return 1;
501}
502
503static int null_reader(struct driver_data *drv_data)
504{
505	u8 n_bytes = drv_data->n_bytes;
506
507	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
508		pxa2xx_spi_read(drv_data, SSDR);
509		drv_data->rx += n_bytes;
510	}
511
512	return drv_data->rx == drv_data->rx_end;
513}
514
515static int u8_writer(struct driver_data *drv_data)
516{
517	if (pxa2xx_spi_txfifo_full(drv_data)
518		|| (drv_data->tx == drv_data->tx_end))
519		return 0;
520
521	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
522	++drv_data->tx;
523
524	return 1;
525}
526
527static int u8_reader(struct driver_data *drv_data)
528{
529	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
530		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
531		++drv_data->rx;
532	}
533
534	return drv_data->rx == drv_data->rx_end;
535}
536
537static int u16_writer(struct driver_data *drv_data)
538{
539	if (pxa2xx_spi_txfifo_full(drv_data)
540		|| (drv_data->tx == drv_data->tx_end))
541		return 0;
542
543	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
544	drv_data->tx += 2;
545
546	return 1;
547}
548
549static int u16_reader(struct driver_data *drv_data)
550{
551	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
552		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
553		drv_data->rx += 2;
554	}
555
556	return drv_data->rx == drv_data->rx_end;
557}
558
559static int u32_writer(struct driver_data *drv_data)
560{
561	if (pxa2xx_spi_txfifo_full(drv_data)
562		|| (drv_data->tx == drv_data->tx_end))
563		return 0;
564
565	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
566	drv_data->tx += 4;
567
568	return 1;
569}
570
571static int u32_reader(struct driver_data *drv_data)
572{
573	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
574		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
575		drv_data->rx += 4;
576	}
577
578	return drv_data->rx == drv_data->rx_end;
579}
580
581static void reset_sccr1(struct driver_data *drv_data)
582{
583	u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
584	struct chip_data *chip;
585
586	if (drv_data->controller->cur_msg) {
587		chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
588		threshold = chip->threshold;
589	} else {
590		threshold = 0;
591	}
592
593	switch (drv_data->ssp_type) {
594	case QUARK_X1000_SSP:
595		mask |= QUARK_X1000_SSCR1_RFT;
596		break;
597	case CE4100_SSP:
598		mask |= CE4100_SSCR1_RFT;
599		break;
600	default:
601		mask |= SSCR1_RFT;
602		break;
603	}
604
605	pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
606}
607
608static void int_stop_and_reset(struct driver_data *drv_data)
609{
610	/* Clear and disable interrupts */
611	write_SSSR_CS(drv_data, drv_data->clear_sr);
612	reset_sccr1(drv_data);
613	if (pxa25x_ssp_comp(drv_data))
614		return;
615
616	pxa2xx_spi_write(drv_data, SSTO, 0);
617}
618
619static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
620{
621	int_stop_and_reset(drv_data);
622	pxa2xx_spi_flush(drv_data);
623	pxa2xx_spi_off(drv_data);
624
625	dev_err(drv_data->ssp->dev, "%s\n", msg);
626
627	drv_data->controller->cur_msg->status = err;
628	spi_finalize_current_transfer(drv_data->controller);
629}
630
631static void int_transfer_complete(struct driver_data *drv_data)
632{
633	int_stop_and_reset(drv_data);
634
635	spi_finalize_current_transfer(drv_data->controller);
636}
637
638static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
639{
640	u32 irq_status;
641
642	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
643	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
644		irq_status &= ~SSSR_TFS;
645
646	if (irq_status & SSSR_ROR) {
647		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
648		return IRQ_HANDLED;
649	}
650
651	if (irq_status & SSSR_TUR) {
652		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
653		return IRQ_HANDLED;
654	}
655
656	if (irq_status & SSSR_TINT) {
657		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
658		if (drv_data->read(drv_data)) {
659			int_transfer_complete(drv_data);
660			return IRQ_HANDLED;
661		}
662	}
663
664	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
665	do {
666		if (drv_data->read(drv_data)) {
667			int_transfer_complete(drv_data);
668			return IRQ_HANDLED;
669		}
670	} while (drv_data->write(drv_data));
671
672	if (drv_data->read(drv_data)) {
673		int_transfer_complete(drv_data);
674		return IRQ_HANDLED;
675	}
676
677	if (drv_data->tx == drv_data->tx_end) {
678		u32 bytes_left;
679		u32 sccr1_reg;
680
681		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
682		sccr1_reg &= ~SSCR1_TIE;
683
684		/*
685		 * PXA25x_SSP has no timeout, set up Rx threshold for
686		 * the remaining Rx bytes.
687		 */
688		if (pxa25x_ssp_comp(drv_data)) {
689			u32 rx_thre;
690
691			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
692
693			bytes_left = drv_data->rx_end - drv_data->rx;
694			switch (drv_data->n_bytes) {
695			case 4:
696				bytes_left >>= 2;
697				break;
698			case 2:
699				bytes_left >>= 1;
700				break;
701			}
702
703			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
704			if (rx_thre > bytes_left)
705				rx_thre = bytes_left;
706
707			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
708		}
709		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
710	}
711
712	/* We did something */
713	return IRQ_HANDLED;
714}
715
716static void handle_bad_msg(struct driver_data *drv_data)
717{
718	int_stop_and_reset(drv_data);
719	pxa2xx_spi_off(drv_data);
720
721	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
722}
723
724static irqreturn_t ssp_int(int irq, void *dev_id)
725{
726	struct driver_data *drv_data = dev_id;
727	u32 sccr1_reg;
728	u32 mask = drv_data->mask_sr;
729	u32 status;
730
731	/*
732	 * The IRQ might be shared with other peripherals so we must first
733	 * check that are we RPM suspended or not. If we are we assume that
734	 * the IRQ was not for us (we shouldn't be RPM suspended when the
735	 * interrupt is enabled).
736	 */
737	if (pm_runtime_suspended(drv_data->ssp->dev))
738		return IRQ_NONE;
739
740	/*
741	 * If the device is not yet in RPM suspended state and we get an
742	 * interrupt that is meant for another device, check if status bits
743	 * are all set to one. That means that the device is already
744	 * powered off.
745	 */
746	status = pxa2xx_spi_read(drv_data, SSSR);
747	if (status == ~0)
748		return IRQ_NONE;
749
750	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
751
752	/* Ignore possible writes if we don't need to write */
753	if (!(sccr1_reg & SSCR1_TIE))
754		mask &= ~SSSR_TFS;
755
756	/* Ignore RX timeout interrupt if it is disabled */
757	if (!(sccr1_reg & SSCR1_TINTE))
758		mask &= ~SSSR_TINT;
759
760	if (!(status & mask))
761		return IRQ_NONE;
762
763	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
764	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
765
766	if (!drv_data->controller->cur_msg) {
767		handle_bad_msg(drv_data);
768		/* Never fail */
769		return IRQ_HANDLED;
770	}
771
772	return drv_data->transfer_handler(drv_data);
773}
774
775/*
776 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
777 * input frequency by fractions of 2^24. It also has a divider by 5.
778 *
779 * There are formulas to get baud rate value for given input frequency and
780 * divider parameters, such as DDS_CLK_RATE and SCR:
781 *
782 * Fsys = 200MHz
783 *
784 * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
785 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
786 *
787 * DDS_CLK_RATE either 2^n or 2^n / 5.
788 * SCR is in range 0 .. 255
789 *
790 * Divisor = 5^i * 2^j * 2 * k
791 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
792 *       j = [0, 23]     j = 0 iff i = 1
793 *       k = [1, 256]
794 * Special case: j = 0, i = 1: Divisor = 2 / 5
795 *
796 * Accordingly to the specification the recommended values for DDS_CLK_RATE
797 * are:
798 *	Case 1:		2^n, n = [0, 23]
799 *	Case 2:		2^24 * 2 / 5 (0x666666)
800 *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
801 *
802 * In all cases the lowest possible value is better.
803 *
804 * The function calculates parameters for all cases and chooses the one closest
805 * to the asked baud rate.
806 */
807static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
808{
809	unsigned long xtal = 200000000;
810	unsigned long fref = xtal / 2;		/* mandatory division by 2,
811						   see (2) */
812						/* case 3 */
813	unsigned long fref1 = fref / 2;		/* case 1 */
814	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
815	unsigned long scale;
816	unsigned long q, q1, q2;
817	long r, r1, r2;
818	u32 mul;
819
820	/* Case 1 */
821
822	/* Set initial value for DDS_CLK_RATE */
823	mul = (1 << 24) >> 1;
824
825	/* Calculate initial quot */
826	q1 = DIV_ROUND_UP(fref1, rate);
827
828	/* Scale q1 if it's too big */
829	if (q1 > 256) {
830		/* Scale q1 to range [1, 512] */
831		scale = fls_long(q1 - 1);
832		if (scale > 9) {
833			q1 >>= scale - 9;
834			mul >>= scale - 9;
835		}
836
837		/* Round the result if we have a remainder */
838		q1 += q1 & 1;
839	}
840
841	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
842	scale = __ffs(q1);
843	q1 >>= scale;
844	mul >>= scale;
845
846	/* Get the remainder */
847	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
848
849	/* Case 2 */
850
851	q2 = DIV_ROUND_UP(fref2, rate);
852	r2 = abs(fref2 / q2 - rate);
853
854	/*
855	 * Choose the best between two: less remainder we have the better. We
856	 * can't go case 2 if q2 is greater than 256 since SCR register can
857	 * hold only values 0 .. 255.
858	 */
859	if (r2 >= r1 || q2 > 256) {
860		/* case 1 is better */
861		r = r1;
862		q = q1;
863	} else {
864		/* case 2 is better */
865		r = r2;
866		q = q2;
867		mul = (1 << 24) * 2 / 5;
868	}
869
870	/* Check case 3 only if the divisor is big enough */
871	if (fref / rate >= 80) {
872		u64 fssp;
873		u32 m;
874
875		/* Calculate initial quot */
876		q1 = DIV_ROUND_UP(fref, rate);
877		m = (1 << 24) / q1;
878
879		/* Get the remainder */
880		fssp = (u64)fref * m;
881		do_div(fssp, 1 << 24);
882		r1 = abs(fssp - rate);
883
884		/* Choose this one if it suits better */
885		if (r1 < r) {
886			/* case 3 is better */
887			q = 1;
888			mul = m;
889		}
890	}
891
892	*dds = mul;
893	return q - 1;
894}
895
896static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
897{
898	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
899	const struct ssp_device *ssp = drv_data->ssp;
900
901	rate = min_t(int, ssp_clk, rate);
902
903	/*
904	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
905	 * that the SSP transmission rate can be greater than the device rate.
906	 */
907	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
908		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
909	else
910		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
911}
912
913static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
914					   int rate)
915{
916	struct chip_data *chip =
917		spi_get_ctldata(drv_data->controller->cur_msg->spi);
918	unsigned int clk_div;
919
920	switch (drv_data->ssp_type) {
921	case QUARK_X1000_SSP:
922		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
923		break;
924	default:
925		clk_div = ssp_get_clk_div(drv_data, rate);
926		break;
927	}
928	return clk_div << 8;
929}
930
931static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
932			       struct spi_device *spi,
933			       struct spi_transfer *xfer)
934{
935	struct chip_data *chip = spi_get_ctldata(spi);
936
937	return chip->enable_dma &&
938	       xfer->len <= MAX_DMA_LEN &&
939	       xfer->len >= chip->dma_burst_size;
940}
941
942static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
943				   struct spi_device *spi,
944				   struct spi_transfer *transfer)
945{
946	struct driver_data *drv_data = spi_controller_get_devdata(controller);
947	struct spi_message *message = controller->cur_msg;
948	struct chip_data *chip = spi_get_ctldata(spi);
949	u32 dma_thresh = chip->dma_threshold;
950	u32 dma_burst = chip->dma_burst_size;
951	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
952	u32 clk_div;
953	u8 bits;
954	u32 speed;
955	u32 cr0;
956	u32 cr1;
957	int err;
958	int dma_mapped;
959
960	/* Check if we can DMA this transfer */
961	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
962
963		/* Reject already-mapped transfers; PIO won't always work */
964		if (message->is_dma_mapped
965				|| transfer->rx_dma || transfer->tx_dma) {
966			dev_err(&spi->dev,
967				"Mapped transfer length of %u is greater than %d\n",
968				transfer->len, MAX_DMA_LEN);
969			return -EINVAL;
970		}
971
972		/* Warn ... we force this to PIO mode */
973		dev_warn_ratelimited(&spi->dev,
974				     "DMA disabled for transfer length %u greater than %d\n",
975				     transfer->len, MAX_DMA_LEN);
976	}
977
978	/* Setup the transfer state based on the type of transfer */
979	if (pxa2xx_spi_flush(drv_data) == 0) {
980		dev_err(&spi->dev, "Flush failed\n");
981		return -EIO;
982	}
983	drv_data->tx = (void *)transfer->tx_buf;
984	drv_data->tx_end = drv_data->tx + transfer->len;
985	drv_data->rx = transfer->rx_buf;
986	drv_data->rx_end = drv_data->rx + transfer->len;
987
988	/* Change speed and bit per word on a per transfer */
989	bits = transfer->bits_per_word;
990	speed = transfer->speed_hz;
991
992	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
993
994	if (bits <= 8) {
995		drv_data->n_bytes = 1;
996		drv_data->read = drv_data->rx ? u8_reader : null_reader;
997		drv_data->write = drv_data->tx ? u8_writer : null_writer;
998	} else if (bits <= 16) {
999		drv_data->n_bytes = 2;
1000		drv_data->read = drv_data->rx ? u16_reader : null_reader;
1001		drv_data->write = drv_data->tx ? u16_writer : null_writer;
1002	} else if (bits <= 32) {
1003		drv_data->n_bytes = 4;
1004		drv_data->read = drv_data->rx ? u32_reader : null_reader;
1005		drv_data->write = drv_data->tx ? u32_writer : null_writer;
1006	}
1007	/*
1008	 * If bits per word is changed in DMA mode, then must check
1009	 * the thresholds and burst also.
1010	 */
1011	if (chip->enable_dma) {
1012		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1013						spi,
1014						bits, &dma_burst,
1015						&dma_thresh))
1016			dev_warn_ratelimited(&spi->dev,
1017					     "DMA burst size reduced to match bits_per_word\n");
1018	}
1019
1020	dma_mapped = controller->can_dma &&
1021		     controller->can_dma(controller, spi, transfer) &&
1022		     controller->cur_msg_mapped;
1023	if (dma_mapped) {
1024
1025		/* Ensure we have the correct interrupt handler */
1026		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1027
1028		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1029		if (err)
1030			return err;
1031
1032		/* Clear status and start DMA engine */
1033		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1034		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1035
1036		pxa2xx_spi_dma_start(drv_data);
1037	} else {
1038		/* Ensure we have the correct interrupt handler	*/
1039		drv_data->transfer_handler = interrupt_transfer;
1040
1041		/* Clear status  */
1042		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1043		write_SSSR_CS(drv_data, drv_data->clear_sr);
1044	}
1045
1046	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1047	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1048	if (!pxa25x_ssp_comp(drv_data))
1049		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1050			controller->max_speed_hz
1051				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1052			dma_mapped ? "DMA" : "PIO");
1053	else
1054		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1055			controller->max_speed_hz / 2
1056				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1057			dma_mapped ? "DMA" : "PIO");
1058
1059	if (is_lpss_ssp(drv_data)) {
1060		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1061		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1062	}
1063
1064	if (is_mrfld_ssp(drv_data)) {
1065		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1066		u32 thresh = 0;
1067
1068		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1069		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1070
1071		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1072	}
1073
1074	if (is_quark_x1000_ssp(drv_data))
1075		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1076
1077	/* Stop the SSP */
1078	if (!is_mmp2_ssp(drv_data))
1079		pxa_ssp_disable(drv_data->ssp);
1080
1081	if (!pxa25x_ssp_comp(drv_data))
1082		pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1083
1084	/* First set CR1 without interrupt and service enables */
1085	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1086
1087	/* See if we need to reload the configuration registers */
1088	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1089
1090	/* Restart the SSP */
1091	pxa_ssp_enable(drv_data->ssp);
1092
1093	if (is_mmp2_ssp(drv_data)) {
1094		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1095
1096		if (tx_level) {
1097			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1098			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1099			if (tx_level > transfer->len)
1100				tx_level = transfer->len;
1101			drv_data->tx += tx_level;
1102		}
1103	}
1104
1105	if (spi_controller_is_target(controller)) {
1106		while (drv_data->write(drv_data))
1107			;
1108		if (drv_data->gpiod_ready) {
1109			gpiod_set_value(drv_data->gpiod_ready, 1);
1110			udelay(1);
1111			gpiod_set_value(drv_data->gpiod_ready, 0);
1112		}
1113	}
1114
1115	/*
1116	 * Release the data by enabling service requests and interrupts,
1117	 * without changing any mode bits.
1118	 */
1119	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1120
1121	return 1;
1122}
1123
1124static int pxa2xx_spi_target_abort(struct spi_controller *controller)
1125{
1126	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1127
1128	int_error_stop(drv_data, "transfer aborted", -EINTR);
1129
1130	return 0;
1131}
1132
1133static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1134				 struct spi_message *msg)
1135{
1136	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1137
1138	int_stop_and_reset(drv_data);
1139
1140	/* Disable the SSP */
1141	pxa2xx_spi_off(drv_data);
1142
1143	/*
1144	 * Stop the DMA if running. Note DMA callback handler may have unset
1145	 * the dma_running already, which is fine as stopping is not needed
1146	 * then but we shouldn't rely this flag for anything else than
1147	 * stopping. For instance to differentiate between PIO and DMA
1148	 * transfers.
1149	 */
1150	if (atomic_read(&drv_data->dma_running))
1151		pxa2xx_spi_dma_stop(drv_data);
1152}
1153
1154static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1155{
1156	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1157
1158	/* Disable the SSP now */
1159	pxa2xx_spi_off(drv_data);
1160
1161	return 0;
1162}
1163
1164static int setup(struct spi_device *spi)
1165{
1166	struct pxa2xx_spi_chip *chip_info;
1167	struct chip_data *chip;
1168	const struct lpss_config *config;
1169	struct driver_data *drv_data =
1170		spi_controller_get_devdata(spi->controller);
1171	uint tx_thres, tx_hi_thres, rx_thres;
1172
1173	switch (drv_data->ssp_type) {
1174	case QUARK_X1000_SSP:
1175		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1176		tx_hi_thres = 0;
1177		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1178		break;
1179	case MRFLD_SSP:
1180		tx_thres = TX_THRESH_MRFLD_DFLT;
1181		tx_hi_thres = 0;
1182		rx_thres = RX_THRESH_MRFLD_DFLT;
1183		break;
1184	case CE4100_SSP:
1185		tx_thres = TX_THRESH_CE4100_DFLT;
1186		tx_hi_thres = 0;
1187		rx_thres = RX_THRESH_CE4100_DFLT;
1188		break;
1189	case LPSS_LPT_SSP:
1190	case LPSS_BYT_SSP:
1191	case LPSS_BSW_SSP:
1192	case LPSS_SPT_SSP:
1193	case LPSS_BXT_SSP:
1194	case LPSS_CNL_SSP:
1195		config = lpss_get_config(drv_data);
1196		tx_thres = config->tx_threshold_lo;
1197		tx_hi_thres = config->tx_threshold_hi;
1198		rx_thres = config->rx_threshold;
1199		break;
1200	default:
1201		tx_hi_thres = 0;
1202		if (spi_controller_is_target(drv_data->controller)) {
1203			tx_thres = 1;
1204			rx_thres = 2;
1205		} else {
1206			tx_thres = TX_THRESH_DFLT;
1207			rx_thres = RX_THRESH_DFLT;
1208		}
1209		break;
1210	}
1211
1212	/* Only allocate on the first setup */
1213	chip = spi_get_ctldata(spi);
1214	if (!chip) {
1215		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1216		if (!chip)
1217			return -ENOMEM;
1218
1219		if (drv_data->ssp_type == CE4100_SSP) {
1220			if (spi_get_chipselect(spi, 0) > 4) {
1221				dev_err(&spi->dev,
1222					"failed setup: cs number must not be > 4.\n");
1223				kfree(chip);
1224				return -EINVAL;
1225			}
1226		}
1227		chip->enable_dma = drv_data->controller_info->enable_dma;
1228		chip->timeout = TIMOUT_DFLT;
1229	}
1230
1231	/*
1232	 * Protocol drivers may change the chip settings, so...
1233	 * if chip_info exists, use it.
1234	 */
1235	chip_info = spi->controller_data;
1236
1237	/* chip_info isn't always needed */
1238	if (chip_info) {
1239		if (chip_info->timeout)
1240			chip->timeout = chip_info->timeout;
1241		if (chip_info->tx_threshold)
1242			tx_thres = chip_info->tx_threshold;
1243		if (chip_info->tx_hi_threshold)
1244			tx_hi_thres = chip_info->tx_hi_threshold;
1245		if (chip_info->rx_threshold)
1246			rx_thres = chip_info->rx_threshold;
1247		chip->dma_threshold = 0;
1248	}
1249
1250	chip->cr1 = 0;
1251	if (spi_controller_is_target(drv_data->controller)) {
1252		chip->cr1 |= SSCR1_SCFR;
1253		chip->cr1 |= SSCR1_SCLKDIR;
1254		chip->cr1 |= SSCR1_SFRMDIR;
1255		chip->cr1 |= SSCR1_SPH;
1256	}
1257
1258	if (is_lpss_ssp(drv_data)) {
1259		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1260		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1261					  SSITF_TxHiThresh(tx_hi_thres);
1262	}
1263
1264	if (is_mrfld_ssp(drv_data)) {
1265		chip->lpss_rx_threshold = rx_thres;
1266		chip->lpss_tx_threshold = tx_thres;
1267	}
1268
1269	/*
1270	 * Set DMA burst and threshold outside of chip_info path so that if
1271	 * chip_info goes away after setting chip->enable_dma, the burst and
1272	 * threshold can still respond to changes in bits_per_word.
1273	 */
1274	if (chip->enable_dma) {
1275		/* Set up legal burst and threshold for DMA */
1276		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1277						spi->bits_per_word,
1278						&chip->dma_burst_size,
1279						&chip->dma_threshold)) {
1280			dev_warn(&spi->dev,
1281				 "in setup: DMA burst size reduced to match bits_per_word\n");
1282		}
1283		dev_dbg(&spi->dev,
1284			"in setup: DMA burst size set to %u\n",
1285			chip->dma_burst_size);
1286	}
1287
1288	switch (drv_data->ssp_type) {
1289	case QUARK_X1000_SSP:
1290		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1291				   & QUARK_X1000_SSCR1_RFT)
1292				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1293				   & QUARK_X1000_SSCR1_TFT);
1294		break;
1295	case CE4100_SSP:
1296		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1297			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1298		break;
1299	default:
1300		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1301			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1302		break;
1303	}
1304
1305	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1306	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1307		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1308
1309	if (spi->mode & SPI_LOOP)
1310		chip->cr1 |= SSCR1_LBM;
1311
1312	spi_set_ctldata(spi, chip);
1313
1314	return 0;
1315}
1316
1317static void cleanup(struct spi_device *spi)
1318{
1319	struct chip_data *chip = spi_get_ctldata(spi);
1320
1321	kfree(chip);
1322}
1323
1324static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1325{
1326	return param == chan->device->dev;
1327}
1328
1329static struct pxa2xx_spi_controller *
1330pxa2xx_spi_init_pdata(struct platform_device *pdev)
1331{
1332	struct pxa2xx_spi_controller *pdata;
1333	struct device *dev = &pdev->dev;
1334	struct device *parent = dev->parent;
1335	struct ssp_device *ssp;
1336	struct resource *res;
1337	enum pxa_ssp_type type = SSP_UNDEFINED;
1338	const void *match;
1339	bool is_lpss_priv;
1340	int status;
1341	u64 uid;
1342
1343	is_lpss_priv = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lpss_priv");
1344
1345	match = device_get_match_data(dev);
1346	if (match)
1347		type = (uintptr_t)match;
1348	else if (is_lpss_priv) {
1349		u32 value;
1350
1351		status = device_property_read_u32(dev, "intel,spi-pxa2xx-type", &value);
1352		if (status)
1353			return ERR_PTR(status);
1354
1355		type = (enum pxa_ssp_type)value;
1356	}
1357
1358	/* Validate the SSP type correctness */
1359	if (!(type > SSP_UNDEFINED && type < SSP_MAX))
1360		return ERR_PTR(-EINVAL);
1361
1362	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1363	if (!pdata)
1364		return ERR_PTR(-ENOMEM);
1365
1366	ssp = &pdata->ssp;
1367
1368	ssp->mmio_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1369	if (IS_ERR(ssp->mmio_base))
1370		return ERR_CAST(ssp->mmio_base);
1371
1372	ssp->phys_base = res->start;
1373
1374	/* Platforms with iDMA 64-bit */
1375	if (is_lpss_priv) {
1376		pdata->tx_param = parent;
1377		pdata->rx_param = parent;
1378		pdata->dma_filter = pxa2xx_spi_idma_filter;
1379	}
1380
1381	ssp->clk = devm_clk_get(dev, NULL);
1382	if (IS_ERR(ssp->clk))
1383		return ERR_CAST(ssp->clk);
1384
1385	ssp->irq = platform_get_irq(pdev, 0);
1386	if (ssp->irq < 0)
1387		return ERR_PTR(ssp->irq);
1388
1389	ssp->type = type;
1390	ssp->dev = dev;
1391
1392	status = acpi_dev_uid_to_integer(ACPI_COMPANION(dev), &uid);
1393	if (status)
1394		ssp->port_id = -1;
1395	else
1396		ssp->port_id = uid;
1397
1398	pdata->is_target = device_property_read_bool(dev, "spi-slave");
1399	pdata->num_chipselect = 1;
1400	pdata->enable_dma = true;
1401	pdata->dma_burst_size = 1;
1402
1403	return pdata;
1404}
1405
1406static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1407				      unsigned int cs)
1408{
1409	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1410
1411	if (has_acpi_companion(drv_data->ssp->dev)) {
1412		switch (drv_data->ssp_type) {
1413		/*
1414		 * For Atoms the ACPI DeviceSelection used by the Windows
1415		 * driver starts from 1 instead of 0 so translate it here
1416		 * to match what Linux expects.
1417		 */
1418		case LPSS_BYT_SSP:
1419		case LPSS_BSW_SSP:
1420			return cs - 1;
1421
1422		default:
1423			break;
1424		}
1425	}
1426
1427	return cs;
1428}
1429
1430static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1431{
1432	return MAX_DMA_LEN;
1433}
1434
1435static int pxa2xx_spi_probe(struct platform_device *pdev)
1436{
1437	struct device *dev = &pdev->dev;
1438	struct pxa2xx_spi_controller *platform_info;
1439	struct spi_controller *controller;
1440	struct driver_data *drv_data;
1441	struct ssp_device *ssp;
1442	const struct lpss_config *config;
1443	int status;
1444	u32 tmp;
1445
1446	platform_info = dev_get_platdata(dev);
1447	if (!platform_info) {
1448		platform_info = pxa2xx_spi_init_pdata(pdev);
1449		if (IS_ERR(platform_info)) {
1450			dev_err(&pdev->dev, "missing platform data\n");
1451			return PTR_ERR(platform_info);
1452		}
1453	}
1454
1455	ssp = pxa_ssp_request(pdev->id, pdev->name);
1456	if (!ssp)
1457		ssp = &platform_info->ssp;
1458
1459	if (!ssp->mmio_base) {
1460		dev_err(&pdev->dev, "failed to get SSP\n");
1461		return -ENODEV;
1462	}
1463
1464	if (platform_info->is_target)
1465		controller = devm_spi_alloc_target(dev, sizeof(*drv_data));
1466	else
1467		controller = devm_spi_alloc_host(dev, sizeof(*drv_data));
1468
1469	if (!controller) {
1470		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1471		status = -ENOMEM;
1472		goto out_error_controller_alloc;
1473	}
1474	drv_data = spi_controller_get_devdata(controller);
1475	drv_data->controller = controller;
1476	drv_data->controller_info = platform_info;
1477	drv_data->ssp = ssp;
1478
1479	device_set_node(&controller->dev, dev_fwnode(dev));
1480
1481	/* The spi->mode bits understood by this driver: */
1482	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1483
1484	controller->bus_num = ssp->port_id;
1485	controller->dma_alignment = DMA_ALIGNMENT;
1486	controller->cleanup = cleanup;
1487	controller->setup = setup;
1488	controller->set_cs = pxa2xx_spi_set_cs;
1489	controller->transfer_one = pxa2xx_spi_transfer_one;
1490	controller->target_abort = pxa2xx_spi_target_abort;
1491	controller->handle_err = pxa2xx_spi_handle_err;
1492	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1493	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1494	controller->auto_runtime_pm = true;
1495	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1496
1497	drv_data->ssp_type = ssp->type;
1498
1499	if (pxa25x_ssp_comp(drv_data)) {
1500		switch (drv_data->ssp_type) {
1501		case QUARK_X1000_SSP:
1502			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1503			break;
1504		default:
1505			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1506			break;
1507		}
1508
1509		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1510		drv_data->dma_cr1 = 0;
1511		drv_data->clear_sr = SSSR_ROR;
1512		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1513	} else {
1514		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1515		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1516		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1517		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1518		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1519						| SSSR_ROR | SSSR_TUR;
1520	}
1521
1522	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1523			drv_data);
1524	if (status < 0) {
1525		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1526		goto out_error_controller_alloc;
1527	}
1528
1529	/* Setup DMA if requested */
1530	if (platform_info->enable_dma) {
1531		status = pxa2xx_spi_dma_setup(drv_data);
1532		if (status) {
1533			dev_warn(dev, "no DMA channels available, using PIO\n");
1534			platform_info->enable_dma = false;
1535		} else {
1536			controller->can_dma = pxa2xx_spi_can_dma;
1537			controller->max_dma_len = MAX_DMA_LEN;
1538			controller->max_transfer_size =
1539				pxa2xx_spi_max_dma_transfer_size;
1540		}
1541	}
1542
1543	/* Enable SOC clock */
1544	status = clk_prepare_enable(ssp->clk);
1545	if (status)
1546		goto out_error_dma_irq_alloc;
1547
1548	controller->max_speed_hz = clk_get_rate(ssp->clk);
1549	/*
1550	 * Set minimum speed for all other platforms than Intel Quark which is
1551	 * able do under 1 Hz transfers.
1552	 */
1553	if (!pxa25x_ssp_comp(drv_data))
1554		controller->min_speed_hz =
1555			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1556	else if (!is_quark_x1000_ssp(drv_data))
1557		controller->min_speed_hz =
1558			DIV_ROUND_UP(controller->max_speed_hz, 512);
1559
1560	pxa_ssp_disable(ssp);
1561
1562	/* Load default SSP configuration */
1563	switch (drv_data->ssp_type) {
1564	case QUARK_X1000_SSP:
1565		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1566		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1567		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1568
1569		/* Using the Motorola SPI protocol and use 8 bit frame */
1570		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1571		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1572		break;
1573	case CE4100_SSP:
1574		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1575		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1576		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1577		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1578		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1579		break;
1580	default:
1581
1582		if (spi_controller_is_target(controller)) {
1583			tmp = SSCR1_SCFR |
1584			      SSCR1_SCLKDIR |
1585			      SSCR1_SFRMDIR |
1586			      SSCR1_RxTresh(2) |
1587			      SSCR1_TxTresh(1) |
1588			      SSCR1_SPH;
1589		} else {
1590			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1591			      SSCR1_TxTresh(TX_THRESH_DFLT);
1592		}
1593		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1594		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1595		if (!spi_controller_is_target(controller))
1596			tmp |= SSCR0_SCR(2);
1597		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1598		break;
1599	}
1600
1601	if (!pxa25x_ssp_comp(drv_data))
1602		pxa2xx_spi_write(drv_data, SSTO, 0);
1603
1604	if (!is_quark_x1000_ssp(drv_data))
1605		pxa2xx_spi_write(drv_data, SSPSP, 0);
1606
1607	if (is_lpss_ssp(drv_data)) {
1608		lpss_ssp_setup(drv_data);
1609		config = lpss_get_config(drv_data);
1610		if (config->reg_capabilities >= 0) {
1611			tmp = __lpss_ssp_read_priv(drv_data,
1612						   config->reg_capabilities);
1613			tmp &= LPSS_CAPS_CS_EN_MASK;
1614			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1615			platform_info->num_chipselect = ffz(tmp);
1616		} else if (config->cs_num) {
1617			platform_info->num_chipselect = config->cs_num;
1618		}
1619	}
1620	controller->num_chipselect = platform_info->num_chipselect;
1621	controller->use_gpio_descriptors = true;
1622
1623	if (platform_info->is_target) {
1624		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1625						"ready", GPIOD_OUT_LOW);
1626		if (IS_ERR(drv_data->gpiod_ready)) {
1627			status = PTR_ERR(drv_data->gpiod_ready);
1628			goto out_error_clock_enabled;
1629		}
1630	}
1631
1632	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1633	pm_runtime_use_autosuspend(&pdev->dev);
1634	pm_runtime_set_active(&pdev->dev);
1635	pm_runtime_enable(&pdev->dev);
1636
1637	/* Register with the SPI framework */
1638	platform_set_drvdata(pdev, drv_data);
1639	status = spi_register_controller(controller);
1640	if (status) {
1641		dev_err(&pdev->dev, "problem registering SPI controller\n");
1642		goto out_error_pm_runtime_enabled;
1643	}
1644
1645	return status;
1646
1647out_error_pm_runtime_enabled:
1648	pm_runtime_disable(&pdev->dev);
1649
1650out_error_clock_enabled:
1651	clk_disable_unprepare(ssp->clk);
1652
1653out_error_dma_irq_alloc:
1654	pxa2xx_spi_dma_release(drv_data);
1655	free_irq(ssp->irq, drv_data);
1656
1657out_error_controller_alloc:
1658	pxa_ssp_free(ssp);
1659	return status;
1660}
1661
1662static void pxa2xx_spi_remove(struct platform_device *pdev)
1663{
1664	struct driver_data *drv_data = platform_get_drvdata(pdev);
1665	struct ssp_device *ssp = drv_data->ssp;
1666
1667	pm_runtime_get_sync(&pdev->dev);
1668
1669	spi_unregister_controller(drv_data->controller);
1670
1671	/* Disable the SSP at the peripheral and SOC level */
1672	pxa_ssp_disable(ssp);
1673	clk_disable_unprepare(ssp->clk);
1674
1675	/* Release DMA */
1676	if (drv_data->controller_info->enable_dma)
1677		pxa2xx_spi_dma_release(drv_data);
1678
1679	pm_runtime_put_noidle(&pdev->dev);
1680	pm_runtime_disable(&pdev->dev);
1681
1682	/* Release IRQ */
1683	free_irq(ssp->irq, drv_data);
1684
1685	/* Release SSP */
1686	pxa_ssp_free(ssp);
1687}
1688
1689static int pxa2xx_spi_suspend(struct device *dev)
1690{
1691	struct driver_data *drv_data = dev_get_drvdata(dev);
1692	struct ssp_device *ssp = drv_data->ssp;
1693	int status;
1694
1695	status = spi_controller_suspend(drv_data->controller);
1696	if (status)
1697		return status;
1698
1699	pxa_ssp_disable(ssp);
1700
1701	if (!pm_runtime_suspended(dev))
1702		clk_disable_unprepare(ssp->clk);
1703
1704	return 0;
1705}
1706
1707static int pxa2xx_spi_resume(struct device *dev)
1708{
1709	struct driver_data *drv_data = dev_get_drvdata(dev);
1710	struct ssp_device *ssp = drv_data->ssp;
1711	int status;
1712
1713	/* Enable the SSP clock */
1714	if (!pm_runtime_suspended(dev)) {
1715		status = clk_prepare_enable(ssp->clk);
1716		if (status)
1717			return status;
1718	}
1719
1720	/* Start the queue running */
1721	return spi_controller_resume(drv_data->controller);
1722}
1723
1724static int pxa2xx_spi_runtime_suspend(struct device *dev)
1725{
1726	struct driver_data *drv_data = dev_get_drvdata(dev);
1727
1728	clk_disable_unprepare(drv_data->ssp->clk);
1729	return 0;
1730}
1731
1732static int pxa2xx_spi_runtime_resume(struct device *dev)
1733{
1734	struct driver_data *drv_data = dev_get_drvdata(dev);
1735
1736	return clk_prepare_enable(drv_data->ssp->clk);
1737}
1738
1739static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1740	SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1741	RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL)
1742};
1743
1744#ifdef CONFIG_ACPI
1745static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1746	{ "80860F0E", LPSS_BYT_SSP },
1747	{ "8086228E", LPSS_BSW_SSP },
1748	{ "INT33C0", LPSS_LPT_SSP },
1749	{ "INT33C1", LPSS_LPT_SSP },
1750	{ "INT3430", LPSS_LPT_SSP },
1751	{ "INT3431", LPSS_LPT_SSP },
1752	{}
1753};
1754MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1755#endif
1756
1757static const struct of_device_id pxa2xx_spi_of_match[] __maybe_unused = {
1758	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1759	{}
1760};
1761MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1762
1763static struct platform_driver driver = {
1764	.driver = {
1765		.name	= "pxa2xx-spi",
1766		.pm	= pm_ptr(&pxa2xx_spi_pm_ops),
1767		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1768		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1769	},
1770	.probe = pxa2xx_spi_probe,
1771	.remove_new = pxa2xx_spi_remove,
1772};
1773
1774static int __init pxa2xx_spi_init(void)
1775{
1776	return platform_driver_register(&driver);
1777}
1778subsys_initcall(pxa2xx_spi_init);
1779
1780static void __exit pxa2xx_spi_exit(void)
1781{
1782	platform_driver_unregister(&driver);
1783}
1784module_exit(pxa2xx_spi_exit);
1785
1786MODULE_SOFTDEP("pre: dw_dmac");
1787