1// SPDX-License-Identifier: GPL-2.0
2//
3// Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
4//
5// Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
6//
7// This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
8//
9// Copyright (C) 2020 MediaTek Inc.
10// Author: Weijie Gao <weijie.gao@mediatek.com>
11//
12// This controller organize the page data as several interleaved sectors
13// like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
14// +---------+------+------+---------+------+------+-----+
15// | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
16// +---------+------+------+---------+------+------+-----+
17// With auto-format turned on, DMA only returns this part:
18// +---------+---------+-----+
19// | Sector1 | Sector2 | ... |
20// +---------+---------+-----+
21// The FDM data will be filled to the registers, and ECC parity data isn't
22// accessible.
23// With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
24// in it's original order shown in the first table. ECC can't be turned on when
25// auto-format is off.
26//
27// However, Linux SPI-NAND driver expects the data returned as:
28// +------+-----+
29// | Page | OOB |
30// +------+-----+
31// where the page data is continuously stored instead of interleaved.
32// So we assume all instructions matching the page_op template between ECC
33// prepare_io_req and finish_io_req are for page cache r/w.
34// Here's how this spi-mem driver operates when reading:
35//  1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
36//  2. Perform page ops and let the controller fill the DMA bounce buffer with
37//     de-interleaved sector data and set FDM registers.
38//  3. Return the data as:
39//     +---------+---------+-----+------+------+-----+
40//     | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
41//     +---------+---------+-----+------+------+-----+
42//  4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
43//     read the data with auto-format off into the bounce buffer and copy
44//     needed data to the buffer specified in the request.
45//
46// Write requests operates in a similar manner.
47// As a limitation of this strategy, we won't be able to access any ECC parity
48// data at all in Linux.
49//
50// Here's the bad block mark situation on MTK chips:
51// In older chips like mt7622, MTK uses the first FDM byte in the first sector
52// as the bad block mark. After de-interleaving, this byte appears at [pagesize]
53// in the returned data, which is the BBM position expected by kernel. However,
54// the conventional bad block mark is the first byte of the OOB, which is part
55// of the last sector data in the interleaved layout. Instead of fixing their
56// hardware, MTK decided to address this inconsistency in software. On these
57// later chips, the BootROM expects the following:
58// 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
59//    (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
60// 2. The original byte stored at that position in the DMA buffer will be stored
61//    as the first byte of the FDM section in the last sector.
62// We can't disagree with the BootROM, so after de-interleaving, we need to
63// perform the following swaps in read:
64// 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
65//    which is the expected BBM position by kernel.
66// 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
67//    [page_size - (nsectors - 1) * spare_size]
68// Similarly, when writing, we need to perform swaps in the other direction.
69
70#include <linux/kernel.h>
71#include <linux/module.h>
72#include <linux/init.h>
73#include <linux/device.h>
74#include <linux/mutex.h>
75#include <linux/clk.h>
76#include <linux/interrupt.h>
77#include <linux/dma-mapping.h>
78#include <linux/iopoll.h>
79#include <linux/of.h>
80#include <linux/platform_device.h>
81#include <linux/mtd/nand-ecc-mtk.h>
82#include <linux/spi/spi.h>
83#include <linux/spi/spi-mem.h>
84#include <linux/mtd/nand.h>
85
86// NFI registers
87#define NFI_CNFG 0x000
88#define CNFG_OP_MODE_S 12
89#define CNFG_OP_MODE_CUST 6
90#define CNFG_OP_MODE_PROGRAM 3
91#define CNFG_AUTO_FMT_EN BIT(9)
92#define CNFG_HW_ECC_EN BIT(8)
93#define CNFG_DMA_BURST_EN BIT(2)
94#define CNFG_READ_MODE BIT(1)
95#define CNFG_DMA_MODE BIT(0)
96
97#define NFI_PAGEFMT 0x0004
98#define NFI_SPARE_SIZE_LS_S 16
99#define NFI_FDM_ECC_NUM_S 12
100#define NFI_FDM_NUM_S 8
101#define NFI_SPARE_SIZE_S 4
102#define NFI_SEC_SEL_512 BIT(2)
103#define NFI_PAGE_SIZE_S 0
104#define NFI_PAGE_SIZE_512_2K 0
105#define NFI_PAGE_SIZE_2K_4K 1
106#define NFI_PAGE_SIZE_4K_8K 2
107#define NFI_PAGE_SIZE_8K_16K 3
108
109#define NFI_CON 0x008
110#define CON_SEC_NUM_S 12
111#define CON_BWR BIT(9)
112#define CON_BRD BIT(8)
113#define CON_NFI_RST BIT(1)
114#define CON_FIFO_FLUSH BIT(0)
115
116#define NFI_INTR_EN 0x010
117#define NFI_INTR_STA 0x014
118#define NFI_IRQ_INTR_EN BIT(31)
119#define NFI_IRQ_CUS_READ BIT(8)
120#define NFI_IRQ_CUS_PG BIT(7)
121
122#define NFI_CMD 0x020
123#define NFI_CMD_DUMMY_READ 0x00
124#define NFI_CMD_DUMMY_WRITE 0x80
125
126#define NFI_STRDATA 0x040
127#define STR_DATA BIT(0)
128
129#define NFI_STA 0x060
130#define NFI_NAND_FSM_7622 GENMASK(28, 24)
131#define NFI_NAND_FSM_7986 GENMASK(29, 23)
132#define NFI_FSM GENMASK(19, 16)
133#define READ_EMPTY BIT(12)
134
135#define NFI_FIFOSTA 0x064
136#define FIFO_WR_REMAIN_S 8
137#define FIFO_RD_REMAIN_S 0
138
139#define NFI_ADDRCNTR 0x070
140#define SEC_CNTR GENMASK(16, 12)
141#define SEC_CNTR_S 12
142#define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
143
144#define NFI_STRADDR 0x080
145
146#define NFI_BYTELEN 0x084
147#define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
148
149#define NFI_FDM0L 0x0a0
150#define NFI_FDM0M 0x0a4
151#define NFI_FDML(n) (NFI_FDM0L + (n)*8)
152#define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
153
154#define NFI_DEBUG_CON1 0x220
155#define WBUF_EN BIT(2)
156
157#define NFI_MASTERSTA 0x224
158#define MAS_ADDR GENMASK(11, 9)
159#define MAS_RD GENMASK(8, 6)
160#define MAS_WR GENMASK(5, 3)
161#define MAS_RDDLY GENMASK(2, 0)
162#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
163#define NFI_MASTERSTA_MASK_7986 3
164
165// SNFI registers
166#define SNF_MAC_CTL 0x500
167#define MAC_XIO_SEL BIT(4)
168#define SF_MAC_EN BIT(3)
169#define SF_TRIG BIT(2)
170#define WIP_READY BIT(1)
171#define WIP BIT(0)
172
173#define SNF_MAC_OUTL 0x504
174#define SNF_MAC_INL 0x508
175
176#define SNF_RD_CTL2 0x510
177#define DATA_READ_DUMMY_S 8
178#define DATA_READ_MAX_DUMMY 0xf
179#define DATA_READ_CMD_S 0
180
181#define SNF_RD_CTL3 0x514
182
183#define SNF_PG_CTL1 0x524
184#define PG_LOAD_CMD_S 8
185
186#define SNF_PG_CTL2 0x528
187
188#define SNF_MISC_CTL 0x538
189#define SW_RST BIT(28)
190#define FIFO_RD_LTC_S 25
191#define PG_LOAD_X4_EN BIT(20)
192#define DATA_READ_MODE_S 16
193#define DATA_READ_MODE GENMASK(18, 16)
194#define DATA_READ_MODE_X1 0
195#define DATA_READ_MODE_X2 1
196#define DATA_READ_MODE_X4 2
197#define DATA_READ_MODE_DUAL 5
198#define DATA_READ_MODE_QUAD 6
199#define DATA_READ_LATCH_LAT GENMASK(9, 8)
200#define DATA_READ_LATCH_LAT_S 8
201#define PG_LOAD_CUSTOM_EN BIT(7)
202#define DATARD_CUSTOM_EN BIT(6)
203#define CS_DESELECT_CYC_S 0
204
205#define SNF_MISC_CTL2 0x53c
206#define PROGRAM_LOAD_BYTE_NUM_S 16
207#define READ_DATA_BYTE_NUM_S 11
208
209#define SNF_DLY_CTL3 0x548
210#define SFCK_SAM_DLY_S 0
211#define SFCK_SAM_DLY GENMASK(5, 0)
212#define SFCK_SAM_DLY_TOTAL 9
213#define SFCK_SAM_DLY_RANGE 47
214
215#define SNF_STA_CTL1 0x550
216#define CUS_PG_DONE BIT(28)
217#define CUS_READ_DONE BIT(27)
218#define SPI_STATE_S 0
219#define SPI_STATE GENMASK(3, 0)
220
221#define SNF_CFG 0x55c
222#define SPI_MODE BIT(0)
223
224#define SNF_GPRAM 0x800
225#define SNF_GPRAM_SIZE 0xa0
226
227#define SNFI_POLL_INTERVAL 1000000
228
229static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
230
231static const u8 mt7986_spare_sizes[] = {
232	16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
233	74
234};
235
236struct mtk_snand_caps {
237	u16 sector_size;
238	u16 max_sectors;
239	u16 fdm_size;
240	u16 fdm_ecc_size;
241	u16 fifo_size;
242
243	bool bbm_swap;
244	bool empty_page_check;
245	u32 mastersta_mask;
246	u32 nandfsm_mask;
247
248	const u8 *spare_sizes;
249	u32 num_spare_size;
250};
251
252static const struct mtk_snand_caps mt7622_snand_caps = {
253	.sector_size = 512,
254	.max_sectors = 8,
255	.fdm_size = 8,
256	.fdm_ecc_size = 1,
257	.fifo_size = 32,
258	.bbm_swap = false,
259	.empty_page_check = false,
260	.mastersta_mask = NFI_MASTERSTA_MASK_7622,
261	.nandfsm_mask = NFI_NAND_FSM_7622,
262	.spare_sizes = mt7622_spare_sizes,
263	.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
264};
265
266static const struct mtk_snand_caps mt7629_snand_caps = {
267	.sector_size = 512,
268	.max_sectors = 8,
269	.fdm_size = 8,
270	.fdm_ecc_size = 1,
271	.fifo_size = 32,
272	.bbm_swap = true,
273	.empty_page_check = false,
274	.mastersta_mask = NFI_MASTERSTA_MASK_7622,
275	.nandfsm_mask = NFI_NAND_FSM_7622,
276	.spare_sizes = mt7622_spare_sizes,
277	.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
278};
279
280static const struct mtk_snand_caps mt7986_snand_caps = {
281	.sector_size = 1024,
282	.max_sectors = 8,
283	.fdm_size = 8,
284	.fdm_ecc_size = 1,
285	.fifo_size = 64,
286	.bbm_swap = true,
287	.empty_page_check = true,
288	.mastersta_mask = NFI_MASTERSTA_MASK_7986,
289	.nandfsm_mask = NFI_NAND_FSM_7986,
290	.spare_sizes = mt7986_spare_sizes,
291	.num_spare_size = ARRAY_SIZE(mt7986_spare_sizes)
292};
293
294struct mtk_snand_conf {
295	size_t page_size;
296	size_t oob_size;
297	u8 nsectors;
298	u8 spare_size;
299};
300
301struct mtk_snand {
302	struct spi_controller *ctlr;
303	struct device *dev;
304	struct clk *nfi_clk;
305	struct clk *pad_clk;
306	struct clk *nfi_hclk;
307	void __iomem *nfi_base;
308	int irq;
309	struct completion op_done;
310	const struct mtk_snand_caps *caps;
311	struct mtk_ecc_config *ecc_cfg;
312	struct mtk_ecc *ecc;
313	struct mtk_snand_conf nfi_cfg;
314	struct mtk_ecc_stats ecc_stats;
315	struct nand_ecc_engine ecc_eng;
316	bool autofmt;
317	u8 *buf;
318	size_t buf_len;
319};
320
321static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
322{
323	struct nand_ecc_engine *eng = nand->ecc.engine;
324
325	return container_of(eng, struct mtk_snand, ecc_eng);
326}
327
328static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
329{
330	if (snf->buf_len >= size)
331		return 0;
332	kfree(snf->buf);
333	snf->buf = kmalloc(size, GFP_KERNEL);
334	if (!snf->buf)
335		return -ENOMEM;
336	snf->buf_len = size;
337	memset(snf->buf, 0xff, snf->buf_len);
338	return 0;
339}
340
341static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
342{
343	return readl(snf->nfi_base + reg);
344}
345
346static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
347{
348	writel(val, snf->nfi_base + reg);
349}
350
351static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
352{
353	writew(val, snf->nfi_base + reg);
354}
355
356static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
357{
358	u32 val;
359
360	val = readl(snf->nfi_base + reg);
361	val &= ~clr;
362	val |= set;
363	writel(val, snf->nfi_base + reg);
364}
365
366static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
367{
368	u32 i, val = 0, es = sizeof(u32);
369
370	for (i = reg; i < reg + len; i++) {
371		if (i == reg || i % es == 0)
372			val = nfi_read32(snf, i & ~(es - 1));
373
374		*data++ = (u8)(val >> (8 * (i % es)));
375	}
376}
377
378static int mtk_nfi_reset(struct mtk_snand *snf)
379{
380	u32 val, fifo_mask;
381	int ret;
382
383	nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
384
385	ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
386				 !(val & snf->caps->mastersta_mask), 0,
387				 SNFI_POLL_INTERVAL);
388	if (ret) {
389		dev_err(snf->dev, "NFI master is still busy after reset\n");
390		return ret;
391	}
392
393	ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
394				 !(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0,
395				 SNFI_POLL_INTERVAL);
396	if (ret) {
397		dev_err(snf->dev, "Failed to reset NFI\n");
398		return ret;
399	}
400
401	fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
402		    ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
403	ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
404				 !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
405	if (ret) {
406		dev_err(snf->dev, "NFI FIFOs are not empty\n");
407		return ret;
408	}
409
410	return 0;
411}
412
413static int mtk_snand_mac_reset(struct mtk_snand *snf)
414{
415	int ret;
416	u32 val;
417
418	nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
419
420	ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
421				 !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
422	if (ret)
423		dev_err(snf->dev, "Failed to reset SNFI MAC\n");
424
425	nfi_write32(snf, SNF_MISC_CTL,
426		    (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
427
428	return ret;
429}
430
431static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
432{
433	int ret;
434	u32 val;
435
436	nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
437	nfi_write32(snf, SNF_MAC_OUTL, outlen);
438	nfi_write32(snf, SNF_MAC_INL, inlen);
439
440	nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
441
442	ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
443				 val & WIP_READY, 0, SNFI_POLL_INTERVAL);
444	if (ret) {
445		dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
446		goto cleanup;
447	}
448
449	ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
450				 0, SNFI_POLL_INTERVAL);
451	if (ret)
452		dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
453
454cleanup:
455	nfi_write32(snf, SNF_MAC_CTL, 0);
456
457	return ret;
458}
459
460static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
461{
462	u32 rx_len = 0;
463	u32 reg_offs = 0;
464	u32 val = 0;
465	const u8 *tx_buf = NULL;
466	u8 *rx_buf = NULL;
467	int i, ret;
468	u8 b;
469
470	if (op->data.dir == SPI_MEM_DATA_IN) {
471		rx_len = op->data.nbytes;
472		rx_buf = op->data.buf.in;
473	} else {
474		tx_buf = op->data.buf.out;
475	}
476
477	mtk_snand_mac_reset(snf);
478
479	for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
480		b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
481		val |= b << (8 * (reg_offs % 4));
482		if (reg_offs % 4 == 3) {
483			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
484			val = 0;
485		}
486	}
487
488	for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
489		b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
490		val |= b << (8 * (reg_offs % 4));
491		if (reg_offs % 4 == 3) {
492			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
493			val = 0;
494		}
495	}
496
497	for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
498		if (reg_offs % 4 == 3) {
499			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
500			val = 0;
501		}
502	}
503
504	if (op->data.dir == SPI_MEM_DATA_OUT) {
505		for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
506			val |= tx_buf[i] << (8 * (reg_offs % 4));
507			if (reg_offs % 4 == 3) {
508				nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
509				val = 0;
510			}
511		}
512	}
513
514	if (reg_offs % 4)
515		nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
516
517	for (i = 0; i < reg_offs; i += 4)
518		dev_dbg(snf->dev, "%d: %08X", i,
519			nfi_read32(snf, SNF_GPRAM + i));
520
521	dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
522
523	ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
524	if (ret)
525		return ret;
526
527	if (!rx_len)
528		return 0;
529
530	nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
531	return 0;
532}
533
534static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
535				   u32 oob_size)
536{
537	int spare_idx = -1;
538	u32 spare_size, spare_size_shift, pagesize_idx;
539	u32 sector_size_512;
540	u8 nsectors;
541	int i;
542
543	// skip if it's already configured as required.
544	if (snf->nfi_cfg.page_size == page_size &&
545	    snf->nfi_cfg.oob_size == oob_size)
546		return 0;
547
548	nsectors = page_size / snf->caps->sector_size;
549	if (nsectors > snf->caps->max_sectors) {
550		dev_err(snf->dev, "too many sectors required.\n");
551		goto err;
552	}
553
554	if (snf->caps->sector_size == 512) {
555		sector_size_512 = NFI_SEC_SEL_512;
556		spare_size_shift = NFI_SPARE_SIZE_S;
557	} else {
558		sector_size_512 = 0;
559		spare_size_shift = NFI_SPARE_SIZE_LS_S;
560	}
561
562	switch (page_size) {
563	case SZ_512:
564		pagesize_idx = NFI_PAGE_SIZE_512_2K;
565		break;
566	case SZ_2K:
567		if (snf->caps->sector_size == 512)
568			pagesize_idx = NFI_PAGE_SIZE_2K_4K;
569		else
570			pagesize_idx = NFI_PAGE_SIZE_512_2K;
571		break;
572	case SZ_4K:
573		if (snf->caps->sector_size == 512)
574			pagesize_idx = NFI_PAGE_SIZE_4K_8K;
575		else
576			pagesize_idx = NFI_PAGE_SIZE_2K_4K;
577		break;
578	case SZ_8K:
579		if (snf->caps->sector_size == 512)
580			pagesize_idx = NFI_PAGE_SIZE_8K_16K;
581		else
582			pagesize_idx = NFI_PAGE_SIZE_4K_8K;
583		break;
584	case SZ_16K:
585		pagesize_idx = NFI_PAGE_SIZE_8K_16K;
586		break;
587	default:
588		dev_err(snf->dev, "unsupported page size.\n");
589		goto err;
590	}
591
592	spare_size = oob_size / nsectors;
593	// If we're using the 1KB sector size, HW will automatically double the
594	// spare size. We should only use half of the value in this case.
595	if (snf->caps->sector_size == 1024)
596		spare_size /= 2;
597
598	for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
599		if (snf->caps->spare_sizes[i] <= spare_size) {
600			spare_size = snf->caps->spare_sizes[i];
601			if (snf->caps->sector_size == 1024)
602				spare_size *= 2;
603			spare_idx = i;
604			break;
605		}
606	}
607
608	if (spare_idx < 0) {
609		dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
610		goto err;
611	}
612
613	nfi_write32(snf, NFI_PAGEFMT,
614		    (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
615			    (snf->caps->fdm_size << NFI_FDM_NUM_S) |
616			    (spare_idx << spare_size_shift) |
617			    (pagesize_idx << NFI_PAGE_SIZE_S) |
618			    sector_size_512);
619
620	snf->nfi_cfg.page_size = page_size;
621	snf->nfi_cfg.oob_size = oob_size;
622	snf->nfi_cfg.nsectors = nsectors;
623	snf->nfi_cfg.spare_size = spare_size;
624
625	dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
626		snf->caps->sector_size, spare_size, nsectors);
627	return snand_prepare_bouncebuf(snf, page_size + oob_size);
628err:
629	dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
630		oob_size);
631	return -EOPNOTSUPP;
632}
633
634static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
635				   struct mtd_oob_region *oobecc)
636{
637	// ECC area is not accessible
638	return -ERANGE;
639}
640
641static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
642				    struct mtd_oob_region *oobfree)
643{
644	struct nand_device *nand = mtd_to_nanddev(mtd);
645	struct mtk_snand *ms = nand_to_mtk_snand(nand);
646
647	if (section >= ms->nfi_cfg.nsectors)
648		return -ERANGE;
649
650	oobfree->length = ms->caps->fdm_size - 1;
651	oobfree->offset = section * ms->caps->fdm_size + 1;
652	return 0;
653}
654
655static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
656	.ecc = mtk_snand_ooblayout_ecc,
657	.free = mtk_snand_ooblayout_free,
658};
659
660static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
661{
662	struct mtk_snand *snf = nand_to_mtk_snand(nand);
663	struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
664	struct nand_ecc_props *reqs = &nand->ecc.requirements;
665	struct nand_ecc_props *user = &nand->ecc.user_conf;
666	struct mtd_info *mtd = nanddev_to_mtd(nand);
667	int step_size = 0, strength = 0, desired_correction = 0, steps;
668	bool ecc_user = false;
669	int ret;
670	u32 parity_bits, max_ecc_bytes;
671	struct mtk_ecc_config *ecc_cfg;
672
673	ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
674				      nand->memorg.oobsize);
675	if (ret)
676		return ret;
677
678	ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
679	if (!ecc_cfg)
680		return -ENOMEM;
681
682	nand->ecc.ctx.priv = ecc_cfg;
683
684	if (user->step_size && user->strength) {
685		step_size = user->step_size;
686		strength = user->strength;
687		ecc_user = true;
688	} else if (reqs->step_size && reqs->strength) {
689		step_size = reqs->step_size;
690		strength = reqs->strength;
691	}
692
693	if (step_size && strength) {
694		steps = mtd->writesize / step_size;
695		desired_correction = steps * strength;
696		strength = desired_correction / snf->nfi_cfg.nsectors;
697	}
698
699	ecc_cfg->mode = ECC_NFI_MODE;
700	ecc_cfg->sectors = snf->nfi_cfg.nsectors;
701	ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
702
703	// calculate the max possible strength under current page format
704	parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
705	max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
706	ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
707	mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
708
709	// if there's a user requested strength, find the minimum strength that
710	// meets the requirement. Otherwise use the maximum strength which is
711	// expected by BootROM.
712	if (ecc_user && strength) {
713		u32 s_next = ecc_cfg->strength - 1;
714
715		while (1) {
716			mtk_ecc_adjust_strength(snf->ecc, &s_next);
717			if (s_next >= ecc_cfg->strength)
718				break;
719			if (s_next < strength)
720				break;
721			s_next = ecc_cfg->strength - 1;
722		}
723	}
724
725	mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
726
727	conf->step_size = snf->caps->sector_size;
728	conf->strength = ecc_cfg->strength;
729
730	if (ecc_cfg->strength < strength)
731		dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
732			 strength);
733	dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
734		 ecc_cfg->strength, snf->caps->sector_size);
735
736	return 0;
737}
738
739static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
740{
741	struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
742
743	kfree(ecc_cfg);
744}
745
746static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
747					struct nand_page_io_req *req)
748{
749	struct mtk_snand *snf = nand_to_mtk_snand(nand);
750	struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
751	int ret;
752
753	ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
754				      nand->memorg.oobsize);
755	if (ret)
756		return ret;
757	snf->autofmt = true;
758	snf->ecc_cfg = ecc_cfg;
759	return 0;
760}
761
762static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
763				       struct nand_page_io_req *req)
764{
765	struct mtk_snand *snf = nand_to_mtk_snand(nand);
766	struct mtd_info *mtd = nanddev_to_mtd(nand);
767
768	snf->ecc_cfg = NULL;
769	snf->autofmt = false;
770	if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
771		return 0;
772
773	if (snf->ecc_stats.failed)
774		mtd->ecc_stats.failed += snf->ecc_stats.failed;
775	mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
776	return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
777}
778
779static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
780	.init_ctx = mtk_snand_ecc_init_ctx,
781	.cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
782	.prepare_io_req = mtk_snand_ecc_prepare_io_req,
783	.finish_io_req = mtk_snand_ecc_finish_io_req,
784};
785
786static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
787{
788	u32 vall, valm;
789	u8 *oobptr = buf;
790	int i, j;
791
792	for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
793		vall = nfi_read32(snf, NFI_FDML(i));
794		valm = nfi_read32(snf, NFI_FDMM(i));
795
796		for (j = 0; j < snf->caps->fdm_size; j++)
797			oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
798
799		oobptr += snf->caps->fdm_size;
800	}
801}
802
803static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
804{
805	u32 fdm_size = snf->caps->fdm_size;
806	const u8 *oobptr = buf;
807	u32 vall, valm;
808	int i, j;
809
810	for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
811		vall = 0;
812		valm = 0;
813
814		for (j = 0; j < 8; j++) {
815			if (j < 4)
816				vall |= (j < fdm_size ? oobptr[j] : 0xff)
817					<< (j * 8);
818			else
819				valm |= (j < fdm_size ? oobptr[j] : 0xff)
820					<< ((j - 4) * 8);
821		}
822
823		nfi_write32(snf, NFI_FDML(i), vall);
824		nfi_write32(snf, NFI_FDMM(i), valm);
825
826		oobptr += fdm_size;
827	}
828}
829
830static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
831{
832	u32 buf_bbm_pos, fdm_bbm_pos;
833
834	if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
835		return;
836
837	// swap [pagesize] byte on nand with the first fdm byte
838	// in the last sector.
839	buf_bbm_pos = snf->nfi_cfg.page_size -
840		      (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
841	fdm_bbm_pos = snf->nfi_cfg.page_size +
842		      (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
843
844	swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
845}
846
847static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
848{
849	u32 fdm_bbm_pos1, fdm_bbm_pos2;
850
851	if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
852		return;
853
854	// swap the first fdm byte in the first and the last sector.
855	fdm_bbm_pos1 = snf->nfi_cfg.page_size;
856	fdm_bbm_pos2 = snf->nfi_cfg.page_size +
857		       (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
858	swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
859}
860
861static int mtk_snand_read_page_cache(struct mtk_snand *snf,
862				     const struct spi_mem_op *op)
863{
864	u8 *buf = snf->buf;
865	u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
866	// the address part to be sent by the controller
867	u32 op_addr = op->addr.val;
868	// where to start copying data from bounce buffer
869	u32 rd_offset = 0;
870	u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
871	u32 op_mode = 0;
872	u32 dma_len = snf->buf_len;
873	int ret = 0;
874	u32 rd_mode, rd_bytes, val;
875	dma_addr_t buf_dma;
876
877	if (snf->autofmt) {
878		u32 last_bit;
879		u32 mask;
880
881		dma_len = snf->nfi_cfg.page_size;
882		op_mode = CNFG_AUTO_FMT_EN;
883		if (op->data.ecc)
884			op_mode |= CNFG_HW_ECC_EN;
885		// extract the plane bit:
886		// Find the highest bit set in (pagesize+oobsize).
887		// Bits higher than that in op->addr are kept and sent over SPI
888		// Lower bits are used as an offset for copying data from DMA
889		// bounce buffer.
890		last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
891		mask = (1 << last_bit) - 1;
892		rd_offset = op_addr & mask;
893		op_addr &= ~mask;
894
895		// check if we can dma to the caller memory
896		if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
897			buf = op->data.buf.in;
898	}
899	mtk_snand_mac_reset(snf);
900	mtk_nfi_reset(snf);
901
902	// command and dummy cycles
903	nfi_write32(snf, SNF_RD_CTL2,
904		    (dummy_clk << DATA_READ_DUMMY_S) |
905			    (op->cmd.opcode << DATA_READ_CMD_S));
906
907	// read address
908	nfi_write32(snf, SNF_RD_CTL3, op_addr);
909
910	// Set read op_mode
911	if (op->data.buswidth == 4)
912		rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
913						   DATA_READ_MODE_X4;
914	else if (op->data.buswidth == 2)
915		rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
916						   DATA_READ_MODE_X2;
917	else
918		rd_mode = DATA_READ_MODE_X1;
919	rd_mode <<= DATA_READ_MODE_S;
920	nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
921		  rd_mode | DATARD_CUSTOM_EN);
922
923	// Set bytes to read
924	rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
925		   snf->nfi_cfg.nsectors;
926	nfi_write32(snf, SNF_MISC_CTL2,
927		    (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
928
929	// NFI read prepare
930	nfi_write16(snf, NFI_CNFG,
931		    (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
932			    CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
933
934	nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
935
936	buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
937	ret = dma_mapping_error(snf->dev, buf_dma);
938	if (ret) {
939		dev_err(snf->dev, "DMA mapping failed.\n");
940		goto cleanup;
941	}
942	nfi_write32(snf, NFI_STRADDR, buf_dma);
943	if (op->data.ecc) {
944		snf->ecc_cfg->op = ECC_DECODE;
945		ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
946		if (ret)
947			goto cleanup_dma;
948	}
949	// Prepare for custom read interrupt
950	nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
951	reinit_completion(&snf->op_done);
952
953	// Trigger NFI into custom mode
954	nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
955
956	// Start DMA read
957	nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
958	nfi_write16(snf, NFI_STRDATA, STR_DATA);
959
960	if (!wait_for_completion_timeout(
961		    &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
962		dev_err(snf->dev, "DMA timed out for reading from cache.\n");
963		ret = -ETIMEDOUT;
964		goto cleanup;
965	}
966
967	// Wait for BUS_SEC_CNTR returning expected value
968	ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
969				 BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
970				 SNFI_POLL_INTERVAL);
971	if (ret) {
972		dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
973		goto cleanup2;
974	}
975
976	// Wait for bus becoming idle
977	ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
978				 !(val & snf->caps->mastersta_mask), 0,
979				 SNFI_POLL_INTERVAL);
980	if (ret) {
981		dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
982		goto cleanup2;
983	}
984
985	if (op->data.ecc) {
986		ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
987		if (ret) {
988			dev_err(snf->dev, "wait ecc done timeout\n");
989			goto cleanup2;
990		}
991		// save status before disabling ecc
992		mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
993				  snf->nfi_cfg.nsectors);
994	}
995
996	dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
997
998	if (snf->autofmt) {
999		mtk_snand_read_fdm(snf, buf_fdm);
1000		if (snf->caps->bbm_swap) {
1001			mtk_snand_bm_swap(snf, buf);
1002			mtk_snand_fdm_bm_swap(snf);
1003		}
1004	}
1005
1006	// copy data back
1007	if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
1008		memset(op->data.buf.in, 0xff, op->data.nbytes);
1009		snf->ecc_stats.bitflips = 0;
1010		snf->ecc_stats.failed = 0;
1011		snf->ecc_stats.corrected = 0;
1012	} else {
1013		if (buf == op->data.buf.in) {
1014			u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
1015			u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
1016
1017			if (req_left)
1018				memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
1019				       buf_fdm,
1020				       cap_len < req_left ? cap_len : req_left);
1021		} else if (rd_offset < snf->buf_len) {
1022			u32 cap_len = snf->buf_len - rd_offset;
1023
1024			if (op->data.nbytes < cap_len)
1025				cap_len = op->data.nbytes;
1026			memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
1027		}
1028	}
1029cleanup2:
1030	if (op->data.ecc)
1031		mtk_ecc_disable(snf->ecc);
1032cleanup_dma:
1033	// unmap dma only if any error happens. (otherwise it's done before
1034	// data copying)
1035	if (ret)
1036		dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
1037cleanup:
1038	// Stop read
1039	nfi_write32(snf, NFI_CON, 0);
1040	nfi_write16(snf, NFI_CNFG, 0);
1041
1042	// Clear SNF done flag
1043	nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
1044	nfi_write32(snf, SNF_STA_CTL1, 0);
1045
1046	// Disable interrupt
1047	nfi_read32(snf, NFI_INTR_STA);
1048	nfi_write32(snf, NFI_INTR_EN, 0);
1049
1050	nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
1051	return ret;
1052}
1053
1054static int mtk_snand_write_page_cache(struct mtk_snand *snf,
1055				      const struct spi_mem_op *op)
1056{
1057	// the address part to be sent by the controller
1058	u32 op_addr = op->addr.val;
1059	// where to start copying data from bounce buffer
1060	u32 wr_offset = 0;
1061	u32 op_mode = 0;
1062	int ret = 0;
1063	u32 wr_mode = 0;
1064	u32 dma_len = snf->buf_len;
1065	u32 wr_bytes, val;
1066	size_t cap_len;
1067	dma_addr_t buf_dma;
1068
1069	if (snf->autofmt) {
1070		u32 last_bit;
1071		u32 mask;
1072
1073		dma_len = snf->nfi_cfg.page_size;
1074		op_mode = CNFG_AUTO_FMT_EN;
1075		if (op->data.ecc)
1076			op_mode |= CNFG_HW_ECC_EN;
1077
1078		last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
1079		mask = (1 << last_bit) - 1;
1080		wr_offset = op_addr & mask;
1081		op_addr &= ~mask;
1082	}
1083	mtk_snand_mac_reset(snf);
1084	mtk_nfi_reset(snf);
1085
1086	if (wr_offset)
1087		memset(snf->buf, 0xff, wr_offset);
1088
1089	cap_len = snf->buf_len - wr_offset;
1090	if (op->data.nbytes < cap_len)
1091		cap_len = op->data.nbytes;
1092	memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
1093	if (snf->autofmt) {
1094		if (snf->caps->bbm_swap) {
1095			mtk_snand_fdm_bm_swap(snf);
1096			mtk_snand_bm_swap(snf, snf->buf);
1097		}
1098		mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
1099	}
1100
1101	// Command
1102	nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
1103
1104	// write address
1105	nfi_write32(snf, SNF_PG_CTL2, op_addr);
1106
1107	// Set read op_mode
1108	if (op->data.buswidth == 4)
1109		wr_mode = PG_LOAD_X4_EN;
1110
1111	nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
1112		  wr_mode | PG_LOAD_CUSTOM_EN);
1113
1114	// Set bytes to write
1115	wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
1116		   snf->nfi_cfg.nsectors;
1117	nfi_write32(snf, SNF_MISC_CTL2,
1118		    (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
1119
1120	// NFI write prepare
1121	nfi_write16(snf, NFI_CNFG,
1122		    (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
1123			    CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
1124
1125	nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
1126	buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
1127	ret = dma_mapping_error(snf->dev, buf_dma);
1128	if (ret) {
1129		dev_err(snf->dev, "DMA mapping failed.\n");
1130		goto cleanup;
1131	}
1132	nfi_write32(snf, NFI_STRADDR, buf_dma);
1133	if (op->data.ecc) {
1134		snf->ecc_cfg->op = ECC_ENCODE;
1135		ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
1136		if (ret)
1137			goto cleanup_dma;
1138	}
1139	// Prepare for custom write interrupt
1140	nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
1141	reinit_completion(&snf->op_done);
1142	;
1143
1144	// Trigger NFI into custom mode
1145	nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
1146
1147	// Start DMA write
1148	nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
1149	nfi_write16(snf, NFI_STRDATA, STR_DATA);
1150
1151	if (!wait_for_completion_timeout(
1152		    &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
1153		dev_err(snf->dev, "DMA timed out for program load.\n");
1154		ret = -ETIMEDOUT;
1155		goto cleanup_ecc;
1156	}
1157
1158	// Wait for NFI_SEC_CNTR returning expected value
1159	ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
1160				 NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
1161				 SNFI_POLL_INTERVAL);
1162	if (ret)
1163		dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
1164
1165cleanup_ecc:
1166	if (op->data.ecc)
1167		mtk_ecc_disable(snf->ecc);
1168cleanup_dma:
1169	dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
1170cleanup:
1171	// Stop write
1172	nfi_write32(snf, NFI_CON, 0);
1173	nfi_write16(snf, NFI_CNFG, 0);
1174
1175	// Clear SNF done flag
1176	nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
1177	nfi_write32(snf, SNF_STA_CTL1, 0);
1178
1179	// Disable interrupt
1180	nfi_read32(snf, NFI_INTR_STA);
1181	nfi_write32(snf, NFI_INTR_EN, 0);
1182
1183	nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
1184
1185	return ret;
1186}
1187
1188/**
1189 * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
1190 * @op spi-mem op to check
1191 *
1192 * Check whether op can be executed with read_from_cache or program_load
1193 * mode in the controller.
1194 * This controller can execute typical Read From Cache and Program Load
1195 * instructions found on SPI-NAND with 2-byte address.
1196 * DTR and cmd buswidth & nbytes should be checked before calling this.
1197 *
1198 * Return: true if the op matches the instruction template
1199 */
1200static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
1201{
1202	if (op->addr.nbytes != 2)
1203		return false;
1204
1205	if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
1206	    op->addr.buswidth != 4)
1207		return false;
1208
1209	// match read from page instructions
1210	if (op->data.dir == SPI_MEM_DATA_IN) {
1211		// check dummy cycle first
1212		if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
1213		    DATA_READ_MAX_DUMMY)
1214			return false;
1215		// quad io / quad out
1216		if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
1217		    op->data.buswidth == 4)
1218			return true;
1219
1220		// dual io / dual out
1221		if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
1222		    op->data.buswidth == 2)
1223			return true;
1224
1225		// standard spi
1226		if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1227			return true;
1228	} else if (op->data.dir == SPI_MEM_DATA_OUT) {
1229		// check dummy cycle first
1230		if (op->dummy.nbytes)
1231			return false;
1232		// program load quad out
1233		if (op->addr.buswidth == 1 && op->data.buswidth == 4)
1234			return true;
1235		// standard spi
1236		if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1237			return true;
1238	}
1239	return false;
1240}
1241
1242static bool mtk_snand_supports_op(struct spi_mem *mem,
1243				  const struct spi_mem_op *op)
1244{
1245	if (!spi_mem_default_supports_op(mem, op))
1246		return false;
1247	if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
1248		return false;
1249	if (mtk_snand_is_page_ops(op))
1250		return true;
1251	return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
1252		(op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
1253		(op->data.nbytes == 0 || op->data.buswidth == 1));
1254}
1255
1256static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
1257{
1258	struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->controller);
1259	// page ops transfer size must be exactly ((sector_size + spare_size) *
1260	// nsectors). Limit the op size if the caller requests more than that.
1261	// exec_op will read more than needed and discard the leftover if the
1262	// caller requests less data.
1263	if (mtk_snand_is_page_ops(op)) {
1264		size_t l;
1265		// skip adjust_op_size for page ops
1266		if (ms->autofmt)
1267			return 0;
1268		l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
1269		l *= ms->nfi_cfg.nsectors;
1270		if (op->data.nbytes > l)
1271			op->data.nbytes = l;
1272	} else {
1273		size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
1274
1275		if (hl >= SNF_GPRAM_SIZE)
1276			return -EOPNOTSUPP;
1277		if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
1278			op->data.nbytes = SNF_GPRAM_SIZE - hl;
1279	}
1280	return 0;
1281}
1282
1283static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
1284{
1285	struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->controller);
1286
1287	dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
1288		op->addr.val, op->addr.buswidth, op->addr.nbytes,
1289		op->data.buswidth, op->data.nbytes);
1290	if (mtk_snand_is_page_ops(op)) {
1291		if (op->data.dir == SPI_MEM_DATA_IN)
1292			return mtk_snand_read_page_cache(ms, op);
1293		else
1294			return mtk_snand_write_page_cache(ms, op);
1295	} else {
1296		return mtk_snand_mac_io(ms, op);
1297	}
1298}
1299
1300static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
1301	.adjust_op_size = mtk_snand_adjust_op_size,
1302	.supports_op = mtk_snand_supports_op,
1303	.exec_op = mtk_snand_exec_op,
1304};
1305
1306static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
1307	.ecc = true,
1308};
1309
1310static irqreturn_t mtk_snand_irq(int irq, void *id)
1311{
1312	struct mtk_snand *snf = id;
1313	u32 sta, ien;
1314
1315	sta = nfi_read32(snf, NFI_INTR_STA);
1316	ien = nfi_read32(snf, NFI_INTR_EN);
1317
1318	if (!(sta & ien))
1319		return IRQ_NONE;
1320
1321	nfi_write32(snf, NFI_INTR_EN, 0);
1322	complete(&snf->op_done);
1323	return IRQ_HANDLED;
1324}
1325
1326static const struct of_device_id mtk_snand_ids[] = {
1327	{ .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
1328	{ .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
1329	{ .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps },
1330	{},
1331};
1332
1333MODULE_DEVICE_TABLE(of, mtk_snand_ids);
1334
1335static int mtk_snand_probe(struct platform_device *pdev)
1336{
1337	struct device_node *np = pdev->dev.of_node;
1338	const struct of_device_id *dev_id;
1339	struct spi_controller *ctlr;
1340	struct mtk_snand *ms;
1341	unsigned long spi_freq;
1342	u32 val = 0;
1343	int ret;
1344
1345	dev_id = of_match_node(mtk_snand_ids, np);
1346	if (!dev_id)
1347		return -EINVAL;
1348
1349	ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*ms));
1350	if (!ctlr)
1351		return -ENOMEM;
1352	platform_set_drvdata(pdev, ctlr);
1353
1354	ms = spi_controller_get_devdata(ctlr);
1355
1356	ms->ctlr = ctlr;
1357	ms->caps = dev_id->data;
1358
1359	ms->ecc = of_mtk_ecc_get(np);
1360	if (IS_ERR(ms->ecc))
1361		return PTR_ERR(ms->ecc);
1362	else if (!ms->ecc)
1363		return -ENODEV;
1364
1365	ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
1366	if (IS_ERR(ms->nfi_base)) {
1367		ret = PTR_ERR(ms->nfi_base);
1368		goto release_ecc;
1369	}
1370
1371	ms->dev = &pdev->dev;
1372
1373	ms->nfi_clk = devm_clk_get_enabled(&pdev->dev, "nfi_clk");
1374	if (IS_ERR(ms->nfi_clk)) {
1375		ret = PTR_ERR(ms->nfi_clk);
1376		dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
1377		goto release_ecc;
1378	}
1379
1380	ms->pad_clk = devm_clk_get_enabled(&pdev->dev, "pad_clk");
1381	if (IS_ERR(ms->pad_clk)) {
1382		ret = PTR_ERR(ms->pad_clk);
1383		dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
1384		goto release_ecc;
1385	}
1386
1387	ms->nfi_hclk = devm_clk_get_optional_enabled(&pdev->dev, "nfi_hclk");
1388	if (IS_ERR(ms->nfi_hclk)) {
1389		ret = PTR_ERR(ms->nfi_hclk);
1390		dev_err(&pdev->dev, "unable to get nfi_hclk, err = %d\n", ret);
1391		goto release_ecc;
1392	}
1393
1394	init_completion(&ms->op_done);
1395
1396	ms->irq = platform_get_irq(pdev, 0);
1397	if (ms->irq < 0) {
1398		ret = ms->irq;
1399		goto release_ecc;
1400	}
1401	ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
1402			       "mtk-snand", ms);
1403	if (ret) {
1404		dev_err(ms->dev, "failed to request snfi irq\n");
1405		goto release_ecc;
1406	}
1407
1408	ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
1409	if (ret) {
1410		dev_err(ms->dev, "failed to set dma mask\n");
1411		goto release_ecc;
1412	}
1413
1414	// switch to SNFI mode
1415	nfi_write32(ms, SNF_CFG, SPI_MODE);
1416
1417	ret = of_property_read_u32(np, "rx-sample-delay-ns", &val);
1418	if (!ret)
1419		nfi_rmw32(ms, SNF_DLY_CTL3, SFCK_SAM_DLY,
1420			  val * SFCK_SAM_DLY_RANGE / SFCK_SAM_DLY_TOTAL);
1421
1422	ret = of_property_read_u32(np, "mediatek,rx-latch-latency-ns", &val);
1423	if (!ret) {
1424		spi_freq = clk_get_rate(ms->pad_clk);
1425		val = DIV_ROUND_CLOSEST(val, NSEC_PER_SEC / spi_freq);
1426		nfi_rmw32(ms, SNF_MISC_CTL, DATA_READ_LATCH_LAT,
1427			  val << DATA_READ_LATCH_LAT_S);
1428	}
1429
1430	// setup an initial page format for ops matching page_cache_op template
1431	// before ECC is called.
1432	ret = mtk_snand_setup_pagefmt(ms, SZ_2K, SZ_64);
1433	if (ret) {
1434		dev_err(ms->dev, "failed to set initial page format\n");
1435		goto release_ecc;
1436	}
1437
1438	// setup ECC engine
1439	ms->ecc_eng.dev = &pdev->dev;
1440	ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
1441	ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
1442	ms->ecc_eng.priv = ms;
1443
1444	ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
1445	if (ret) {
1446		dev_err(&pdev->dev, "failed to register ecc engine.\n");
1447		goto release_ecc;
1448	}
1449
1450	ctlr->num_chipselect = 1;
1451	ctlr->mem_ops = &mtk_snand_mem_ops;
1452	ctlr->mem_caps = &mtk_snand_mem_caps;
1453	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1454	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
1455	ctlr->dev.of_node = pdev->dev.of_node;
1456	ret = spi_register_controller(ctlr);
1457	if (ret) {
1458		dev_err(&pdev->dev, "spi_register_controller failed.\n");
1459		goto release_ecc;
1460	}
1461
1462	return 0;
1463release_ecc:
1464	mtk_ecc_release(ms->ecc);
1465	return ret;
1466}
1467
1468static void mtk_snand_remove(struct platform_device *pdev)
1469{
1470	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1471	struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
1472
1473	spi_unregister_controller(ctlr);
1474	mtk_ecc_release(ms->ecc);
1475	kfree(ms->buf);
1476}
1477
1478static struct platform_driver mtk_snand_driver = {
1479	.probe = mtk_snand_probe,
1480	.remove_new = mtk_snand_remove,
1481	.driver = {
1482		.name = "mtk-snand",
1483		.of_match_table = mtk_snand_ids,
1484	},
1485};
1486
1487module_platform_driver(mtk_snand_driver);
1488
1489MODULE_LICENSE("GPL");
1490MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
1491MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");
1492