1// SPDX-License-Identifier: GPL-2.0
2// Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
3
4#include <linux/clk.h>
5#include <linux/dmaengine.h>
6#include <linux/dma-mapping.h>
7#include <linux/dma/qcom-gpi-dma.h>
8#include <linux/interrupt.h>
9#include <linux/io.h>
10#include <linux/log2.h>
11#include <linux/module.h>
12#include <linux/platform_device.h>
13#include <linux/pm_opp.h>
14#include <linux/pm_runtime.h>
15#include <linux/property.h>
16#include <linux/soc/qcom/geni-se.h>
17#include <linux/spi/spi.h>
18#include <linux/spinlock.h>
19
20/* SPI SE specific registers and respective register fields */
21#define SE_SPI_CPHA		0x224
22#define CPHA			BIT(0)
23
24#define SE_SPI_LOOPBACK		0x22c
25#define LOOPBACK_ENABLE		0x1
26#define NORMAL_MODE		0x0
27#define LOOPBACK_MSK		GENMASK(1, 0)
28
29#define SE_SPI_CPOL		0x230
30#define CPOL			BIT(2)
31
32#define SE_SPI_DEMUX_OUTPUT_INV	0x24c
33#define CS_DEMUX_OUTPUT_INV_MSK	GENMASK(3, 0)
34
35#define SE_SPI_DEMUX_SEL	0x250
36#define CS_DEMUX_OUTPUT_SEL	GENMASK(3, 0)
37
38#define SE_SPI_TRANS_CFG	0x25c
39#define CS_TOGGLE		BIT(1)
40
41#define SE_SPI_WORD_LEN		0x268
42#define WORD_LEN_MSK		GENMASK(9, 0)
43#define MIN_WORD_LEN		4
44
45#define SE_SPI_TX_TRANS_LEN	0x26c
46#define SE_SPI_RX_TRANS_LEN	0x270
47#define TRANS_LEN_MSK		GENMASK(23, 0)
48
49#define SE_SPI_PRE_POST_CMD_DLY	0x274
50
51#define SE_SPI_DELAY_COUNTERS	0x278
52#define SPI_INTER_WORDS_DELAY_MSK	GENMASK(9, 0)
53#define SPI_CS_CLK_DELAY_MSK		GENMASK(19, 10)
54#define SPI_CS_CLK_DELAY_SHFT		10
55
56#define SE_SPI_SLAVE_EN				(0x2BC)
57#define SPI_SLAVE_EN				BIT(0)
58
59/* M_CMD OP codes for SPI */
60#define SPI_TX_ONLY		1
61#define SPI_RX_ONLY		2
62#define SPI_TX_RX		7
63#define SPI_CS_ASSERT		8
64#define SPI_CS_DEASSERT		9
65#define SPI_SCK_ONLY		10
66/* M_CMD params for SPI */
67#define SPI_PRE_CMD_DELAY	BIT(0)
68#define TIMESTAMP_BEFORE	BIT(1)
69#define FRAGMENTATION		BIT(2)
70#define TIMESTAMP_AFTER		BIT(3)
71#define POST_CMD_DELAY		BIT(4)
72
73#define GSI_LOOPBACK_EN		BIT(0)
74#define GSI_CS_TOGGLE		BIT(3)
75#define GSI_CPHA		BIT(4)
76#define GSI_CPOL		BIT(5)
77
78struct spi_geni_master {
79	struct geni_se se;
80	struct device *dev;
81	u32 tx_fifo_depth;
82	u32 fifo_width_bits;
83	u32 tx_wm;
84	u32 last_mode;
85	unsigned long cur_speed_hz;
86	unsigned long cur_sclk_hz;
87	unsigned int cur_bits_per_word;
88	unsigned int tx_rem_bytes;
89	unsigned int rx_rem_bytes;
90	const struct spi_transfer *cur_xfer;
91	struct completion cs_done;
92	struct completion cancel_done;
93	struct completion abort_done;
94	struct completion tx_reset_done;
95	struct completion rx_reset_done;
96	unsigned int oversampling;
97	spinlock_t lock;
98	int irq;
99	bool cs_flag;
100	bool abort_failed;
101	struct dma_chan *tx;
102	struct dma_chan *rx;
103	int cur_xfer_mode;
104};
105
106static void spi_slv_setup(struct spi_geni_master *mas)
107{
108	struct geni_se *se = &mas->se;
109
110	writel(SPI_SLAVE_EN, se->base + SE_SPI_SLAVE_EN);
111	writel(GENI_IO_MUX_0_EN, se->base + GENI_OUTPUT_CTRL);
112	writel(START_TRIGGER, se->base + SE_GENI_CFG_SEQ_START);
113	dev_dbg(mas->dev, "spi slave setup done\n");
114}
115
116static int get_spi_clk_cfg(unsigned int speed_hz,
117			struct spi_geni_master *mas,
118			unsigned int *clk_idx,
119			unsigned int *clk_div)
120{
121	unsigned long sclk_freq;
122	unsigned int actual_hz;
123	int ret;
124
125	ret = geni_se_clk_freq_match(&mas->se,
126				speed_hz * mas->oversampling,
127				clk_idx, &sclk_freq, false);
128	if (ret) {
129		dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n",
130							ret, speed_hz);
131		return ret;
132	}
133
134	*clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz);
135	actual_hz = sclk_freq / (mas->oversampling * *clk_div);
136
137	dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz,
138				actual_hz, sclk_freq, *clk_idx, *clk_div);
139	ret = dev_pm_opp_set_rate(mas->dev, sclk_freq);
140	if (ret)
141		dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret);
142	else
143		mas->cur_sclk_hz = sclk_freq;
144
145	return ret;
146}
147
148static void handle_se_timeout(struct spi_controller *spi,
149			      struct spi_message *msg)
150{
151	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
152	unsigned long time_left;
153	struct geni_se *se = &mas->se;
154	const struct spi_transfer *xfer;
155
156	spin_lock_irq(&mas->lock);
157	if (mas->cur_xfer_mode == GENI_SE_FIFO)
158		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
159
160	xfer = mas->cur_xfer;
161	mas->cur_xfer = NULL;
162
163	if (spi->target) {
164		/*
165		 * skip CMD Cancel sequnece since spi target
166		 * doesn`t support CMD Cancel sequnece
167		 */
168		spin_unlock_irq(&mas->lock);
169		goto reset_if_dma;
170	}
171
172	reinit_completion(&mas->cancel_done);
173	geni_se_cancel_m_cmd(se);
174	spin_unlock_irq(&mas->lock);
175
176	time_left = wait_for_completion_timeout(&mas->cancel_done, HZ);
177	if (time_left)
178		goto reset_if_dma;
179
180	spin_lock_irq(&mas->lock);
181	reinit_completion(&mas->abort_done);
182	geni_se_abort_m_cmd(se);
183	spin_unlock_irq(&mas->lock);
184
185	time_left = wait_for_completion_timeout(&mas->abort_done, HZ);
186	if (!time_left) {
187		dev_err(mas->dev, "Failed to cancel/abort m_cmd\n");
188
189		/*
190		 * No need for a lock since SPI core has a lock and we never
191		 * access this from an interrupt.
192		 */
193		mas->abort_failed = true;
194	}
195
196reset_if_dma:
197	if (mas->cur_xfer_mode == GENI_SE_DMA) {
198		if (xfer) {
199			if (xfer->tx_buf) {
200				spin_lock_irq(&mas->lock);
201				reinit_completion(&mas->tx_reset_done);
202				writel(1, se->base + SE_DMA_TX_FSM_RST);
203				spin_unlock_irq(&mas->lock);
204				time_left = wait_for_completion_timeout(&mas->tx_reset_done, HZ);
205				if (!time_left)
206					dev_err(mas->dev, "DMA TX RESET failed\n");
207			}
208			if (xfer->rx_buf) {
209				spin_lock_irq(&mas->lock);
210				reinit_completion(&mas->rx_reset_done);
211				writel(1, se->base + SE_DMA_RX_FSM_RST);
212				spin_unlock_irq(&mas->lock);
213				time_left = wait_for_completion_timeout(&mas->rx_reset_done, HZ);
214				if (!time_left)
215					dev_err(mas->dev, "DMA RX RESET failed\n");
216			}
217		} else {
218			/*
219			 * This can happen if a timeout happened and we had to wait
220			 * for lock in this function because isr was holding the lock
221			 * and handling transfer completion at that time.
222			 */
223			dev_warn(mas->dev, "Cancel/Abort on completed SPI transfer\n");
224		}
225	}
226}
227
228static void handle_gpi_timeout(struct spi_controller *spi, struct spi_message *msg)
229{
230	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
231
232	dmaengine_terminate_sync(mas->tx);
233	dmaengine_terminate_sync(mas->rx);
234}
235
236static void spi_geni_handle_err(struct spi_controller *spi, struct spi_message *msg)
237{
238	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
239
240	switch (mas->cur_xfer_mode) {
241	case GENI_SE_FIFO:
242	case GENI_SE_DMA:
243		handle_se_timeout(spi, msg);
244		break;
245	case GENI_GPI_DMA:
246		handle_gpi_timeout(spi, msg);
247		break;
248	default:
249		dev_err(mas->dev, "Abort on Mode:%d not supported", mas->cur_xfer_mode);
250	}
251}
252
253static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas)
254{
255	struct geni_se *se = &mas->se;
256	u32 m_irq, m_irq_en;
257
258	if (!mas->abort_failed)
259		return false;
260
261	/*
262	 * The only known case where a transfer times out and then a cancel
263	 * times out then an abort times out is if something is blocking our
264	 * interrupt handler from running.  Avoid starting any new transfers
265	 * until that sorts itself out.
266	 */
267	spin_lock_irq(&mas->lock);
268	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
269	m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN);
270	spin_unlock_irq(&mas->lock);
271
272	if (m_irq & m_irq_en) {
273		dev_err(mas->dev, "Interrupts pending after abort: %#010x\n",
274			m_irq & m_irq_en);
275		return true;
276	}
277
278	/*
279	 * If we're here the problem resolved itself so no need to check more
280	 * on future transfers.
281	 */
282	mas->abort_failed = false;
283
284	return false;
285}
286
287static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
288{
289	struct spi_geni_master *mas = spi_controller_get_devdata(slv->controller);
290	struct spi_controller *spi = dev_get_drvdata(mas->dev);
291	struct geni_se *se = &mas->se;
292	unsigned long time_left;
293
294	if (!(slv->mode & SPI_CS_HIGH))
295		set_flag = !set_flag;
296
297	if (set_flag == mas->cs_flag)
298		return;
299
300	pm_runtime_get_sync(mas->dev);
301
302	if (spi_geni_is_abort_still_pending(mas)) {
303		dev_err(mas->dev, "Can't set chip select\n");
304		goto exit;
305	}
306
307	spin_lock_irq(&mas->lock);
308	if (mas->cur_xfer) {
309		dev_err(mas->dev, "Can't set CS when prev xfer running\n");
310		spin_unlock_irq(&mas->lock);
311		goto exit;
312	}
313
314	mas->cs_flag = set_flag;
315	/* set xfer_mode to FIFO to complete cs_done in isr */
316	mas->cur_xfer_mode = GENI_SE_FIFO;
317	geni_se_select_mode(se, mas->cur_xfer_mode);
318
319	reinit_completion(&mas->cs_done);
320	if (set_flag)
321		geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0);
322	else
323		geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0);
324	spin_unlock_irq(&mas->lock);
325
326	time_left = wait_for_completion_timeout(&mas->cs_done, HZ);
327	if (!time_left) {
328		dev_warn(mas->dev, "Timeout setting chip select\n");
329		handle_se_timeout(spi, NULL);
330	}
331
332exit:
333	pm_runtime_put(mas->dev);
334}
335
336static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode,
337					unsigned int bits_per_word)
338{
339	unsigned int pack_words;
340	bool msb_first = (mode & SPI_LSB_FIRST) ? false : true;
341	struct geni_se *se = &mas->se;
342	u32 word_len;
343
344	/*
345	 * If bits_per_word isn't a byte aligned value, set the packing to be
346	 * 1 SPI word per FIFO word.
347	 */
348	if (!(mas->fifo_width_bits % bits_per_word))
349		pack_words = mas->fifo_width_bits / bits_per_word;
350	else
351		pack_words = 1;
352	geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first,
353								true, true);
354	word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK;
355	writel(word_len, se->base + SE_SPI_WORD_LEN);
356}
357
358static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas,
359					unsigned long clk_hz)
360{
361	u32 clk_sel, m_clk_cfg, idx, div;
362	struct geni_se *se = &mas->se;
363	int ret;
364
365	if (clk_hz == mas->cur_speed_hz)
366		return 0;
367
368	ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div);
369	if (ret) {
370		dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret);
371		return ret;
372	}
373
374	/*
375	 * SPI core clock gets configured with the requested frequency
376	 * or the frequency closer to the requested frequency.
377	 * For that reason requested frequency is stored in the
378	 * cur_speed_hz and referred in the consecutive transfer instead
379	 * of calling clk_get_rate() API.
380	 */
381	mas->cur_speed_hz = clk_hz;
382
383	clk_sel = idx & CLK_SEL_MSK;
384	m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN;
385	writel(clk_sel, se->base + SE_GENI_CLK_SEL);
386	writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG);
387
388	/* Set BW quota for CPU as driver supports FIFO mode only. */
389	se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz);
390	ret = geni_icc_set_bw(se);
391	if (ret)
392		return ret;
393
394	return 0;
395}
396
397static int setup_fifo_params(struct spi_device *spi_slv,
398					struct spi_controller *spi)
399{
400	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
401	struct geni_se *se = &mas->se;
402	u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0;
403	u32 demux_sel;
404
405	if (mas->last_mode != spi_slv->mode) {
406		if (spi_slv->mode & SPI_LOOP)
407			loopback_cfg = LOOPBACK_ENABLE;
408
409		if (spi_slv->mode & SPI_CPOL)
410			cpol = CPOL;
411
412		if (spi_slv->mode & SPI_CPHA)
413			cpha = CPHA;
414
415		if (spi_slv->mode & SPI_CS_HIGH)
416			demux_output_inv = BIT(spi_get_chipselect(spi_slv, 0));
417
418		demux_sel = spi_get_chipselect(spi_slv, 0);
419		mas->cur_bits_per_word = spi_slv->bits_per_word;
420
421		spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word);
422		writel(loopback_cfg, se->base + SE_SPI_LOOPBACK);
423		writel(demux_sel, se->base + SE_SPI_DEMUX_SEL);
424		writel(cpha, se->base + SE_SPI_CPHA);
425		writel(cpol, se->base + SE_SPI_CPOL);
426		writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV);
427
428		mas->last_mode = spi_slv->mode;
429	}
430
431	return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz);
432}
433
434static void
435spi_gsi_callback_result(void *cb, const struct dmaengine_result *result)
436{
437	struct spi_controller *spi = cb;
438
439	spi->cur_msg->status = -EIO;
440	if (result->result != DMA_TRANS_NOERROR) {
441		dev_err(&spi->dev, "DMA txn failed: %d\n", result->result);
442		spi_finalize_current_transfer(spi);
443		return;
444	}
445
446	if (!result->residue) {
447		spi->cur_msg->status = 0;
448		dev_dbg(&spi->dev, "DMA txn completed\n");
449	} else {
450		dev_err(&spi->dev, "DMA xfer has pending: %d\n", result->residue);
451	}
452
453	spi_finalize_current_transfer(spi);
454}
455
456static int setup_gsi_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas,
457			  struct spi_device *spi_slv, struct spi_controller *spi)
458{
459	unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
460	struct dma_slave_config config = {};
461	struct gpi_spi_config peripheral = {};
462	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
463	int ret;
464
465	config.peripheral_config = &peripheral;
466	config.peripheral_size = sizeof(peripheral);
467	peripheral.set_config = true;
468
469	if (xfer->bits_per_word != mas->cur_bits_per_word ||
470	    xfer->speed_hz != mas->cur_speed_hz) {
471		mas->cur_bits_per_word = xfer->bits_per_word;
472		mas->cur_speed_hz = xfer->speed_hz;
473	}
474
475	if (xfer->tx_buf && xfer->rx_buf) {
476		peripheral.cmd = SPI_DUPLEX;
477	} else if (xfer->tx_buf) {
478		peripheral.cmd = SPI_TX;
479		peripheral.rx_len = 0;
480	} else if (xfer->rx_buf) {
481		peripheral.cmd = SPI_RX;
482		if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) {
483			peripheral.rx_len = ((xfer->len << 3) / mas->cur_bits_per_word);
484		} else {
485			int bytes_per_word = (mas->cur_bits_per_word / BITS_PER_BYTE) + 1;
486
487			peripheral.rx_len = (xfer->len / bytes_per_word);
488		}
489	}
490
491	peripheral.loopback_en = !!(spi_slv->mode & SPI_LOOP);
492	peripheral.clock_pol_high = !!(spi_slv->mode & SPI_CPOL);
493	peripheral.data_pol_high = !!(spi_slv->mode & SPI_CPHA);
494	peripheral.cs = spi_get_chipselect(spi_slv, 0);
495	peripheral.pack_en = true;
496	peripheral.word_len = xfer->bits_per_word - MIN_WORD_LEN;
497
498	ret = get_spi_clk_cfg(mas->cur_speed_hz, mas,
499			      &peripheral.clk_src, &peripheral.clk_div);
500	if (ret) {
501		dev_err(mas->dev, "Err in get_spi_clk_cfg() :%d\n", ret);
502		return ret;
503	}
504
505	if (!xfer->cs_change) {
506		if (!list_is_last(&xfer->transfer_list, &spi->cur_msg->transfers))
507			peripheral.fragmentation = FRAGMENTATION;
508	}
509
510	if (peripheral.cmd & SPI_RX) {
511		dmaengine_slave_config(mas->rx, &config);
512		rx_desc = dmaengine_prep_slave_sg(mas->rx, xfer->rx_sg.sgl, xfer->rx_sg.nents,
513						  DMA_DEV_TO_MEM, flags);
514		if (!rx_desc) {
515			dev_err(mas->dev, "Err setting up rx desc\n");
516			return -EIO;
517		}
518	}
519
520	/*
521	 * Prepare the TX always, even for RX or tx_buf being null, we would
522	 * need TX to be prepared per GSI spec
523	 */
524	dmaengine_slave_config(mas->tx, &config);
525	tx_desc = dmaengine_prep_slave_sg(mas->tx, xfer->tx_sg.sgl, xfer->tx_sg.nents,
526					  DMA_MEM_TO_DEV, flags);
527	if (!tx_desc) {
528		dev_err(mas->dev, "Err setting up tx desc\n");
529		return -EIO;
530	}
531
532	tx_desc->callback_result = spi_gsi_callback_result;
533	tx_desc->callback_param = spi;
534
535	if (peripheral.cmd & SPI_RX)
536		dmaengine_submit(rx_desc);
537	dmaengine_submit(tx_desc);
538
539	if (peripheral.cmd & SPI_RX)
540		dma_async_issue_pending(mas->rx);
541
542	dma_async_issue_pending(mas->tx);
543	return 1;
544}
545
546static u32 get_xfer_len_in_words(struct spi_transfer *xfer,
547				struct spi_geni_master *mas)
548{
549	u32 len;
550
551	if (!(mas->cur_bits_per_word % MIN_WORD_LEN))
552		len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word;
553	else
554		len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1);
555	len &= TRANS_LEN_MSK;
556
557	return len;
558}
559
560static bool geni_can_dma(struct spi_controller *ctlr,
561			 struct spi_device *slv, struct spi_transfer *xfer)
562{
563	struct spi_geni_master *mas = spi_controller_get_devdata(slv->controller);
564	u32 len, fifo_size;
565
566	if (mas->cur_xfer_mode == GENI_GPI_DMA)
567		return true;
568
569	/* Set SE DMA mode for SPI target. */
570	if (ctlr->target)
571		return true;
572
573	len = get_xfer_len_in_words(xfer, mas);
574	fifo_size = mas->tx_fifo_depth * mas->fifo_width_bits / mas->cur_bits_per_word;
575
576	if (len > fifo_size)
577		return true;
578	else
579		return false;
580}
581
582static int spi_geni_prepare_message(struct spi_controller *spi,
583				    struct spi_message *spi_msg)
584{
585	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
586	int ret;
587
588	switch (mas->cur_xfer_mode) {
589	case GENI_SE_FIFO:
590	case GENI_SE_DMA:
591		if (spi_geni_is_abort_still_pending(mas))
592			return -EBUSY;
593		ret = setup_fifo_params(spi_msg->spi, spi);
594		if (ret)
595			dev_err(mas->dev, "Couldn't select mode %d\n", ret);
596		return ret;
597
598	case GENI_GPI_DMA:
599		/* nothing to do for GPI DMA */
600		return 0;
601	}
602
603	dev_err(mas->dev, "Mode not supported %d", mas->cur_xfer_mode);
604	return -EINVAL;
605}
606
607static int spi_geni_grab_gpi_chan(struct spi_geni_master *mas)
608{
609	int ret;
610
611	mas->tx = dma_request_chan(mas->dev, "tx");
612	if (IS_ERR(mas->tx)) {
613		ret = dev_err_probe(mas->dev, PTR_ERR(mas->tx),
614				    "Failed to get tx DMA ch\n");
615		goto err_tx;
616	}
617
618	mas->rx = dma_request_chan(mas->dev, "rx");
619	if (IS_ERR(mas->rx)) {
620		ret = dev_err_probe(mas->dev, PTR_ERR(mas->rx),
621				    "Failed to get rx DMA ch\n");
622		goto err_rx;
623	}
624
625	return 0;
626
627err_rx:
628	mas->rx = NULL;
629	dma_release_channel(mas->tx);
630err_tx:
631	mas->tx = NULL;
632	return ret;
633}
634
635static void spi_geni_release_dma_chan(struct spi_geni_master *mas)
636{
637	if (mas->rx) {
638		dma_release_channel(mas->rx);
639		mas->rx = NULL;
640	}
641
642	if (mas->tx) {
643		dma_release_channel(mas->tx);
644		mas->tx = NULL;
645	}
646}
647
648static int spi_geni_init(struct spi_geni_master *mas)
649{
650	struct spi_controller *spi = dev_get_drvdata(mas->dev);
651	struct geni_se *se = &mas->se;
652	unsigned int proto, major, minor, ver;
653	u32 spi_tx_cfg, fifo_disable;
654	int ret = -ENXIO;
655
656	pm_runtime_get_sync(mas->dev);
657
658	proto = geni_se_read_proto(se);
659
660	if (spi->target) {
661		if (proto != GENI_SE_SPI_SLAVE) {
662			dev_err(mas->dev, "Invalid proto %d\n", proto);
663			goto out_pm;
664		}
665		spi_slv_setup(mas);
666	} else if (proto != GENI_SE_SPI) {
667		dev_err(mas->dev, "Invalid proto %d\n", proto);
668		goto out_pm;
669	}
670	mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se);
671
672	/* Width of Tx and Rx FIFO is same */
673	mas->fifo_width_bits = geni_se_get_tx_fifo_width(se);
674
675	/*
676	 * Hardware programming guide suggests to configure
677	 * RX FIFO RFR level to fifo_depth-2.
678	 */
679	geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2);
680	/* Transmit an entire FIFO worth of data per IRQ */
681	mas->tx_wm = 1;
682	ver = geni_se_get_qup_hw_version(se);
683	major = GENI_SE_VERSION_MAJOR(ver);
684	minor = GENI_SE_VERSION_MINOR(ver);
685
686	if (major == 1 && minor == 0)
687		mas->oversampling = 2;
688	else
689		mas->oversampling = 1;
690
691	fifo_disable = readl(se->base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE;
692	switch (fifo_disable) {
693	case 1:
694		ret = spi_geni_grab_gpi_chan(mas);
695		if (!ret) { /* success case */
696			mas->cur_xfer_mode = GENI_GPI_DMA;
697			geni_se_select_mode(se, GENI_GPI_DMA);
698			dev_dbg(mas->dev, "Using GPI DMA mode for SPI\n");
699			break;
700		} else if (ret == -EPROBE_DEFER) {
701			goto out_pm;
702		}
703		/*
704		 * in case of failure to get gpi dma channel, we can still do the
705		 * FIFO mode, so fallthrough
706		 */
707		dev_warn(mas->dev, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n");
708		fallthrough;
709
710	case 0:
711		mas->cur_xfer_mode = GENI_SE_FIFO;
712		geni_se_select_mode(se, GENI_SE_FIFO);
713		ret = 0;
714		break;
715	}
716
717	/* We always control CS manually */
718	if (!spi->target) {
719		spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG);
720		spi_tx_cfg &= ~CS_TOGGLE;
721		writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG);
722	}
723
724out_pm:
725	pm_runtime_put(mas->dev);
726	return ret;
727}
728
729static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas)
730{
731	/*
732	 * Calculate how many bytes we'll put in each FIFO word.  If the
733	 * transfer words don't pack cleanly into a FIFO word we'll just put
734	 * one transfer word in each FIFO word.  If they do pack we'll pack 'em.
735	 */
736	if (mas->fifo_width_bits % mas->cur_bits_per_word)
737		return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word,
738						       BITS_PER_BYTE));
739
740	return mas->fifo_width_bits / BITS_PER_BYTE;
741}
742
743static bool geni_spi_handle_tx(struct spi_geni_master *mas)
744{
745	struct geni_se *se = &mas->se;
746	unsigned int max_bytes;
747	const u8 *tx_buf;
748	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
749	unsigned int i = 0;
750
751	/* Stop the watermark IRQ if nothing to send */
752	if (!mas->cur_xfer) {
753		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
754		return false;
755	}
756
757	max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word;
758	if (mas->tx_rem_bytes < max_bytes)
759		max_bytes = mas->tx_rem_bytes;
760
761	tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes;
762	while (i < max_bytes) {
763		unsigned int j;
764		unsigned int bytes_to_write;
765		u32 fifo_word = 0;
766		u8 *fifo_byte = (u8 *)&fifo_word;
767
768		bytes_to_write = min(bytes_per_fifo_word, max_bytes - i);
769		for (j = 0; j < bytes_to_write; j++)
770			fifo_byte[j] = tx_buf[i++];
771		iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1);
772	}
773	mas->tx_rem_bytes -= max_bytes;
774	if (!mas->tx_rem_bytes) {
775		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
776		return false;
777	}
778	return true;
779}
780
781static void geni_spi_handle_rx(struct spi_geni_master *mas)
782{
783	struct geni_se *se = &mas->se;
784	u32 rx_fifo_status;
785	unsigned int rx_bytes;
786	unsigned int rx_last_byte_valid;
787	u8 *rx_buf;
788	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
789	unsigned int i = 0;
790
791	rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS);
792	rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word;
793	if (rx_fifo_status & RX_LAST) {
794		rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK;
795		rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT;
796		if (rx_last_byte_valid && rx_last_byte_valid < 4)
797			rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid;
798	}
799
800	/* Clear out the FIFO and bail if nowhere to put it */
801	if (!mas->cur_xfer) {
802		for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++)
803			readl(se->base + SE_GENI_RX_FIFOn);
804		return;
805	}
806
807	if (mas->rx_rem_bytes < rx_bytes)
808		rx_bytes = mas->rx_rem_bytes;
809
810	rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes;
811	while (i < rx_bytes) {
812		u32 fifo_word = 0;
813		u8 *fifo_byte = (u8 *)&fifo_word;
814		unsigned int bytes_to_read;
815		unsigned int j;
816
817		bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i);
818		ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1);
819		for (j = 0; j < bytes_to_read; j++)
820			rx_buf[i++] = fifo_byte[j];
821	}
822	mas->rx_rem_bytes -= rx_bytes;
823}
824
825static int setup_se_xfer(struct spi_transfer *xfer,
826				struct spi_geni_master *mas,
827				u16 mode, struct spi_controller *spi)
828{
829	u32 m_cmd = 0;
830	u32 len;
831	struct geni_se *se = &mas->se;
832	int ret;
833
834	/*
835	 * Ensure that our interrupt handler isn't still running from some
836	 * prior command before we start messing with the hardware behind
837	 * its back.  We don't need to _keep_ the lock here since we're only
838	 * worried about racing with out interrupt handler.  The SPI core
839	 * already handles making sure that we're not trying to do two
840	 * transfers at once or setting a chip select and doing a transfer
841	 * concurrently.
842	 *
843	 * NOTE: we actually _can't_ hold the lock here because possibly we
844	 * might call clk_set_rate() which needs to be able to sleep.
845	 */
846	spin_lock_irq(&mas->lock);
847	spin_unlock_irq(&mas->lock);
848
849	if (xfer->bits_per_word != mas->cur_bits_per_word) {
850		spi_setup_word_len(mas, mode, xfer->bits_per_word);
851		mas->cur_bits_per_word = xfer->bits_per_word;
852	}
853
854	/* Speed and bits per word can be overridden per transfer */
855	ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz);
856	if (ret)
857		return ret;
858
859	mas->tx_rem_bytes = 0;
860	mas->rx_rem_bytes = 0;
861
862	len = get_xfer_len_in_words(xfer, mas);
863
864	mas->cur_xfer = xfer;
865	if (xfer->tx_buf) {
866		m_cmd |= SPI_TX_ONLY;
867		mas->tx_rem_bytes = xfer->len;
868		writel(len, se->base + SE_SPI_TX_TRANS_LEN);
869	}
870
871	if (xfer->rx_buf) {
872		m_cmd |= SPI_RX_ONLY;
873		writel(len, se->base + SE_SPI_RX_TRANS_LEN);
874		mas->rx_rem_bytes = xfer->len;
875	}
876
877	/*
878	 * Select DMA mode if sgt are present; and with only 1 entry
879	 * This is not a serious limitation because the xfer buffers are
880	 * expected to fit into in 1 entry almost always, and if any
881	 * doesn't for any reason we fall back to FIFO mode anyway
882	 */
883	if (!xfer->tx_sg.nents && !xfer->rx_sg.nents)
884		mas->cur_xfer_mode = GENI_SE_FIFO;
885	else if (xfer->tx_sg.nents > 1 || xfer->rx_sg.nents > 1) {
886		dev_warn_once(mas->dev, "Doing FIFO, cannot handle tx_nents-%d, rx_nents-%d\n",
887			xfer->tx_sg.nents, xfer->rx_sg.nents);
888		mas->cur_xfer_mode = GENI_SE_FIFO;
889	} else
890		mas->cur_xfer_mode = GENI_SE_DMA;
891	geni_se_select_mode(se, mas->cur_xfer_mode);
892
893	/*
894	 * Lock around right before we start the transfer since our
895	 * interrupt could come in at any time now.
896	 */
897	spin_lock_irq(&mas->lock);
898	geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION);
899
900	if (mas->cur_xfer_mode == GENI_SE_DMA) {
901		if (m_cmd & SPI_RX_ONLY)
902			geni_se_rx_init_dma(se, sg_dma_address(xfer->rx_sg.sgl),
903				sg_dma_len(xfer->rx_sg.sgl));
904		if (m_cmd & SPI_TX_ONLY)
905			geni_se_tx_init_dma(se, sg_dma_address(xfer->tx_sg.sgl),
906				sg_dma_len(xfer->tx_sg.sgl));
907	} else if (m_cmd & SPI_TX_ONLY) {
908		if (geni_spi_handle_tx(mas))
909			writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG);
910	}
911
912	spin_unlock_irq(&mas->lock);
913	return ret;
914}
915
916static int spi_geni_transfer_one(struct spi_controller *spi,
917				 struct spi_device *slv,
918				 struct spi_transfer *xfer)
919{
920	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
921	int ret;
922
923	if (spi_geni_is_abort_still_pending(mas))
924		return -EBUSY;
925
926	/* Terminate and return success for 0 byte length transfer */
927	if (!xfer->len)
928		return 0;
929
930	if (mas->cur_xfer_mode == GENI_SE_FIFO || mas->cur_xfer_mode == GENI_SE_DMA) {
931		ret = setup_se_xfer(xfer, mas, slv->mode, spi);
932		/* SPI framework expects +ve ret code to wait for transfer complete */
933		if (!ret)
934			ret = 1;
935		return ret;
936	}
937	return setup_gsi_xfer(xfer, mas, slv, spi);
938}
939
940static irqreturn_t geni_spi_isr(int irq, void *data)
941{
942	struct spi_controller *spi = data;
943	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
944	struct geni_se *se = &mas->se;
945	u32 m_irq;
946
947	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
948	if (!m_irq)
949		return IRQ_NONE;
950
951	if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN |
952		     M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN |
953		     M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN))
954		dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq);
955
956	spin_lock(&mas->lock);
957
958	if (mas->cur_xfer_mode == GENI_SE_FIFO) {
959		if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN))
960			geni_spi_handle_rx(mas);
961
962		if (m_irq & M_TX_FIFO_WATERMARK_EN)
963			geni_spi_handle_tx(mas);
964
965		if (m_irq & M_CMD_DONE_EN) {
966			if (mas->cur_xfer) {
967				spi_finalize_current_transfer(spi);
968				mas->cur_xfer = NULL;
969				/*
970				 * If this happens, then a CMD_DONE came before all the
971				 * Tx buffer bytes were sent out. This is unusual, log
972				 * this condition and disable the WM interrupt to
973				 * prevent the system from stalling due an interrupt
974				 * storm.
975				 *
976				 * If this happens when all Rx bytes haven't been
977				 * received, log the condition. The only known time
978				 * this can happen is if bits_per_word != 8 and some
979				 * registers that expect xfer lengths in num spi_words
980				 * weren't written correctly.
981				 */
982				if (mas->tx_rem_bytes) {
983					writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
984					dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
985						mas->tx_rem_bytes, mas->cur_bits_per_word);
986				}
987				if (mas->rx_rem_bytes)
988					dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
989						mas->rx_rem_bytes, mas->cur_bits_per_word);
990			} else {
991				complete(&mas->cs_done);
992			}
993		}
994	} else if (mas->cur_xfer_mode == GENI_SE_DMA) {
995		const struct spi_transfer *xfer = mas->cur_xfer;
996		u32 dma_tx_status = readl_relaxed(se->base + SE_DMA_TX_IRQ_STAT);
997		u32 dma_rx_status = readl_relaxed(se->base + SE_DMA_RX_IRQ_STAT);
998
999		if (dma_tx_status)
1000			writel(dma_tx_status, se->base + SE_DMA_TX_IRQ_CLR);
1001		if (dma_rx_status)
1002			writel(dma_rx_status, se->base + SE_DMA_RX_IRQ_CLR);
1003		if (dma_tx_status & TX_DMA_DONE)
1004			mas->tx_rem_bytes = 0;
1005		if (dma_rx_status & RX_DMA_DONE)
1006			mas->rx_rem_bytes = 0;
1007		if (dma_tx_status & TX_RESET_DONE)
1008			complete(&mas->tx_reset_done);
1009		if (dma_rx_status & RX_RESET_DONE)
1010			complete(&mas->rx_reset_done);
1011		if (!mas->tx_rem_bytes && !mas->rx_rem_bytes && xfer) {
1012			spi_finalize_current_transfer(spi);
1013			mas->cur_xfer = NULL;
1014		}
1015	}
1016
1017	if (m_irq & M_CMD_CANCEL_EN)
1018		complete(&mas->cancel_done);
1019	if (m_irq & M_CMD_ABORT_EN)
1020		complete(&mas->abort_done);
1021
1022	/*
1023	 * It's safe or a good idea to Ack all of our interrupts at the end
1024	 * of the function. Specifically:
1025	 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and
1026	 *   clearing Acks. Clearing at the end relies on nobody else having
1027	 *   started a new transfer yet or else we could be clearing _their_
1028	 *   done bit, but everyone grabs the spinlock before starting a new
1029	 *   transfer.
1030	 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear
1031	 *   to be "latched level" interrupts so it's important to clear them
1032	 *   _after_ you've handled the condition and always safe to do so
1033	 *   since they'll re-assert if they're still happening.
1034	 */
1035	writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR);
1036
1037	spin_unlock(&mas->lock);
1038
1039	return IRQ_HANDLED;
1040}
1041
1042static int spi_geni_probe(struct platform_device *pdev)
1043{
1044	int ret, irq;
1045	struct spi_controller *spi;
1046	struct spi_geni_master *mas;
1047	void __iomem *base;
1048	struct clk *clk;
1049	struct device *dev = &pdev->dev;
1050
1051	irq = platform_get_irq(pdev, 0);
1052	if (irq < 0)
1053		return irq;
1054
1055	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
1056	if (ret)
1057		return dev_err_probe(dev, ret, "could not set DMA mask\n");
1058
1059	base = devm_platform_ioremap_resource(pdev, 0);
1060	if (IS_ERR(base))
1061		return PTR_ERR(base);
1062
1063	clk = devm_clk_get(dev, "se");
1064	if (IS_ERR(clk))
1065		return PTR_ERR(clk);
1066
1067	spi = devm_spi_alloc_host(dev, sizeof(*mas));
1068	if (!spi)
1069		return -ENOMEM;
1070
1071	platform_set_drvdata(pdev, spi);
1072	mas = spi_controller_get_devdata(spi);
1073	mas->irq = irq;
1074	mas->dev = dev;
1075	mas->se.dev = dev;
1076	mas->se.wrapper = dev_get_drvdata(dev->parent);
1077	mas->se.base = base;
1078	mas->se.clk = clk;
1079
1080	ret = devm_pm_opp_set_clkname(&pdev->dev, "se");
1081	if (ret)
1082		return ret;
1083	/* OPP table is optional */
1084	ret = devm_pm_opp_of_add_table(&pdev->dev);
1085	if (ret && ret != -ENODEV) {
1086		dev_err(&pdev->dev, "invalid OPP table in device tree\n");
1087		return ret;
1088	}
1089
1090	spi->bus_num = -1;
1091	spi->dev.of_node = dev->of_node;
1092	spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
1093	spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1094	spi->num_chipselect = 4;
1095	spi->max_speed_hz = 50000000;
1096	spi->max_dma_len = 0xffff0; /* 24 bits for tx/rx dma length */
1097	spi->prepare_message = spi_geni_prepare_message;
1098	spi->transfer_one = spi_geni_transfer_one;
1099	spi->can_dma = geni_can_dma;
1100	spi->dma_map_dev = dev->parent;
1101	spi->auto_runtime_pm = true;
1102	spi->handle_err = spi_geni_handle_err;
1103	spi->use_gpio_descriptors = true;
1104
1105	init_completion(&mas->cs_done);
1106	init_completion(&mas->cancel_done);
1107	init_completion(&mas->abort_done);
1108	init_completion(&mas->tx_reset_done);
1109	init_completion(&mas->rx_reset_done);
1110	spin_lock_init(&mas->lock);
1111	pm_runtime_use_autosuspend(&pdev->dev);
1112	pm_runtime_set_autosuspend_delay(&pdev->dev, 250);
1113	pm_runtime_enable(dev);
1114
1115	if (device_property_read_bool(&pdev->dev, "spi-slave"))
1116		spi->target = true;
1117
1118	ret = geni_icc_get(&mas->se, NULL);
1119	if (ret)
1120		goto spi_geni_probe_runtime_disable;
1121	/* Set the bus quota to a reasonable value for register access */
1122	mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ);
1123	mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW;
1124
1125	ret = geni_icc_set_bw(&mas->se);
1126	if (ret)
1127		goto spi_geni_probe_runtime_disable;
1128
1129	ret = spi_geni_init(mas);
1130	if (ret)
1131		goto spi_geni_probe_runtime_disable;
1132
1133	/*
1134	 * check the mode supported and set_cs for fifo mode only
1135	 * for dma (gsi) mode, the gsi will set cs based on params passed in
1136	 * TRE
1137	 */
1138	if (!spi->target && mas->cur_xfer_mode == GENI_SE_FIFO)
1139		spi->set_cs = spi_geni_set_cs;
1140
1141	/*
1142	 * TX is required per GSI spec, see setup_gsi_xfer().
1143	 */
1144	if (mas->cur_xfer_mode == GENI_GPI_DMA)
1145		spi->flags = SPI_CONTROLLER_MUST_TX;
1146
1147	ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi);
1148	if (ret)
1149		goto spi_geni_release_dma;
1150
1151	ret = spi_register_controller(spi);
1152	if (ret)
1153		goto spi_geni_probe_free_irq;
1154
1155	return 0;
1156spi_geni_probe_free_irq:
1157	free_irq(mas->irq, spi);
1158spi_geni_release_dma:
1159	spi_geni_release_dma_chan(mas);
1160spi_geni_probe_runtime_disable:
1161	pm_runtime_disable(dev);
1162	return ret;
1163}
1164
1165static void spi_geni_remove(struct platform_device *pdev)
1166{
1167	struct spi_controller *spi = platform_get_drvdata(pdev);
1168	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
1169
1170	/* Unregister _before_ disabling pm_runtime() so we stop transfers */
1171	spi_unregister_controller(spi);
1172
1173	spi_geni_release_dma_chan(mas);
1174
1175	free_irq(mas->irq, spi);
1176	pm_runtime_disable(&pdev->dev);
1177}
1178
1179static int __maybe_unused spi_geni_runtime_suspend(struct device *dev)
1180{
1181	struct spi_controller *spi = dev_get_drvdata(dev);
1182	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
1183	int ret;
1184
1185	/* Drop the performance state vote */
1186	dev_pm_opp_set_rate(dev, 0);
1187
1188	ret = geni_se_resources_off(&mas->se);
1189	if (ret)
1190		return ret;
1191
1192	return geni_icc_disable(&mas->se);
1193}
1194
1195static int __maybe_unused spi_geni_runtime_resume(struct device *dev)
1196{
1197	struct spi_controller *spi = dev_get_drvdata(dev);
1198	struct spi_geni_master *mas = spi_controller_get_devdata(spi);
1199	int ret;
1200
1201	ret = geni_icc_enable(&mas->se);
1202	if (ret)
1203		return ret;
1204
1205	ret = geni_se_resources_on(&mas->se);
1206	if (ret)
1207		return ret;
1208
1209	return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz);
1210}
1211
1212static int __maybe_unused spi_geni_suspend(struct device *dev)
1213{
1214	struct spi_controller *spi = dev_get_drvdata(dev);
1215	int ret;
1216
1217	ret = spi_controller_suspend(spi);
1218	if (ret)
1219		return ret;
1220
1221	ret = pm_runtime_force_suspend(dev);
1222	if (ret)
1223		spi_controller_resume(spi);
1224
1225	return ret;
1226}
1227
1228static int __maybe_unused spi_geni_resume(struct device *dev)
1229{
1230	struct spi_controller *spi = dev_get_drvdata(dev);
1231	int ret;
1232
1233	ret = pm_runtime_force_resume(dev);
1234	if (ret)
1235		return ret;
1236
1237	ret = spi_controller_resume(spi);
1238	if (ret)
1239		pm_runtime_force_suspend(dev);
1240
1241	return ret;
1242}
1243
1244static const struct dev_pm_ops spi_geni_pm_ops = {
1245	SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend,
1246					spi_geni_runtime_resume, NULL)
1247	SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume)
1248};
1249
1250static const struct of_device_id spi_geni_dt_match[] = {
1251	{ .compatible = "qcom,geni-spi" },
1252	{}
1253};
1254MODULE_DEVICE_TABLE(of, spi_geni_dt_match);
1255
1256static struct platform_driver spi_geni_driver = {
1257	.probe  = spi_geni_probe,
1258	.remove_new = spi_geni_remove,
1259	.driver = {
1260		.name = "geni_spi",
1261		.pm = &spi_geni_pm_ops,
1262		.of_match_table = spi_geni_dt_match,
1263	},
1264};
1265module_platform_driver(spi_geni_driver);
1266
1267MODULE_DESCRIPTION("SPI driver for GENI based QUP cores");
1268MODULE_LICENSE("GPL v2");
1269