1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Designware SPI core controller driver (refer pxa2xx_spi.c)
4 *
5 * Copyright (c) 2009, Intel Corporation.
6 */
7
8#include <linux/bitfield.h>
9#include <linux/dma-mapping.h>
10#include <linux/interrupt.h>
11#include <linux/module.h>
12#include <linux/preempt.h>
13#include <linux/highmem.h>
14#include <linux/delay.h>
15#include <linux/slab.h>
16#include <linux/spi/spi.h>
17#include <linux/spi/spi-mem.h>
18#include <linux/string.h>
19#include <linux/of.h>
20
21#include "spi-dw.h"
22
23#ifdef CONFIG_DEBUG_FS
24#include <linux/debugfs.h>
25#endif
26
27/* Slave spi_device related */
28struct dw_spi_chip_data {
29	u32 cr0;
30	u32 rx_sample_dly;	/* RX sample delay */
31};
32
33#ifdef CONFIG_DEBUG_FS
34
35#define DW_SPI_DBGFS_REG(_name, _off)	\
36{					\
37	.name = _name,			\
38	.offset = _off,			\
39}
40
41static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
42	DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
43	DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
44	DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
45	DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
46	DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
47	DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
48	DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
49	DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
50	DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
51	DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
52	DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
53	DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
54	DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
55	DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
56	DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
57	DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
58};
59
60static void dw_spi_debugfs_init(struct dw_spi *dws)
61{
62	char name[32];
63
64	snprintf(name, 32, "dw_spi%d", dws->host->bus_num);
65	dws->debugfs = debugfs_create_dir(name, NULL);
66
67	dws->regset.regs = dw_spi_dbgfs_regs;
68	dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
69	dws->regset.base = dws->regs;
70	debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
71}
72
73static void dw_spi_debugfs_remove(struct dw_spi *dws)
74{
75	debugfs_remove_recursive(dws->debugfs);
76}
77
78#else
79static inline void dw_spi_debugfs_init(struct dw_spi *dws)
80{
81}
82
83static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
84{
85}
86#endif /* CONFIG_DEBUG_FS */
87
88void dw_spi_set_cs(struct spi_device *spi, bool enable)
89{
90	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
91	bool cs_high = !!(spi->mode & SPI_CS_HIGH);
92
93	/*
94	 * DW SPI controller demands any native CS being set in order to
95	 * proceed with data transfer. So in order to activate the SPI
96	 * communications we must set a corresponding bit in the Slave
97	 * Enable register no matter whether the SPI core is configured to
98	 * support active-high or active-low CS level.
99	 */
100	if (cs_high == enable)
101		dw_writel(dws, DW_SPI_SER, BIT(spi_get_chipselect(spi, 0)));
102	else
103		dw_writel(dws, DW_SPI_SER, 0);
104}
105EXPORT_SYMBOL_NS_GPL(dw_spi_set_cs, SPI_DW_CORE);
106
107/* Return the max entries we can fill into tx fifo */
108static inline u32 dw_spi_tx_max(struct dw_spi *dws)
109{
110	u32 tx_room, rxtx_gap;
111
112	tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
113
114	/*
115	 * Another concern is about the tx/rx mismatch, we
116	 * though to use (dws->fifo_len - rxflr - txflr) as
117	 * one maximum value for tx, but it doesn't cover the
118	 * data which is out of tx/rx fifo and inside the
119	 * shift registers. So a control from sw point of
120	 * view is taken.
121	 */
122	rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
123
124	return min3((u32)dws->tx_len, tx_room, rxtx_gap);
125}
126
127/* Return the max entries we should read out of rx fifo */
128static inline u32 dw_spi_rx_max(struct dw_spi *dws)
129{
130	return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
131}
132
133static void dw_writer(struct dw_spi *dws)
134{
135	u32 max = dw_spi_tx_max(dws);
136	u32 txw = 0;
137
138	while (max--) {
139		if (dws->tx) {
140			if (dws->n_bytes == 1)
141				txw = *(u8 *)(dws->tx);
142			else if (dws->n_bytes == 2)
143				txw = *(u16 *)(dws->tx);
144			else
145				txw = *(u32 *)(dws->tx);
146
147			dws->tx += dws->n_bytes;
148		}
149		dw_write_io_reg(dws, DW_SPI_DR, txw);
150		--dws->tx_len;
151	}
152}
153
154static void dw_reader(struct dw_spi *dws)
155{
156	u32 max = dw_spi_rx_max(dws);
157	u32 rxw;
158
159	while (max--) {
160		rxw = dw_read_io_reg(dws, DW_SPI_DR);
161		if (dws->rx) {
162			if (dws->n_bytes == 1)
163				*(u8 *)(dws->rx) = rxw;
164			else if (dws->n_bytes == 2)
165				*(u16 *)(dws->rx) = rxw;
166			else
167				*(u32 *)(dws->rx) = rxw;
168
169			dws->rx += dws->n_bytes;
170		}
171		--dws->rx_len;
172	}
173}
174
175int dw_spi_check_status(struct dw_spi *dws, bool raw)
176{
177	u32 irq_status;
178	int ret = 0;
179
180	if (raw)
181		irq_status = dw_readl(dws, DW_SPI_RISR);
182	else
183		irq_status = dw_readl(dws, DW_SPI_ISR);
184
185	if (irq_status & DW_SPI_INT_RXOI) {
186		dev_err(&dws->host->dev, "RX FIFO overflow detected\n");
187		ret = -EIO;
188	}
189
190	if (irq_status & DW_SPI_INT_RXUI) {
191		dev_err(&dws->host->dev, "RX FIFO underflow detected\n");
192		ret = -EIO;
193	}
194
195	if (irq_status & DW_SPI_INT_TXOI) {
196		dev_err(&dws->host->dev, "TX FIFO overflow detected\n");
197		ret = -EIO;
198	}
199
200	/* Generically handle the erroneous situation */
201	if (ret) {
202		dw_spi_reset_chip(dws);
203		if (dws->host->cur_msg)
204			dws->host->cur_msg->status = ret;
205	}
206
207	return ret;
208}
209EXPORT_SYMBOL_NS_GPL(dw_spi_check_status, SPI_DW_CORE);
210
211static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
212{
213	u16 irq_status = dw_readl(dws, DW_SPI_ISR);
214
215	if (dw_spi_check_status(dws, false)) {
216		spi_finalize_current_transfer(dws->host);
217		return IRQ_HANDLED;
218	}
219
220	/*
221	 * Read data from the Rx FIFO every time we've got a chance executing
222	 * this method. If there is nothing left to receive, terminate the
223	 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
224	 * final stage of the transfer. By doing so we'll get the next IRQ
225	 * right when the leftover incoming data is received.
226	 */
227	dw_reader(dws);
228	if (!dws->rx_len) {
229		dw_spi_mask_intr(dws, 0xff);
230		spi_finalize_current_transfer(dws->host);
231	} else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
232		dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
233	}
234
235	/*
236	 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
237	 * disabled after the data transmission is finished so not to
238	 * have the TXE IRQ flood at the final stage of the transfer.
239	 */
240	if (irq_status & DW_SPI_INT_TXEI) {
241		dw_writer(dws);
242		if (!dws->tx_len)
243			dw_spi_mask_intr(dws, DW_SPI_INT_TXEI);
244	}
245
246	return IRQ_HANDLED;
247}
248
249static irqreturn_t dw_spi_irq(int irq, void *dev_id)
250{
251	struct spi_controller *host = dev_id;
252	struct dw_spi *dws = spi_controller_get_devdata(host);
253	u16 irq_status = dw_readl(dws, DW_SPI_ISR) & DW_SPI_INT_MASK;
254
255	if (!irq_status)
256		return IRQ_NONE;
257
258	if (!host->cur_msg) {
259		dw_spi_mask_intr(dws, 0xff);
260		return IRQ_HANDLED;
261	}
262
263	return dws->transfer_handler(dws);
264}
265
266static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
267{
268	u32 cr0 = 0;
269
270	if (dw_spi_ip_is(dws, PSSI)) {
271		/* CTRLR0[ 5: 4] Frame Format */
272		cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
273
274		/*
275		 * SPI mode (SCPOL|SCPH)
276		 * CTRLR0[ 6] Serial Clock Phase
277		 * CTRLR0[ 7] Serial Clock Polarity
278		 */
279		if (spi->mode & SPI_CPOL)
280			cr0 |= DW_PSSI_CTRLR0_SCPOL;
281		if (spi->mode & SPI_CPHA)
282			cr0 |= DW_PSSI_CTRLR0_SCPHA;
283
284		/* CTRLR0[11] Shift Register Loop */
285		if (spi->mode & SPI_LOOP)
286			cr0 |= DW_PSSI_CTRLR0_SRL;
287	} else {
288		/* CTRLR0[ 7: 6] Frame Format */
289		cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
290
291		/*
292		 * SPI mode (SCPOL|SCPH)
293		 * CTRLR0[ 8] Serial Clock Phase
294		 * CTRLR0[ 9] Serial Clock Polarity
295		 */
296		if (spi->mode & SPI_CPOL)
297			cr0 |= DW_HSSI_CTRLR0_SCPOL;
298		if (spi->mode & SPI_CPHA)
299			cr0 |= DW_HSSI_CTRLR0_SCPHA;
300
301		/* CTRLR0[13] Shift Register Loop */
302		if (spi->mode & SPI_LOOP)
303			cr0 |= DW_HSSI_CTRLR0_SRL;
304
305		/* CTRLR0[31] MST */
306		if (dw_spi_ver_is_ge(dws, HSSI, 102A))
307			cr0 |= DW_HSSI_CTRLR0_MST;
308	}
309
310	return cr0;
311}
312
313void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
314			  struct dw_spi_cfg *cfg)
315{
316	struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
317	u32 cr0 = chip->cr0;
318	u32 speed_hz;
319	u16 clk_div;
320
321	/* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */
322	cr0 |= (cfg->dfs - 1) << dws->dfs_offset;
323
324	if (dw_spi_ip_is(dws, PSSI))
325		/* CTRLR0[ 9:8] Transfer Mode */
326		cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_TMOD_MASK, cfg->tmode);
327	else
328		/* CTRLR0[11:10] Transfer Mode */
329		cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_TMOD_MASK, cfg->tmode);
330
331	dw_writel(dws, DW_SPI_CTRLR0, cr0);
332
333	if (cfg->tmode == DW_SPI_CTRLR0_TMOD_EPROMREAD ||
334	    cfg->tmode == DW_SPI_CTRLR0_TMOD_RO)
335		dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);
336
337	/* Note DW APB SSI clock divider doesn't support odd numbers */
338	clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
339	speed_hz = dws->max_freq / clk_div;
340
341	if (dws->current_freq != speed_hz) {
342		dw_spi_set_clk(dws, clk_div);
343		dws->current_freq = speed_hz;
344	}
345
346	/* Update RX sample delay if required */
347	if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
348		dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
349		dws->cur_rx_sample_dly = chip->rx_sample_dly;
350	}
351}
352EXPORT_SYMBOL_NS_GPL(dw_spi_update_config, SPI_DW_CORE);
353
354static void dw_spi_irq_setup(struct dw_spi *dws)
355{
356	u16 level;
357	u8 imask;
358
359	/*
360	 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
361	 * will be adjusted at the final stage of the IRQ-based SPI transfer
362	 * execution so not to lose the leftover of the incoming data.
363	 */
364	level = min_t(unsigned int, dws->fifo_len / 2, dws->tx_len);
365	dw_writel(dws, DW_SPI_TXFTLR, level);
366	dw_writel(dws, DW_SPI_RXFTLR, level - 1);
367
368	dws->transfer_handler = dw_spi_transfer_handler;
369
370	imask = DW_SPI_INT_TXEI | DW_SPI_INT_TXOI |
371		DW_SPI_INT_RXUI | DW_SPI_INT_RXOI | DW_SPI_INT_RXFI;
372	dw_spi_umask_intr(dws, imask);
373}
374
375/*
376 * The iterative procedure of the poll-based transfer is simple: write as much
377 * as possible to the Tx FIFO, wait until the pending to receive data is ready
378 * to be read, read it from the Rx FIFO and check whether the performed
379 * procedure has been successful.
380 *
381 * Note this method the same way as the IRQ-based transfer won't work well for
382 * the SPI devices connected to the controller with native CS due to the
383 * automatic CS assertion/de-assertion.
384 */
385static int dw_spi_poll_transfer(struct dw_spi *dws,
386				struct spi_transfer *transfer)
387{
388	struct spi_delay delay;
389	u16 nbits;
390	int ret;
391
392	delay.unit = SPI_DELAY_UNIT_SCK;
393	nbits = dws->n_bytes * BITS_PER_BYTE;
394
395	do {
396		dw_writer(dws);
397
398		delay.value = nbits * (dws->rx_len - dws->tx_len);
399		spi_delay_exec(&delay, transfer);
400
401		dw_reader(dws);
402
403		ret = dw_spi_check_status(dws, true);
404		if (ret)
405			return ret;
406	} while (dws->rx_len);
407
408	return 0;
409}
410
411static int dw_spi_transfer_one(struct spi_controller *host,
412			       struct spi_device *spi,
413			       struct spi_transfer *transfer)
414{
415	struct dw_spi *dws = spi_controller_get_devdata(host);
416	struct dw_spi_cfg cfg = {
417		.tmode = DW_SPI_CTRLR0_TMOD_TR,
418		.dfs = transfer->bits_per_word,
419		.freq = transfer->speed_hz,
420	};
421	int ret;
422
423	dws->dma_mapped = 0;
424	dws->n_bytes =
425		roundup_pow_of_two(DIV_ROUND_UP(transfer->bits_per_word,
426						BITS_PER_BYTE));
427
428	dws->tx = (void *)transfer->tx_buf;
429	dws->tx_len = transfer->len / dws->n_bytes;
430	dws->rx = transfer->rx_buf;
431	dws->rx_len = dws->tx_len;
432
433	/* Ensure the data above is visible for all CPUs */
434	smp_mb();
435
436	dw_spi_enable_chip(dws, 0);
437
438	dw_spi_update_config(dws, spi, &cfg);
439
440	transfer->effective_speed_hz = dws->current_freq;
441
442	/* Check if current transfer is a DMA transaction */
443	if (host->can_dma && host->can_dma(host, spi, transfer))
444		dws->dma_mapped = host->cur_msg_mapped;
445
446	/* For poll mode just disable all interrupts */
447	dw_spi_mask_intr(dws, 0xff);
448
449	if (dws->dma_mapped) {
450		ret = dws->dma_ops->dma_setup(dws, transfer);
451		if (ret)
452			return ret;
453	}
454
455	dw_spi_enable_chip(dws, 1);
456
457	if (dws->dma_mapped)
458		return dws->dma_ops->dma_transfer(dws, transfer);
459	else if (dws->irq == IRQ_NOTCONNECTED)
460		return dw_spi_poll_transfer(dws, transfer);
461
462	dw_spi_irq_setup(dws);
463
464	return 1;
465}
466
467static void dw_spi_handle_err(struct spi_controller *host,
468			      struct spi_message *msg)
469{
470	struct dw_spi *dws = spi_controller_get_devdata(host);
471
472	if (dws->dma_mapped)
473		dws->dma_ops->dma_stop(dws);
474
475	dw_spi_reset_chip(dws);
476}
477
478static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
479{
480	if (op->data.dir == SPI_MEM_DATA_IN)
481		op->data.nbytes = clamp_val(op->data.nbytes, 0, DW_SPI_NDF_MASK + 1);
482
483	return 0;
484}
485
486static bool dw_spi_supports_mem_op(struct spi_mem *mem,
487				   const struct spi_mem_op *op)
488{
489	if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
490	    op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
491		return false;
492
493	return spi_mem_default_supports_op(mem, op);
494}
495
496static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
497{
498	unsigned int i, j, len;
499	u8 *out;
500
501	/*
502	 * Calculate the total length of the EEPROM command transfer and
503	 * either use the pre-allocated buffer or create a temporary one.
504	 */
505	len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
506	if (op->data.dir == SPI_MEM_DATA_OUT)
507		len += op->data.nbytes;
508
509	if (len <= DW_SPI_BUF_SIZE) {
510		out = dws->buf;
511	} else {
512		out = kzalloc(len, GFP_KERNEL);
513		if (!out)
514			return -ENOMEM;
515	}
516
517	/*
518	 * Collect the operation code, address and dummy bytes into the single
519	 * buffer. If it's a transfer with data to be sent, also copy it into the
520	 * single buffer in order to speed the data transmission up.
521	 */
522	for (i = 0; i < op->cmd.nbytes; ++i)
523		out[i] = DW_SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
524	for (j = 0; j < op->addr.nbytes; ++i, ++j)
525		out[i] = DW_SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
526	for (j = 0; j < op->dummy.nbytes; ++i, ++j)
527		out[i] = 0x0;
528
529	if (op->data.dir == SPI_MEM_DATA_OUT)
530		memcpy(&out[i], op->data.buf.out, op->data.nbytes);
531
532	dws->n_bytes = 1;
533	dws->tx = out;
534	dws->tx_len = len;
535	if (op->data.dir == SPI_MEM_DATA_IN) {
536		dws->rx = op->data.buf.in;
537		dws->rx_len = op->data.nbytes;
538	} else {
539		dws->rx = NULL;
540		dws->rx_len = 0;
541	}
542
543	return 0;
544}
545
546static void dw_spi_free_mem_buf(struct dw_spi *dws)
547{
548	if (dws->tx != dws->buf)
549		kfree(dws->tx);
550}
551
552static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
553{
554	u32 room, entries, sts;
555	unsigned int len;
556	u8 *buf;
557
558	/*
559	 * At initial stage we just pre-fill the Tx FIFO in with no rush,
560	 * since native CS hasn't been enabled yet and the automatic data
561	 * transmission won't start til we do that.
562	 */
563	len = min(dws->fifo_len, dws->tx_len);
564	buf = dws->tx;
565	while (len--)
566		dw_write_io_reg(dws, DW_SPI_DR, *buf++);
567
568	/*
569	 * After setting any bit in the SER register the transmission will
570	 * start automatically. We have to keep up with that procedure
571	 * otherwise the CS de-assertion will happen whereupon the memory
572	 * operation will be pre-terminated.
573	 */
574	len = dws->tx_len - ((void *)buf - dws->tx);
575	dw_spi_set_cs(spi, false);
576	while (len) {
577		entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
578		if (!entries) {
579			dev_err(&dws->host->dev, "CS de-assertion on Tx\n");
580			return -EIO;
581		}
582		room = min(dws->fifo_len - entries, len);
583		for (; room; --room, --len)
584			dw_write_io_reg(dws, DW_SPI_DR, *buf++);
585	}
586
587	/*
588	 * Data fetching will start automatically if the EEPROM-read mode is
589	 * activated. We have to keep up with the incoming data pace to
590	 * prevent the Rx FIFO overflow causing the inbound data loss.
591	 */
592	len = dws->rx_len;
593	buf = dws->rx;
594	while (len) {
595		entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
596		if (!entries) {
597			sts = readl_relaxed(dws->regs + DW_SPI_RISR);
598			if (sts & DW_SPI_INT_RXOI) {
599				dev_err(&dws->host->dev, "FIFO overflow on Rx\n");
600				return -EIO;
601			}
602			continue;
603		}
604		entries = min(entries, len);
605		for (; entries; --entries, --len)
606			*buf++ = dw_read_io_reg(dws, DW_SPI_DR);
607	}
608
609	return 0;
610}
611
612static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
613{
614	return dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_BUSY;
615}
616
617static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
618{
619	int retry = DW_SPI_WAIT_RETRIES;
620	struct spi_delay delay;
621	unsigned long ns, us;
622	u32 nents;
623
624	nents = dw_readl(dws, DW_SPI_TXFLR);
625	ns = NSEC_PER_SEC / dws->current_freq * nents;
626	ns *= dws->n_bytes * BITS_PER_BYTE;
627	if (ns <= NSEC_PER_USEC) {
628		delay.unit = SPI_DELAY_UNIT_NSECS;
629		delay.value = ns;
630	} else {
631		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
632		delay.unit = SPI_DELAY_UNIT_USECS;
633		delay.value = clamp_val(us, 0, USHRT_MAX);
634	}
635
636	while (dw_spi_ctlr_busy(dws) && retry--)
637		spi_delay_exec(&delay, NULL);
638
639	if (retry < 0) {
640		dev_err(&dws->host->dev, "Mem op hanged up\n");
641		return -EIO;
642	}
643
644	return 0;
645}
646
647static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
648{
649	dw_spi_enable_chip(dws, 0);
650	dw_spi_set_cs(spi, true);
651	dw_spi_enable_chip(dws, 1);
652}
653
654/*
655 * The SPI memory operation implementation below is the best choice for the
656 * devices, which are selected by the native chip-select lane. It's
657 * specifically developed to workaround the problem with automatic chip-select
658 * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
659 * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
660 * unavailable.
661 */
662static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
663{
664	struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
665	struct dw_spi_cfg cfg;
666	unsigned long flags;
667	int ret;
668
669	/*
670	 * Collect the outbound data into a single buffer to speed the
671	 * transmission up at least on the initial stage.
672	 */
673	ret = dw_spi_init_mem_buf(dws, op);
674	if (ret)
675		return ret;
676
677	/*
678	 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
679	 * operation. Transmit-only mode is suitable for the rest of them.
680	 */
681	cfg.dfs = 8;
682	cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
683	if (op->data.dir == SPI_MEM_DATA_IN) {
684		cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD;
685		cfg.ndf = op->data.nbytes;
686	} else {
687		cfg.tmode = DW_SPI_CTRLR0_TMOD_TO;
688	}
689
690	dw_spi_enable_chip(dws, 0);
691
692	dw_spi_update_config(dws, mem->spi, &cfg);
693
694	dw_spi_mask_intr(dws, 0xff);
695
696	dw_spi_enable_chip(dws, 1);
697
698	/*
699	 * DW APB SSI controller has very nasty peculiarities. First originally
700	 * (without any vendor-specific modifications) it doesn't provide a
701	 * direct way to set and clear the native chip-select signal. Instead
702	 * the controller asserts the CS lane if Tx FIFO isn't empty and a
703	 * transmission is going on, and automatically de-asserts it back to
704	 * the high level if the Tx FIFO doesn't have anything to be pushed
705	 * out. Due to that a multi-tasking or heavy IRQs activity might be
706	 * fatal, since the transfer procedure preemption may cause the Tx FIFO
707	 * getting empty and sudden CS de-assertion, which in the middle of the
708	 * transfer will most likely cause the data loss. Secondly the
709	 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
710	 * data being automatically pulled in into the Rx FIFO. So if the
711	 * driver software is late in fetching the data from the FIFO before
712	 * it's overflown, new incoming data will be lost. In order to make
713	 * sure the executed memory operations are CS-atomic and to prevent the
714	 * Rx FIFO overflow we have to disable the local interrupts so to block
715	 * any preemption during the subsequent IO operations.
716	 *
717	 * Note. At some circumstances disabling IRQs may not help to prevent
718	 * the problems described above. The CS de-assertion and Rx FIFO
719	 * overflow may still happen due to the relatively slow system bus or
720	 * CPU not working fast enough, so the write-then-read algo implemented
721	 * here just won't keep up with the SPI bus data transfer. Such
722	 * situation is highly platform specific and is supposed to be fixed by
723	 * manually restricting the SPI bus frequency using the
724	 * dws->max_mem_freq parameter.
725	 */
726	local_irq_save(flags);
727	preempt_disable();
728
729	ret = dw_spi_write_then_read(dws, mem->spi);
730
731	local_irq_restore(flags);
732	preempt_enable();
733
734	/*
735	 * Wait for the operation being finished and check the controller
736	 * status only if there hasn't been any run-time error detected. In the
737	 * former case it's just pointless. In the later one to prevent an
738	 * additional error message printing since any hw error flag being set
739	 * would be due to an error detected on the data transfer.
740	 */
741	if (!ret) {
742		ret = dw_spi_wait_mem_op_done(dws);
743		if (!ret)
744			ret = dw_spi_check_status(dws, true);
745	}
746
747	dw_spi_stop_mem_op(dws, mem->spi);
748
749	dw_spi_free_mem_buf(dws);
750
751	return ret;
752}
753
754/*
755 * Initialize the default memory operations if a glue layer hasn't specified
756 * custom ones. Direct mapping operations will be preserved anyway since DW SPI
757 * controller doesn't have an embedded dirmap interface. Note the memory
758 * operations implemented in this driver is the best choice only for the DW APB
759 * SSI controller with standard native CS functionality. If a hardware vendor
760 * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
761 * be safer to use the normal SPI-messages-based transfers implementation.
762 */
763static void dw_spi_init_mem_ops(struct dw_spi *dws)
764{
765	if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
766	    !dws->set_cs) {
767		dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
768		dws->mem_ops.supports_op = dw_spi_supports_mem_op;
769		dws->mem_ops.exec_op = dw_spi_exec_mem_op;
770		if (!dws->max_mem_freq)
771			dws->max_mem_freq = dws->max_freq;
772	}
773}
774
775/* This may be called twice for each spi dev */
776static int dw_spi_setup(struct spi_device *spi)
777{
778	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
779	struct dw_spi_chip_data *chip;
780
781	/* Only alloc on first setup */
782	chip = spi_get_ctldata(spi);
783	if (!chip) {
784		struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
785		u32 rx_sample_dly_ns;
786
787		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
788		if (!chip)
789			return -ENOMEM;
790		spi_set_ctldata(spi, chip);
791		/* Get specific / default rx-sample-delay */
792		if (device_property_read_u32(&spi->dev,
793					     "rx-sample-delay-ns",
794					     &rx_sample_dly_ns) != 0)
795			/* Use default controller value */
796			rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
797		chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
798							NSEC_PER_SEC /
799							dws->max_freq);
800	}
801
802	/*
803	 * Update CR0 data each time the setup callback is invoked since
804	 * the device parameters could have been changed, for instance, by
805	 * the MMC SPI driver or something else.
806	 */
807	chip->cr0 = dw_spi_prepare_cr0(dws, spi);
808
809	return 0;
810}
811
812static void dw_spi_cleanup(struct spi_device *spi)
813{
814	struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
815
816	kfree(chip);
817	spi_set_ctldata(spi, NULL);
818}
819
820/* Restart the controller, disable all interrupts, clean rx fifo */
821static void dw_spi_hw_init(struct device *dev, struct dw_spi *dws)
822{
823	dw_spi_reset_chip(dws);
824
825	/*
826	 * Retrieve the Synopsys component version if it hasn't been specified
827	 * by the platform. CoreKit version ID is encoded as a 3-chars ASCII
828	 * code enclosed with '*' (typical for the most of Synopsys IP-cores).
829	 */
830	if (!dws->ver) {
831		dws->ver = dw_readl(dws, DW_SPI_VERSION);
832
833		dev_dbg(dev, "Synopsys DWC%sSSI v%c.%c%c\n",
834			dw_spi_ip_is(dws, PSSI) ? " APB " : " ",
835			DW_SPI_GET_BYTE(dws->ver, 3), DW_SPI_GET_BYTE(dws->ver, 2),
836			DW_SPI_GET_BYTE(dws->ver, 1));
837	}
838
839	/*
840	 * Try to detect the FIFO depth if not set by interface driver,
841	 * the depth could be from 2 to 256 from HW spec
842	 */
843	if (!dws->fifo_len) {
844		u32 fifo;
845
846		for (fifo = 1; fifo < 256; fifo++) {
847			dw_writel(dws, DW_SPI_TXFTLR, fifo);
848			if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
849				break;
850		}
851		dw_writel(dws, DW_SPI_TXFTLR, 0);
852
853		dws->fifo_len = (fifo == 1) ? 0 : fifo;
854		dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
855	}
856
857	/*
858	 * Detect CTRLR0.DFS field size and offset by testing the lowest bits
859	 * writability. Note DWC SSI controller also has the extended DFS, but
860	 * with zero offset.
861	 */
862	if (dw_spi_ip_is(dws, PSSI)) {
863		u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0);
864
865		dw_spi_enable_chip(dws, 0);
866		dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff);
867		cr0 = dw_readl(dws, DW_SPI_CTRLR0);
868		dw_writel(dws, DW_SPI_CTRLR0, tmp);
869		dw_spi_enable_chip(dws, 1);
870
871		if (!(cr0 & DW_PSSI_CTRLR0_DFS_MASK)) {
872			dws->caps |= DW_SPI_CAP_DFS32;
873			dws->dfs_offset = __bf_shf(DW_PSSI_CTRLR0_DFS32_MASK);
874			dev_dbg(dev, "Detected 32-bits max data frame size\n");
875		}
876	} else {
877		dws->caps |= DW_SPI_CAP_DFS32;
878	}
879
880	/* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
881	if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
882		dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
883}
884
885int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
886{
887	struct spi_controller *host;
888	int ret;
889
890	if (!dws)
891		return -EINVAL;
892
893	host = spi_alloc_host(dev, 0);
894	if (!host)
895		return -ENOMEM;
896
897	device_set_node(&host->dev, dev_fwnode(dev));
898
899	dws->host = host;
900	dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
901
902	spi_controller_set_devdata(host, dws);
903
904	/* Basic HW init */
905	dw_spi_hw_init(dev, dws);
906
907	ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
908			  host);
909	if (ret < 0 && ret != -ENOTCONN) {
910		dev_err(dev, "can not get IRQ\n");
911		goto err_free_host;
912	}
913
914	dw_spi_init_mem_ops(dws);
915
916	host->use_gpio_descriptors = true;
917	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
918	if (dws->caps & DW_SPI_CAP_DFS32)
919		host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
920	else
921		host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
922	host->bus_num = dws->bus_num;
923	host->num_chipselect = dws->num_cs;
924	host->setup = dw_spi_setup;
925	host->cleanup = dw_spi_cleanup;
926	if (dws->set_cs)
927		host->set_cs = dws->set_cs;
928	else
929		host->set_cs = dw_spi_set_cs;
930	host->transfer_one = dw_spi_transfer_one;
931	host->handle_err = dw_spi_handle_err;
932	if (dws->mem_ops.exec_op)
933		host->mem_ops = &dws->mem_ops;
934	host->max_speed_hz = dws->max_freq;
935	host->flags = SPI_CONTROLLER_GPIO_SS;
936	host->auto_runtime_pm = true;
937
938	/* Get default rx sample delay */
939	device_property_read_u32(dev, "rx-sample-delay-ns",
940				 &dws->def_rx_sample_dly_ns);
941
942	if (dws->dma_ops && dws->dma_ops->dma_init) {
943		ret = dws->dma_ops->dma_init(dev, dws);
944		if (ret == -EPROBE_DEFER) {
945			goto err_free_irq;
946		} else if (ret) {
947			dev_warn(dev, "DMA init failed\n");
948		} else {
949			host->can_dma = dws->dma_ops->can_dma;
950			host->flags |= SPI_CONTROLLER_MUST_TX;
951		}
952	}
953
954	ret = spi_register_controller(host);
955	if (ret) {
956		dev_err_probe(dev, ret, "problem registering spi host\n");
957		goto err_dma_exit;
958	}
959
960	dw_spi_debugfs_init(dws);
961	return 0;
962
963err_dma_exit:
964	if (dws->dma_ops && dws->dma_ops->dma_exit)
965		dws->dma_ops->dma_exit(dws);
966	dw_spi_enable_chip(dws, 0);
967err_free_irq:
968	free_irq(dws->irq, host);
969err_free_host:
970	spi_controller_put(host);
971	return ret;
972}
973EXPORT_SYMBOL_NS_GPL(dw_spi_add_host, SPI_DW_CORE);
974
975void dw_spi_remove_host(struct dw_spi *dws)
976{
977	dw_spi_debugfs_remove(dws);
978
979	spi_unregister_controller(dws->host);
980
981	if (dws->dma_ops && dws->dma_ops->dma_exit)
982		dws->dma_ops->dma_exit(dws);
983
984	dw_spi_shutdown_chip(dws);
985
986	free_irq(dws->irq, dws->host);
987}
988EXPORT_SYMBOL_NS_GPL(dw_spi_remove_host, SPI_DW_CORE);
989
990int dw_spi_suspend_host(struct dw_spi *dws)
991{
992	int ret;
993
994	ret = spi_controller_suspend(dws->host);
995	if (ret)
996		return ret;
997
998	dw_spi_shutdown_chip(dws);
999	return 0;
1000}
1001EXPORT_SYMBOL_NS_GPL(dw_spi_suspend_host, SPI_DW_CORE);
1002
1003int dw_spi_resume_host(struct dw_spi *dws)
1004{
1005	dw_spi_hw_init(&dws->host->dev, dws);
1006	return spi_controller_resume(dws->host);
1007}
1008EXPORT_SYMBOL_NS_GPL(dw_spi_resume_host, SPI_DW_CORE);
1009
1010MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
1011MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
1012MODULE_LICENSE("GPL v2");
1013