1// SPDX-License-Identifier: GPL-2.0-only
2//
3// Driver for Cadence QSPI Controller
4//
5// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9#include <linux/clk.h>
10#include <linux/completion.h>
11#include <linux/delay.h>
12#include <linux/dma-mapping.h>
13#include <linux/dmaengine.h>
14#include <linux/err.h>
15#include <linux/errno.h>
16#include <linux/firmware/xlnx-zynqmp.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/iopoll.h>
20#include <linux/jiffies.h>
21#include <linux/kernel.h>
22#include <linux/log2.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/reset.h>
28#include <linux/sched.h>
29#include <linux/spi/spi.h>
30#include <linux/spi/spi-mem.h>
31#include <linux/timer.h>
32
33#define CQSPI_NAME			"cadence-qspi"
34#define CQSPI_MAX_CHIPSELECT		4
35
36static_assert(CQSPI_MAX_CHIPSELECT <= SPI_CS_CNT_MAX);
37
38/* Quirks */
39#define CQSPI_NEEDS_WR_DELAY		BIT(0)
40#define CQSPI_DISABLE_DAC_MODE		BIT(1)
41#define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
42#define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
43#define CQSPI_SLOW_SRAM		BIT(4)
44#define CQSPI_NEEDS_APB_AHB_HAZARD_WAR	BIT(5)
45
46/* Capabilities */
47#define CQSPI_SUPPORTS_OCTAL		BIT(0)
48
49#define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
50
51enum {
52	CLK_QSPI_APB = 0,
53	CLK_QSPI_AHB,
54	CLK_QSPI_NUM,
55};
56
57struct cqspi_st;
58
59struct cqspi_flash_pdata {
60	struct cqspi_st	*cqspi;
61	u32		clk_rate;
62	u32		read_delay;
63	u32		tshsl_ns;
64	u32		tsd2d_ns;
65	u32		tchsh_ns;
66	u32		tslch_ns;
67	u8		cs;
68};
69
70struct cqspi_st {
71	struct platform_device	*pdev;
72	struct spi_controller	*host;
73	struct clk		*clk;
74	struct clk		*clks[CLK_QSPI_NUM];
75	unsigned int		sclk;
76
77	void __iomem		*iobase;
78	void __iomem		*ahb_base;
79	resource_size_t		ahb_size;
80	struct completion	transfer_complete;
81
82	struct dma_chan		*rx_chan;
83	struct completion	rx_dma_complete;
84	dma_addr_t		mmap_phys_base;
85
86	int			current_cs;
87	unsigned long		master_ref_clk_hz;
88	bool			is_decoded_cs;
89	u32			fifo_depth;
90	u32			fifo_width;
91	u32			num_chipselect;
92	bool			rclk_en;
93	u32			trigger_address;
94	u32			wr_delay;
95	bool			use_direct_mode;
96	bool			use_direct_mode_wr;
97	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
98	bool			use_dma_read;
99	u32			pd_dev_id;
100	bool			wr_completion;
101	bool			slow_sram;
102	bool			apb_ahb_hazard;
103
104	bool			is_jh7110; /* Flag for StarFive JH7110 SoC */
105};
106
107struct cqspi_driver_platdata {
108	u32 hwcaps_mask;
109	u8 quirks;
110	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
111				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
112	u32 (*get_dma_status)(struct cqspi_st *cqspi);
113	int (*jh7110_clk_init)(struct platform_device *pdev,
114			       struct cqspi_st *cqspi);
115};
116
117/* Operation timeout value */
118#define CQSPI_TIMEOUT_MS			500
119#define CQSPI_READ_TIMEOUT_MS			10
120
121/* Runtime_pm autosuspend delay */
122#define CQSPI_AUTOSUSPEND_TIMEOUT		2000
123
124#define CQSPI_DUMMY_CLKS_PER_BYTE		8
125#define CQSPI_DUMMY_BYTES_MAX			4
126#define CQSPI_DUMMY_CLKS_MAX			31
127
128#define CQSPI_STIG_DATA_LEN_MAX			8
129
130/* Register map */
131#define CQSPI_REG_CONFIG			0x00
132#define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
133#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
134#define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
135#define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
136#define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
137#define CQSPI_REG_CONFIG_BAUD_LSB		19
138#define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
139#define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
140#define CQSPI_REG_CONFIG_IDLE_LSB		31
141#define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
142#define CQSPI_REG_CONFIG_BAUD_MASK		0xF
143
144#define CQSPI_REG_RD_INSTR			0x04
145#define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
146#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
147#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
148#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
149#define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
150#define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
151#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
152#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
153#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
154#define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
155
156#define CQSPI_REG_WR_INSTR			0x08
157#define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
158#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
159#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
160
161#define CQSPI_REG_DELAY				0x0C
162#define CQSPI_REG_DELAY_TSLCH_LSB		0
163#define CQSPI_REG_DELAY_TCHSH_LSB		8
164#define CQSPI_REG_DELAY_TSD2D_LSB		16
165#define CQSPI_REG_DELAY_TSHSL_LSB		24
166#define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
167#define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
168#define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
169#define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
170
171#define CQSPI_REG_READCAPTURE			0x10
172#define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
173#define CQSPI_REG_READCAPTURE_DELAY_LSB		1
174#define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
175
176#define CQSPI_REG_SIZE				0x14
177#define CQSPI_REG_SIZE_ADDRESS_LSB		0
178#define CQSPI_REG_SIZE_PAGE_LSB			4
179#define CQSPI_REG_SIZE_BLOCK_LSB		16
180#define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
181#define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
182#define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
183
184#define CQSPI_REG_SRAMPARTITION			0x18
185#define CQSPI_REG_INDIRECTTRIGGER		0x1C
186
187#define CQSPI_REG_DMA				0x20
188#define CQSPI_REG_DMA_SINGLE_LSB		0
189#define CQSPI_REG_DMA_BURST_LSB			8
190#define CQSPI_REG_DMA_SINGLE_MASK		0xFF
191#define CQSPI_REG_DMA_BURST_MASK		0xFF
192
193#define CQSPI_REG_REMAP				0x24
194#define CQSPI_REG_MODE_BIT			0x28
195
196#define CQSPI_REG_SDRAMLEVEL			0x2C
197#define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
198#define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
199#define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
200#define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
201
202#define CQSPI_REG_WR_COMPLETION_CTRL		0x38
203#define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
204
205#define CQSPI_REG_IRQSTATUS			0x40
206#define CQSPI_REG_IRQMASK			0x44
207
208#define CQSPI_REG_INDIRECTRD			0x60
209#define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
210#define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
211#define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
212
213#define CQSPI_REG_INDIRECTRDWATERMARK		0x64
214#define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
215#define CQSPI_REG_INDIRECTRDBYTES		0x6C
216
217#define CQSPI_REG_CMDCTRL			0x90
218#define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
219#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
220#define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
221#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
222#define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
223#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
224#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
225#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
226#define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
227#define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
228#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
229#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
230#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
231#define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
232
233#define CQSPI_REG_INDIRECTWR			0x70
234#define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
235#define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
236#define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
237
238#define CQSPI_REG_INDIRECTWRWATERMARK		0x74
239#define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
240#define CQSPI_REG_INDIRECTWRBYTES		0x7C
241
242#define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
243
244#define CQSPI_REG_CMDADDRESS			0x94
245#define CQSPI_REG_CMDREADDATALOWER		0xA0
246#define CQSPI_REG_CMDREADDATAUPPER		0xA4
247#define CQSPI_REG_CMDWRITEDATALOWER		0xA8
248#define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
249
250#define CQSPI_REG_POLLING_STATUS		0xB0
251#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
252
253#define CQSPI_REG_OP_EXT_LOWER			0xE0
254#define CQSPI_REG_OP_EXT_READ_LSB		24
255#define CQSPI_REG_OP_EXT_WRITE_LSB		16
256#define CQSPI_REG_OP_EXT_STIG_LSB		0
257
258#define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
259
260#define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
261#define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
262
263#define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
264
265#define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
266#define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
267#define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
268#define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
269
270#define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
271
272#define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
273#define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
274
275/* Interrupt status bits */
276#define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
277#define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
278#define CQSPI_REG_IRQ_IND_COMP			BIT(2)
279#define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
280#define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
281#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
282#define CQSPI_REG_IRQ_WATERMARK			BIT(6)
283#define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
284
285#define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
286					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
287					 CQSPI_REG_IRQ_IND_COMP)
288
289#define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
290					 CQSPI_REG_IRQ_WATERMARK	| \
291					 CQSPI_REG_IRQ_UNDERFLOW)
292
293#define CQSPI_IRQ_STATUS_MASK		0x1FFFF
294#define CQSPI_DMA_UNALIGN		0x3
295
296#define CQSPI_REG_VERSAL_DMA_VAL		0x602
297
298static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
299{
300	u32 val;
301
302	return readl_relaxed_poll_timeout(reg, val,
303					  (((clr ? ~val : val) & mask) == mask),
304					  10, CQSPI_TIMEOUT_MS * 1000);
305}
306
307static bool cqspi_is_idle(struct cqspi_st *cqspi)
308{
309	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
310
311	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
312}
313
314static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
315{
316	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
317
318	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
319	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
320}
321
322static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
323{
324	u32 dma_status;
325
326	dma_status = readl(cqspi->iobase +
327					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
328	writel(dma_status, cqspi->iobase +
329		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
330
331	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
332}
333
334static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
335{
336	struct cqspi_st *cqspi = dev;
337	unsigned int irq_status;
338	struct device *device = &cqspi->pdev->dev;
339	const struct cqspi_driver_platdata *ddata;
340
341	ddata = of_device_get_match_data(device);
342
343	/* Read interrupt status */
344	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
345
346	/* Clear interrupt */
347	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
348
349	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
350		if (ddata->get_dma_status(cqspi)) {
351			complete(&cqspi->transfer_complete);
352			return IRQ_HANDLED;
353		}
354	}
355
356	else if (!cqspi->slow_sram)
357		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
358	else
359		irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
360
361	if (irq_status)
362		complete(&cqspi->transfer_complete);
363
364	return IRQ_HANDLED;
365}
366
367static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
368{
369	u32 rdreg = 0;
370
371	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
372	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
373	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
374
375	return rdreg;
376}
377
378static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
379{
380	unsigned int dummy_clk;
381
382	if (!op->dummy.nbytes)
383		return 0;
384
385	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
386	if (op->cmd.dtr)
387		dummy_clk /= 2;
388
389	return dummy_clk;
390}
391
392static int cqspi_wait_idle(struct cqspi_st *cqspi)
393{
394	const unsigned int poll_idle_retry = 3;
395	unsigned int count = 0;
396	unsigned long timeout;
397
398	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
399	while (1) {
400		/*
401		 * Read few times in succession to ensure the controller
402		 * is indeed idle, that is, the bit does not transition
403		 * low again.
404		 */
405		if (cqspi_is_idle(cqspi))
406			count++;
407		else
408			count = 0;
409
410		if (count >= poll_idle_retry)
411			return 0;
412
413		if (time_after(jiffies, timeout)) {
414			/* Timeout, in busy mode. */
415			dev_err(&cqspi->pdev->dev,
416				"QSPI is still busy after %dms timeout.\n",
417				CQSPI_TIMEOUT_MS);
418			return -ETIMEDOUT;
419		}
420
421		cpu_relax();
422	}
423}
424
425static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
426{
427	void __iomem *reg_base = cqspi->iobase;
428	int ret;
429
430	/* Write the CMDCTRL without start execution. */
431	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
432	/* Start execute */
433	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
434	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
435
436	/* Polling for completion. */
437	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
438				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
439	if (ret) {
440		dev_err(&cqspi->pdev->dev,
441			"Flash command execution timed out.\n");
442		return ret;
443	}
444
445	/* Polling QSPI idle status. */
446	return cqspi_wait_idle(cqspi);
447}
448
449static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
450				  const struct spi_mem_op *op,
451				  unsigned int shift)
452{
453	struct cqspi_st *cqspi = f_pdata->cqspi;
454	void __iomem *reg_base = cqspi->iobase;
455	unsigned int reg;
456	u8 ext;
457
458	if (op->cmd.nbytes != 2)
459		return -EINVAL;
460
461	/* Opcode extension is the LSB. */
462	ext = op->cmd.opcode & 0xff;
463
464	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
465	reg &= ~(0xff << shift);
466	reg |= ext << shift;
467	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
468
469	return 0;
470}
471
472static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
473			    const struct spi_mem_op *op, unsigned int shift)
474{
475	struct cqspi_st *cqspi = f_pdata->cqspi;
476	void __iomem *reg_base = cqspi->iobase;
477	unsigned int reg;
478	int ret;
479
480	reg = readl(reg_base + CQSPI_REG_CONFIG);
481
482	/*
483	 * We enable dual byte opcode here. The callers have to set up the
484	 * extension opcode based on which type of operation it is.
485	 */
486	if (op->cmd.dtr) {
487		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
488		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
489
490		/* Set up command opcode extension. */
491		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
492		if (ret)
493			return ret;
494	} else {
495		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
496		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
497	}
498
499	writel(reg, reg_base + CQSPI_REG_CONFIG);
500
501	return cqspi_wait_idle(cqspi);
502}
503
504static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
505			      const struct spi_mem_op *op)
506{
507	struct cqspi_st *cqspi = f_pdata->cqspi;
508	void __iomem *reg_base = cqspi->iobase;
509	u8 *rxbuf = op->data.buf.in;
510	u8 opcode;
511	size_t n_rx = op->data.nbytes;
512	unsigned int rdreg;
513	unsigned int reg;
514	unsigned int dummy_clk;
515	size_t read_len;
516	int status;
517
518	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
519	if (status)
520		return status;
521
522	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
523		dev_err(&cqspi->pdev->dev,
524			"Invalid input argument, len %zu rxbuf 0x%p\n",
525			n_rx, rxbuf);
526		return -EINVAL;
527	}
528
529	if (op->cmd.dtr)
530		opcode = op->cmd.opcode >> 8;
531	else
532		opcode = op->cmd.opcode;
533
534	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
535
536	rdreg = cqspi_calc_rdreg(op);
537	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
538
539	dummy_clk = cqspi_calc_dummy(op);
540	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
541		return -EOPNOTSUPP;
542
543	if (dummy_clk)
544		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
545		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
546
547	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
548
549	/* 0 means 1 byte. */
550	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
551		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
552
553	/* setup ADDR BIT field */
554	if (op->addr.nbytes) {
555		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
556		reg |= ((op->addr.nbytes - 1) &
557			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
558			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
559
560		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
561	}
562
563	status = cqspi_exec_flash_cmd(cqspi, reg);
564	if (status)
565		return status;
566
567	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
568
569	/* Put the read value into rx_buf */
570	read_len = (n_rx > 4) ? 4 : n_rx;
571	memcpy(rxbuf, &reg, read_len);
572	rxbuf += read_len;
573
574	if (n_rx > 4) {
575		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
576
577		read_len = n_rx - read_len;
578		memcpy(rxbuf, &reg, read_len);
579	}
580
581	/* Reset CMD_CTRL Reg once command read completes */
582	writel(0, reg_base + CQSPI_REG_CMDCTRL);
583
584	return 0;
585}
586
587static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
588			       const struct spi_mem_op *op)
589{
590	struct cqspi_st *cqspi = f_pdata->cqspi;
591	void __iomem *reg_base = cqspi->iobase;
592	u8 opcode;
593	const u8 *txbuf = op->data.buf.out;
594	size_t n_tx = op->data.nbytes;
595	unsigned int reg;
596	unsigned int data;
597	size_t write_len;
598	int ret;
599
600	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
601	if (ret)
602		return ret;
603
604	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
605		dev_err(&cqspi->pdev->dev,
606			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
607			n_tx, txbuf);
608		return -EINVAL;
609	}
610
611	reg = cqspi_calc_rdreg(op);
612	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
613
614	if (op->cmd.dtr)
615		opcode = op->cmd.opcode >> 8;
616	else
617		opcode = op->cmd.opcode;
618
619	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
620
621	if (op->addr.nbytes) {
622		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
623		reg |= ((op->addr.nbytes - 1) &
624			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
625			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
626
627		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
628	}
629
630	if (n_tx) {
631		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
632		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
633			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
634		data = 0;
635		write_len = (n_tx > 4) ? 4 : n_tx;
636		memcpy(&data, txbuf, write_len);
637		txbuf += write_len;
638		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
639
640		if (n_tx > 4) {
641			data = 0;
642			write_len = n_tx - 4;
643			memcpy(&data, txbuf, write_len);
644			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
645		}
646	}
647
648	ret = cqspi_exec_flash_cmd(cqspi, reg);
649
650	/* Reset CMD_CTRL Reg once command write completes */
651	writel(0, reg_base + CQSPI_REG_CMDCTRL);
652
653	return ret;
654}
655
656static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
657			    const struct spi_mem_op *op)
658{
659	struct cqspi_st *cqspi = f_pdata->cqspi;
660	void __iomem *reg_base = cqspi->iobase;
661	unsigned int dummy_clk = 0;
662	unsigned int reg;
663	int ret;
664	u8 opcode;
665
666	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
667	if (ret)
668		return ret;
669
670	if (op->cmd.dtr)
671		opcode = op->cmd.opcode >> 8;
672	else
673		opcode = op->cmd.opcode;
674
675	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
676	reg |= cqspi_calc_rdreg(op);
677
678	/* Setup dummy clock cycles */
679	dummy_clk = cqspi_calc_dummy(op);
680
681	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
682		return -EOPNOTSUPP;
683
684	if (dummy_clk)
685		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
686		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
687
688	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
689
690	/* Set address width */
691	reg = readl(reg_base + CQSPI_REG_SIZE);
692	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
693	reg |= (op->addr.nbytes - 1);
694	writel(reg, reg_base + CQSPI_REG_SIZE);
695	return 0;
696}
697
698static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
699				       u8 *rxbuf, loff_t from_addr,
700				       const size_t n_rx)
701{
702	struct cqspi_st *cqspi = f_pdata->cqspi;
703	struct device *dev = &cqspi->pdev->dev;
704	void __iomem *reg_base = cqspi->iobase;
705	void __iomem *ahb_base = cqspi->ahb_base;
706	unsigned int remaining = n_rx;
707	unsigned int mod_bytes = n_rx % 4;
708	unsigned int bytes_to_read = 0;
709	u8 *rxbuf_end = rxbuf + n_rx;
710	int ret = 0;
711
712	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
713	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
714
715	/* Clear all interrupts. */
716	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
717
718	/*
719	 * On SoCFPGA platform reading the SRAM is slow due to
720	 * hardware limitation and causing read interrupt storm to CPU,
721	 * so enabling only watermark interrupt to disable all read
722	 * interrupts later as we want to run "bytes to read" loop with
723	 * all the read interrupts disabled for max performance.
724	 */
725
726	if (!cqspi->slow_sram)
727		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
728	else
729		writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
730
731	reinit_completion(&cqspi->transfer_complete);
732	writel(CQSPI_REG_INDIRECTRD_START_MASK,
733	       reg_base + CQSPI_REG_INDIRECTRD);
734
735	while (remaining > 0) {
736		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
737						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
738			ret = -ETIMEDOUT;
739
740		/*
741		 * Disable all read interrupts until
742		 * we are out of "bytes to read"
743		 */
744		if (cqspi->slow_sram)
745			writel(0x0, reg_base + CQSPI_REG_IRQMASK);
746
747		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
748
749		if (ret && bytes_to_read == 0) {
750			dev_err(dev, "Indirect read timeout, no bytes\n");
751			goto failrd;
752		}
753
754		while (bytes_to_read != 0) {
755			unsigned int word_remain = round_down(remaining, 4);
756
757			bytes_to_read *= cqspi->fifo_width;
758			bytes_to_read = bytes_to_read > remaining ?
759					remaining : bytes_to_read;
760			bytes_to_read = round_down(bytes_to_read, 4);
761			/* Read 4 byte word chunks then single bytes */
762			if (bytes_to_read) {
763				ioread32_rep(ahb_base, rxbuf,
764					     (bytes_to_read / 4));
765			} else if (!word_remain && mod_bytes) {
766				unsigned int temp = ioread32(ahb_base);
767
768				bytes_to_read = mod_bytes;
769				memcpy(rxbuf, &temp, min((unsigned int)
770							 (rxbuf_end - rxbuf),
771							 bytes_to_read));
772			}
773			rxbuf += bytes_to_read;
774			remaining -= bytes_to_read;
775			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
776		}
777
778		if (remaining > 0) {
779			reinit_completion(&cqspi->transfer_complete);
780			if (cqspi->slow_sram)
781				writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
782		}
783	}
784
785	/* Check indirect done status */
786	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
787				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
788	if (ret) {
789		dev_err(dev, "Indirect read completion error (%i)\n", ret);
790		goto failrd;
791	}
792
793	/* Disable interrupt */
794	writel(0, reg_base + CQSPI_REG_IRQMASK);
795
796	/* Clear indirect completion status */
797	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
798
799	return 0;
800
801failrd:
802	/* Disable interrupt */
803	writel(0, reg_base + CQSPI_REG_IRQMASK);
804
805	/* Cancel the indirect read */
806	writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
807	       reg_base + CQSPI_REG_INDIRECTRD);
808	return ret;
809}
810
811static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
812{
813	void __iomem *reg_base = cqspi->iobase;
814	unsigned int reg;
815
816	reg = readl(reg_base + CQSPI_REG_CONFIG);
817
818	if (enable)
819		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
820	else
821		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
822
823	writel(reg, reg_base + CQSPI_REG_CONFIG);
824}
825
826static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
827					  u_char *rxbuf, loff_t from_addr,
828					  size_t n_rx)
829{
830	struct cqspi_st *cqspi = f_pdata->cqspi;
831	struct device *dev = &cqspi->pdev->dev;
832	void __iomem *reg_base = cqspi->iobase;
833	u32 reg, bytes_to_dma;
834	loff_t addr = from_addr;
835	void *buf = rxbuf;
836	dma_addr_t dma_addr;
837	u8 bytes_rem;
838	int ret = 0;
839
840	bytes_rem = n_rx % 4;
841	bytes_to_dma = (n_rx - bytes_rem);
842
843	if (!bytes_to_dma)
844		goto nondmard;
845
846	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
847	if (ret)
848		return ret;
849
850	cqspi_controller_enable(cqspi, 0);
851
852	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
853	reg |= CQSPI_REG_CONFIG_DMA_MASK;
854	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
855
856	cqspi_controller_enable(cqspi, 1);
857
858	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
859	if (dma_mapping_error(dev, dma_addr)) {
860		dev_err(dev, "dma mapping failed\n");
861		return -ENOMEM;
862	}
863
864	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
865	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
866	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
867	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
868
869	/* Clear all interrupts. */
870	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
871
872	/* Enable DMA done interrupt */
873	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
874	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
875
876	/* Default DMA periph configuration */
877	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
878
879	/* Configure DMA Dst address */
880	writel(lower_32_bits(dma_addr),
881	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
882	writel(upper_32_bits(dma_addr),
883	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
884
885	/* Configure DMA Src address */
886	writel(cqspi->trigger_address, reg_base +
887	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
888
889	/* Set DMA destination size */
890	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
891
892	/* Set DMA destination control */
893	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
894	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
895
896	writel(CQSPI_REG_INDIRECTRD_START_MASK,
897	       reg_base + CQSPI_REG_INDIRECTRD);
898
899	reinit_completion(&cqspi->transfer_complete);
900
901	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
902					 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
903		ret = -ETIMEDOUT;
904		goto failrd;
905	}
906
907	/* Disable DMA interrupt */
908	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
909
910	/* Clear indirect completion status */
911	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
912	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
913	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
914
915	cqspi_controller_enable(cqspi, 0);
916
917	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
918	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
919	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
920
921	cqspi_controller_enable(cqspi, 1);
922
923	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
924					PM_OSPI_MUX_SEL_LINEAR);
925	if (ret)
926		return ret;
927
928nondmard:
929	if (bytes_rem) {
930		addr += bytes_to_dma;
931		buf += bytes_to_dma;
932		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
933						  bytes_rem);
934		if (ret)
935			return ret;
936	}
937
938	return 0;
939
940failrd:
941	/* Disable DMA interrupt */
942	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
943
944	/* Cancel the indirect read */
945	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
946	       reg_base + CQSPI_REG_INDIRECTRD);
947
948	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
949
950	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
951	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
952	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
953
954	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
955
956	return ret;
957}
958
959static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
960			     const struct spi_mem_op *op)
961{
962	unsigned int reg;
963	int ret;
964	struct cqspi_st *cqspi = f_pdata->cqspi;
965	void __iomem *reg_base = cqspi->iobase;
966	u8 opcode;
967
968	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
969	if (ret)
970		return ret;
971
972	if (op->cmd.dtr)
973		opcode = op->cmd.opcode >> 8;
974	else
975		opcode = op->cmd.opcode;
976
977	/* Set opcode. */
978	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
979	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
980	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
981	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
982	reg = cqspi_calc_rdreg(op);
983	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
984
985	/*
986	 * SPI NAND flashes require the address of the status register to be
987	 * passed in the Read SR command. Also, some SPI NOR flashes like the
988	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
989	 * command in DTR mode.
990	 *
991	 * But this controller does not support address phase in the Read SR
992	 * command when doing auto-HW polling. So, disable write completion
993	 * polling on the controller's side. spinand and spi-nor will take
994	 * care of polling the status register.
995	 */
996	if (cqspi->wr_completion) {
997		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
998		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
999		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1000		/*
1001		 * DAC mode require auto polling as flash needs to be polled
1002		 * for write completion in case of bubble in SPI transaction
1003		 * due to slow CPU/DMA master.
1004		 */
1005		cqspi->use_direct_mode_wr = false;
1006	}
1007
1008	reg = readl(reg_base + CQSPI_REG_SIZE);
1009	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1010	reg |= (op->addr.nbytes - 1);
1011	writel(reg, reg_base + CQSPI_REG_SIZE);
1012	return 0;
1013}
1014
1015static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1016					loff_t to_addr, const u8 *txbuf,
1017					const size_t n_tx)
1018{
1019	struct cqspi_st *cqspi = f_pdata->cqspi;
1020	struct device *dev = &cqspi->pdev->dev;
1021	void __iomem *reg_base = cqspi->iobase;
1022	unsigned int remaining = n_tx;
1023	unsigned int write_bytes;
1024	int ret;
1025
1026	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1027	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1028
1029	/* Clear all interrupts. */
1030	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1031
1032	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1033
1034	reinit_completion(&cqspi->transfer_complete);
1035	writel(CQSPI_REG_INDIRECTWR_START_MASK,
1036	       reg_base + CQSPI_REG_INDIRECTWR);
1037	/*
1038	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1039	 * Controller programming sequence, couple of cycles of
1040	 * QSPI_REF_CLK delay is required for the above bit to
1041	 * be internally synchronized by the QSPI module. Provide 5
1042	 * cycles of delay.
1043	 */
1044	if (cqspi->wr_delay)
1045		ndelay(cqspi->wr_delay);
1046
1047	/*
1048	 * If a hazard exists between the APB and AHB interfaces, perform a
1049	 * dummy readback from the controller to ensure synchronization.
1050	 */
1051	if (cqspi->apb_ahb_hazard)
1052		readl(reg_base + CQSPI_REG_INDIRECTWR);
1053
1054	while (remaining > 0) {
1055		size_t write_words, mod_bytes;
1056
1057		write_bytes = remaining;
1058		write_words = write_bytes / 4;
1059		mod_bytes = write_bytes % 4;
1060		/* Write 4 bytes at a time then single bytes. */
1061		if (write_words) {
1062			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1063			txbuf += (write_words * 4);
1064		}
1065		if (mod_bytes) {
1066			unsigned int temp = 0xFFFFFFFF;
1067
1068			memcpy(&temp, txbuf, mod_bytes);
1069			iowrite32(temp, cqspi->ahb_base);
1070			txbuf += mod_bytes;
1071		}
1072
1073		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1074						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1075			dev_err(dev, "Indirect write timeout\n");
1076			ret = -ETIMEDOUT;
1077			goto failwr;
1078		}
1079
1080		remaining -= write_bytes;
1081
1082		if (remaining > 0)
1083			reinit_completion(&cqspi->transfer_complete);
1084	}
1085
1086	/* Check indirect done status */
1087	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1088				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1089	if (ret) {
1090		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1091		goto failwr;
1092	}
1093
1094	/* Disable interrupt. */
1095	writel(0, reg_base + CQSPI_REG_IRQMASK);
1096
1097	/* Clear indirect completion status */
1098	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1099
1100	cqspi_wait_idle(cqspi);
1101
1102	return 0;
1103
1104failwr:
1105	/* Disable interrupt. */
1106	writel(0, reg_base + CQSPI_REG_IRQMASK);
1107
1108	/* Cancel the indirect write */
1109	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1110	       reg_base + CQSPI_REG_INDIRECTWR);
1111	return ret;
1112}
1113
1114static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1115{
1116	struct cqspi_st *cqspi = f_pdata->cqspi;
1117	void __iomem *reg_base = cqspi->iobase;
1118	unsigned int chip_select = f_pdata->cs;
1119	unsigned int reg;
1120
1121	reg = readl(reg_base + CQSPI_REG_CONFIG);
1122	if (cqspi->is_decoded_cs) {
1123		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1124	} else {
1125		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1126
1127		/* Convert CS if without decoder.
1128		 * CS0 to 4b'1110
1129		 * CS1 to 4b'1101
1130		 * CS2 to 4b'1011
1131		 * CS3 to 4b'0111
1132		 */
1133		chip_select = 0xF & ~(1 << chip_select);
1134	}
1135
1136	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1137		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1138	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1139	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1140	writel(reg, reg_base + CQSPI_REG_CONFIG);
1141}
1142
1143static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1144					   const unsigned int ns_val)
1145{
1146	unsigned int ticks;
1147
1148	ticks = ref_clk_hz / 1000;	/* kHz */
1149	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1150
1151	return ticks;
1152}
1153
1154static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1155{
1156	struct cqspi_st *cqspi = f_pdata->cqspi;
1157	void __iomem *iobase = cqspi->iobase;
1158	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1159	unsigned int tshsl, tchsh, tslch, tsd2d;
1160	unsigned int reg;
1161	unsigned int tsclk;
1162
1163	/* calculate the number of ref ticks for one sclk tick */
1164	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1165
1166	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1167	/* this particular value must be at least one sclk */
1168	if (tshsl < tsclk)
1169		tshsl = tsclk;
1170
1171	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1172	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1173	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1174
1175	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1176	       << CQSPI_REG_DELAY_TSHSL_LSB;
1177	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1178		<< CQSPI_REG_DELAY_TCHSH_LSB;
1179	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1180		<< CQSPI_REG_DELAY_TSLCH_LSB;
1181	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1182		<< CQSPI_REG_DELAY_TSD2D_LSB;
1183	writel(reg, iobase + CQSPI_REG_DELAY);
1184}
1185
1186static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1187{
1188	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1189	void __iomem *reg_base = cqspi->iobase;
1190	u32 reg, div;
1191
1192	/* Recalculate the baudrate divisor based on QSPI specification. */
1193	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1194
1195	/* Maximum baud divisor */
1196	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1197		div = CQSPI_REG_CONFIG_BAUD_MASK;
1198		dev_warn(&cqspi->pdev->dev,
1199			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1200			cqspi->sclk, ref_clk_hz/((div+1)*2));
1201	}
1202
1203	reg = readl(reg_base + CQSPI_REG_CONFIG);
1204	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1205	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1206	writel(reg, reg_base + CQSPI_REG_CONFIG);
1207}
1208
1209static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1210				   const bool bypass,
1211				   const unsigned int delay)
1212{
1213	void __iomem *reg_base = cqspi->iobase;
1214	unsigned int reg;
1215
1216	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1217
1218	if (bypass)
1219		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1220	else
1221		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1222
1223	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1224		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1225
1226	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1227		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1228
1229	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1230}
1231
1232static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1233			    unsigned long sclk)
1234{
1235	struct cqspi_st *cqspi = f_pdata->cqspi;
1236	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1237	int switch_ck = (cqspi->sclk != sclk);
1238
1239	if (switch_cs || switch_ck)
1240		cqspi_controller_enable(cqspi, 0);
1241
1242	/* Switch chip select. */
1243	if (switch_cs) {
1244		cqspi->current_cs = f_pdata->cs;
1245		cqspi_chipselect(f_pdata);
1246	}
1247
1248	/* Setup baudrate divisor and delays */
1249	if (switch_ck) {
1250		cqspi->sclk = sclk;
1251		cqspi_config_baudrate_div(cqspi);
1252		cqspi_delay(f_pdata);
1253		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1254				       f_pdata->read_delay);
1255	}
1256
1257	if (switch_cs || switch_ck)
1258		cqspi_controller_enable(cqspi, 1);
1259}
1260
1261static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1262			   const struct spi_mem_op *op)
1263{
1264	struct cqspi_st *cqspi = f_pdata->cqspi;
1265	loff_t to = op->addr.val;
1266	size_t len = op->data.nbytes;
1267	const u_char *buf = op->data.buf.out;
1268	int ret;
1269
1270	ret = cqspi_write_setup(f_pdata, op);
1271	if (ret)
1272		return ret;
1273
1274	/*
1275	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1276	 * address (all 0s) with the read status register command in DTR mode.
1277	 * But this controller does not support sending dummy address bytes to
1278	 * the flash when it is polling the write completion register in DTR
1279	 * mode. So, we can not use direct mode when in DTR mode for writing
1280	 * data.
1281	 */
1282	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1283	    cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1284		memcpy_toio(cqspi->ahb_base + to, buf, len);
1285		return cqspi_wait_idle(cqspi);
1286	}
1287
1288	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1289}
1290
1291static void cqspi_rx_dma_callback(void *param)
1292{
1293	struct cqspi_st *cqspi = param;
1294
1295	complete(&cqspi->rx_dma_complete);
1296}
1297
1298static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1299				     u_char *buf, loff_t from, size_t len)
1300{
1301	struct cqspi_st *cqspi = f_pdata->cqspi;
1302	struct device *dev = &cqspi->pdev->dev;
1303	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1304	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1305	int ret = 0;
1306	struct dma_async_tx_descriptor *tx;
1307	dma_cookie_t cookie;
1308	dma_addr_t dma_dst;
1309	struct device *ddev;
1310
1311	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1312		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1313		return 0;
1314	}
1315
1316	ddev = cqspi->rx_chan->device->dev;
1317	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1318	if (dma_mapping_error(ddev, dma_dst)) {
1319		dev_err(dev, "dma mapping failed\n");
1320		return -ENOMEM;
1321	}
1322	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1323				       len, flags);
1324	if (!tx) {
1325		dev_err(dev, "device_prep_dma_memcpy error\n");
1326		ret = -EIO;
1327		goto err_unmap;
1328	}
1329
1330	tx->callback = cqspi_rx_dma_callback;
1331	tx->callback_param = cqspi;
1332	cookie = tx->tx_submit(tx);
1333	reinit_completion(&cqspi->rx_dma_complete);
1334
1335	ret = dma_submit_error(cookie);
1336	if (ret) {
1337		dev_err(dev, "dma_submit_error %d\n", cookie);
1338		ret = -EIO;
1339		goto err_unmap;
1340	}
1341
1342	dma_async_issue_pending(cqspi->rx_chan);
1343	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1344					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1345		dmaengine_terminate_sync(cqspi->rx_chan);
1346		dev_err(dev, "DMA wait_for_completion_timeout\n");
1347		ret = -ETIMEDOUT;
1348		goto err_unmap;
1349	}
1350
1351err_unmap:
1352	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1353
1354	return ret;
1355}
1356
1357static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1358			  const struct spi_mem_op *op)
1359{
1360	struct cqspi_st *cqspi = f_pdata->cqspi;
1361	struct device *dev = &cqspi->pdev->dev;
1362	const struct cqspi_driver_platdata *ddata;
1363	loff_t from = op->addr.val;
1364	size_t len = op->data.nbytes;
1365	u_char *buf = op->data.buf.in;
1366	u64 dma_align = (u64)(uintptr_t)buf;
1367	int ret;
1368
1369	ddata = of_device_get_match_data(dev);
1370
1371	ret = cqspi_read_setup(f_pdata, op);
1372	if (ret)
1373		return ret;
1374
1375	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1376		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1377
1378	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1379	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1380		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1381
1382	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1383}
1384
1385static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1386{
1387	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1388	struct cqspi_flash_pdata *f_pdata;
1389
1390	f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1391	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1392
1393	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1394	/*
1395	 * Performing reads in DAC mode forces to read minimum 4 bytes
1396	 * which is unsupported on some flash devices during register
1397	 * reads, prefer STIG mode for such small reads.
1398	 */
1399		if (!op->addr.nbytes ||
1400		    op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1401			return cqspi_command_read(f_pdata, op);
1402
1403		return cqspi_read(f_pdata, op);
1404	}
1405
1406	if (!op->addr.nbytes || !op->data.buf.out)
1407		return cqspi_command_write(f_pdata, op);
1408
1409	return cqspi_write(f_pdata, op);
1410}
1411
1412static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1413{
1414	int ret;
1415	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1416	struct device *dev = &cqspi->pdev->dev;
1417
1418	ret = pm_runtime_resume_and_get(dev);
1419	if (ret) {
1420		dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1421		return ret;
1422	}
1423
1424	ret = cqspi_mem_process(mem, op);
1425
1426	pm_runtime_mark_last_busy(dev);
1427	pm_runtime_put_autosuspend(dev);
1428
1429	if (ret)
1430		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1431
1432	return ret;
1433}
1434
1435static bool cqspi_supports_mem_op(struct spi_mem *mem,
1436				  const struct spi_mem_op *op)
1437{
1438	bool all_true, all_false;
1439
1440	/*
1441	 * op->dummy.dtr is required for converting nbytes into ncycles.
1442	 * Also, don't check the dtr field of the op phase having zero nbytes.
1443	 */
1444	all_true = op->cmd.dtr &&
1445		   (!op->addr.nbytes || op->addr.dtr) &&
1446		   (!op->dummy.nbytes || op->dummy.dtr) &&
1447		   (!op->data.nbytes || op->data.dtr);
1448
1449	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1450		    !op->data.dtr;
1451
1452	if (all_true) {
1453		/* Right now we only support 8-8-8 DTR mode. */
1454		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1455			return false;
1456		if (op->addr.nbytes && op->addr.buswidth != 8)
1457			return false;
1458		if (op->data.nbytes && op->data.buswidth != 8)
1459			return false;
1460	} else if (!all_false) {
1461		/* Mixed DTR modes are not supported. */
1462		return false;
1463	}
1464
1465	return spi_mem_default_supports_op(mem, op);
1466}
1467
1468static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1469				    struct cqspi_flash_pdata *f_pdata,
1470				    struct device_node *np)
1471{
1472	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1473		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1474		return -ENXIO;
1475	}
1476
1477	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1478		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1479		return -ENXIO;
1480	}
1481
1482	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1483		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1484		return -ENXIO;
1485	}
1486
1487	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1488		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1489		return -ENXIO;
1490	}
1491
1492	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1493		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1494		return -ENXIO;
1495	}
1496
1497	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1498		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1499		return -ENXIO;
1500	}
1501
1502	return 0;
1503}
1504
1505static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1506{
1507	struct device *dev = &cqspi->pdev->dev;
1508	struct device_node *np = dev->of_node;
1509	u32 id[2];
1510
1511	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1512
1513	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1514		dev_err(dev, "couldn't determine fifo-depth\n");
1515		return -ENXIO;
1516	}
1517
1518	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1519		dev_err(dev, "couldn't determine fifo-width\n");
1520		return -ENXIO;
1521	}
1522
1523	if (of_property_read_u32(np, "cdns,trigger-address",
1524				 &cqspi->trigger_address)) {
1525		dev_err(dev, "couldn't determine trigger-address\n");
1526		return -ENXIO;
1527	}
1528
1529	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1530		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1531
1532	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1533
1534	if (!of_property_read_u32_array(np, "power-domains", id,
1535					ARRAY_SIZE(id)))
1536		cqspi->pd_dev_id = id[1];
1537
1538	return 0;
1539}
1540
1541static void cqspi_controller_init(struct cqspi_st *cqspi)
1542{
1543	u32 reg;
1544
1545	cqspi_controller_enable(cqspi, 0);
1546
1547	/* Configure the remap address register, no remap */
1548	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1549
1550	/* Disable all interrupts. */
1551	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1552
1553	/* Configure the SRAM split to 1:1 . */
1554	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1555
1556	/* Load indirect trigger address. */
1557	writel(cqspi->trigger_address,
1558	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1559
1560	/* Program read watermark -- 1/2 of the FIFO. */
1561	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1562	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1563	/* Program write watermark -- 1/8 of the FIFO. */
1564	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1565	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1566
1567	/* Disable direct access controller */
1568	if (!cqspi->use_direct_mode) {
1569		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1570		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1571		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1572	}
1573
1574	/* Enable DMA interface */
1575	if (cqspi->use_dma_read) {
1576		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1577		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1578		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1579	}
1580
1581	cqspi_controller_enable(cqspi, 1);
1582}
1583
1584static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1585{
1586	dma_cap_mask_t mask;
1587
1588	dma_cap_zero(mask);
1589	dma_cap_set(DMA_MEMCPY, mask);
1590
1591	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1592	if (IS_ERR(cqspi->rx_chan)) {
1593		int ret = PTR_ERR(cqspi->rx_chan);
1594
1595		cqspi->rx_chan = NULL;
1596		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1597	}
1598	init_completion(&cqspi->rx_dma_complete);
1599
1600	return 0;
1601}
1602
1603static const char *cqspi_get_name(struct spi_mem *mem)
1604{
1605	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1606	struct device *dev = &cqspi->pdev->dev;
1607
1608	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1609			      spi_get_chipselect(mem->spi, 0));
1610}
1611
1612static const struct spi_controller_mem_ops cqspi_mem_ops = {
1613	.exec_op = cqspi_exec_mem_op,
1614	.get_name = cqspi_get_name,
1615	.supports_op = cqspi_supports_mem_op,
1616};
1617
1618static const struct spi_controller_mem_caps cqspi_mem_caps = {
1619	.dtr = true,
1620};
1621
1622static int cqspi_setup_flash(struct cqspi_st *cqspi)
1623{
1624	unsigned int max_cs = cqspi->num_chipselect - 1;
1625	struct platform_device *pdev = cqspi->pdev;
1626	struct device *dev = &pdev->dev;
1627	struct device_node *np = dev->of_node;
1628	struct cqspi_flash_pdata *f_pdata;
1629	unsigned int cs;
1630	int ret;
1631
1632	/* Get flash device data */
1633	for_each_available_child_of_node(dev->of_node, np) {
1634		ret = of_property_read_u32(np, "reg", &cs);
1635		if (ret) {
1636			dev_err(dev, "Couldn't determine chip select.\n");
1637			of_node_put(np);
1638			return ret;
1639		}
1640
1641		if (cs >= cqspi->num_chipselect) {
1642			dev_err(dev, "Chip select %d out of range.\n", cs);
1643			of_node_put(np);
1644			return -EINVAL;
1645		} else if (cs < max_cs) {
1646			max_cs = cs;
1647		}
1648
1649		f_pdata = &cqspi->f_pdata[cs];
1650		f_pdata->cqspi = cqspi;
1651		f_pdata->cs = cs;
1652
1653		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1654		if (ret) {
1655			of_node_put(np);
1656			return ret;
1657		}
1658	}
1659
1660	cqspi->num_chipselect = max_cs + 1;
1661	return 0;
1662}
1663
1664static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1665{
1666	static struct clk_bulk_data qspiclk[] = {
1667		{ .id = "apb" },
1668		{ .id = "ahb" },
1669	};
1670
1671	int ret = 0;
1672
1673	ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1674	if (ret) {
1675		dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1676		return ret;
1677	}
1678
1679	cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1680	cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1681
1682	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1683	if (ret) {
1684		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1685		return ret;
1686	}
1687
1688	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1689	if (ret) {
1690		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1691		goto disable_apb_clk;
1692	}
1693
1694	cqspi->is_jh7110 = true;
1695
1696	return 0;
1697
1698disable_apb_clk:
1699	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1700
1701	return ret;
1702}
1703
1704static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1705{
1706	clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1707	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1708}
1709static int cqspi_probe(struct platform_device *pdev)
1710{
1711	const struct cqspi_driver_platdata *ddata;
1712	struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1713	struct device *dev = &pdev->dev;
1714	struct spi_controller *host;
1715	struct resource *res_ahb;
1716	struct cqspi_st *cqspi;
1717	int ret;
1718	int irq;
1719
1720	host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1721	if (!host)
1722		return -ENOMEM;
1723
1724	host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1725	host->mem_ops = &cqspi_mem_ops;
1726	host->mem_caps = &cqspi_mem_caps;
1727	host->dev.of_node = pdev->dev.of_node;
1728
1729	cqspi = spi_controller_get_devdata(host);
1730
1731	cqspi->pdev = pdev;
1732	cqspi->host = host;
1733	cqspi->is_jh7110 = false;
1734	platform_set_drvdata(pdev, cqspi);
1735
1736	/* Obtain configuration from OF. */
1737	ret = cqspi_of_get_pdata(cqspi);
1738	if (ret) {
1739		dev_err(dev, "Cannot get mandatory OF data.\n");
1740		return -ENODEV;
1741	}
1742
1743	/* Obtain QSPI clock. */
1744	cqspi->clk = devm_clk_get(dev, NULL);
1745	if (IS_ERR(cqspi->clk)) {
1746		dev_err(dev, "Cannot claim QSPI clock.\n");
1747		ret = PTR_ERR(cqspi->clk);
1748		return ret;
1749	}
1750
1751	/* Obtain and remap controller address. */
1752	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1753	if (IS_ERR(cqspi->iobase)) {
1754		dev_err(dev, "Cannot remap controller address.\n");
1755		ret = PTR_ERR(cqspi->iobase);
1756		return ret;
1757	}
1758
1759	/* Obtain and remap AHB address. */
1760	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1761	if (IS_ERR(cqspi->ahb_base)) {
1762		dev_err(dev, "Cannot remap AHB address.\n");
1763		ret = PTR_ERR(cqspi->ahb_base);
1764		return ret;
1765	}
1766	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1767	cqspi->ahb_size = resource_size(res_ahb);
1768
1769	init_completion(&cqspi->transfer_complete);
1770
1771	/* Obtain IRQ line. */
1772	irq = platform_get_irq(pdev, 0);
1773	if (irq < 0)
1774		return -ENXIO;
1775
1776	ret = pm_runtime_set_active(dev);
1777	if (ret)
1778		return ret;
1779
1780
1781	ret = clk_prepare_enable(cqspi->clk);
1782	if (ret) {
1783		dev_err(dev, "Cannot enable QSPI clock.\n");
1784		goto probe_clk_failed;
1785	}
1786
1787	/* Obtain QSPI reset control */
1788	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1789	if (IS_ERR(rstc)) {
1790		ret = PTR_ERR(rstc);
1791		dev_err(dev, "Cannot get QSPI reset.\n");
1792		goto probe_reset_failed;
1793	}
1794
1795	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1796	if (IS_ERR(rstc_ocp)) {
1797		ret = PTR_ERR(rstc_ocp);
1798		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1799		goto probe_reset_failed;
1800	}
1801
1802	if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1803		rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1804		if (IS_ERR(rstc_ref)) {
1805			ret = PTR_ERR(rstc_ref);
1806			dev_err(dev, "Cannot get QSPI REF reset.\n");
1807			goto probe_reset_failed;
1808		}
1809		reset_control_assert(rstc_ref);
1810		reset_control_deassert(rstc_ref);
1811	}
1812
1813	reset_control_assert(rstc);
1814	reset_control_deassert(rstc);
1815
1816	reset_control_assert(rstc_ocp);
1817	reset_control_deassert(rstc_ocp);
1818
1819	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1820	host->max_speed_hz = cqspi->master_ref_clk_hz;
1821
1822	/* write completion is supported by default */
1823	cqspi->wr_completion = true;
1824
1825	ddata  = of_device_get_match_data(dev);
1826	if (ddata) {
1827		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1828			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1829						cqspi->master_ref_clk_hz);
1830		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1831			host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1832		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1833			cqspi->use_direct_mode = true;
1834			cqspi->use_direct_mode_wr = true;
1835		}
1836		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1837			cqspi->use_dma_read = true;
1838		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1839			cqspi->wr_completion = false;
1840		if (ddata->quirks & CQSPI_SLOW_SRAM)
1841			cqspi->slow_sram = true;
1842		if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1843			cqspi->apb_ahb_hazard = true;
1844
1845		if (ddata->jh7110_clk_init) {
1846			ret = cqspi_jh7110_clk_init(pdev, cqspi);
1847			if (ret)
1848				goto probe_reset_failed;
1849		}
1850
1851		if (of_device_is_compatible(pdev->dev.of_node,
1852					    "xlnx,versal-ospi-1.0")) {
1853			ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1854			if (ret)
1855				goto probe_reset_failed;
1856		}
1857	}
1858
1859	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1860			       pdev->name, cqspi);
1861	if (ret) {
1862		dev_err(dev, "Cannot request IRQ.\n");
1863		goto probe_reset_failed;
1864	}
1865
1866	cqspi_wait_idle(cqspi);
1867	cqspi_controller_init(cqspi);
1868	cqspi->current_cs = -1;
1869	cqspi->sclk = 0;
1870
1871	ret = cqspi_setup_flash(cqspi);
1872	if (ret) {
1873		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1874		goto probe_setup_failed;
1875	}
1876
1877	host->num_chipselect = cqspi->num_chipselect;
1878
1879	if (cqspi->use_direct_mode) {
1880		ret = cqspi_request_mmap_dma(cqspi);
1881		if (ret == -EPROBE_DEFER)
1882			goto probe_setup_failed;
1883	}
1884
1885	ret = devm_pm_runtime_enable(dev);
1886	if (ret) {
1887		if (cqspi->rx_chan)
1888			dma_release_channel(cqspi->rx_chan);
1889		goto probe_setup_failed;
1890	}
1891
1892	pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1893	pm_runtime_use_autosuspend(dev);
1894	pm_runtime_get_noresume(dev);
1895
1896	ret = spi_register_controller(host);
1897	if (ret) {
1898		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1899		goto probe_setup_failed;
1900	}
1901
1902	pm_runtime_mark_last_busy(dev);
1903	pm_runtime_put_autosuspend(dev);
1904
1905	return 0;
1906probe_setup_failed:
1907	cqspi_controller_enable(cqspi, 0);
1908probe_reset_failed:
1909	if (cqspi->is_jh7110)
1910		cqspi_jh7110_disable_clk(pdev, cqspi);
1911	clk_disable_unprepare(cqspi->clk);
1912probe_clk_failed:
1913	return ret;
1914}
1915
1916static void cqspi_remove(struct platform_device *pdev)
1917{
1918	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1919
1920	spi_unregister_controller(cqspi->host);
1921	cqspi_controller_enable(cqspi, 0);
1922
1923	if (cqspi->rx_chan)
1924		dma_release_channel(cqspi->rx_chan);
1925
1926	clk_disable_unprepare(cqspi->clk);
1927
1928	if (cqspi->is_jh7110)
1929		cqspi_jh7110_disable_clk(pdev, cqspi);
1930
1931	pm_runtime_put_sync(&pdev->dev);
1932	pm_runtime_disable(&pdev->dev);
1933}
1934
1935static int cqspi_runtime_suspend(struct device *dev)
1936{
1937	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1938
1939	cqspi_controller_enable(cqspi, 0);
1940	clk_disable_unprepare(cqspi->clk);
1941	return 0;
1942}
1943
1944static int cqspi_runtime_resume(struct device *dev)
1945{
1946	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1947
1948	clk_prepare_enable(cqspi->clk);
1949	cqspi_wait_idle(cqspi);
1950	cqspi_controller_init(cqspi);
1951
1952	cqspi->current_cs = -1;
1953	cqspi->sclk = 0;
1954	return 0;
1955}
1956
1957static int cqspi_suspend(struct device *dev)
1958{
1959	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1960
1961	return spi_controller_suspend(cqspi->host);
1962}
1963
1964static int cqspi_resume(struct device *dev)
1965{
1966	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1967
1968	return spi_controller_resume(cqspi->host);
1969}
1970
1971static const struct dev_pm_ops cqspi_dev_pm_ops = {
1972	RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
1973	SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
1974};
1975
1976static const struct cqspi_driver_platdata cdns_qspi = {
1977	.quirks = CQSPI_DISABLE_DAC_MODE,
1978};
1979
1980static const struct cqspi_driver_platdata k2g_qspi = {
1981	.quirks = CQSPI_NEEDS_WR_DELAY,
1982};
1983
1984static const struct cqspi_driver_platdata am654_ospi = {
1985	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1986	.quirks = CQSPI_NEEDS_WR_DELAY,
1987};
1988
1989static const struct cqspi_driver_platdata intel_lgm_qspi = {
1990	.quirks = CQSPI_DISABLE_DAC_MODE,
1991};
1992
1993static const struct cqspi_driver_platdata socfpga_qspi = {
1994	.quirks = CQSPI_DISABLE_DAC_MODE
1995			| CQSPI_NO_SUPPORT_WR_COMPLETION
1996			| CQSPI_SLOW_SRAM,
1997};
1998
1999static const struct cqspi_driver_platdata versal_ospi = {
2000	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2001	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
2002	.indirect_read_dma = cqspi_versal_indirect_read_dma,
2003	.get_dma_status = cqspi_get_versal_dma_status,
2004};
2005
2006static const struct cqspi_driver_platdata jh7110_qspi = {
2007	.quirks = CQSPI_DISABLE_DAC_MODE,
2008	.jh7110_clk_init = cqspi_jh7110_clk_init,
2009};
2010
2011static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2012	.quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2013};
2014
2015static const struct of_device_id cqspi_dt_ids[] = {
2016	{
2017		.compatible = "cdns,qspi-nor",
2018		.data = &cdns_qspi,
2019	},
2020	{
2021		.compatible = "ti,k2g-qspi",
2022		.data = &k2g_qspi,
2023	},
2024	{
2025		.compatible = "ti,am654-ospi",
2026		.data = &am654_ospi,
2027	},
2028	{
2029		.compatible = "intel,lgm-qspi",
2030		.data = &intel_lgm_qspi,
2031	},
2032	{
2033		.compatible = "xlnx,versal-ospi-1.0",
2034		.data = &versal_ospi,
2035	},
2036	{
2037		.compatible = "intel,socfpga-qspi",
2038		.data = &socfpga_qspi,
2039	},
2040	{
2041		.compatible = "starfive,jh7110-qspi",
2042		.data = &jh7110_qspi,
2043	},
2044	{
2045		.compatible = "amd,pensando-elba-qspi",
2046		.data = &pensando_cdns_qspi,
2047	},
2048	{ /* end of table */ }
2049};
2050
2051MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2052
2053static struct platform_driver cqspi_platform_driver = {
2054	.probe = cqspi_probe,
2055	.remove_new = cqspi_remove,
2056	.driver = {
2057		.name = CQSPI_NAME,
2058		.pm = pm_ptr(&cqspi_dev_pm_ops),
2059		.of_match_table = cqspi_dt_ids,
2060	},
2061};
2062
2063module_platform_driver(cqspi_platform_driver);
2064
2065MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2066MODULE_LICENSE("GPL v2");
2067MODULE_ALIAS("platform:" CQSPI_NAME);
2068MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2069MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2070MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2071MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2072MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
2073