1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for Broadcom BCM2835 SPI Controllers
4 *
5 * Copyright (C) 2012 Chris Boot
6 * Copyright (C) 2013 Stephen Warren
7 * Copyright (C) 2015 Martin Sperl
8 *
9 * This driver is inspired by:
10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
12 */
13
14#include <linux/cleanup.h>
15#include <linux/clk.h>
16#include <linux/completion.h>
17#include <linux/debugfs.h>
18#include <linux/delay.h>
19#include <linux/dma-mapping.h>
20#include <linux/dmaengine.h>
21#include <linux/err.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/of.h>
27#include <linux/of_address.h>
28#include <linux/platform_device.h>
29#include <linux/gpio/consumer.h>
30#include <linux/gpio/machine.h> /* FIXME: using GPIO lookup tables */
31#include <linux/of_irq.h>
32#include <linux/overflow.h>
33#include <linux/slab.h>
34#include <linux/spi/spi.h>
35
36/* SPI register offsets */
37#define BCM2835_SPI_CS			0x00
38#define BCM2835_SPI_FIFO		0x04
39#define BCM2835_SPI_CLK			0x08
40#define BCM2835_SPI_DLEN		0x0c
41#define BCM2835_SPI_LTOH		0x10
42#define BCM2835_SPI_DC			0x14
43
44/* Bitfields in CS */
45#define BCM2835_SPI_CS_LEN_LONG		0x02000000
46#define BCM2835_SPI_CS_DMA_LEN		0x01000000
47#define BCM2835_SPI_CS_CSPOL2		0x00800000
48#define BCM2835_SPI_CS_CSPOL1		0x00400000
49#define BCM2835_SPI_CS_CSPOL0		0x00200000
50#define BCM2835_SPI_CS_RXF		0x00100000
51#define BCM2835_SPI_CS_RXR		0x00080000
52#define BCM2835_SPI_CS_TXD		0x00040000
53#define BCM2835_SPI_CS_RXD		0x00020000
54#define BCM2835_SPI_CS_DONE		0x00010000
55#define BCM2835_SPI_CS_LEN		0x00002000
56#define BCM2835_SPI_CS_REN		0x00001000
57#define BCM2835_SPI_CS_ADCS		0x00000800
58#define BCM2835_SPI_CS_INTR		0x00000400
59#define BCM2835_SPI_CS_INTD		0x00000200
60#define BCM2835_SPI_CS_DMAEN		0x00000100
61#define BCM2835_SPI_CS_TA		0x00000080
62#define BCM2835_SPI_CS_CSPOL		0x00000040
63#define BCM2835_SPI_CS_CLEAR_RX		0x00000020
64#define BCM2835_SPI_CS_CLEAR_TX		0x00000010
65#define BCM2835_SPI_CS_CPOL		0x00000008
66#define BCM2835_SPI_CS_CPHA		0x00000004
67#define BCM2835_SPI_CS_CS_10		0x00000002
68#define BCM2835_SPI_CS_CS_01		0x00000001
69
70#define BCM2835_SPI_FIFO_SIZE		64
71#define BCM2835_SPI_FIFO_SIZE_3_4	48
72#define BCM2835_SPI_DMA_MIN_LENGTH	96
73#define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
74				| SPI_NO_CS | SPI_3WIRE)
75
76#define DRV_NAME	"spi-bcm2835"
77
78/* define polling limits */
79static unsigned int polling_limit_us = 30;
80module_param(polling_limit_us, uint, 0664);
81MODULE_PARM_DESC(polling_limit_us,
82		 "time in us to run a transfer in polling mode\n");
83
84/**
85 * struct bcm2835_spi - BCM2835 SPI controller
86 * @regs: base address of register map
87 * @clk: core clock, divided to calculate serial clock
88 * @cs_gpio: chip-select GPIO descriptor
89 * @clk_hz: core clock cached speed
90 * @irq: interrupt, signals TX FIFO empty or RX FIFO �� full
91 * @tfr: SPI transfer currently processed
92 * @ctlr: SPI controller reverse lookup
93 * @tx_buf: pointer whence next transmitted byte is read
94 * @rx_buf: pointer where next received byte is written
95 * @tx_len: remaining bytes to transmit
96 * @rx_len: remaining bytes to receive
97 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
98 *	length is not a multiple of 4 (to overcome hardware limitation)
99 * @rx_prologue: bytes received without DMA if first RX sglist entry's
100 *	length is not a multiple of 4 (to overcome hardware limitation)
101 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
102 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
103 *      unloading the module
104 * @count_transfer_polling: count of how often polling mode is used
105 * @count_transfer_irq: count of how often interrupt mode is used
106 * @count_transfer_irq_after_polling: count of how often we fall back to
107 *      interrupt mode after starting in polling mode.
108 *      These are counted as well in @count_transfer_polling and
109 *      @count_transfer_irq
110 * @count_transfer_dma: count how often dma mode is used
111 * @target: SPI target currently selected
112 *	(used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
113 * @tx_dma_active: whether a TX DMA descriptor is in progress
114 * @rx_dma_active: whether a RX DMA descriptor is in progress
115 *	(used by bcm2835_spi_dma_tx_done() to handle a race)
116 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
117 *	(cyclically copies from zero page to TX FIFO)
118 * @fill_tx_addr: bus address of zero page
119 */
120struct bcm2835_spi {
121	void __iomem *regs;
122	struct clk *clk;
123	struct gpio_desc *cs_gpio;
124	unsigned long clk_hz;
125	int irq;
126	struct spi_transfer *tfr;
127	struct spi_controller *ctlr;
128	const u8 *tx_buf;
129	u8 *rx_buf;
130	int tx_len;
131	int rx_len;
132	int tx_prologue;
133	int rx_prologue;
134	unsigned int tx_spillover;
135
136	struct dentry *debugfs_dir;
137	u64 count_transfer_polling;
138	u64 count_transfer_irq;
139	u64 count_transfer_irq_after_polling;
140	u64 count_transfer_dma;
141
142	struct bcm2835_spidev *target;
143	unsigned int tx_dma_active;
144	unsigned int rx_dma_active;
145	struct dma_async_tx_descriptor *fill_tx_desc;
146	dma_addr_t fill_tx_addr;
147};
148
149/**
150 * struct bcm2835_spidev - BCM2835 SPI target
151 * @prepare_cs: precalculated CS register value for ->prepare_message()
152 *	(uses target-specific clock polarity and phase settings)
153 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
154 *	(cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
155 * @clear_rx_addr: bus address of @clear_rx_cs
156 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
157 *	(uses target-specific clock polarity and phase settings)
158 */
159struct bcm2835_spidev {
160	u32 prepare_cs;
161	struct dma_async_tx_descriptor *clear_rx_desc;
162	dma_addr_t clear_rx_addr;
163	u32 clear_rx_cs ____cacheline_aligned;
164};
165
166#if defined(CONFIG_DEBUG_FS)
167static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
168				   const char *dname)
169{
170	char name[64];
171	struct dentry *dir;
172
173	/* get full name */
174	snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
175
176	/* the base directory */
177	dir = debugfs_create_dir(name, NULL);
178	bs->debugfs_dir = dir;
179
180	/* the counters */
181	debugfs_create_u64("count_transfer_polling", 0444, dir,
182			   &bs->count_transfer_polling);
183	debugfs_create_u64("count_transfer_irq", 0444, dir,
184			   &bs->count_transfer_irq);
185	debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
186			   &bs->count_transfer_irq_after_polling);
187	debugfs_create_u64("count_transfer_dma", 0444, dir,
188			   &bs->count_transfer_dma);
189}
190
191static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
192{
193	debugfs_remove_recursive(bs->debugfs_dir);
194	bs->debugfs_dir = NULL;
195}
196#else
197static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
198				   const char *dname)
199{
200}
201
202static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
203{
204}
205#endif /* CONFIG_DEBUG_FS */
206
207static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
208{
209	return readl(bs->regs + reg);
210}
211
212static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
213{
214	writel(val, bs->regs + reg);
215}
216
217static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
218{
219	u8 byte;
220
221	while ((bs->rx_len) &&
222	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
223		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
224		if (bs->rx_buf)
225			*bs->rx_buf++ = byte;
226		bs->rx_len--;
227	}
228}
229
230static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
231{
232	u8 byte;
233
234	while ((bs->tx_len) &&
235	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
236		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
237		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
238		bs->tx_len--;
239	}
240}
241
242/**
243 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
244 * @bs: BCM2835 SPI controller
245 * @count: bytes to read from RX FIFO
246 *
247 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
248 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
249 * in the CS register is set (such that a read from the FIFO register receives
250 * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
251 */
252static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
253{
254	u32 val;
255	int len;
256
257	bs->rx_len -= count;
258
259	do {
260		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
261		len = min(count, 4);
262		memcpy(bs->rx_buf, &val, len);
263		bs->rx_buf += len;
264		count -= 4;
265	} while (count > 0);
266}
267
268/**
269 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
270 * @bs: BCM2835 SPI controller
271 * @count: bytes to write to TX FIFO
272 *
273 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
274 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
275 * in the CS register is set (such that a write to the FIFO register transmits
276 * 32-bit instead of just 8-bit).
277 */
278static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
279{
280	u32 val;
281	int len;
282
283	bs->tx_len -= count;
284
285	do {
286		if (bs->tx_buf) {
287			len = min(count, 4);
288			memcpy(&val, bs->tx_buf, len);
289			bs->tx_buf += len;
290		} else {
291			val = 0;
292		}
293		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
294		count -= 4;
295	} while (count > 0);
296}
297
298/**
299 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
300 * @bs: BCM2835 SPI controller
301 *
302 * The caller must ensure that the RX FIFO can accommodate as many bytes
303 * as have been written to the TX FIFO:  Transmission is halted once the
304 * RX FIFO is full, causing this function to spin forever.
305 */
306static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
307{
308	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
309		cpu_relax();
310}
311
312/**
313 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
314 * @bs: BCM2835 SPI controller
315 * @count: bytes available for reading in RX FIFO
316 */
317static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
318{
319	u8 val;
320
321	count = min(count, bs->rx_len);
322	bs->rx_len -= count;
323
324	do {
325		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
326		if (bs->rx_buf)
327			*bs->rx_buf++ = val;
328	} while (--count);
329}
330
331/**
332 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
333 * @bs: BCM2835 SPI controller
334 * @count: bytes available for writing in TX FIFO
335 */
336static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
337{
338	u8 val;
339
340	count = min(count, bs->tx_len);
341	bs->tx_len -= count;
342
343	do {
344		val = bs->tx_buf ? *bs->tx_buf++ : 0;
345		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
346	} while (--count);
347}
348
349static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
350{
351	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
352
353	/* Disable SPI interrupts and transfer */
354	cs &= ~(BCM2835_SPI_CS_INTR |
355		BCM2835_SPI_CS_INTD |
356		BCM2835_SPI_CS_DMAEN |
357		BCM2835_SPI_CS_TA);
358	/*
359	 * Transmission sometimes breaks unless the DONE bit is written at the
360	 * end of every transfer.  The spec says it's a RO bit.  Either the
361	 * spec is wrong and the bit is actually of type RW1C, or it's a
362	 * hardware erratum.
363	 */
364	cs |= BCM2835_SPI_CS_DONE;
365	/* and reset RX/TX FIFOS */
366	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
367
368	/* and reset the SPI_HW */
369	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
370	/* as well as DLEN */
371	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
372}
373
374static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
375{
376	struct bcm2835_spi *bs = dev_id;
377	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
378
379	/* Bail out early if interrupts are not enabled */
380	if (!(cs & BCM2835_SPI_CS_INTR))
381		return IRQ_NONE;
382
383	/*
384	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
385	 * or if RXR is set (RX FIFO >= �� full).
386	 */
387	if (cs & BCM2835_SPI_CS_RXF)
388		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
389	else if (cs & BCM2835_SPI_CS_RXR)
390		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
391
392	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
393		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
394
395	/* Read as many bytes as possible from FIFO */
396	bcm2835_rd_fifo(bs);
397	/* Write as many bytes as possible to FIFO */
398	bcm2835_wr_fifo(bs);
399
400	if (!bs->rx_len) {
401		/* Transfer complete - reset SPI HW */
402		bcm2835_spi_reset_hw(bs);
403		/* wake up the framework */
404		spi_finalize_current_transfer(bs->ctlr);
405	}
406
407	return IRQ_HANDLED;
408}
409
410static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
411					struct spi_device *spi,
412					struct spi_transfer *tfr,
413					u32 cs, bool fifo_empty)
414{
415	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
416
417	/* update usage statistics */
418	bs->count_transfer_irq++;
419
420	/*
421	 * Enable HW block, but with interrupts still disabled.
422	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
423	 */
424	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
425
426	/* fill TX FIFO as much as possible */
427	if (fifo_empty)
428		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
429	bcm2835_wr_fifo(bs);
430
431	/* enable interrupts */
432	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
433	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
434
435	/* signal that we need to wait for completion */
436	return 1;
437}
438
439/**
440 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
441 * @ctlr: SPI host controller
442 * @tfr: SPI transfer
443 * @bs: BCM2835 SPI controller
444 * @cs: CS register
445 *
446 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
447 * Only the final write access is permitted to transmit less than 4 bytes, the
448 * SPI controller deduces its intended size from the DLEN register.
449 *
450 * If a TX or RX sglist contains multiple entries, one per page, and the first
451 * entry starts in the middle of a page, that first entry's length may not be
452 * a multiple of 4.  Subsequent entries are fine because they span an entire
453 * page, hence do have a length that's a multiple of 4.
454 *
455 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
456 * because they are contiguous in physical memory and therefore not split on
457 * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
458 * buffers.
459 *
460 * The DMA engine is incapable of combining sglist entries into a continuous
461 * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
462 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
463 * entry is rounded up by throwing away received bytes.
464 *
465 * Overcome this limitation by transferring the first few bytes without DMA:
466 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
467 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
468 * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
469 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
470 *
471 * Should the RX prologue be larger, say, 3 vis-��-vis a TX prologue of 1,
472 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
473 * Caution, the additional 4 bytes spill over to the second TX sglist entry
474 * if the length of the first is *exactly* 1.
475 *
476 * At most 6 bytes are written and at most 3 bytes read.  Do we know the
477 * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
478 *
479 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
480 * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
481 * the width but also garbles the FIFO's contents.  The prologue must therefore
482 * be transmitted in 32-bit width to ensure that the following DMA transfer can
483 * pick up the residue in the RX FIFO in ungarbled form.
484 */
485static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
486					  struct spi_transfer *tfr,
487					  struct bcm2835_spi *bs,
488					  u32 cs)
489{
490	int tx_remaining;
491
492	bs->tfr		 = tfr;
493	bs->tx_prologue  = 0;
494	bs->rx_prologue  = 0;
495	bs->tx_spillover = false;
496
497	if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
498		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
499
500	if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
501		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
502
503		if (bs->rx_prologue > bs->tx_prologue) {
504			if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
505				bs->tx_prologue  = bs->rx_prologue;
506			} else {
507				bs->tx_prologue += 4;
508				bs->tx_spillover =
509					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
510			}
511		}
512	}
513
514	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
515	if (!bs->tx_prologue)
516		return;
517
518	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
519	if (bs->rx_prologue) {
520		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
521		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
522						  | BCM2835_SPI_CS_DMAEN);
523		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
524		bcm2835_wait_tx_fifo_empty(bs);
525		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
526		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
527						  | BCM2835_SPI_CS_CLEAR_TX
528						  | BCM2835_SPI_CS_DONE);
529
530		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
531					   sg_dma_address(&tfr->rx_sg.sgl[0]),
532					   bs->rx_prologue, DMA_FROM_DEVICE);
533
534		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
535		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
536	}
537
538	if (!bs->tx_buf)
539		return;
540
541	/*
542	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
543	 * Also adjust second entry if prologue spills over to it.
544	 */
545	tx_remaining = bs->tx_prologue - bs->rx_prologue;
546	if (tx_remaining) {
547		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
548		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
549						  | BCM2835_SPI_CS_DMAEN);
550		bcm2835_wr_fifo_count(bs, tx_remaining);
551		bcm2835_wait_tx_fifo_empty(bs);
552		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
553						  | BCM2835_SPI_CS_DONE);
554	}
555
556	if (likely(!bs->tx_spillover)) {
557		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
558		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
559	} else {
560		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
561		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
562		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
563	}
564}
565
566/**
567 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
568 * @bs: BCM2835 SPI controller
569 *
570 * Undo changes which were made to an SPI transfer's sglist when transmitting
571 * the prologue.  This is necessary to ensure the same memory ranges are
572 * unmapped that were originally mapped.
573 */
574static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
575{
576	struct spi_transfer *tfr = bs->tfr;
577
578	if (!bs->tx_prologue)
579		return;
580
581	if (bs->rx_prologue) {
582		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
583		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
584	}
585
586	if (!bs->tx_buf)
587		goto out;
588
589	if (likely(!bs->tx_spillover)) {
590		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
591		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
592	} else {
593		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
594		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
595		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
596	}
597out:
598	bs->tx_prologue = 0;
599}
600
601/**
602 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
603 * @data: SPI host controller
604 *
605 * Used for bidirectional and RX-only transfers.
606 */
607static void bcm2835_spi_dma_rx_done(void *data)
608{
609	struct spi_controller *ctlr = data;
610	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
611
612	/* terminate tx-dma as we do not have an irq for it
613	 * because when the rx dma will terminate and this callback
614	 * is called the tx-dma must have finished - can't get to this
615	 * situation otherwise...
616	 */
617	dmaengine_terminate_async(ctlr->dma_tx);
618	bs->tx_dma_active = false;
619	bs->rx_dma_active = false;
620	bcm2835_spi_undo_prologue(bs);
621
622	/* reset fifo and HW */
623	bcm2835_spi_reset_hw(bs);
624
625	/* and mark as completed */;
626	spi_finalize_current_transfer(ctlr);
627}
628
629/**
630 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
631 * @data: SPI host controller
632 *
633 * Used for TX-only transfers.
634 */
635static void bcm2835_spi_dma_tx_done(void *data)
636{
637	struct spi_controller *ctlr = data;
638	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
639
640	/* busy-wait for TX FIFO to empty */
641	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
642		bcm2835_wr(bs, BCM2835_SPI_CS, bs->target->clear_rx_cs);
643
644	bs->tx_dma_active = false;
645	smp_wmb();
646
647	/*
648	 * In case of a very short transfer, RX DMA may not have been
649	 * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
650	 * to terminate it immediately after issuing.
651	 */
652	if (cmpxchg(&bs->rx_dma_active, true, false))
653		dmaengine_terminate_async(ctlr->dma_rx);
654
655	bcm2835_spi_undo_prologue(bs);
656	bcm2835_spi_reset_hw(bs);
657	spi_finalize_current_transfer(ctlr);
658}
659
660/**
661 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
662 * @ctlr: SPI host controller
663 * @tfr: SPI transfer
664 * @bs: BCM2835 SPI controller
665 * @target: BCM2835 SPI target
666 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
667 *
668 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
669 * Return 0 on success or a negative error number.
670 */
671static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
672				  struct spi_transfer *tfr,
673				  struct bcm2835_spi *bs,
674				  struct bcm2835_spidev *target,
675				  bool is_tx)
676{
677	struct dma_chan *chan;
678	struct scatterlist *sgl;
679	unsigned int nents;
680	enum dma_transfer_direction dir;
681	unsigned long flags;
682
683	struct dma_async_tx_descriptor *desc;
684	dma_cookie_t cookie;
685
686	if (is_tx) {
687		dir   = DMA_MEM_TO_DEV;
688		chan  = ctlr->dma_tx;
689		nents = tfr->tx_sg.nents;
690		sgl   = tfr->tx_sg.sgl;
691		flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
692	} else {
693		dir   = DMA_DEV_TO_MEM;
694		chan  = ctlr->dma_rx;
695		nents = tfr->rx_sg.nents;
696		sgl   = tfr->rx_sg.sgl;
697		flags = DMA_PREP_INTERRUPT;
698	}
699	/* prepare the channel */
700	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
701	if (!desc)
702		return -EINVAL;
703
704	/*
705	 * Completion is signaled by the RX channel for bidirectional and
706	 * RX-only transfers; else by the TX channel for TX-only transfers.
707	 */
708	if (!is_tx) {
709		desc->callback = bcm2835_spi_dma_rx_done;
710		desc->callback_param = ctlr;
711	} else if (!tfr->rx_buf) {
712		desc->callback = bcm2835_spi_dma_tx_done;
713		desc->callback_param = ctlr;
714		bs->target = target;
715	}
716
717	/* submit it to DMA-engine */
718	cookie = dmaengine_submit(desc);
719
720	return dma_submit_error(cookie);
721}
722
723/**
724 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
725 * @ctlr: SPI host controller
726 * @tfr: SPI transfer
727 * @target: BCM2835 SPI target
728 * @cs: CS register
729 *
730 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
731 * the TX and RX DMA channel to copy between memory and FIFO register.
732 *
733 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
734 * memory is pointless.  However not reading the RX FIFO isn't an option either
735 * because transmission is halted once it's full.  As a workaround, cyclically
736 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
737 *
738 * The CS register value is precalculated in bcm2835_spi_setup().  Normally
739 * this is called only once, on target registration.  A DMA descriptor to write
740 * this value is preallocated in bcm2835_dma_init().  All that's left to do
741 * when performing a TX-only transfer is to submit this descriptor to the RX
742 * DMA channel.  Latency is thereby minimized.  The descriptor does not
743 * generate any interrupts while running.  It must be terminated once the
744 * TX DMA channel is done.
745 *
746 * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
747 * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
748 * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
749 * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
750 * reduction in bus traffic and thus energy consumption is achieved.
751 *
752 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
753 * copying from the zero page.  The DMA descriptor to do this is preallocated
754 * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
755 * done and can then be reused.
756 *
757 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
758 * page and utilizes the DMA controller's ability to synthesize zeroes instead
759 * of copying them from memory.  This reduces traffic on the memory bus.  The
760 * feature is not available on so-called "lite" channels, but normally TX DMA
761 * is backed by a full-featured channel.
762 *
763 * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
764 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
765 * has been counted down to zero (hardware erratum).  Thus, when the transfer
766 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
767 * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
768 * performed at the end of an RX-only transfer.
769 */
770static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
771					struct spi_transfer *tfr,
772					struct bcm2835_spidev *target,
773					u32 cs)
774{
775	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
776	dma_cookie_t cookie;
777	int ret;
778
779	/* update usage statistics */
780	bs->count_transfer_dma++;
781
782	/*
783	 * Transfer first few bytes without DMA if length of first TX or RX
784	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
785	 */
786	bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
787
788	/* setup tx-DMA */
789	if (bs->tx_buf) {
790		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, target, true);
791	} else {
792		cookie = dmaengine_submit(bs->fill_tx_desc);
793		ret = dma_submit_error(cookie);
794	}
795	if (ret)
796		goto err_reset_hw;
797
798	/* set the DMA length */
799	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
800
801	/* start the HW */
802	bcm2835_wr(bs, BCM2835_SPI_CS,
803		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
804
805	bs->tx_dma_active = true;
806	smp_wmb();
807
808	/* start TX early */
809	dma_async_issue_pending(ctlr->dma_tx);
810
811	/* setup rx-DMA late - to run transfers while
812	 * mapping of the rx buffers still takes place
813	 * this saves 10us or more.
814	 */
815	if (bs->rx_buf) {
816		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, target, false);
817	} else {
818		cookie = dmaengine_submit(target->clear_rx_desc);
819		ret = dma_submit_error(cookie);
820	}
821	if (ret) {
822		/* need to reset on errors */
823		dmaengine_terminate_sync(ctlr->dma_tx);
824		bs->tx_dma_active = false;
825		goto err_reset_hw;
826	}
827
828	/* start rx dma late */
829	dma_async_issue_pending(ctlr->dma_rx);
830	bs->rx_dma_active = true;
831	smp_mb();
832
833	/*
834	 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
835	 * may run before RX DMA is issued.  Terminate RX DMA if so.
836	 */
837	if (!bs->rx_buf && !bs->tx_dma_active &&
838	    cmpxchg(&bs->rx_dma_active, true, false)) {
839		dmaengine_terminate_async(ctlr->dma_rx);
840		bcm2835_spi_reset_hw(bs);
841	}
842
843	/* wait for wakeup in framework */
844	return 1;
845
846err_reset_hw:
847	bcm2835_spi_reset_hw(bs);
848	bcm2835_spi_undo_prologue(bs);
849	return ret;
850}
851
852static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
853				struct spi_device *spi,
854				struct spi_transfer *tfr)
855{
856	/* we start DMA efforts only on bigger transfers */
857	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
858		return false;
859
860	/* return OK */
861	return true;
862}
863
864static void bcm2835_dma_release(struct spi_controller *ctlr,
865				struct bcm2835_spi *bs)
866{
867	if (ctlr->dma_tx) {
868		dmaengine_terminate_sync(ctlr->dma_tx);
869
870		if (bs->fill_tx_desc)
871			dmaengine_desc_free(bs->fill_tx_desc);
872
873		if (bs->fill_tx_addr)
874			dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
875					     bs->fill_tx_addr, sizeof(u32),
876					     DMA_TO_DEVICE,
877					     DMA_ATTR_SKIP_CPU_SYNC);
878
879		dma_release_channel(ctlr->dma_tx);
880		ctlr->dma_tx = NULL;
881	}
882
883	if (ctlr->dma_rx) {
884		dmaengine_terminate_sync(ctlr->dma_rx);
885		dma_release_channel(ctlr->dma_rx);
886		ctlr->dma_rx = NULL;
887	}
888}
889
890static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
891			    struct bcm2835_spi *bs)
892{
893	struct dma_slave_config slave_config;
894	const __be32 *addr;
895	dma_addr_t dma_reg_base;
896	int ret;
897
898	/* base address in dma-space */
899	addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
900	if (!addr) {
901		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
902		/* Fall back to interrupt mode */
903		return 0;
904	}
905	dma_reg_base = be32_to_cpup(addr);
906
907	/* get tx/rx dma */
908	ctlr->dma_tx = dma_request_chan(dev, "tx");
909	if (IS_ERR(ctlr->dma_tx)) {
910		ret = dev_err_probe(dev, PTR_ERR(ctlr->dma_tx),
911			"no tx-dma configuration found - not using dma mode\n");
912		ctlr->dma_tx = NULL;
913		goto err;
914	}
915	ctlr->dma_rx = dma_request_chan(dev, "rx");
916	if (IS_ERR(ctlr->dma_rx)) {
917		ret = dev_err_probe(dev, PTR_ERR(ctlr->dma_rx),
918			"no rx-dma configuration found - not using dma mode\n");
919		ctlr->dma_rx = NULL;
920		goto err_release;
921	}
922
923	/*
924	 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
925	 * or, in case of an RX-only transfer, cyclically copies from the zero
926	 * page to the FIFO using a preallocated, reusable descriptor.
927	 */
928	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
929	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
930
931	ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
932	if (ret)
933		goto err_config;
934
935	bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
936					      ZERO_PAGE(0), 0, sizeof(u32),
937					      DMA_TO_DEVICE,
938					      DMA_ATTR_SKIP_CPU_SYNC);
939	if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
940		dev_err(dev, "cannot map zero page - not using DMA mode\n");
941		bs->fill_tx_addr = 0;
942		ret = -ENOMEM;
943		goto err_release;
944	}
945
946	bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
947						     bs->fill_tx_addr,
948						     sizeof(u32), 0,
949						     DMA_MEM_TO_DEV, 0);
950	if (!bs->fill_tx_desc) {
951		dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
952		ret = -ENOMEM;
953		goto err_release;
954	}
955
956	ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
957	if (ret) {
958		dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
959		goto err_release;
960	}
961
962	/*
963	 * The RX DMA channel is used bidirectionally:  It either reads the
964	 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
965	 * precalculated value to the CS register to clear the RX FIFO.
966	 */
967	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
968	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
969	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
970	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
971
972	ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
973	if (ret)
974		goto err_config;
975
976	/* all went well, so set can_dma */
977	ctlr->can_dma = bcm2835_spi_can_dma;
978
979	return 0;
980
981err_config:
982	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
983		ret);
984err_release:
985	bcm2835_dma_release(ctlr, bs);
986err:
987	/*
988	 * Only report error for deferred probing, otherwise fall back to
989	 * interrupt mode
990	 */
991	if (ret != -EPROBE_DEFER)
992		ret = 0;
993
994	return ret;
995}
996
997static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
998					 struct spi_device *spi,
999					 struct spi_transfer *tfr,
1000					 u32 cs)
1001{
1002	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1003	unsigned long timeout;
1004
1005	/* update usage statistics */
1006	bs->count_transfer_polling++;
1007
1008	/* enable HW block without interrupts */
1009	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1010
1011	/* fill in the fifo before timeout calculations
1012	 * if we are interrupted here, then the data is
1013	 * getting transferred by the HW while we are interrupted
1014	 */
1015	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1016
1017	/* set the timeout to at least 2 jiffies */
1018	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1019
1020	/* loop until finished the transfer */
1021	while (bs->rx_len) {
1022		/* fill in tx fifo with remaining data */
1023		bcm2835_wr_fifo(bs);
1024
1025		/* read from fifo as much as possible */
1026		bcm2835_rd_fifo(bs);
1027
1028		/* if there is still data pending to read
1029		 * then check the timeout
1030		 */
1031		if (bs->rx_len && time_after(jiffies, timeout)) {
1032			dev_dbg_ratelimited(&spi->dev,
1033					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1034					    jiffies - timeout,
1035					    bs->tx_len, bs->rx_len);
1036			/* fall back to interrupt mode */
1037
1038			/* update usage statistics */
1039			bs->count_transfer_irq_after_polling++;
1040
1041			return bcm2835_spi_transfer_one_irq(ctlr, spi,
1042							    tfr, cs, false);
1043		}
1044	}
1045
1046	/* Transfer complete - reset SPI HW */
1047	bcm2835_spi_reset_hw(bs);
1048	/* and return without waiting for completion */
1049	return 0;
1050}
1051
1052static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1053				    struct spi_device *spi,
1054				    struct spi_transfer *tfr)
1055{
1056	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1057	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1058	unsigned long spi_hz, cdiv;
1059	unsigned long hz_per_byte, byte_limit;
1060	u32 cs = target->prepare_cs;
1061
1062	/* set clock */
1063	spi_hz = tfr->speed_hz;
1064
1065	if (spi_hz >= bs->clk_hz / 2) {
1066		cdiv = 2; /* clk_hz/2 is the fastest we can go */
1067	} else if (spi_hz) {
1068		/* CDIV must be a multiple of two */
1069		cdiv = DIV_ROUND_UP(bs->clk_hz, spi_hz);
1070		cdiv += (cdiv % 2);
1071
1072		if (cdiv >= 65536)
1073			cdiv = 0; /* 0 is the slowest we can go */
1074	} else {
1075		cdiv = 0; /* 0 is the slowest we can go */
1076	}
1077	tfr->effective_speed_hz = cdiv ? (bs->clk_hz / cdiv) : (bs->clk_hz / 65536);
1078	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1079
1080	/* handle all the 3-wire mode */
1081	if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1082		cs |= BCM2835_SPI_CS_REN;
1083
1084	/* set transmit buffers and length */
1085	bs->tx_buf = tfr->tx_buf;
1086	bs->rx_buf = tfr->rx_buf;
1087	bs->tx_len = tfr->len;
1088	bs->rx_len = tfr->len;
1089
1090	/* Calculate the estimated time in us the transfer runs.  Note that
1091	 * there is 1 idle clocks cycles after each byte getting transferred
1092	 * so we have 9 cycles/byte.  This is used to find the number of Hz
1093	 * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
1094	 * per 300,000 Hz of bus clock.
1095	 */
1096	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1097	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
1098
1099	/* run in polling mode for short transfers */
1100	if (tfr->len < byte_limit)
1101		return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1102
1103	/* run in dma mode if conditions are right
1104	 * Note that unlike poll or interrupt mode DMA mode does not have
1105	 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1106	 */
1107	if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1108		return bcm2835_spi_transfer_one_dma(ctlr, tfr, target, cs);
1109
1110	/* run in interrupt-mode */
1111	return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1112}
1113
1114static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1115				       struct spi_message *msg)
1116{
1117	struct spi_device *spi = msg->spi;
1118	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1119	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1120
1121	/*
1122	 * Set up clock polarity before spi_transfer_one_message() asserts
1123	 * chip select to avoid a gratuitous clock signal edge.
1124	 */
1125	bcm2835_wr(bs, BCM2835_SPI_CS, target->prepare_cs);
1126
1127	return 0;
1128}
1129
1130static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1131				   struct spi_message *msg)
1132{
1133	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1134
1135	/* if an error occurred and we have an active dma, then terminate */
1136	if (ctlr->dma_tx) {
1137		dmaengine_terminate_sync(ctlr->dma_tx);
1138		bs->tx_dma_active = false;
1139	}
1140	if (ctlr->dma_rx) {
1141		dmaengine_terminate_sync(ctlr->dma_rx);
1142		bs->rx_dma_active = false;
1143	}
1144	bcm2835_spi_undo_prologue(bs);
1145
1146	/* and reset */
1147	bcm2835_spi_reset_hw(bs);
1148}
1149
1150static void bcm2835_spi_cleanup(struct spi_device *spi)
1151{
1152	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1153	struct spi_controller *ctlr = spi->controller;
1154	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1155
1156	if (target->clear_rx_desc)
1157		dmaengine_desc_free(target->clear_rx_desc);
1158
1159	if (target->clear_rx_addr)
1160		dma_unmap_single(ctlr->dma_rx->device->dev,
1161				 target->clear_rx_addr,
1162				 sizeof(u32),
1163				 DMA_TO_DEVICE);
1164
1165	gpiod_put(bs->cs_gpio);
1166	spi_set_csgpiod(spi, 0, NULL);
1167
1168	kfree(target);
1169}
1170
1171static int bcm2835_spi_setup_dma(struct spi_controller *ctlr,
1172				 struct spi_device *spi,
1173				 struct bcm2835_spi *bs,
1174				 struct bcm2835_spidev *target)
1175{
1176	int ret;
1177
1178	if (!ctlr->dma_rx)
1179		return 0;
1180
1181	target->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
1182					       &target->clear_rx_cs,
1183					       sizeof(u32),
1184					       DMA_TO_DEVICE);
1185	if (dma_mapping_error(ctlr->dma_rx->device->dev, target->clear_rx_addr)) {
1186		dev_err(&spi->dev, "cannot map clear_rx_cs\n");
1187		target->clear_rx_addr = 0;
1188		return -ENOMEM;
1189	}
1190
1191	target->clear_rx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
1192						          target->clear_rx_addr,
1193						          sizeof(u32), 0,
1194						          DMA_MEM_TO_DEV, 0);
1195	if (!target->clear_rx_desc) {
1196		dev_err(&spi->dev, "cannot prepare clear_rx_desc\n");
1197		return -ENOMEM;
1198	}
1199
1200	ret = dmaengine_desc_set_reuse(target->clear_rx_desc);
1201	if (ret) {
1202		dev_err(&spi->dev, "cannot reuse clear_rx_desc\n");
1203		return ret;
1204	}
1205
1206	return 0;
1207}
1208
1209static size_t bcm2835_spi_max_transfer_size(struct spi_device *spi)
1210{
1211	/*
1212	 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1213	 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1214	 * aligned) if the limit is exceeded.
1215	 */
1216	if (spi->controller->can_dma)
1217		return 65532;
1218
1219	return SIZE_MAX;
1220}
1221
1222static int bcm2835_spi_setup(struct spi_device *spi)
1223{
1224	struct spi_controller *ctlr = spi->controller;
1225	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1226	struct bcm2835_spidev *target = spi_get_ctldata(spi);
1227	struct gpiod_lookup_table *lookup __free(kfree) = NULL;
1228	int ret;
1229	u32 cs;
1230
1231	if (!target) {
1232		target = kzalloc(ALIGN(sizeof(*target), dma_get_cache_alignment()),
1233			      GFP_KERNEL);
1234		if (!target)
1235			return -ENOMEM;
1236
1237		spi_set_ctldata(spi, target);
1238
1239		ret = bcm2835_spi_setup_dma(ctlr, spi, bs, target);
1240		if (ret)
1241			goto err_cleanup;
1242	}
1243
1244	/*
1245	 * Precalculate SPI target's CS register value for ->prepare_message():
1246	 * The driver always uses software-controlled GPIO chip select, hence
1247	 * set the hardware-controlled native chip select to an invalid value
1248	 * to prevent it from interfering.
1249	 */
1250	cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1251	if (spi->mode & SPI_CPOL)
1252		cs |= BCM2835_SPI_CS_CPOL;
1253	if (spi->mode & SPI_CPHA)
1254		cs |= BCM2835_SPI_CS_CPHA;
1255	target->prepare_cs = cs;
1256
1257	/*
1258	 * Precalculate SPI target's CS register value to clear RX FIFO
1259	 * in case of a TX-only DMA transfer.
1260	 */
1261	if (ctlr->dma_rx) {
1262		target->clear_rx_cs = cs | BCM2835_SPI_CS_TA |
1263					BCM2835_SPI_CS_DMAEN |
1264					BCM2835_SPI_CS_CLEAR_RX;
1265		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1266					   target->clear_rx_addr,
1267					   sizeof(u32),
1268					   DMA_TO_DEVICE);
1269	}
1270
1271	/*
1272	 * sanity checking the native-chipselects
1273	 */
1274	if (spi->mode & SPI_NO_CS)
1275		return 0;
1276	/*
1277	 * The SPI core has successfully requested the CS GPIO line from the
1278	 * device tree, so we are done.
1279	 */
1280	if (spi_get_csgpiod(spi, 0))
1281		return 0;
1282	if (spi_get_chipselect(spi, 0) > 1) {
1283		/* error in the case of native CS requested with CS > 1
1284		 * officially there is a CS2, but it is not documented
1285		 * which GPIO is connected with that...
1286		 */
1287		dev_err(&spi->dev,
1288			"setup: only two native chip-selects are supported\n");
1289		ret = -EINVAL;
1290		goto err_cleanup;
1291	}
1292
1293	/*
1294	 * TODO: The code below is a slightly better alternative to the utter
1295	 * abuse of the GPIO API that I found here before. It creates a
1296	 * temporary lookup table, assigns it to the SPI device, gets the GPIO
1297	 * descriptor and then releases the lookup table.
1298	 *
1299	 * More on the problem that it addresses:
1300	 *   https://www.spinics.net/lists/linux-gpio/msg36218.html
1301	 */
1302	lookup = kzalloc(struct_size(lookup, table, 2), GFP_KERNEL);
1303	if (!lookup) {
1304		ret = -ENOMEM;
1305		goto err_cleanup;
1306	}
1307
1308	lookup->dev_id = dev_name(&spi->dev);
1309	lookup->table[0] = GPIO_LOOKUP("pinctrl-bcm2835",
1310				       8 - (spi_get_chipselect(spi, 0)),
1311				       "cs", GPIO_LOOKUP_FLAGS_DEFAULT);
1312
1313	gpiod_add_lookup_table(lookup);
1314
1315	bs->cs_gpio = gpiod_get(&spi->dev, "cs", GPIOD_OUT_LOW);
1316	gpiod_remove_lookup_table(lookup);
1317	if (IS_ERR(bs->cs_gpio)) {
1318		ret = PTR_ERR(bs->cs_gpio);
1319		goto err_cleanup;
1320	}
1321
1322	spi_set_csgpiod(spi, 0, bs->cs_gpio);
1323
1324	/* and set up the "mode" and level */
1325	dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1326		 spi_get_chipselect(spi, 0));
1327
1328	return 0;
1329
1330err_cleanup:
1331	bcm2835_spi_cleanup(spi);
1332	return ret;
1333}
1334
1335static int bcm2835_spi_probe(struct platform_device *pdev)
1336{
1337	struct spi_controller *ctlr;
1338	struct bcm2835_spi *bs;
1339	int err;
1340
1341	ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*bs));
1342	if (!ctlr)
1343		return -ENOMEM;
1344
1345	platform_set_drvdata(pdev, ctlr);
1346
1347	ctlr->use_gpio_descriptors = true;
1348	ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1349	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1350	ctlr->num_chipselect = 3;
1351	ctlr->max_transfer_size = bcm2835_spi_max_transfer_size;
1352	ctlr->setup = bcm2835_spi_setup;
1353	ctlr->cleanup = bcm2835_spi_cleanup;
1354	ctlr->transfer_one = bcm2835_spi_transfer_one;
1355	ctlr->handle_err = bcm2835_spi_handle_err;
1356	ctlr->prepare_message = bcm2835_spi_prepare_message;
1357	ctlr->dev.of_node = pdev->dev.of_node;
1358
1359	bs = spi_controller_get_devdata(ctlr);
1360	bs->ctlr = ctlr;
1361
1362	bs->regs = devm_platform_ioremap_resource(pdev, 0);
1363	if (IS_ERR(bs->regs))
1364		return PTR_ERR(bs->regs);
1365
1366	bs->clk = devm_clk_get_enabled(&pdev->dev, NULL);
1367	if (IS_ERR(bs->clk))
1368		return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
1369				     "could not get clk\n");
1370
1371	ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2;
1372
1373	bs->irq = platform_get_irq(pdev, 0);
1374	if (bs->irq < 0)
1375		return bs->irq;
1376
1377	bs->clk_hz = clk_get_rate(bs->clk);
1378
1379	err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1380	if (err)
1381		return err;
1382
1383	/* initialise the hardware with the default polarities */
1384	bcm2835_wr(bs, BCM2835_SPI_CS,
1385		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1386
1387	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt,
1388			       IRQF_SHARED, dev_name(&pdev->dev), bs);
1389	if (err) {
1390		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1391		goto out_dma_release;
1392	}
1393
1394	err = spi_register_controller(ctlr);
1395	if (err) {
1396		dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1397			err);
1398		goto out_dma_release;
1399	}
1400
1401	bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1402
1403	return 0;
1404
1405out_dma_release:
1406	bcm2835_dma_release(ctlr, bs);
1407	return err;
1408}
1409
1410static void bcm2835_spi_remove(struct platform_device *pdev)
1411{
1412	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1413	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1414
1415	bcm2835_debugfs_remove(bs);
1416
1417	spi_unregister_controller(ctlr);
1418
1419	bcm2835_dma_release(ctlr, bs);
1420
1421	/* Clear FIFOs, and disable the HW block */
1422	bcm2835_wr(bs, BCM2835_SPI_CS,
1423		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1424}
1425
1426static const struct of_device_id bcm2835_spi_match[] = {
1427	{ .compatible = "brcm,bcm2835-spi", },
1428	{}
1429};
1430MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1431
1432static struct platform_driver bcm2835_spi_driver = {
1433	.driver		= {
1434		.name		= DRV_NAME,
1435		.of_match_table	= bcm2835_spi_match,
1436	},
1437	.probe		= bcm2835_spi_probe,
1438	.remove_new	= bcm2835_spi_remove,
1439	.shutdown	= bcm2835_spi_remove,
1440};
1441module_platform_driver(bcm2835_spi_driver);
1442
1443MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1444MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1445MODULE_LICENSE("GPL");
1446