1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Keystone Queue Manager subsystem driver
4 *
5 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6 * Authors:	Sandeep Nair <sandeep_n@ti.com>
7 *		Cyril Chemparathy <cyril@ti.com>
8 *		Santosh Shilimkar <santosh.shilimkar@ti.com>
9 */
10
11#include <linux/debugfs.h>
12#include <linux/dma-mapping.h>
13#include <linux/firmware.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/module.h>
17#include <linux/of.h>
18#include <linux/of_address.h>
19#include <linux/of_irq.h>
20#include <linux/platform_device.h>
21#include <linux/pm_runtime.h>
22#include <linux/property.h>
23#include <linux/slab.h>
24#include <linux/soc/ti/knav_qmss.h>
25
26#include "knav_qmss.h"
27
28static struct knav_device *kdev;
29static DEFINE_MUTEX(knav_dev_lock);
30#define knav_dev_lock_held() \
31	lockdep_is_held(&knav_dev_lock)
32
33/* Queue manager register indices in DTS */
34#define KNAV_QUEUE_PEEK_REG_INDEX	0
35#define KNAV_QUEUE_STATUS_REG_INDEX	1
36#define KNAV_QUEUE_CONFIG_REG_INDEX	2
37#define KNAV_QUEUE_REGION_REG_INDEX	3
38#define KNAV_QUEUE_PUSH_REG_INDEX	4
39#define KNAV_QUEUE_POP_REG_INDEX	5
40
41/* Queue manager register indices in DTS for QMSS in K2G NAVSS.
42 * There are no status and vbusm push registers on this version
43 * of QMSS. Push registers are same as pop, So all indices above 1
44 * are to be re-defined
45 */
46#define KNAV_L_QUEUE_CONFIG_REG_INDEX	1
47#define KNAV_L_QUEUE_REGION_REG_INDEX	2
48#define KNAV_L_QUEUE_PUSH_REG_INDEX	3
49
50/* PDSP register indices in DTS */
51#define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
52#define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
53#define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
54#define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
55
56#define knav_queue_idx_to_inst(kdev, idx)			\
57	(kdev->instances + (idx << kdev->inst_shift))
58
59#define for_each_handle_rcu(qh, inst)				\
60	list_for_each_entry_rcu(qh, &inst->handles, list,	\
61				knav_dev_lock_held())
62
63#define for_each_instance(idx, inst, kdev)		\
64	for (idx = 0, inst = kdev->instances;		\
65	     idx < (kdev)->num_queues_in_use;			\
66	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
67
68/* All firmware file names end up here. List the firmware file names below.
69 * Newest followed by older ones. Search is done from start of the array
70 * until a firmware file is found.
71 */
72static const char * const knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
73
74static bool device_ready;
75bool knav_qmss_device_ready(void)
76{
77	return device_ready;
78}
79EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
80
81/**
82 * knav_queue_notify: qmss queue notfier call
83 *
84 * @inst:		- qmss queue instance like accumulator
85 */
86void knav_queue_notify(struct knav_queue_inst *inst)
87{
88	struct knav_queue *qh;
89
90	if (!inst)
91		return;
92
93	rcu_read_lock();
94	for_each_handle_rcu(qh, inst) {
95		if (atomic_read(&qh->notifier_enabled) <= 0)
96			continue;
97		if (WARN_ON(!qh->notifier_fn))
98			continue;
99		this_cpu_inc(qh->stats->notifies);
100		qh->notifier_fn(qh->notifier_fn_arg);
101	}
102	rcu_read_unlock();
103}
104EXPORT_SYMBOL_GPL(knav_queue_notify);
105
106static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
107{
108	struct knav_queue_inst *inst = _instdata;
109
110	knav_queue_notify(inst);
111	return IRQ_HANDLED;
112}
113
114static int knav_queue_setup_irq(struct knav_range_info *range,
115			  struct knav_queue_inst *inst)
116{
117	unsigned queue = inst->id - range->queue_base;
118	int ret = 0, irq;
119
120	if (range->flags & RANGE_HAS_IRQ) {
121		irq = range->irqs[queue].irq;
122		ret = request_irq(irq, knav_queue_int_handler, 0,
123					inst->irq_name, inst);
124		if (ret)
125			return ret;
126		disable_irq(irq);
127		if (range->irqs[queue].cpu_mask) {
128			ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
129			if (ret) {
130				dev_warn(range->kdev->dev,
131					 "Failed to set IRQ affinity\n");
132				return ret;
133			}
134		}
135	}
136	return ret;
137}
138
139static void knav_queue_free_irq(struct knav_queue_inst *inst)
140{
141	struct knav_range_info *range = inst->range;
142	unsigned queue = inst->id - inst->range->queue_base;
143	int irq;
144
145	if (range->flags & RANGE_HAS_IRQ) {
146		irq = range->irqs[queue].irq;
147		irq_set_affinity_hint(irq, NULL);
148		free_irq(irq, inst);
149	}
150}
151
152static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
153{
154	return !list_empty(&inst->handles);
155}
156
157static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
158{
159	return inst->range->flags & RANGE_RESERVED;
160}
161
162static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
163{
164	struct knav_queue *tmp;
165
166	rcu_read_lock();
167	for_each_handle_rcu(tmp, inst) {
168		if (tmp->flags & KNAV_QUEUE_SHARED) {
169			rcu_read_unlock();
170			return true;
171		}
172	}
173	rcu_read_unlock();
174	return false;
175}
176
177static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
178						unsigned type)
179{
180	if ((type == KNAV_QUEUE_QPEND) &&
181	    (inst->range->flags & RANGE_HAS_IRQ)) {
182		return true;
183	} else if ((type == KNAV_QUEUE_ACC) &&
184		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
185		return true;
186	} else if ((type == KNAV_QUEUE_GP) &&
187		!(inst->range->flags &
188			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
189		return true;
190	}
191	return false;
192}
193
194static inline struct knav_queue_inst *
195knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
196{
197	struct knav_queue_inst *inst;
198	int idx;
199
200	for_each_instance(idx, inst, kdev) {
201		if (inst->id == id)
202			return inst;
203	}
204	return NULL;
205}
206
207static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
208{
209	if (kdev->base_id <= id &&
210	    kdev->base_id + kdev->num_queues > id) {
211		id -= kdev->base_id;
212		return knav_queue_match_id_to_inst(kdev, id);
213	}
214	return NULL;
215}
216
217static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
218				      const char *name, unsigned flags)
219{
220	struct knav_queue *qh;
221	unsigned id;
222	int ret = 0;
223
224	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
225	if (!qh)
226		return ERR_PTR(-ENOMEM);
227
228	qh->stats = alloc_percpu(struct knav_queue_stats);
229	if (!qh->stats) {
230		ret = -ENOMEM;
231		goto err;
232	}
233
234	qh->flags = flags;
235	qh->inst = inst;
236	id = inst->id - inst->qmgr->start_queue;
237	qh->reg_push = &inst->qmgr->reg_push[id];
238	qh->reg_pop = &inst->qmgr->reg_pop[id];
239	qh->reg_peek = &inst->qmgr->reg_peek[id];
240
241	/* first opener? */
242	if (!knav_queue_is_busy(inst)) {
243		struct knav_range_info *range = inst->range;
244
245		inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
246		if (range->ops && range->ops->open_queue)
247			ret = range->ops->open_queue(range, inst, flags);
248
249		if (ret)
250			goto err;
251	}
252	list_add_tail_rcu(&qh->list, &inst->handles);
253	return qh;
254
255err:
256	if (qh->stats)
257		free_percpu(qh->stats);
258	devm_kfree(inst->kdev->dev, qh);
259	return ERR_PTR(ret);
260}
261
262static struct knav_queue *
263knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
264{
265	struct knav_queue_inst *inst;
266	struct knav_queue *qh;
267
268	mutex_lock(&knav_dev_lock);
269
270	qh = ERR_PTR(-ENODEV);
271	inst = knav_queue_find_by_id(id);
272	if (!inst)
273		goto unlock_ret;
274
275	qh = ERR_PTR(-EEXIST);
276	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
277		goto unlock_ret;
278
279	qh = ERR_PTR(-EBUSY);
280	if ((flags & KNAV_QUEUE_SHARED) &&
281	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
282		goto unlock_ret;
283
284	qh = __knav_queue_open(inst, name, flags);
285
286unlock_ret:
287	mutex_unlock(&knav_dev_lock);
288
289	return qh;
290}
291
292static struct knav_queue *knav_queue_open_by_type(const char *name,
293						unsigned type, unsigned flags)
294{
295	struct knav_queue_inst *inst;
296	struct knav_queue *qh = ERR_PTR(-EINVAL);
297	int idx;
298
299	mutex_lock(&knav_dev_lock);
300
301	for_each_instance(idx, inst, kdev) {
302		if (knav_queue_is_reserved(inst))
303			continue;
304		if (!knav_queue_match_type(inst, type))
305			continue;
306		if (knav_queue_is_busy(inst))
307			continue;
308		qh = __knav_queue_open(inst, name, flags);
309		goto unlock_ret;
310	}
311
312unlock_ret:
313	mutex_unlock(&knav_dev_lock);
314	return qh;
315}
316
317static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
318{
319	struct knav_range_info *range = inst->range;
320
321	if (range->ops && range->ops->set_notify)
322		range->ops->set_notify(range, inst, enabled);
323}
324
325static int knav_queue_enable_notifier(struct knav_queue *qh)
326{
327	struct knav_queue_inst *inst = qh->inst;
328	bool first;
329
330	if (WARN_ON(!qh->notifier_fn))
331		return -EINVAL;
332
333	/* Adjust the per handle notifier count */
334	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
335	if (!first)
336		return 0; /* nothing to do */
337
338	/* Now adjust the per instance notifier count */
339	first = (atomic_inc_return(&inst->num_notifiers) == 1);
340	if (first)
341		knav_queue_set_notify(inst, true);
342
343	return 0;
344}
345
346static int knav_queue_disable_notifier(struct knav_queue *qh)
347{
348	struct knav_queue_inst *inst = qh->inst;
349	bool last;
350
351	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
352	if (!last)
353		return 0; /* nothing to do */
354
355	last = (atomic_dec_return(&inst->num_notifiers) == 0);
356	if (last)
357		knav_queue_set_notify(inst, false);
358
359	return 0;
360}
361
362static int knav_queue_set_notifier(struct knav_queue *qh,
363				struct knav_queue_notify_config *cfg)
364{
365	knav_queue_notify_fn old_fn = qh->notifier_fn;
366
367	if (!cfg)
368		return -EINVAL;
369
370	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
371		return -ENOTSUPP;
372
373	if (!cfg->fn && old_fn)
374		knav_queue_disable_notifier(qh);
375
376	qh->notifier_fn = cfg->fn;
377	qh->notifier_fn_arg = cfg->fn_arg;
378
379	if (cfg->fn && !old_fn)
380		knav_queue_enable_notifier(qh);
381
382	return 0;
383}
384
385static int knav_gp_set_notify(struct knav_range_info *range,
386			       struct knav_queue_inst *inst,
387			       bool enabled)
388{
389	unsigned queue;
390
391	if (range->flags & RANGE_HAS_IRQ) {
392		queue = inst->id - range->queue_base;
393		if (enabled)
394			enable_irq(range->irqs[queue].irq);
395		else
396			disable_irq_nosync(range->irqs[queue].irq);
397	}
398	return 0;
399}
400
401static int knav_gp_open_queue(struct knav_range_info *range,
402				struct knav_queue_inst *inst, unsigned flags)
403{
404	return knav_queue_setup_irq(range, inst);
405}
406
407static int knav_gp_close_queue(struct knav_range_info *range,
408				struct knav_queue_inst *inst)
409{
410	knav_queue_free_irq(inst);
411	return 0;
412}
413
414static struct knav_range_ops knav_gp_range_ops = {
415	.set_notify	= knav_gp_set_notify,
416	.open_queue	= knav_gp_open_queue,
417	.close_queue	= knav_gp_close_queue,
418};
419
420
421static int knav_queue_get_count(void *qhandle)
422{
423	struct knav_queue *qh = qhandle;
424	struct knav_queue_inst *inst = qh->inst;
425
426	return readl_relaxed(&qh->reg_peek[0].entry_count) +
427		atomic_read(&inst->desc_count);
428}
429
430static void knav_queue_debug_show_instance(struct seq_file *s,
431					struct knav_queue_inst *inst)
432{
433	struct knav_device *kdev = inst->kdev;
434	struct knav_queue *qh;
435	int cpu = 0;
436	int pushes = 0;
437	int pops = 0;
438	int push_errors = 0;
439	int pop_errors = 0;
440	int notifies = 0;
441
442	if (!knav_queue_is_busy(inst))
443		return;
444
445	seq_printf(s, "\tqueue id %d (%s)\n",
446		   kdev->base_id + inst->id, inst->name);
447	for_each_handle_rcu(qh, inst) {
448		for_each_possible_cpu(cpu) {
449			pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
450			pops += per_cpu_ptr(qh->stats, cpu)->pops;
451			push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
452			pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
453			notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
454		}
455
456		seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
457				qh,
458				pushes,
459				pops,
460				knav_queue_get_count(qh),
461				notifies,
462				push_errors,
463				pop_errors);
464	}
465}
466
467static int knav_queue_debug_show(struct seq_file *s, void *v)
468{
469	struct knav_queue_inst *inst;
470	int idx;
471
472	mutex_lock(&knav_dev_lock);
473	seq_printf(s, "%s: %u-%u\n",
474		   dev_name(kdev->dev), kdev->base_id,
475		   kdev->base_id + kdev->num_queues - 1);
476	for_each_instance(idx, inst, kdev)
477		knav_queue_debug_show_instance(s, inst);
478	mutex_unlock(&knav_dev_lock);
479
480	return 0;
481}
482
483DEFINE_SHOW_ATTRIBUTE(knav_queue_debug);
484
485static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
486					u32 flags)
487{
488	unsigned long end;
489	u32 val = 0;
490
491	end = jiffies + msecs_to_jiffies(timeout);
492	while (time_after(end, jiffies)) {
493		val = readl_relaxed(addr);
494		if (flags)
495			val &= flags;
496		if (!val)
497			break;
498		cpu_relax();
499	}
500	return val ? -ETIMEDOUT : 0;
501}
502
503
504static int knav_queue_flush(struct knav_queue *qh)
505{
506	struct knav_queue_inst *inst = qh->inst;
507	unsigned id = inst->id - inst->qmgr->start_queue;
508
509	atomic_set(&inst->desc_count, 0);
510	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
511	return 0;
512}
513
514/**
515 * knav_queue_open()	- open a hardware queue
516 * @name:		- name to give the queue handle
517 * @id:			- desired queue number if any or specifes the type
518 *			  of queue
519 * @flags:		- the following flags are applicable to queues:
520 *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
521 *			     exclusive by default.
522 *			     Subsequent attempts to open a shared queue should
523 *			     also have this flag.
524 *
525 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
526 * to check the returned value for error codes.
527 */
528void *knav_queue_open(const char *name, unsigned id,
529					unsigned flags)
530{
531	struct knav_queue *qh = ERR_PTR(-EINVAL);
532
533	switch (id) {
534	case KNAV_QUEUE_QPEND:
535	case KNAV_QUEUE_ACC:
536	case KNAV_QUEUE_GP:
537		qh = knav_queue_open_by_type(name, id, flags);
538		break;
539
540	default:
541		qh = knav_queue_open_by_id(name, id, flags);
542		break;
543	}
544	return qh;
545}
546EXPORT_SYMBOL_GPL(knav_queue_open);
547
548/**
549 * knav_queue_close()	- close a hardware queue handle
550 * @qhandle:		- handle to close
551 */
552void knav_queue_close(void *qhandle)
553{
554	struct knav_queue *qh = qhandle;
555	struct knav_queue_inst *inst = qh->inst;
556
557	while (atomic_read(&qh->notifier_enabled) > 0)
558		knav_queue_disable_notifier(qh);
559
560	mutex_lock(&knav_dev_lock);
561	list_del_rcu(&qh->list);
562	mutex_unlock(&knav_dev_lock);
563	synchronize_rcu();
564	if (!knav_queue_is_busy(inst)) {
565		struct knav_range_info *range = inst->range;
566
567		if (range->ops && range->ops->close_queue)
568			range->ops->close_queue(range, inst);
569	}
570	free_percpu(qh->stats);
571	devm_kfree(inst->kdev->dev, qh);
572}
573EXPORT_SYMBOL_GPL(knav_queue_close);
574
575/**
576 * knav_queue_device_control()	- Perform control operations on a queue
577 * @qhandle:			- queue handle
578 * @cmd:			- control commands
579 * @arg:			- command argument
580 *
581 * Returns 0 on success, errno otherwise.
582 */
583int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
584				unsigned long arg)
585{
586	struct knav_queue *qh = qhandle;
587	struct knav_queue_notify_config *cfg;
588	int ret;
589
590	switch ((int)cmd) {
591	case KNAV_QUEUE_GET_ID:
592		ret = qh->inst->kdev->base_id + qh->inst->id;
593		break;
594
595	case KNAV_QUEUE_FLUSH:
596		ret = knav_queue_flush(qh);
597		break;
598
599	case KNAV_QUEUE_SET_NOTIFIER:
600		cfg = (void *)arg;
601		ret = knav_queue_set_notifier(qh, cfg);
602		break;
603
604	case KNAV_QUEUE_ENABLE_NOTIFY:
605		ret = knav_queue_enable_notifier(qh);
606		break;
607
608	case KNAV_QUEUE_DISABLE_NOTIFY:
609		ret = knav_queue_disable_notifier(qh);
610		break;
611
612	case KNAV_QUEUE_GET_COUNT:
613		ret = knav_queue_get_count(qh);
614		break;
615
616	default:
617		ret = -ENOTSUPP;
618		break;
619	}
620	return ret;
621}
622EXPORT_SYMBOL_GPL(knav_queue_device_control);
623
624
625
626/**
627 * knav_queue_push()	- push data (or descriptor) to the tail of a queue
628 * @qhandle:		- hardware queue handle
629 * @dma:		- DMA data to push
630 * @size:		- size of data to push
631 * @flags:		- can be used to pass additional information
632 *
633 * Returns 0 on success, errno otherwise.
634 */
635int knav_queue_push(void *qhandle, dma_addr_t dma,
636					unsigned size, unsigned flags)
637{
638	struct knav_queue *qh = qhandle;
639	u32 val;
640
641	val = (u32)dma | ((size / 16) - 1);
642	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
643
644	this_cpu_inc(qh->stats->pushes);
645	return 0;
646}
647EXPORT_SYMBOL_GPL(knav_queue_push);
648
649/**
650 * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
651 * @qhandle:		- hardware queue handle
652 * @size:		- (optional) size of the data pop'ed.
653 *
654 * Returns a DMA address on success, 0 on failure.
655 */
656dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
657{
658	struct knav_queue *qh = qhandle;
659	struct knav_queue_inst *inst = qh->inst;
660	dma_addr_t dma;
661	u32 val, idx;
662
663	/* are we accumulated? */
664	if (inst->descs) {
665		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
666			atomic_inc(&inst->desc_count);
667			return 0;
668		}
669		idx  = atomic_inc_return(&inst->desc_head);
670		idx &= ACC_DESCS_MASK;
671		val = inst->descs[idx];
672	} else {
673		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
674		if (unlikely(!val))
675			return 0;
676	}
677
678	dma = val & DESC_PTR_MASK;
679	if (size)
680		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
681
682	this_cpu_inc(qh->stats->pops);
683	return dma;
684}
685EXPORT_SYMBOL_GPL(knav_queue_pop);
686
687/* carve out descriptors and push into queue */
688static void kdesc_fill_pool(struct knav_pool *pool)
689{
690	struct knav_region *region;
691	int i;
692
693	region = pool->region;
694	pool->desc_size = region->desc_size;
695	for (i = 0; i < pool->num_desc; i++) {
696		int index = pool->region_offset + i;
697		dma_addr_t dma_addr;
698		unsigned dma_size;
699		dma_addr = region->dma_start + (region->desc_size * index);
700		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
701		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
702					   DMA_TO_DEVICE);
703		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
704	}
705}
706
707/* pop out descriptors and close the queue */
708static void kdesc_empty_pool(struct knav_pool *pool)
709{
710	dma_addr_t dma;
711	unsigned size;
712	void *desc;
713	int i;
714
715	if (!pool->queue)
716		return;
717
718	for (i = 0;; i++) {
719		dma = knav_queue_pop(pool->queue, &size);
720		if (!dma)
721			break;
722		desc = knav_pool_desc_dma_to_virt(pool, dma);
723		if (!desc) {
724			dev_dbg(pool->kdev->dev,
725				"couldn't unmap desc, continuing\n");
726			continue;
727		}
728	}
729	WARN_ON(i != pool->num_desc);
730	knav_queue_close(pool->queue);
731}
732
733
734/* Get the DMA address of a descriptor */
735dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
736{
737	struct knav_pool *pool = ph;
738	return pool->region->dma_start + (virt - pool->region->virt_start);
739}
740EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
741
742void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
743{
744	struct knav_pool *pool = ph;
745	return pool->region->virt_start + (dma - pool->region->dma_start);
746}
747EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
748
749/**
750 * knav_pool_create()	- Create a pool of descriptors
751 * @name:		- name to give the pool handle
752 * @num_desc:		- numbers of descriptors in the pool
753 * @region_id:		- QMSS region id from which the descriptors are to be
754 *			  allocated.
755 *
756 * Returns a pool handle on success.
757 * Use IS_ERR_OR_NULL() to identify error values on return.
758 */
759void *knav_pool_create(const char *name,
760					int num_desc, int region_id)
761{
762	struct knav_region *reg_itr, *region = NULL;
763	struct knav_pool *pool, *pi = NULL, *iter;
764	struct list_head *node;
765	unsigned last_offset;
766	int ret;
767
768	if (!kdev)
769		return ERR_PTR(-EPROBE_DEFER);
770
771	if (!kdev->dev)
772		return ERR_PTR(-ENODEV);
773
774	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
775	if (!pool) {
776		dev_err(kdev->dev, "out of memory allocating pool\n");
777		return ERR_PTR(-ENOMEM);
778	}
779
780	for_each_region(kdev, reg_itr) {
781		if (reg_itr->id != region_id)
782			continue;
783		region = reg_itr;
784		break;
785	}
786
787	if (!region) {
788		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
789		ret = -EINVAL;
790		goto err;
791	}
792
793	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
794	if (IS_ERR(pool->queue)) {
795		dev_err(kdev->dev,
796			"failed to open queue for pool(%s), error %ld\n",
797			name, PTR_ERR(pool->queue));
798		ret = PTR_ERR(pool->queue);
799		goto err;
800	}
801
802	pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
803	pool->kdev = kdev;
804	pool->dev = kdev->dev;
805
806	mutex_lock(&knav_dev_lock);
807
808	if (num_desc > (region->num_desc - region->used_desc)) {
809		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
810			region_id, name);
811		ret = -ENOMEM;
812		goto err_unlock;
813	}
814
815	/* Region maintains a sorted (by region offset) list of pools
816	 * use the first free slot which is large enough to accomodate
817	 * the request
818	 */
819	last_offset = 0;
820	node = &region->pools;
821	list_for_each_entry(iter, &region->pools, region_inst) {
822		if ((iter->region_offset - last_offset) >= num_desc) {
823			pi = iter;
824			break;
825		}
826		last_offset = iter->region_offset + iter->num_desc;
827	}
828
829	if (pi) {
830		node = &pi->region_inst;
831		pool->region = region;
832		pool->num_desc = num_desc;
833		pool->region_offset = last_offset;
834		region->used_desc += num_desc;
835		list_add_tail(&pool->list, &kdev->pools);
836		list_add_tail(&pool->region_inst, node);
837	} else {
838		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
839			name, region_id);
840		ret = -ENOMEM;
841		goto err_unlock;
842	}
843
844	mutex_unlock(&knav_dev_lock);
845	kdesc_fill_pool(pool);
846	return pool;
847
848err_unlock:
849	mutex_unlock(&knav_dev_lock);
850err:
851	kfree(pool->name);
852	devm_kfree(kdev->dev, pool);
853	return ERR_PTR(ret);
854}
855EXPORT_SYMBOL_GPL(knav_pool_create);
856
857/**
858 * knav_pool_destroy()	- Free a pool of descriptors
859 * @ph:		- pool handle
860 */
861void knav_pool_destroy(void *ph)
862{
863	struct knav_pool *pool = ph;
864
865	if (!pool)
866		return;
867
868	if (!pool->region)
869		return;
870
871	kdesc_empty_pool(pool);
872	mutex_lock(&knav_dev_lock);
873
874	pool->region->used_desc -= pool->num_desc;
875	list_del(&pool->region_inst);
876	list_del(&pool->list);
877
878	mutex_unlock(&knav_dev_lock);
879	kfree(pool->name);
880	devm_kfree(kdev->dev, pool);
881}
882EXPORT_SYMBOL_GPL(knav_pool_destroy);
883
884
885/**
886 * knav_pool_desc_get()	- Get a descriptor from the pool
887 * @ph:		- pool handle
888 *
889 * Returns descriptor from the pool.
890 */
891void *knav_pool_desc_get(void *ph)
892{
893	struct knav_pool *pool = ph;
894	dma_addr_t dma;
895	unsigned size;
896	void *data;
897
898	dma = knav_queue_pop(pool->queue, &size);
899	if (unlikely(!dma))
900		return ERR_PTR(-ENOMEM);
901	data = knav_pool_desc_dma_to_virt(pool, dma);
902	return data;
903}
904EXPORT_SYMBOL_GPL(knav_pool_desc_get);
905
906/**
907 * knav_pool_desc_put()	- return a descriptor to the pool
908 * @ph:		- pool handle
909 * @desc:	- virtual address
910 */
911void knav_pool_desc_put(void *ph, void *desc)
912{
913	struct knav_pool *pool = ph;
914	dma_addr_t dma;
915	dma = knav_pool_desc_virt_to_dma(pool, desc);
916	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
917}
918EXPORT_SYMBOL_GPL(knav_pool_desc_put);
919
920/**
921 * knav_pool_desc_map()	- Map descriptor for DMA transfer
922 * @ph:				- pool handle
923 * @desc:			- address of descriptor to map
924 * @size:			- size of descriptor to map
925 * @dma:			- DMA address return pointer
926 * @dma_sz:			- adjusted return pointer
927 *
928 * Returns 0 on success, errno otherwise.
929 */
930int knav_pool_desc_map(void *ph, void *desc, unsigned size,
931					dma_addr_t *dma, unsigned *dma_sz)
932{
933	struct knav_pool *pool = ph;
934	*dma = knav_pool_desc_virt_to_dma(pool, desc);
935	size = min(size, pool->region->desc_size);
936	size = ALIGN(size, SMP_CACHE_BYTES);
937	*dma_sz = size;
938	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
939
940	/* Ensure the descriptor reaches to the memory */
941	__iowmb();
942
943	return 0;
944}
945EXPORT_SYMBOL_GPL(knav_pool_desc_map);
946
947/**
948 * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
949 * @ph:				- pool handle
950 * @dma:			- DMA address of descriptor to unmap
951 * @dma_sz:			- size of descriptor to unmap
952 *
953 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
954 * error values on return.
955 */
956void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
957{
958	struct knav_pool *pool = ph;
959	unsigned desc_sz;
960	void *desc;
961
962	desc_sz = min(dma_sz, pool->region->desc_size);
963	desc = knav_pool_desc_dma_to_virt(pool, dma);
964	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
965	prefetch(desc);
966	return desc;
967}
968EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
969
970/**
971 * knav_pool_count()	- Get the number of descriptors in pool.
972 * @ph:			- pool handle
973 * Returns number of elements in the pool.
974 */
975int knav_pool_count(void *ph)
976{
977	struct knav_pool *pool = ph;
978	return knav_queue_get_count(pool->queue);
979}
980EXPORT_SYMBOL_GPL(knav_pool_count);
981
982static void knav_queue_setup_region(struct knav_device *kdev,
983					struct knav_region *region)
984{
985	unsigned hw_num_desc, hw_desc_size, size;
986	struct knav_reg_region __iomem  *regs;
987	struct knav_qmgr_info *qmgr;
988	struct knav_pool *pool;
989	int id = region->id;
990	struct page *page;
991
992	/* unused region? */
993	if (!region->num_desc) {
994		dev_warn(kdev->dev, "unused region %s\n", region->name);
995		return;
996	}
997
998	/* get hardware descriptor value */
999	hw_num_desc = ilog2(region->num_desc - 1) + 1;
1000
1001	/* did we force fit ourselves into nothingness? */
1002	if (region->num_desc < 32) {
1003		region->num_desc = 0;
1004		dev_warn(kdev->dev, "too few descriptors in region %s\n",
1005			 region->name);
1006		return;
1007	}
1008
1009	size = region->num_desc * region->desc_size;
1010	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1011						GFP_DMA32);
1012	if (!region->virt_start) {
1013		region->num_desc = 0;
1014		dev_err(kdev->dev, "memory alloc failed for region %s\n",
1015			region->name);
1016		return;
1017	}
1018	region->virt_end = region->virt_start + size;
1019	page = virt_to_page(region->virt_start);
1020
1021	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1022					 DMA_BIDIRECTIONAL);
1023	if (dma_mapping_error(kdev->dev, region->dma_start)) {
1024		dev_err(kdev->dev, "dma map failed for region %s\n",
1025			region->name);
1026		goto fail;
1027	}
1028	region->dma_end = region->dma_start + size;
1029
1030	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1031	if (!pool) {
1032		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1033		goto fail;
1034	}
1035	pool->num_desc = 0;
1036	pool->region_offset = region->num_desc;
1037	list_add(&pool->region_inst, &region->pools);
1038
1039	dev_dbg(kdev->dev,
1040		"region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1041		region->name, id, region->desc_size, region->num_desc,
1042		region->link_index, &region->dma_start, &region->dma_end,
1043		region->virt_start, region->virt_end);
1044
1045	hw_desc_size = (region->desc_size / 16) - 1;
1046	hw_num_desc -= 5;
1047
1048	for_each_qmgr(kdev, qmgr) {
1049		regs = qmgr->reg_region + id;
1050		writel_relaxed((u32)region->dma_start, &regs->base);
1051		writel_relaxed(region->link_index, &regs->start_index);
1052		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1053			       &regs->size_count);
1054	}
1055	return;
1056
1057fail:
1058	if (region->dma_start)
1059		dma_unmap_page(kdev->dev, region->dma_start, size,
1060				DMA_BIDIRECTIONAL);
1061	if (region->virt_start)
1062		free_pages_exact(region->virt_start, size);
1063	region->num_desc = 0;
1064	return;
1065}
1066
1067static const char *knav_queue_find_name(struct device_node *node)
1068{
1069	const char *name;
1070
1071	if (of_property_read_string(node, "label", &name) < 0)
1072		name = node->name;
1073	if (!name)
1074		name = "unknown";
1075	return name;
1076}
1077
1078static int knav_queue_setup_regions(struct knav_device *kdev,
1079					struct device_node *regions)
1080{
1081	struct device *dev = kdev->dev;
1082	struct knav_region *region;
1083	struct device_node *child;
1084	u32 temp[2];
1085	int ret;
1086
1087	for_each_child_of_node(regions, child) {
1088		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1089		if (!region) {
1090			of_node_put(child);
1091			dev_err(dev, "out of memory allocating region\n");
1092			return -ENOMEM;
1093		}
1094
1095		region->name = knav_queue_find_name(child);
1096		of_property_read_u32(child, "id", &region->id);
1097		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1098		if (!ret) {
1099			region->num_desc  = temp[0];
1100			region->desc_size = temp[1];
1101		} else {
1102			dev_err(dev, "invalid region info %s\n", region->name);
1103			devm_kfree(dev, region);
1104			continue;
1105		}
1106
1107		if (!of_get_property(child, "link-index", NULL)) {
1108			dev_err(dev, "No link info for %s\n", region->name);
1109			devm_kfree(dev, region);
1110			continue;
1111		}
1112		ret = of_property_read_u32(child, "link-index",
1113					   &region->link_index);
1114		if (ret) {
1115			dev_err(dev, "link index not found for %s\n",
1116				region->name);
1117			devm_kfree(dev, region);
1118			continue;
1119		}
1120
1121		INIT_LIST_HEAD(&region->pools);
1122		list_add_tail(&region->list, &kdev->regions);
1123	}
1124	if (list_empty(&kdev->regions)) {
1125		dev_err(dev, "no valid region information found\n");
1126		return -ENODEV;
1127	}
1128
1129	/* Next, we run through the regions and set things up */
1130	for_each_region(kdev, region)
1131		knav_queue_setup_region(kdev, region);
1132
1133	return 0;
1134}
1135
1136static int knav_get_link_ram(struct knav_device *kdev,
1137				       const char *name,
1138				       struct knav_link_ram_block *block)
1139{
1140	struct platform_device *pdev = to_platform_device(kdev->dev);
1141	struct device_node *node = pdev->dev.of_node;
1142	u32 temp[2];
1143
1144	/*
1145	 * Note: link ram resources are specified in "entry" sized units. In
1146	 * reality, although entries are ~40bits in hardware, we treat them as
1147	 * 64-bit entities here.
1148	 *
1149	 * For example, to specify the internal link ram for Keystone-I class
1150	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1151	 *
1152	 * This gets a bit weird when other link rams are used.  For example,
1153	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1154	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1155	 * which accounts for 64-bits per entry, for 16K entries.
1156	 */
1157	if (!of_property_read_u32_array(node, name , temp, 2)) {
1158		if (temp[0]) {
1159			/*
1160			 * queue_base specified => using internal or onchip
1161			 * link ram WARNING - we do not "reserve" this block
1162			 */
1163			block->dma = (dma_addr_t)temp[0];
1164			block->virt = NULL;
1165			block->size = temp[1];
1166		} else {
1167			block->size = temp[1];
1168			/* queue_base not specific => allocate requested size */
1169			block->virt = dmam_alloc_coherent(kdev->dev,
1170						  8 * block->size, &block->dma,
1171						  GFP_KERNEL);
1172			if (!block->virt) {
1173				dev_err(kdev->dev, "failed to alloc linkram\n");
1174				return -ENOMEM;
1175			}
1176		}
1177	} else {
1178		return -ENODEV;
1179	}
1180	return 0;
1181}
1182
1183static int knav_queue_setup_link_ram(struct knav_device *kdev)
1184{
1185	struct knav_link_ram_block *block;
1186	struct knav_qmgr_info *qmgr;
1187
1188	for_each_qmgr(kdev, qmgr) {
1189		block = &kdev->link_rams[0];
1190		dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1191			&block->dma, block->virt, block->size);
1192		writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1193		if (kdev->version == QMSS_66AK2G)
1194			writel_relaxed(block->size,
1195				       &qmgr->reg_config->link_ram_size0);
1196		else
1197			writel_relaxed(block->size - 1,
1198				       &qmgr->reg_config->link_ram_size0);
1199		block++;
1200		if (!block->size)
1201			continue;
1202
1203		dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1204			&block->dma, block->virt, block->size);
1205		writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1206	}
1207
1208	return 0;
1209}
1210
1211static int knav_setup_queue_range(struct knav_device *kdev,
1212					struct device_node *node)
1213{
1214	struct device *dev = kdev->dev;
1215	struct knav_range_info *range;
1216	struct knav_qmgr_info *qmgr;
1217	u32 temp[2], start, end, id, index;
1218	int ret, i;
1219
1220	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1221	if (!range) {
1222		dev_err(dev, "out of memory allocating range\n");
1223		return -ENOMEM;
1224	}
1225
1226	range->kdev = kdev;
1227	range->name = knav_queue_find_name(node);
1228	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1229	if (!ret) {
1230		range->queue_base = temp[0] - kdev->base_id;
1231		range->num_queues = temp[1];
1232	} else {
1233		dev_err(dev, "invalid queue range %s\n", range->name);
1234		devm_kfree(dev, range);
1235		return -EINVAL;
1236	}
1237
1238	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1239		struct of_phandle_args oirq;
1240
1241		if (of_irq_parse_one(node, i, &oirq))
1242			break;
1243
1244		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1245		if (range->irqs[i].irq == IRQ_NONE)
1246			break;
1247
1248		range->num_irqs++;
1249
1250		if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1251			unsigned long mask;
1252			int bit;
1253
1254			range->irqs[i].cpu_mask = devm_kzalloc(dev,
1255							       cpumask_size(), GFP_KERNEL);
1256			if (!range->irqs[i].cpu_mask)
1257				return -ENOMEM;
1258
1259			mask = (oirq.args[2] & 0x0000ff00) >> 8;
1260			for_each_set_bit(bit, &mask, BITS_PER_LONG)
1261				cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1262		}
1263	}
1264
1265	range->num_irqs = min(range->num_irqs, range->num_queues);
1266	if (range->num_irqs)
1267		range->flags |= RANGE_HAS_IRQ;
1268
1269	if (of_property_read_bool(node, "qalloc-by-id"))
1270		range->flags |= RANGE_RESERVED;
1271
1272	if (of_property_present(node, "accumulator")) {
1273		ret = knav_init_acc_range(kdev, node, range);
1274		if (ret < 0) {
1275			devm_kfree(dev, range);
1276			return ret;
1277		}
1278	} else {
1279		range->ops = &knav_gp_range_ops;
1280	}
1281
1282	/* set threshold to 1, and flush out the queues */
1283	for_each_qmgr(kdev, qmgr) {
1284		start = max(qmgr->start_queue, range->queue_base);
1285		end   = min(qmgr->start_queue + qmgr->num_queues,
1286			    range->queue_base + range->num_queues);
1287		for (id = start; id < end; id++) {
1288			index = id - qmgr->start_queue;
1289			writel_relaxed(THRESH_GTE | 1,
1290				       &qmgr->reg_peek[index].ptr_size_thresh);
1291			writel_relaxed(0,
1292				       &qmgr->reg_push[index].ptr_size_thresh);
1293		}
1294	}
1295
1296	list_add_tail(&range->list, &kdev->queue_ranges);
1297	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1298		range->name, range->queue_base,
1299		range->queue_base + range->num_queues - 1,
1300		range->num_irqs,
1301		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1302		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1303		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1304	kdev->num_queues_in_use += range->num_queues;
1305	return 0;
1306}
1307
1308static int knav_setup_queue_pools(struct knav_device *kdev,
1309				   struct device_node *queue_pools)
1310{
1311	struct device_node *type, *range;
1312
1313	for_each_child_of_node(queue_pools, type) {
1314		for_each_child_of_node(type, range) {
1315			/* return value ignored, we init the rest... */
1316			knav_setup_queue_range(kdev, range);
1317		}
1318	}
1319
1320	/* ... and barf if they all failed! */
1321	if (list_empty(&kdev->queue_ranges)) {
1322		dev_err(kdev->dev, "no valid queue range found\n");
1323		return -ENODEV;
1324	}
1325	return 0;
1326}
1327
1328static void knav_free_queue_range(struct knav_device *kdev,
1329				  struct knav_range_info *range)
1330{
1331	if (range->ops && range->ops->free_range)
1332		range->ops->free_range(range);
1333	list_del(&range->list);
1334	devm_kfree(kdev->dev, range);
1335}
1336
1337static void knav_free_queue_ranges(struct knav_device *kdev)
1338{
1339	struct knav_range_info *range;
1340
1341	for (;;) {
1342		range = first_queue_range(kdev);
1343		if (!range)
1344			break;
1345		knav_free_queue_range(kdev, range);
1346	}
1347}
1348
1349static void knav_queue_free_regions(struct knav_device *kdev)
1350{
1351	struct knav_region *region;
1352	struct knav_pool *pool, *tmp;
1353	unsigned size;
1354
1355	for (;;) {
1356		region = first_region(kdev);
1357		if (!region)
1358			break;
1359		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1360			knav_pool_destroy(pool);
1361
1362		size = region->virt_end - region->virt_start;
1363		if (size)
1364			free_pages_exact(region->virt_start, size);
1365		list_del(&region->list);
1366		devm_kfree(kdev->dev, region);
1367	}
1368}
1369
1370static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1371					struct device_node *node, int index)
1372{
1373	struct resource res;
1374	void __iomem *regs;
1375	int ret;
1376
1377	ret = of_address_to_resource(node, index, &res);
1378	if (ret) {
1379		dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1380			node, index);
1381		return ERR_PTR(ret);
1382	}
1383
1384	regs = devm_ioremap_resource(kdev->dev, &res);
1385	if (IS_ERR(regs))
1386		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1387			index, node);
1388	return regs;
1389}
1390
1391static int knav_queue_init_qmgrs(struct knav_device *kdev,
1392					struct device_node *qmgrs)
1393{
1394	struct device *dev = kdev->dev;
1395	struct knav_qmgr_info *qmgr;
1396	struct device_node *child;
1397	u32 temp[2];
1398	int ret;
1399
1400	for_each_child_of_node(qmgrs, child) {
1401		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1402		if (!qmgr) {
1403			of_node_put(child);
1404			dev_err(dev, "out of memory allocating qmgr\n");
1405			return -ENOMEM;
1406		}
1407
1408		ret = of_property_read_u32_array(child, "managed-queues",
1409						 temp, 2);
1410		if (!ret) {
1411			qmgr->start_queue = temp[0];
1412			qmgr->num_queues = temp[1];
1413		} else {
1414			dev_err(dev, "invalid qmgr queue range\n");
1415			devm_kfree(dev, qmgr);
1416			continue;
1417		}
1418
1419		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1420			 qmgr->start_queue, qmgr->num_queues);
1421
1422		qmgr->reg_peek =
1423			knav_queue_map_reg(kdev, child,
1424					   KNAV_QUEUE_PEEK_REG_INDEX);
1425
1426		if (kdev->version == QMSS) {
1427			qmgr->reg_status =
1428				knav_queue_map_reg(kdev, child,
1429						   KNAV_QUEUE_STATUS_REG_INDEX);
1430		}
1431
1432		qmgr->reg_config =
1433			knav_queue_map_reg(kdev, child,
1434					   (kdev->version == QMSS_66AK2G) ?
1435					   KNAV_L_QUEUE_CONFIG_REG_INDEX :
1436					   KNAV_QUEUE_CONFIG_REG_INDEX);
1437		qmgr->reg_region =
1438			knav_queue_map_reg(kdev, child,
1439					   (kdev->version == QMSS_66AK2G) ?
1440					   KNAV_L_QUEUE_REGION_REG_INDEX :
1441					   KNAV_QUEUE_REGION_REG_INDEX);
1442
1443		qmgr->reg_push =
1444			knav_queue_map_reg(kdev, child,
1445					   (kdev->version == QMSS_66AK2G) ?
1446					    KNAV_L_QUEUE_PUSH_REG_INDEX :
1447					    KNAV_QUEUE_PUSH_REG_INDEX);
1448
1449		if (kdev->version == QMSS) {
1450			qmgr->reg_pop =
1451				knav_queue_map_reg(kdev, child,
1452						   KNAV_QUEUE_POP_REG_INDEX);
1453		}
1454
1455		if (IS_ERR(qmgr->reg_peek) ||
1456		    ((kdev->version == QMSS) &&
1457		    (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1458		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1459		    IS_ERR(qmgr->reg_push)) {
1460			dev_err(dev, "failed to map qmgr regs\n");
1461			if (kdev->version == QMSS) {
1462				if (!IS_ERR(qmgr->reg_status))
1463					devm_iounmap(dev, qmgr->reg_status);
1464				if (!IS_ERR(qmgr->reg_pop))
1465					devm_iounmap(dev, qmgr->reg_pop);
1466			}
1467			if (!IS_ERR(qmgr->reg_peek))
1468				devm_iounmap(dev, qmgr->reg_peek);
1469			if (!IS_ERR(qmgr->reg_config))
1470				devm_iounmap(dev, qmgr->reg_config);
1471			if (!IS_ERR(qmgr->reg_region))
1472				devm_iounmap(dev, qmgr->reg_region);
1473			if (!IS_ERR(qmgr->reg_push))
1474				devm_iounmap(dev, qmgr->reg_push);
1475			devm_kfree(dev, qmgr);
1476			continue;
1477		}
1478
1479		/* Use same push register for pop as well */
1480		if (kdev->version == QMSS_66AK2G)
1481			qmgr->reg_pop = qmgr->reg_push;
1482
1483		list_add_tail(&qmgr->list, &kdev->qmgrs);
1484		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1485			 qmgr->start_queue, qmgr->num_queues,
1486			 qmgr->reg_peek, qmgr->reg_status,
1487			 qmgr->reg_config, qmgr->reg_region,
1488			 qmgr->reg_push, qmgr->reg_pop);
1489	}
1490	return 0;
1491}
1492
1493static int knav_queue_init_pdsps(struct knav_device *kdev,
1494					struct device_node *pdsps)
1495{
1496	struct device *dev = kdev->dev;
1497	struct knav_pdsp_info *pdsp;
1498	struct device_node *child;
1499
1500	for_each_child_of_node(pdsps, child) {
1501		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1502		if (!pdsp) {
1503			of_node_put(child);
1504			dev_err(dev, "out of memory allocating pdsp\n");
1505			return -ENOMEM;
1506		}
1507		pdsp->name = knav_queue_find_name(child);
1508		pdsp->iram =
1509			knav_queue_map_reg(kdev, child,
1510					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1511		pdsp->regs =
1512			knav_queue_map_reg(kdev, child,
1513					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1514		pdsp->intd =
1515			knav_queue_map_reg(kdev, child,
1516					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1517		pdsp->command =
1518			knav_queue_map_reg(kdev, child,
1519					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1520
1521		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1522		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1523			dev_err(dev, "failed to map pdsp %s regs\n",
1524				pdsp->name);
1525			if (!IS_ERR(pdsp->command))
1526				devm_iounmap(dev, pdsp->command);
1527			if (!IS_ERR(pdsp->iram))
1528				devm_iounmap(dev, pdsp->iram);
1529			if (!IS_ERR(pdsp->regs))
1530				devm_iounmap(dev, pdsp->regs);
1531			if (!IS_ERR(pdsp->intd))
1532				devm_iounmap(dev, pdsp->intd);
1533			devm_kfree(dev, pdsp);
1534			continue;
1535		}
1536		of_property_read_u32(child, "id", &pdsp->id);
1537		list_add_tail(&pdsp->list, &kdev->pdsps);
1538		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1539			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1540			pdsp->intd);
1541	}
1542	return 0;
1543}
1544
1545static int knav_queue_stop_pdsp(struct knav_device *kdev,
1546			  struct knav_pdsp_info *pdsp)
1547{
1548	u32 val, timeout = 1000;
1549	int ret;
1550
1551	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1552	writel_relaxed(val, &pdsp->regs->control);
1553	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1554					PDSP_CTRL_RUNNING);
1555	if (ret < 0) {
1556		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1557		return ret;
1558	}
1559	pdsp->loaded = false;
1560	pdsp->started = false;
1561	return 0;
1562}
1563
1564static int knav_queue_load_pdsp(struct knav_device *kdev,
1565			  struct knav_pdsp_info *pdsp)
1566{
1567	int i, ret, fwlen;
1568	const struct firmware *fw;
1569	bool found = false;
1570	u32 *fwdata;
1571
1572	for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1573		if (knav_acc_firmwares[i]) {
1574			ret = request_firmware_direct(&fw,
1575						      knav_acc_firmwares[i],
1576						      kdev->dev);
1577			if (!ret) {
1578				found = true;
1579				break;
1580			}
1581		}
1582	}
1583
1584	if (!found) {
1585		dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1586		return -ENODEV;
1587	}
1588
1589	dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1590		 knav_acc_firmwares[i]);
1591
1592	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1593	/* download the firmware */
1594	fwdata = (u32 *)fw->data;
1595	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1596	for (i = 0; i < fwlen; i++)
1597		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1598
1599	release_firmware(fw);
1600	return 0;
1601}
1602
1603static int knav_queue_start_pdsp(struct knav_device *kdev,
1604			   struct knav_pdsp_info *pdsp)
1605{
1606	u32 val, timeout = 1000;
1607	int ret;
1608
1609	/* write a command for sync */
1610	writel_relaxed(0xffffffff, pdsp->command);
1611	while (readl_relaxed(pdsp->command) != 0xffffffff)
1612		cpu_relax();
1613
1614	/* soft reset the PDSP */
1615	val  = readl_relaxed(&pdsp->regs->control);
1616	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1617	writel_relaxed(val, &pdsp->regs->control);
1618
1619	/* enable pdsp */
1620	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1621	writel_relaxed(val, &pdsp->regs->control);
1622
1623	/* wait for command register to clear */
1624	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1625	if (ret < 0) {
1626		dev_err(kdev->dev,
1627			"timed out on pdsp %s command register wait\n",
1628			pdsp->name);
1629		return ret;
1630	}
1631	return 0;
1632}
1633
1634static void knav_queue_stop_pdsps(struct knav_device *kdev)
1635{
1636	struct knav_pdsp_info *pdsp;
1637
1638	/* disable all pdsps */
1639	for_each_pdsp(kdev, pdsp)
1640		knav_queue_stop_pdsp(kdev, pdsp);
1641}
1642
1643static int knav_queue_start_pdsps(struct knav_device *kdev)
1644{
1645	struct knav_pdsp_info *pdsp;
1646	int ret;
1647
1648	knav_queue_stop_pdsps(kdev);
1649	/* now load them all. We return success even if pdsp
1650	 * is not loaded as acc channels are optional on having
1651	 * firmware availability in the system. We set the loaded
1652	 * and stated flag and when initialize the acc range, check
1653	 * it and init the range only if pdsp is started.
1654	 */
1655	for_each_pdsp(kdev, pdsp) {
1656		ret = knav_queue_load_pdsp(kdev, pdsp);
1657		if (!ret)
1658			pdsp->loaded = true;
1659	}
1660
1661	for_each_pdsp(kdev, pdsp) {
1662		if (pdsp->loaded) {
1663			ret = knav_queue_start_pdsp(kdev, pdsp);
1664			if (!ret)
1665				pdsp->started = true;
1666		}
1667	}
1668	return 0;
1669}
1670
1671static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1672{
1673	struct knav_qmgr_info *qmgr;
1674
1675	for_each_qmgr(kdev, qmgr) {
1676		if ((id >= qmgr->start_queue) &&
1677		    (id < qmgr->start_queue + qmgr->num_queues))
1678			return qmgr;
1679	}
1680	return NULL;
1681}
1682
1683static int knav_queue_init_queue(struct knav_device *kdev,
1684					struct knav_range_info *range,
1685					struct knav_queue_inst *inst,
1686					unsigned id)
1687{
1688	char irq_name[KNAV_NAME_SIZE];
1689	inst->qmgr = knav_find_qmgr(id);
1690	if (!inst->qmgr)
1691		return -1;
1692
1693	INIT_LIST_HEAD(&inst->handles);
1694	inst->kdev = kdev;
1695	inst->range = range;
1696	inst->irq_num = -1;
1697	inst->id = id;
1698	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1699	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1700
1701	if (range->ops && range->ops->init_queue)
1702		return range->ops->init_queue(range, inst);
1703	else
1704		return 0;
1705}
1706
1707static int knav_queue_init_queues(struct knav_device *kdev)
1708{
1709	struct knav_range_info *range;
1710	int size, id, base_idx;
1711	int idx = 0, ret = 0;
1712
1713	/* how much do we need for instance data? */
1714	size = sizeof(struct knav_queue_inst);
1715
1716	/* round this up to a power of 2, keep the index to instance
1717	 * arithmetic fast.
1718	 * */
1719	kdev->inst_shift = order_base_2(size);
1720	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1721	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1722	if (!kdev->instances)
1723		return -ENOMEM;
1724
1725	for_each_queue_range(kdev, range) {
1726		if (range->ops && range->ops->init_range)
1727			range->ops->init_range(range);
1728		base_idx = idx;
1729		for (id = range->queue_base;
1730		     id < range->queue_base + range->num_queues; id++, idx++) {
1731			ret = knav_queue_init_queue(kdev, range,
1732					knav_queue_idx_to_inst(kdev, idx), id);
1733			if (ret < 0)
1734				return ret;
1735		}
1736		range->queue_base_inst =
1737			knav_queue_idx_to_inst(kdev, base_idx);
1738	}
1739	return 0;
1740}
1741
1742/* Match table for of_platform binding */
1743static const struct of_device_id keystone_qmss_of_match[] = {
1744	{
1745		.compatible = "ti,keystone-navigator-qmss",
1746	},
1747	{
1748		.compatible = "ti,66ak2g-navss-qm",
1749		.data	= (void *)QMSS_66AK2G,
1750	},
1751	{},
1752};
1753MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1754
1755static int knav_queue_probe(struct platform_device *pdev)
1756{
1757	struct device_node *node = pdev->dev.of_node;
1758	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1759	struct device *dev = &pdev->dev;
1760	u32 temp[2];
1761	int ret;
1762
1763	if (!node) {
1764		dev_err(dev, "device tree info unavailable\n");
1765		return -ENODEV;
1766	}
1767
1768	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1769	if (!kdev) {
1770		dev_err(dev, "memory allocation failed\n");
1771		return -ENOMEM;
1772	}
1773
1774	if (device_get_match_data(dev))
1775		kdev->version = QMSS_66AK2G;
1776
1777	platform_set_drvdata(pdev, kdev);
1778	kdev->dev = dev;
1779	INIT_LIST_HEAD(&kdev->queue_ranges);
1780	INIT_LIST_HEAD(&kdev->qmgrs);
1781	INIT_LIST_HEAD(&kdev->pools);
1782	INIT_LIST_HEAD(&kdev->regions);
1783	INIT_LIST_HEAD(&kdev->pdsps);
1784
1785	pm_runtime_enable(&pdev->dev);
1786	ret = pm_runtime_resume_and_get(&pdev->dev);
1787	if (ret < 0) {
1788		pm_runtime_disable(&pdev->dev);
1789		dev_err(dev, "Failed to enable QMSS\n");
1790		return ret;
1791	}
1792
1793	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1794		dev_err(dev, "queue-range not specified\n");
1795		ret = -ENODEV;
1796		goto err;
1797	}
1798	kdev->base_id    = temp[0];
1799	kdev->num_queues = temp[1];
1800
1801	/* Initialize queue managers using device tree configuration */
1802	qmgrs =  of_get_child_by_name(node, "qmgrs");
1803	if (!qmgrs) {
1804		dev_err(dev, "queue manager info not specified\n");
1805		ret = -ENODEV;
1806		goto err;
1807	}
1808	ret = knav_queue_init_qmgrs(kdev, qmgrs);
1809	of_node_put(qmgrs);
1810	if (ret)
1811		goto err;
1812
1813	/* get pdsp configuration values from device tree */
1814	pdsps =  of_get_child_by_name(node, "pdsps");
1815	if (pdsps) {
1816		ret = knav_queue_init_pdsps(kdev, pdsps);
1817		if (ret)
1818			goto err;
1819
1820		ret = knav_queue_start_pdsps(kdev);
1821		if (ret)
1822			goto err;
1823	}
1824	of_node_put(pdsps);
1825
1826	/* get usable queue range values from device tree */
1827	queue_pools = of_get_child_by_name(node, "queue-pools");
1828	if (!queue_pools) {
1829		dev_err(dev, "queue-pools not specified\n");
1830		ret = -ENODEV;
1831		goto err;
1832	}
1833	ret = knav_setup_queue_pools(kdev, queue_pools);
1834	of_node_put(queue_pools);
1835	if (ret)
1836		goto err;
1837
1838	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1839	if (ret) {
1840		dev_err(kdev->dev, "could not setup linking ram\n");
1841		goto err;
1842	}
1843
1844	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1845	if (ret) {
1846		/*
1847		 * nothing really, we have one linking ram already, so we just
1848		 * live within our means
1849		 */
1850	}
1851
1852	ret = knav_queue_setup_link_ram(kdev);
1853	if (ret)
1854		goto err;
1855
1856	regions = of_get_child_by_name(node, "descriptor-regions");
1857	if (!regions) {
1858		dev_err(dev, "descriptor-regions not specified\n");
1859		ret = -ENODEV;
1860		goto err;
1861	}
1862	ret = knav_queue_setup_regions(kdev, regions);
1863	of_node_put(regions);
1864	if (ret)
1865		goto err;
1866
1867	ret = knav_queue_init_queues(kdev);
1868	if (ret < 0) {
1869		dev_err(dev, "hwqueue initialization failed\n");
1870		goto err;
1871	}
1872
1873	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1874			    &knav_queue_debug_fops);
1875	device_ready = true;
1876	return 0;
1877
1878err:
1879	knav_queue_stop_pdsps(kdev);
1880	knav_queue_free_regions(kdev);
1881	knav_free_queue_ranges(kdev);
1882	pm_runtime_put_sync(&pdev->dev);
1883	pm_runtime_disable(&pdev->dev);
1884	return ret;
1885}
1886
1887static void knav_queue_remove(struct platform_device *pdev)
1888{
1889	/* TODO: Free resources */
1890	pm_runtime_put_sync(&pdev->dev);
1891	pm_runtime_disable(&pdev->dev);
1892}
1893
1894static struct platform_driver keystone_qmss_driver = {
1895	.probe		= knav_queue_probe,
1896	.remove_new	= knav_queue_remove,
1897	.driver		= {
1898		.name	= "keystone-navigator-qmss",
1899		.of_match_table = keystone_qmss_of_match,
1900	},
1901};
1902module_platform_driver(keystone_qmss_driver);
1903
1904MODULE_LICENSE("GPL v2");
1905MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1906MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1907MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1908