1/* Copyright 2009 - 2016 Freescale Semiconductor, Inc.
2 *
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions are met:
5 *     * Redistributions of source code must retain the above copyright
6 *	 notice, this list of conditions and the following disclaimer.
7 *     * Redistributions in binary form must reproduce the above copyright
8 *	 notice, this list of conditions and the following disclaimer in the
9 *	 documentation and/or other materials provided with the distribution.
10 *     * Neither the name of Freescale Semiconductor nor the
11 *	 names of its contributors may be used to endorse or promote products
12 *	 derived from this software without specific prior written permission.
13 *
14 * ALTERNATIVELY, this software may be distributed under the terms of the
15 * GNU General Public License ("GPL") as published by the Free Software
16 * Foundation, either version 2 of that License or (at your option) any
17 * later version.
18 *
19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include "qman_test.h"
32
33#include <linux/dma-mapping.h>
34#include <linux/delay.h>
35
36/*
37 * Algorithm:
38 *
39 * Each cpu will have HP_PER_CPU "handlers" set up, each of which incorporates
40 * an rx/tx pair of FQ objects (both of which are stashed on dequeue). The
41 * organisation of FQIDs is such that the HP_PER_CPU*NUM_CPUS handlers will
42 * shuttle a "hot potato" frame around them such that every forwarding action
43 * moves it from one cpu to another. (The use of more than one handler per cpu
44 * is to allow enough handlers/FQs to truly test the significance of caching -
45 * ie. when cache-expiries are occurring.)
46 *
47 * The "hot potato" frame content will be HP_NUM_WORDS*4 bytes in size, and the
48 * first and last words of the frame data will undergo a transformation step on
49 * each forwarding action. To achieve this, each handler will be assigned a
50 * 32-bit "mixer", that is produced using a 32-bit LFSR. When a frame is
51 * received by a handler, the mixer of the expected sender is XOR'd into all
52 * words of the entire frame, which is then validated against the original
53 * values. Then, before forwarding, the entire frame is XOR'd with the mixer of
54 * the current handler. Apart from validating that the frame is taking the
55 * expected path, this also provides some quasi-realistic overheads to each
56 * forwarding action - dereferencing *all* the frame data, computation, and
57 * conditional branching. There is a "special" handler designated to act as the
58 * instigator of the test by creating an enqueuing the "hot potato" frame, and
59 * to determine when the test has completed by counting HP_LOOPS iterations.
60 *
61 * Init phases:
62 *
63 * 1. prepare each cpu's 'hp_cpu' struct using on_each_cpu(,,1) and link them
64 *    into 'hp_cpu_list'. Specifically, set processor_id, allocate HP_PER_CPU
65 *    handlers and link-list them (but do no other handler setup).
66 *
67 * 2. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
68 *    hp_cpu's 'iterator' to point to its first handler. With each loop,
69 *    allocate rx/tx FQIDs and mixer values to the hp_cpu's iterator handler
70 *    and advance the iterator for the next loop. This includes a final fixup,
71 *    which connects the last handler to the first (and which is why phase 2
72 *    and 3 are separate).
73 *
74 * 3. scan over 'hp_cpu_list' HP_PER_CPU times, the first time sets each
75 *    hp_cpu's 'iterator' to point to its first handler. With each loop,
76 *    initialise FQ objects and advance the iterator for the next loop.
77 *    Moreover, do this initialisation on the cpu it applies to so that Rx FQ
78 *    initialisation targets the correct cpu.
79 */
80
81/*
82 * helper to run something on all cpus (can't use on_each_cpu(), as that invokes
83 * the fn from irq context, which is too restrictive).
84 */
85struct bstrap {
86	int (*fn)(void);
87	atomic_t started;
88};
89static int bstrap_fn(void *bs)
90{
91	struct bstrap *bstrap = bs;
92	int err;
93
94	atomic_inc(&bstrap->started);
95	err = bstrap->fn();
96	if (err)
97		return err;
98	while (!kthread_should_stop())
99		msleep(20);
100	return 0;
101}
102static int on_all_cpus(int (*fn)(void))
103{
104	int cpu;
105
106	for_each_cpu(cpu, cpu_online_mask) {
107		struct bstrap bstrap = {
108			.fn = fn,
109			.started = ATOMIC_INIT(0)
110		};
111		struct task_struct *k = kthread_create(bstrap_fn, &bstrap,
112			"hotpotato%d", cpu);
113		int ret;
114
115		if (IS_ERR(k))
116			return -ENOMEM;
117		kthread_bind(k, cpu);
118		wake_up_process(k);
119		/*
120		 * If we call kthread_stop() before the "wake up" has had an
121		 * effect, then the thread may exit with -EINTR without ever
122		 * running the function. So poll until it's started before
123		 * requesting it to stop.
124		 */
125		while (!atomic_read(&bstrap.started))
126			msleep(20);
127		ret = kthread_stop(k);
128		if (ret)
129			return ret;
130	}
131	return 0;
132}
133
134struct hp_handler {
135
136	/* The following data is stashed when 'rx' is dequeued; */
137	/* -------------- */
138	/* The Rx FQ, dequeues of which will stash the entire hp_handler */
139	struct qman_fq rx;
140	/* The Tx FQ we should forward to */
141	struct qman_fq tx;
142	/* The value we XOR post-dequeue, prior to validating */
143	u32 rx_mixer;
144	/* The value we XOR pre-enqueue, after validating */
145	u32 tx_mixer;
146	/* what the hotpotato address should be on dequeue */
147	dma_addr_t addr;
148	u32 *frame_ptr;
149
150	/* The following data isn't (necessarily) stashed on dequeue; */
151	/* -------------- */
152	u32 fqid_rx, fqid_tx;
153	/* list node for linking us into 'hp_cpu' */
154	struct list_head node;
155	/* Just to check ... */
156	unsigned int processor_id;
157} ____cacheline_aligned;
158
159struct hp_cpu {
160	/* identify the cpu we run on; */
161	unsigned int processor_id;
162	/* root node for the per-cpu list of handlers */
163	struct list_head handlers;
164	/* list node for linking us into 'hp_cpu_list' */
165	struct list_head node;
166	/*
167	 * when repeatedly scanning 'hp_list', each time linking the n'th
168	 * handlers together, this is used as per-cpu iterator state
169	 */
170	struct hp_handler *iterator;
171};
172
173/* Each cpu has one of these */
174static DEFINE_PER_CPU(struct hp_cpu, hp_cpus);
175
176/* links together the hp_cpu structs, in first-come first-serve order. */
177static LIST_HEAD(hp_cpu_list);
178static DEFINE_SPINLOCK(hp_lock);
179
180static unsigned int hp_cpu_list_length;
181
182/* the "special" handler, that starts and terminates the test. */
183static struct hp_handler *special_handler;
184static int loop_counter;
185
186/* handlers are allocated out of this, so they're properly aligned. */
187static struct kmem_cache *hp_handler_slab;
188
189/* this is the frame data */
190static void *__frame_ptr;
191static u32 *frame_ptr;
192static dma_addr_t frame_dma;
193
194/* needed for dma_map*() */
195static const struct qm_portal_config *pcfg;
196
197/* the main function waits on this */
198static DECLARE_WAIT_QUEUE_HEAD(queue);
199
200#define HP_PER_CPU	2
201#define HP_LOOPS	8
202/* 80 bytes, like a small ethernet frame, and bleeds into a second cacheline */
203#define HP_NUM_WORDS	80
204/* First word of the LFSR-based frame data */
205#define HP_FIRST_WORD	0xabbaf00d
206
207static inline u32 do_lfsr(u32 prev)
208{
209	return (prev >> 1) ^ (-(prev & 1u) & 0xd0000001u);
210}
211
212static int allocate_frame_data(void)
213{
214	u32 lfsr = HP_FIRST_WORD;
215	int loop;
216
217	if (!qman_dma_portal) {
218		pr_crit("portal not available\n");
219		return -EIO;
220	}
221
222	pcfg = qman_get_qm_portal_config(qman_dma_portal);
223
224	__frame_ptr = kmalloc(4 * HP_NUM_WORDS, GFP_KERNEL);
225	if (!__frame_ptr)
226		return -ENOMEM;
227
228	frame_ptr = PTR_ALIGN(__frame_ptr, 64);
229	for (loop = 0; loop < HP_NUM_WORDS; loop++) {
230		frame_ptr[loop] = lfsr;
231		lfsr = do_lfsr(lfsr);
232	}
233
234	frame_dma = dma_map_single(pcfg->dev, frame_ptr, 4 * HP_NUM_WORDS,
235				   DMA_BIDIRECTIONAL);
236	if (dma_mapping_error(pcfg->dev, frame_dma)) {
237		pr_crit("dma mapping failure\n");
238		kfree(__frame_ptr);
239		return -EIO;
240	}
241
242	return 0;
243}
244
245static void deallocate_frame_data(void)
246{
247	dma_unmap_single(pcfg->dev, frame_dma, 4 * HP_NUM_WORDS,
248			 DMA_BIDIRECTIONAL);
249	kfree(__frame_ptr);
250}
251
252static inline int process_frame_data(struct hp_handler *handler,
253				     const struct qm_fd *fd)
254{
255	u32 *p = handler->frame_ptr;
256	u32 lfsr = HP_FIRST_WORD;
257	int loop;
258
259	if (qm_fd_addr_get64(fd) != handler->addr) {
260		pr_crit("bad frame address, [%llX != %llX]\n",
261			qm_fd_addr_get64(fd), handler->addr);
262		return -EIO;
263	}
264	for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
265		*p ^= handler->rx_mixer;
266		if (*p != lfsr) {
267			pr_crit("corrupt frame data");
268			return -EIO;
269		}
270		*p ^= handler->tx_mixer;
271		lfsr = do_lfsr(lfsr);
272	}
273	return 0;
274}
275
276static enum qman_cb_dqrr_result normal_dqrr(struct qman_portal *portal,
277					    struct qman_fq *fq,
278					    const struct qm_dqrr_entry *dqrr,
279					    bool sched_napi)
280{
281	struct hp_handler *handler = (struct hp_handler *)fq;
282
283	if (process_frame_data(handler, &dqrr->fd)) {
284		WARN_ON(1);
285		goto skip;
286	}
287	if (qman_enqueue(&handler->tx, &dqrr->fd)) {
288		pr_crit("qman_enqueue() failed");
289		WARN_ON(1);
290	}
291skip:
292	return qman_cb_dqrr_consume;
293}
294
295static enum qman_cb_dqrr_result special_dqrr(struct qman_portal *portal,
296					     struct qman_fq *fq,
297					     const struct qm_dqrr_entry *dqrr,
298					     bool sched_napi)
299{
300	struct hp_handler *handler = (struct hp_handler *)fq;
301
302	process_frame_data(handler, &dqrr->fd);
303	if (++loop_counter < HP_LOOPS) {
304		if (qman_enqueue(&handler->tx, &dqrr->fd)) {
305			pr_crit("qman_enqueue() failed");
306			WARN_ON(1);
307			goto skip;
308		}
309	} else {
310		pr_info("Received final (%dth) frame\n", loop_counter);
311		wake_up(&queue);
312	}
313skip:
314	return qman_cb_dqrr_consume;
315}
316
317static int create_per_cpu_handlers(void)
318{
319	struct hp_handler *handler;
320	int loop;
321	struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
322
323	hp_cpu->processor_id = smp_processor_id();
324	spin_lock(&hp_lock);
325	list_add_tail(&hp_cpu->node, &hp_cpu_list);
326	hp_cpu_list_length++;
327	spin_unlock(&hp_lock);
328	INIT_LIST_HEAD(&hp_cpu->handlers);
329	for (loop = 0; loop < HP_PER_CPU; loop++) {
330		handler = kmem_cache_alloc(hp_handler_slab, GFP_KERNEL);
331		if (!handler) {
332			pr_crit("kmem_cache_alloc() failed");
333			WARN_ON(1);
334			return -EIO;
335		}
336		handler->processor_id = hp_cpu->processor_id;
337		handler->addr = frame_dma;
338		handler->frame_ptr = frame_ptr;
339		list_add_tail(&handler->node, &hp_cpu->handlers);
340	}
341	return 0;
342}
343
344static int destroy_per_cpu_handlers(void)
345{
346	struct list_head *loop, *tmp;
347	struct hp_cpu *hp_cpu = this_cpu_ptr(&hp_cpus);
348
349	spin_lock(&hp_lock);
350	list_del(&hp_cpu->node);
351	spin_unlock(&hp_lock);
352	list_for_each_safe(loop, tmp, &hp_cpu->handlers) {
353		u32 flags = 0;
354		struct hp_handler *handler = list_entry(loop, struct hp_handler,
355							node);
356		if (qman_retire_fq(&handler->rx, &flags) ||
357		    (flags & QMAN_FQ_STATE_BLOCKOOS)) {
358			pr_crit("qman_retire_fq(rx) failed, flags: %x", flags);
359			WARN_ON(1);
360			return -EIO;
361		}
362		if (qman_oos_fq(&handler->rx)) {
363			pr_crit("qman_oos_fq(rx) failed");
364			WARN_ON(1);
365			return -EIO;
366		}
367		qman_destroy_fq(&handler->rx);
368		qman_destroy_fq(&handler->tx);
369		qman_release_fqid(handler->fqid_rx);
370		list_del(&handler->node);
371		kmem_cache_free(hp_handler_slab, handler);
372	}
373	return 0;
374}
375
376static inline u8 num_cachelines(u32 offset)
377{
378	u8 res = (offset + (L1_CACHE_BYTES - 1))
379			 / (L1_CACHE_BYTES);
380	if (res > 3)
381		return 3;
382	return res;
383}
384#define STASH_DATA_CL \
385	num_cachelines(HP_NUM_WORDS * 4)
386#define STASH_CTX_CL \
387	num_cachelines(offsetof(struct hp_handler, fqid_rx))
388
389static int init_handler(void *h)
390{
391	struct qm_mcc_initfq opts;
392	struct hp_handler *handler = h;
393	int err;
394
395	if (handler->processor_id != smp_processor_id()) {
396		err = -EIO;
397		goto failed;
398	}
399	/* Set up rx */
400	memset(&handler->rx, 0, sizeof(handler->rx));
401	if (handler == special_handler)
402		handler->rx.cb.dqrr = special_dqrr;
403	else
404		handler->rx.cb.dqrr = normal_dqrr;
405	err = qman_create_fq(handler->fqid_rx, 0, &handler->rx);
406	if (err) {
407		pr_crit("qman_create_fq(rx) failed");
408		goto failed;
409	}
410	memset(&opts, 0, sizeof(opts));
411	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL |
412				   QM_INITFQ_WE_CONTEXTA);
413	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING);
414	qm_fqd_set_stashing(&opts.fqd, 0, STASH_DATA_CL, STASH_CTX_CL);
415	err = qman_init_fq(&handler->rx, QMAN_INITFQ_FLAG_SCHED |
416			   QMAN_INITFQ_FLAG_LOCAL, &opts);
417	if (err) {
418		pr_crit("qman_init_fq(rx) failed");
419		goto failed;
420	}
421	/* Set up tx */
422	memset(&handler->tx, 0, sizeof(handler->tx));
423	err = qman_create_fq(handler->fqid_tx, QMAN_FQ_FLAG_NO_MODIFY,
424			     &handler->tx);
425	if (err) {
426		pr_crit("qman_create_fq(tx) failed");
427		goto failed;
428	}
429
430	return 0;
431failed:
432	return err;
433}
434
435static void init_handler_cb(void *h)
436{
437	if (init_handler(h))
438		WARN_ON(1);
439}
440
441static int init_phase2(void)
442{
443	int loop;
444	u32 fqid = 0;
445	u32 lfsr = 0xdeadbeef;
446	struct hp_cpu *hp_cpu;
447	struct hp_handler *handler;
448
449	for (loop = 0; loop < HP_PER_CPU; loop++) {
450		list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
451			int err;
452
453			if (!loop)
454				hp_cpu->iterator = list_first_entry(
455						&hp_cpu->handlers,
456						struct hp_handler, node);
457			else
458				hp_cpu->iterator = list_entry(
459						hp_cpu->iterator->node.next,
460						struct hp_handler, node);
461			/* Rx FQID is the previous handler's Tx FQID */
462			hp_cpu->iterator->fqid_rx = fqid;
463			/* Allocate new FQID for Tx */
464			err = qman_alloc_fqid(&fqid);
465			if (err) {
466				pr_crit("qman_alloc_fqid() failed");
467				return err;
468			}
469			hp_cpu->iterator->fqid_tx = fqid;
470			/* Rx mixer is the previous handler's Tx mixer */
471			hp_cpu->iterator->rx_mixer = lfsr;
472			/* Get new mixer for Tx */
473			lfsr = do_lfsr(lfsr);
474			hp_cpu->iterator->tx_mixer = lfsr;
475		}
476	}
477	/* Fix up the first handler (fqid_rx==0, rx_mixer=0xdeadbeef) */
478	hp_cpu = list_first_entry(&hp_cpu_list, struct hp_cpu, node);
479	handler = list_first_entry(&hp_cpu->handlers, struct hp_handler, node);
480	if (handler->fqid_rx != 0 || handler->rx_mixer != 0xdeadbeef)
481		return 1;
482	handler->fqid_rx = fqid;
483	handler->rx_mixer = lfsr;
484	/* and tag it as our "special" handler */
485	special_handler = handler;
486	return 0;
487}
488
489static int init_phase3(void)
490{
491	int loop, err;
492	struct hp_cpu *hp_cpu;
493
494	for (loop = 0; loop < HP_PER_CPU; loop++) {
495		list_for_each_entry(hp_cpu, &hp_cpu_list, node) {
496			if (!loop)
497				hp_cpu->iterator = list_first_entry(
498						&hp_cpu->handlers,
499						struct hp_handler, node);
500			else
501				hp_cpu->iterator = list_entry(
502						hp_cpu->iterator->node.next,
503						struct hp_handler, node);
504			preempt_disable();
505			if (hp_cpu->processor_id == smp_processor_id()) {
506				err = init_handler(hp_cpu->iterator);
507				if (err)
508					return err;
509			} else {
510				smp_call_function_single(hp_cpu->processor_id,
511					init_handler_cb, hp_cpu->iterator, 1);
512			}
513			preempt_enable();
514		}
515	}
516	return 0;
517}
518
519static int send_first_frame(void *ignore)
520{
521	u32 *p = special_handler->frame_ptr;
522	u32 lfsr = HP_FIRST_WORD;
523	int loop, err;
524	struct qm_fd fd;
525
526	if (special_handler->processor_id != smp_processor_id()) {
527		err = -EIO;
528		goto failed;
529	}
530	memset(&fd, 0, sizeof(fd));
531	qm_fd_addr_set64(&fd, special_handler->addr);
532	qm_fd_set_contig_big(&fd, HP_NUM_WORDS * 4);
533	for (loop = 0; loop < HP_NUM_WORDS; loop++, p++) {
534		if (*p != lfsr) {
535			err = -EIO;
536			pr_crit("corrupt frame data");
537			goto failed;
538		}
539		*p ^= special_handler->tx_mixer;
540		lfsr = do_lfsr(lfsr);
541	}
542	pr_info("Sending first frame\n");
543	err = qman_enqueue(&special_handler->tx, &fd);
544	if (err) {
545		pr_crit("qman_enqueue() failed");
546		goto failed;
547	}
548
549	return 0;
550failed:
551	return err;
552}
553
554static void send_first_frame_cb(void *ignore)
555{
556	if (send_first_frame(NULL))
557		WARN_ON(1);
558}
559
560int qman_test_stash(void)
561{
562	int err;
563
564	if (cpumask_weight(cpu_online_mask) < 2) {
565		pr_info("%s(): skip - only 1 CPU\n", __func__);
566		return 0;
567	}
568
569	pr_info("%s(): Starting\n", __func__);
570
571	hp_cpu_list_length = 0;
572	loop_counter = 0;
573	hp_handler_slab = kmem_cache_create("hp_handler_slab",
574			sizeof(struct hp_handler), L1_CACHE_BYTES,
575			SLAB_HWCACHE_ALIGN, NULL);
576	if (!hp_handler_slab) {
577		err = -EIO;
578		pr_crit("kmem_cache_create() failed");
579		goto failed;
580	}
581
582	err = allocate_frame_data();
583	if (err)
584		goto failed;
585
586	/* Init phase 1 */
587	pr_info("Creating %d handlers per cpu...\n", HP_PER_CPU);
588	if (on_all_cpus(create_per_cpu_handlers)) {
589		err = -EIO;
590		pr_crit("on_each_cpu() failed");
591		goto failed;
592	}
593	pr_info("Number of cpus: %d, total of %d handlers\n",
594		hp_cpu_list_length, hp_cpu_list_length * HP_PER_CPU);
595
596	err = init_phase2();
597	if (err)
598		goto failed;
599
600	err = init_phase3();
601	if (err)
602		goto failed;
603
604	preempt_disable();
605	if (special_handler->processor_id == smp_processor_id()) {
606		err = send_first_frame(NULL);
607		if (err)
608			goto failed;
609	} else {
610		smp_call_function_single(special_handler->processor_id,
611					 send_first_frame_cb, NULL, 1);
612	}
613	preempt_enable();
614
615	wait_event(queue, loop_counter == HP_LOOPS);
616	deallocate_frame_data();
617	if (on_all_cpus(destroy_per_cpu_handlers)) {
618		err = -EIO;
619		pr_crit("on_each_cpu() failed");
620		goto failed;
621	}
622	kmem_cache_destroy(hp_handler_slab);
623	pr_info("%s(): Finished\n", __func__);
624
625	return 0;
626failed:
627	WARN_ON(1);
628	return err;
629}
630