1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2/*
3 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
4 * Copyright 2016-2019 NXP
5 *
6 */
7
8#include <asm/cacheflush.h>
9#include <linux/io.h>
10#include <linux/slab.h>
11#include <linux/spinlock.h>
12#include <soc/fsl/dpaa2-global.h>
13
14#include "qbman-portal.h"
15
16/* All QBMan command and result structures use this "valid bit" encoding */
17#define QB_VALID_BIT ((u32)0x80)
18
19/* QBMan portal management command codes */
20#define QBMAN_MC_ACQUIRE       0x30
21#define QBMAN_WQCHAN_CONFIGURE 0x46
22
23/* CINH register offsets */
24#define QBMAN_CINH_SWP_EQCR_PI      0x800
25#define QBMAN_CINH_SWP_EQCR_CI	    0x840
26#define QBMAN_CINH_SWP_EQAR    0x8c0
27#define QBMAN_CINH_SWP_CR_RT        0x900
28#define QBMAN_CINH_SWP_VDQCR_RT     0x940
29#define QBMAN_CINH_SWP_EQCR_AM_RT   0x980
30#define QBMAN_CINH_SWP_RCR_AM_RT    0x9c0
31#define QBMAN_CINH_SWP_DQPI    0xa00
32#define QBMAN_CINH_SWP_DQRR_ITR     0xa80
33#define QBMAN_CINH_SWP_DCAP    0xac0
34#define QBMAN_CINH_SWP_SDQCR   0xb00
35#define QBMAN_CINH_SWP_EQCR_AM_RT2  0xb40
36#define QBMAN_CINH_SWP_RCR_PI       0xc00
37#define QBMAN_CINH_SWP_RAR     0xcc0
38#define QBMAN_CINH_SWP_ISR     0xe00
39#define QBMAN_CINH_SWP_IER     0xe40
40#define QBMAN_CINH_SWP_ISDR    0xe80
41#define QBMAN_CINH_SWP_IIR     0xec0
42#define QBMAN_CINH_SWP_ITPR    0xf40
43
44/* CENA register offsets */
45#define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
46#define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
47#define QBMAN_CENA_SWP_RCR(n)  (0x400 + ((u32)(n) << 6))
48#define QBMAN_CENA_SWP_CR      0x600
49#define QBMAN_CENA_SWP_RR(vb)  (0x700 + ((u32)(vb) >> 1))
50#define QBMAN_CENA_SWP_VDQCR   0x780
51#define QBMAN_CENA_SWP_EQCR_CI 0x840
52#define QBMAN_CENA_SWP_EQCR_CI_MEMBACK 0x1840
53
54/* CENA register offsets in memory-backed mode */
55#define QBMAN_CENA_SWP_DQRR_MEM(n)  (0x800 + ((u32)(n) << 6))
56#define QBMAN_CENA_SWP_RCR_MEM(n)   (0x1400 + ((u32)(n) << 6))
57#define QBMAN_CENA_SWP_CR_MEM       0x1600
58#define QBMAN_CENA_SWP_RR_MEM       0x1680
59#define QBMAN_CENA_SWP_VDQCR_MEM    0x1780
60
61/* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
62#define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
63
64/* Define token used to determine if response written to memory is valid */
65#define QMAN_DQ_TOKEN_VALID 1
66
67/* SDQCR attribute codes */
68#define QB_SDQCR_FC_SHIFT   29
69#define QB_SDQCR_FC_MASK    0x1
70#define QB_SDQCR_DCT_SHIFT  24
71#define QB_SDQCR_DCT_MASK   0x3
72#define QB_SDQCR_TOK_SHIFT  16
73#define QB_SDQCR_TOK_MASK   0xff
74#define QB_SDQCR_SRC_SHIFT  0
75#define QB_SDQCR_SRC_MASK   0xffff
76
77/* opaque token for static dequeues */
78#define QMAN_SDQCR_TOKEN    0xbb
79
80#define QBMAN_EQCR_DCA_IDXMASK          0x0f
81#define QBMAN_ENQUEUE_FLAG_DCA          (1ULL << 31)
82
83#define EQ_DESC_SIZE_WITHOUT_FD 29
84#define EQ_DESC_SIZE_FD_START 32
85
86enum qbman_sdqcr_dct {
87	qbman_sdqcr_dct_null = 0,
88	qbman_sdqcr_dct_prio_ics,
89	qbman_sdqcr_dct_active_ics,
90	qbman_sdqcr_dct_active
91};
92
93enum qbman_sdqcr_fc {
94	qbman_sdqcr_fc_one = 0,
95	qbman_sdqcr_fc_up_to_3 = 1
96};
97
98/* Internal Function declaration */
99static int qbman_swp_enqueue_direct(struct qbman_swp *s,
100				    const struct qbman_eq_desc *d,
101				    const struct dpaa2_fd *fd);
102static int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
103				      const struct qbman_eq_desc *d,
104				      const struct dpaa2_fd *fd);
105static int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
106					     const struct qbman_eq_desc *d,
107					     const struct dpaa2_fd *fd,
108					     uint32_t *flags,
109					     int num_frames);
110static int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
111					       const struct qbman_eq_desc *d,
112					       const struct dpaa2_fd *fd,
113					       uint32_t *flags,
114					       int num_frames);
115static int
116qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
117				       const struct qbman_eq_desc *d,
118				       const struct dpaa2_fd *fd,
119				       int num_frames);
120static
121int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
122					     const struct qbman_eq_desc *d,
123					     const struct dpaa2_fd *fd,
124					     int num_frames);
125static int qbman_swp_pull_direct(struct qbman_swp *s,
126				 struct qbman_pull_desc *d);
127static int qbman_swp_pull_mem_back(struct qbman_swp *s,
128				   struct qbman_pull_desc *d);
129
130const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s);
131const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s);
132
133static int qbman_swp_release_direct(struct qbman_swp *s,
134				    const struct qbman_release_desc *d,
135				    const u64 *buffers,
136				    unsigned int num_buffers);
137static int qbman_swp_release_mem_back(struct qbman_swp *s,
138				      const struct qbman_release_desc *d,
139				      const u64 *buffers,
140				      unsigned int num_buffers);
141
142/* Function pointers */
143int (*qbman_swp_enqueue_ptr)(struct qbman_swp *s,
144			     const struct qbman_eq_desc *d,
145			     const struct dpaa2_fd *fd)
146	= qbman_swp_enqueue_direct;
147
148int (*qbman_swp_enqueue_multiple_ptr)(struct qbman_swp *s,
149				      const struct qbman_eq_desc *d,
150				      const struct dpaa2_fd *fd,
151				      uint32_t *flags,
152					     int num_frames)
153	= qbman_swp_enqueue_multiple_direct;
154
155int
156(*qbman_swp_enqueue_multiple_desc_ptr)(struct qbman_swp *s,
157				       const struct qbman_eq_desc *d,
158				       const struct dpaa2_fd *fd,
159				       int num_frames)
160	= qbman_swp_enqueue_multiple_desc_direct;
161
162int (*qbman_swp_pull_ptr)(struct qbman_swp *s, struct qbman_pull_desc *d)
163			= qbman_swp_pull_direct;
164
165const struct dpaa2_dq *(*qbman_swp_dqrr_next_ptr)(struct qbman_swp *s)
166			= qbman_swp_dqrr_next_direct;
167
168int (*qbman_swp_release_ptr)(struct qbman_swp *s,
169			     const struct qbman_release_desc *d,
170			     const u64 *buffers,
171			     unsigned int num_buffers)
172			= qbman_swp_release_direct;
173
174/* Portal Access */
175
176static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
177{
178	return readl_relaxed(p->addr_cinh + offset);
179}
180
181static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
182					u32 value)
183{
184	writel_relaxed(value, p->addr_cinh + offset);
185}
186
187static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
188{
189	return p->addr_cena + offset;
190}
191
192#define QBMAN_CINH_SWP_CFG   0xd00
193
194#define SWP_CFG_DQRR_MF_SHIFT 20
195#define SWP_CFG_EST_SHIFT     16
196#define SWP_CFG_CPBS_SHIFT    15
197#define SWP_CFG_WN_SHIFT      14
198#define SWP_CFG_RPM_SHIFT     12
199#define SWP_CFG_DCM_SHIFT     10
200#define SWP_CFG_EPM_SHIFT     8
201#define SWP_CFG_VPM_SHIFT     7
202#define SWP_CFG_CPM_SHIFT     6
203#define SWP_CFG_SD_SHIFT      5
204#define SWP_CFG_SP_SHIFT      4
205#define SWP_CFG_SE_SHIFT      3
206#define SWP_CFG_DP_SHIFT      2
207#define SWP_CFG_DE_SHIFT      1
208#define SWP_CFG_EP_SHIFT      0
209
210static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn,	u8 est, u8 rpm, u8 dcm,
211				    u8 epm, int sd, int sp, int se,
212				    int dp, int de, int ep)
213{
214	return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
215		est << SWP_CFG_EST_SHIFT |
216		wn << SWP_CFG_WN_SHIFT |
217		rpm << SWP_CFG_RPM_SHIFT |
218		dcm << SWP_CFG_DCM_SHIFT |
219		epm << SWP_CFG_EPM_SHIFT |
220		sd << SWP_CFG_SD_SHIFT |
221		sp << SWP_CFG_SP_SHIFT |
222		se << SWP_CFG_SE_SHIFT |
223		dp << SWP_CFG_DP_SHIFT |
224		de << SWP_CFG_DE_SHIFT |
225		ep << SWP_CFG_EP_SHIFT);
226}
227
228#define QMAN_RT_MODE	   0x00000100
229
230static inline u8 qm_cyc_diff(u8 ringsize, u8 first, u8 last)
231{
232	/* 'first' is included, 'last' is excluded */
233	if (first <= last)
234		return last - first;
235	else
236		return (2 * ringsize) - (first - last);
237}
238
239/**
240 * qbman_swp_init() - Create a functional object representing the given
241 *                    QBMan portal descriptor.
242 * @d: the given qbman swp descriptor
243 *
244 * Return qbman_swp portal for success, NULL if the object cannot
245 * be created.
246 */
247struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
248{
249	struct qbman_swp *p = kzalloc(sizeof(*p), GFP_KERNEL);
250	u32 reg;
251	u32 mask_size;
252	u32 eqcr_pi;
253
254	if (!p)
255		return NULL;
256
257	spin_lock_init(&p->access_spinlock);
258
259	p->desc = d;
260	p->mc.valid_bit = QB_VALID_BIT;
261	p->sdq = 0;
262	p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
263	p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
264	p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
265	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
266		p->mr.valid_bit = QB_VALID_BIT;
267
268	atomic_set(&p->vdq.available, 1);
269	p->vdq.valid_bit = QB_VALID_BIT;
270	p->dqrr.next_idx = 0;
271	p->dqrr.valid_bit = QB_VALID_BIT;
272
273	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
274		p->dqrr.dqrr_size = 4;
275		p->dqrr.reset_bug = 1;
276	} else {
277		p->dqrr.dqrr_size = 8;
278		p->dqrr.reset_bug = 0;
279	}
280
281	p->addr_cena = d->cena_bar;
282	p->addr_cinh = d->cinh_bar;
283
284	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
285
286		reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
287			1, /* Writes Non-cacheable */
288			0, /* EQCR_CI stashing threshold */
289			3, /* RPM: RCR in array mode */
290			2, /* DCM: Discrete consumption ack */
291			2, /* EPM: EQCR in ring mode */
292			1, /* mem stashing drop enable enable */
293			1, /* mem stashing priority enable */
294			1, /* mem stashing enable */
295			1, /* dequeue stashing priority enable */
296			0, /* dequeue stashing enable enable */
297			0); /* EQCR_CI stashing priority enable */
298	} else {
299		memset(p->addr_cena, 0, 64 * 1024);
300		reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
301			1, /* Writes Non-cacheable */
302			1, /* EQCR_CI stashing threshold */
303			3, /* RPM: RCR in array mode */
304			2, /* DCM: Discrete consumption ack */
305			0, /* EPM: EQCR in ring mode */
306			1, /* mem stashing drop enable */
307			1, /* mem stashing priority enable */
308			1, /* mem stashing enable */
309			1, /* dequeue stashing priority enable */
310			0, /* dequeue stashing enable */
311			0); /* EQCR_CI stashing priority enable */
312		reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */
313		       1 << SWP_CFG_VPM_SHIFT |  /* VDQCR read triggered mode */
314		       1 << SWP_CFG_CPM_SHIFT;   /* CR read triggered mode */
315	}
316
317	qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
318	reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
319	if (!reg) {
320		pr_err("qbman: the portal is not enabled!\n");
321		kfree(p);
322		return NULL;
323	}
324
325	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
326		qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE);
327		qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE);
328	}
329	/*
330	 * SDQCR needs to be initialized to 0 when no channels are
331	 * being dequeued from or else the QMan HW will indicate an
332	 * error.  The values that were calculated above will be
333	 * applied when dequeues from a specific channel are enabled.
334	 */
335	qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
336
337	p->eqcr.pi_ring_size = 8;
338	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
339		p->eqcr.pi_ring_size = 32;
340		qbman_swp_enqueue_ptr =
341			qbman_swp_enqueue_mem_back;
342		qbman_swp_enqueue_multiple_ptr =
343			qbman_swp_enqueue_multiple_mem_back;
344		qbman_swp_enqueue_multiple_desc_ptr =
345			qbman_swp_enqueue_multiple_desc_mem_back;
346		qbman_swp_pull_ptr = qbman_swp_pull_mem_back;
347		qbman_swp_dqrr_next_ptr = qbman_swp_dqrr_next_mem_back;
348		qbman_swp_release_ptr = qbman_swp_release_mem_back;
349	}
350
351	for (mask_size = p->eqcr.pi_ring_size; mask_size > 0; mask_size >>= 1)
352		p->eqcr.pi_ci_mask = (p->eqcr.pi_ci_mask << 1) + 1;
353	eqcr_pi = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_PI);
354	p->eqcr.pi = eqcr_pi & p->eqcr.pi_ci_mask;
355	p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT;
356	p->eqcr.ci = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_CI)
357			& p->eqcr.pi_ci_mask;
358	p->eqcr.available = p->eqcr.pi_ring_size;
359
360	/* Initialize the software portal with a irq timeout period of 0us */
361	qbman_swp_set_irq_coalescing(p, p->dqrr.dqrr_size - 1, 0);
362
363	return p;
364}
365
366/**
367 * qbman_swp_finish() - Create and destroy a functional object representing
368 *                      the given QBMan portal descriptor.
369 * @p: the qbman_swp object to be destroyed
370 */
371void qbman_swp_finish(struct qbman_swp *p)
372{
373	kfree(p);
374}
375
376/**
377 * qbman_swp_interrupt_read_status()
378 * @p: the given software portal
379 *
380 * Return the value in the SWP_ISR register.
381 */
382u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
383{
384	return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
385}
386
387/**
388 * qbman_swp_interrupt_clear_status()
389 * @p: the given software portal
390 * @mask: The mask to clear in SWP_ISR register
391 */
392void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
393{
394	qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
395}
396
397/**
398 * qbman_swp_interrupt_get_trigger() - read interrupt enable register
399 * @p: the given software portal
400 *
401 * Return the value in the SWP_IER register.
402 */
403u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
404{
405	return qbman_read_register(p, QBMAN_CINH_SWP_IER);
406}
407
408/**
409 * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
410 * @p: the given software portal
411 * @mask: The mask of bits to enable in SWP_IER
412 */
413void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
414{
415	qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
416}
417
418/**
419 * qbman_swp_interrupt_get_inhibit() - read interrupt mask register
420 * @p: the given software portal object
421 *
422 * Return the value in the SWP_IIR register.
423 */
424int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
425{
426	return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
427}
428
429/**
430 * qbman_swp_interrupt_set_inhibit() - write interrupt mask register
431 * @p: the given software portal object
432 * @inhibit: whether to inhibit the IRQs
433 */
434void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
435{
436	qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
437}
438
439/*
440 * Different management commands all use this common base layer of code to issue
441 * commands and poll for results.
442 */
443
444/*
445 * Returns a pointer to where the caller should fill in their management command
446 * (caller should ignore the verb byte)
447 */
448void *qbman_swp_mc_start(struct qbman_swp *p)
449{
450	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
451		return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
452	else
453		return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM);
454}
455
456/*
457 * Commits merges in the caller-supplied command verb (which should not include
458 * the valid-bit) and submits the command to hardware
459 */
460void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
461{
462	u8 *v = cmd;
463
464	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
465		dma_wmb();
466		*v = cmd_verb | p->mc.valid_bit;
467	} else {
468		*v = cmd_verb | p->mc.valid_bit;
469		dma_wmb();
470		qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE);
471	}
472}
473
474/*
475 * Checks for a completed response (returns non-NULL if only if the response
476 * is complete).
477 */
478void *qbman_swp_mc_result(struct qbman_swp *p)
479{
480	u32 *ret, verb;
481
482	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
483		ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
484		/* Remove the valid-bit - command completed if the rest
485		 * is non-zero.
486		 */
487		verb = ret[0] & ~QB_VALID_BIT;
488		if (!verb)
489			return NULL;
490		p->mc.valid_bit ^= QB_VALID_BIT;
491	} else {
492		ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM);
493		/* Command completed if the valid bit is toggled */
494		if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT))
495			return NULL;
496		/* Command completed if the rest is non-zero */
497		verb = ret[0] & ~QB_VALID_BIT;
498		if (!verb)
499			return NULL;
500		p->mr.valid_bit ^= QB_VALID_BIT;
501	}
502
503	return ret;
504}
505
506#define QB_ENQUEUE_CMD_OPTIONS_SHIFT    0
507enum qb_enqueue_commands {
508	enqueue_empty = 0,
509	enqueue_response_always = 1,
510	enqueue_rejects_to_fq = 2
511};
512
513#define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT      2
514#define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
515#define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT     4
516#define QB_ENQUEUE_CMD_DCA_EN_SHIFT          7
517
518/*
519 * qbman_eq_desc_clear() - Clear the contents of a descriptor to
520 *                         default/starting state.
521 */
522void qbman_eq_desc_clear(struct qbman_eq_desc *d)
523{
524	memset(d, 0, sizeof(*d));
525}
526
527/**
528 * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
529 * @d:                the enqueue descriptor.
530 * @respond_success:  1 = enqueue with response always; 0 = enqueue with
531 *                    rejections returned on a FQ.
532 */
533void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
534{
535	d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
536	if (respond_success)
537		d->verb |= enqueue_response_always;
538	else
539		d->verb |= enqueue_rejects_to_fq;
540}
541
542/*
543 * Exactly one of the following descriptor "targets" should be set. (Calling any
544 * one of these will replace the effect of any prior call to one of these.)
545 *   -enqueue to a frame queue
546 *   -enqueue to a queuing destination
547 */
548
549/**
550 * qbman_eq_desc_set_fq() - set the FQ for the enqueue command
551 * @d:    the enqueue descriptor
552 * @fqid: the id of the frame queue to be enqueued
553 */
554void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
555{
556	d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
557	d->tgtid = cpu_to_le32(fqid);
558}
559
560/**
561 * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
562 * @d:       the enqueue descriptor
563 * @qdid:    the id of the queuing destination to be enqueued
564 * @qd_bin:  the queuing destination bin
565 * @qd_prio: the queuing destination priority
566 */
567void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
568			  u32 qd_bin, u32 qd_prio)
569{
570	d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
571	d->tgtid = cpu_to_le32(qdid);
572	d->qdbin = cpu_to_le16(qd_bin);
573	d->qpri = qd_prio;
574}
575
576#define EQAR_IDX(eqar)     ((eqar) & 0x7)
577#define EQAR_VB(eqar)      ((eqar) & 0x80)
578#define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
579
580#define QB_RT_BIT ((u32)0x100)
581/**
582 * qbman_swp_enqueue_direct() - Issue an enqueue command
583 * @s:  the software portal used for enqueue
584 * @d:  the enqueue descriptor
585 * @fd: the frame descriptor to be enqueued
586 *
587 * Please note that 'fd' should only be NULL if the "action" of the
588 * descriptor is "orp_hole" or "orp_nesn".
589 *
590 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
591 */
592static
593int qbman_swp_enqueue_direct(struct qbman_swp *s,
594			     const struct qbman_eq_desc *d,
595			     const struct dpaa2_fd *fd)
596{
597	int flags = 0;
598	int ret = qbman_swp_enqueue_multiple_direct(s, d, fd, &flags, 1);
599
600	if (ret >= 0)
601		ret = 0;
602	else
603		ret = -EBUSY;
604	return  ret;
605}
606
607/**
608 * qbman_swp_enqueue_mem_back() - Issue an enqueue command
609 * @s:  the software portal used for enqueue
610 * @d:  the enqueue descriptor
611 * @fd: the frame descriptor to be enqueued
612 *
613 * Please note that 'fd' should only be NULL if the "action" of the
614 * descriptor is "orp_hole" or "orp_nesn".
615 *
616 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
617 */
618static
619int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
620			       const struct qbman_eq_desc *d,
621			       const struct dpaa2_fd *fd)
622{
623	int flags = 0;
624	int ret = qbman_swp_enqueue_multiple_mem_back(s, d, fd, &flags, 1);
625
626	if (ret >= 0)
627		ret = 0;
628	else
629		ret = -EBUSY;
630	return  ret;
631}
632
633/**
634 * qbman_swp_enqueue_multiple_direct() - Issue a multi enqueue command
635 * using one enqueue descriptor
636 * @s:  the software portal used for enqueue
637 * @d:  the enqueue descriptor
638 * @fd: table pointer of frame descriptor table to be enqueued
639 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
640 * @num_frames: number of fd to be enqueued
641 *
642 * Return the number of fd enqueued, or a negative error number.
643 */
644static
645int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
646				      const struct qbman_eq_desc *d,
647				      const struct dpaa2_fd *fd,
648				      uint32_t *flags,
649				      int num_frames)
650{
651	uint32_t *p = NULL;
652	const uint32_t *cl = (uint32_t *)d;
653	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
654	int i, num_enqueued = 0;
655
656	spin_lock(&s->access_spinlock);
657	half_mask = (s->eqcr.pi_ci_mask>>1);
658	full_mask = s->eqcr.pi_ci_mask;
659
660	if (!s->eqcr.available) {
661		eqcr_ci = s->eqcr.ci;
662		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
663		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
664		s->eqcr.ci &= full_mask;
665
666		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
667					eqcr_ci, s->eqcr.ci);
668		if (!s->eqcr.available) {
669			spin_unlock(&s->access_spinlock);
670			return 0;
671		}
672	}
673
674	eqcr_pi = s->eqcr.pi;
675	num_enqueued = (s->eqcr.available < num_frames) ?
676			s->eqcr.available : num_frames;
677	s->eqcr.available -= num_enqueued;
678	/* Fill in the EQCR ring */
679	for (i = 0; i < num_enqueued; i++) {
680		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
681		/* Skip copying the verb */
682		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
683		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
684		       &fd[i], sizeof(*fd));
685		eqcr_pi++;
686	}
687
688	dma_wmb();
689
690	/* Set the verb byte, have to substitute in the valid-bit */
691	eqcr_pi = s->eqcr.pi;
692	for (i = 0; i < num_enqueued; i++) {
693		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
694		p[0] = cl[0] | s->eqcr.pi_vb;
695		if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
696			struct qbman_eq_desc *eq_desc = (struct qbman_eq_desc *)p;
697
698			eq_desc->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
699				((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
700		}
701		eqcr_pi++;
702		if (!(eqcr_pi & half_mask))
703			s->eqcr.pi_vb ^= QB_VALID_BIT;
704	}
705
706	/* Flush all the cacheline without load/store in between */
707	eqcr_pi = s->eqcr.pi;
708	for (i = 0; i < num_enqueued; i++)
709		eqcr_pi++;
710	s->eqcr.pi = eqcr_pi & full_mask;
711	spin_unlock(&s->access_spinlock);
712
713	return num_enqueued;
714}
715
716/**
717 * qbman_swp_enqueue_multiple_mem_back() - Issue a multi enqueue command
718 * using one enqueue descriptor
719 * @s:  the software portal used for enqueue
720 * @d:  the enqueue descriptor
721 * @fd: table pointer of frame descriptor table to be enqueued
722 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
723 * @num_frames: number of fd to be enqueued
724 *
725 * Return the number of fd enqueued, or a negative error number.
726 */
727static
728int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
729					const struct qbman_eq_desc *d,
730					const struct dpaa2_fd *fd,
731					uint32_t *flags,
732					int num_frames)
733{
734	uint32_t *p = NULL;
735	const uint32_t *cl = (uint32_t *)(d);
736	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
737	int i, num_enqueued = 0;
738	unsigned long irq_flags;
739
740	spin_lock_irqsave(&s->access_spinlock, irq_flags);
741
742	half_mask = (s->eqcr.pi_ci_mask>>1);
743	full_mask = s->eqcr.pi_ci_mask;
744	if (!s->eqcr.available) {
745		eqcr_ci = s->eqcr.ci;
746		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
747		s->eqcr.ci &= full_mask;
748		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
749					eqcr_ci, s->eqcr.ci);
750		if (!s->eqcr.available) {
751			spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
752			return 0;
753		}
754	}
755
756	eqcr_pi = s->eqcr.pi;
757	num_enqueued = (s->eqcr.available < num_frames) ?
758			s->eqcr.available : num_frames;
759	s->eqcr.available -= num_enqueued;
760	/* Fill in the EQCR ring */
761	for (i = 0; i < num_enqueued; i++) {
762		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
763		/* Skip copying the verb */
764		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
765		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
766		       &fd[i], sizeof(*fd));
767		eqcr_pi++;
768	}
769
770	/* Set the verb byte, have to substitute in the valid-bit */
771	eqcr_pi = s->eqcr.pi;
772	for (i = 0; i < num_enqueued; i++) {
773		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
774		p[0] = cl[0] | s->eqcr.pi_vb;
775		if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
776			struct qbman_eq_desc *eq_desc = (struct qbman_eq_desc *)p;
777
778			eq_desc->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
779				((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
780		}
781		eqcr_pi++;
782		if (!(eqcr_pi & half_mask))
783			s->eqcr.pi_vb ^= QB_VALID_BIT;
784	}
785	s->eqcr.pi = eqcr_pi & full_mask;
786
787	dma_wmb();
788	qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
789				(QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
790	spin_unlock_irqrestore(&s->access_spinlock, irq_flags);
791
792	return num_enqueued;
793}
794
795/**
796 * qbman_swp_enqueue_multiple_desc_direct() - Issue a multi enqueue command
797 * using multiple enqueue descriptor
798 * @s:  the software portal used for enqueue
799 * @d:  table of minimal enqueue descriptor
800 * @fd: table pointer of frame descriptor table to be enqueued
801 * @num_frames: number of fd to be enqueued
802 *
803 * Return the number of fd enqueued, or a negative error number.
804 */
805static
806int qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
807					   const struct qbman_eq_desc *d,
808					   const struct dpaa2_fd *fd,
809					   int num_frames)
810{
811	uint32_t *p;
812	const uint32_t *cl;
813	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
814	int i, num_enqueued = 0;
815
816	half_mask = (s->eqcr.pi_ci_mask>>1);
817	full_mask = s->eqcr.pi_ci_mask;
818	if (!s->eqcr.available) {
819		eqcr_ci = s->eqcr.ci;
820		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
821		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
822		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
823					eqcr_ci, s->eqcr.ci);
824		if (!s->eqcr.available)
825			return 0;
826	}
827
828	eqcr_pi = s->eqcr.pi;
829	num_enqueued = (s->eqcr.available < num_frames) ?
830			s->eqcr.available : num_frames;
831	s->eqcr.available -= num_enqueued;
832	/* Fill in the EQCR ring */
833	for (i = 0; i < num_enqueued; i++) {
834		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
835		cl = (uint32_t *)(&d[i]);
836		/* Skip copying the verb */
837		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
838		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
839		       &fd[i], sizeof(*fd));
840		eqcr_pi++;
841	}
842
843	dma_wmb();
844
845	/* Set the verb byte, have to substitute in the valid-bit */
846	eqcr_pi = s->eqcr.pi;
847	for (i = 0; i < num_enqueued; i++) {
848		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
849		cl = (uint32_t *)(&d[i]);
850		p[0] = cl[0] | s->eqcr.pi_vb;
851		eqcr_pi++;
852		if (!(eqcr_pi & half_mask))
853			s->eqcr.pi_vb ^= QB_VALID_BIT;
854	}
855
856	/* Flush all the cacheline without load/store in between */
857	eqcr_pi = s->eqcr.pi;
858	for (i = 0; i < num_enqueued; i++)
859		eqcr_pi++;
860	s->eqcr.pi = eqcr_pi & full_mask;
861
862	return num_enqueued;
863}
864
865/**
866 * qbman_swp_enqueue_multiple_desc_mem_back() - Issue a multi enqueue command
867 * using multiple enqueue descriptor
868 * @s:  the software portal used for enqueue
869 * @d:  table of minimal enqueue descriptor
870 * @fd: table pointer of frame descriptor table to be enqueued
871 * @num_frames: number of fd to be enqueued
872 *
873 * Return the number of fd enqueued, or a negative error number.
874 */
875static
876int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
877					   const struct qbman_eq_desc *d,
878					   const struct dpaa2_fd *fd,
879					   int num_frames)
880{
881	uint32_t *p;
882	const uint32_t *cl;
883	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
884	int i, num_enqueued = 0;
885
886	half_mask = (s->eqcr.pi_ci_mask>>1);
887	full_mask = s->eqcr.pi_ci_mask;
888	if (!s->eqcr.available) {
889		eqcr_ci = s->eqcr.ci;
890		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
891		s->eqcr.ci &= full_mask;
892		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
893					eqcr_ci, s->eqcr.ci);
894		if (!s->eqcr.available)
895			return 0;
896	}
897
898	eqcr_pi = s->eqcr.pi;
899	num_enqueued = (s->eqcr.available < num_frames) ?
900			s->eqcr.available : num_frames;
901	s->eqcr.available -= num_enqueued;
902	/* Fill in the EQCR ring */
903	for (i = 0; i < num_enqueued; i++) {
904		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
905		cl = (uint32_t *)(&d[i]);
906		/* Skip copying the verb */
907		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
908		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
909		       &fd[i], sizeof(*fd));
910		eqcr_pi++;
911	}
912
913	/* Set the verb byte, have to substitute in the valid-bit */
914	eqcr_pi = s->eqcr.pi;
915	for (i = 0; i < num_enqueued; i++) {
916		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
917		cl = (uint32_t *)(&d[i]);
918		p[0] = cl[0] | s->eqcr.pi_vb;
919		eqcr_pi++;
920		if (!(eqcr_pi & half_mask))
921			s->eqcr.pi_vb ^= QB_VALID_BIT;
922	}
923
924	s->eqcr.pi = eqcr_pi & full_mask;
925
926	dma_wmb();
927	qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
928				(QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
929
930	return num_enqueued;
931}
932
933/* Static (push) dequeue */
934
935/**
936 * qbman_swp_push_get() - Get the push dequeue setup
937 * @s:           the software portal object
938 * @channel_idx: the channel index to query
939 * @enabled:     returned boolean to show whether the push dequeue is enabled
940 *               for the given channel
941 */
942void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
943{
944	u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
945
946	WARN_ON(channel_idx > 15);
947	*enabled = src | (1 << channel_idx);
948}
949
950/**
951 * qbman_swp_push_set() - Enable or disable push dequeue
952 * @s:           the software portal object
953 * @channel_idx: the channel index (0 to 15)
954 * @enable:      enable or disable push dequeue
955 */
956void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
957{
958	u16 dqsrc;
959
960	WARN_ON(channel_idx > 15);
961	if (enable)
962		s->sdq |= 1 << channel_idx;
963	else
964		s->sdq &= ~(1 << channel_idx);
965
966	/* Read make the complete src map.  If no channels are enabled
967	 * the SDQCR must be 0 or else QMan will assert errors
968	 */
969	dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
970	if (dqsrc != 0)
971		qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
972	else
973		qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
974}
975
976#define QB_VDQCR_VERB_DCT_SHIFT    0
977#define QB_VDQCR_VERB_DT_SHIFT     2
978#define QB_VDQCR_VERB_RLS_SHIFT    4
979#define QB_VDQCR_VERB_WAE_SHIFT    5
980
981enum qb_pull_dt_e {
982	qb_pull_dt_channel,
983	qb_pull_dt_workqueue,
984	qb_pull_dt_framequeue
985};
986
987/**
988 * qbman_pull_desc_clear() - Clear the contents of a descriptor to
989 *                           default/starting state
990 * @d: the pull dequeue descriptor to be cleared
991 */
992void qbman_pull_desc_clear(struct qbman_pull_desc *d)
993{
994	memset(d, 0, sizeof(*d));
995}
996
997/**
998 * qbman_pull_desc_set_storage()- Set the pull dequeue storage
999 * @d:            the pull dequeue descriptor to be set
1000 * @storage:      the pointer of the memory to store the dequeue result
1001 * @storage_phys: the physical address of the storage memory
1002 * @stash:        to indicate whether write allocate is enabled
1003 *
1004 * If not called, or if called with 'storage' as NULL, the result pull dequeues
1005 * will produce results to DQRR. If 'storage' is non-NULL, then results are
1006 * produced to the given memory location (using the DMA address which
1007 * the caller provides in 'storage_phys'), and 'stash' controls whether or not
1008 * those writes to main-memory express a cache-warming attribute.
1009 */
1010void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
1011				 struct dpaa2_dq *storage,
1012				 dma_addr_t storage_phys,
1013				 int stash)
1014{
1015	/* save the virtual address */
1016	d->rsp_addr_virt = (u64)(uintptr_t)storage;
1017
1018	if (!storage) {
1019		d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
1020		return;
1021	}
1022	d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
1023	if (stash)
1024		d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
1025	else
1026		d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
1027
1028	d->rsp_addr = cpu_to_le64(storage_phys);
1029}
1030
1031/**
1032 * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
1033 * @d:         the pull dequeue descriptor to be set
1034 * @numframes: number of frames to be set, must be between 1 and 16, inclusive
1035 */
1036void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
1037{
1038	d->numf = numframes - 1;
1039}
1040
1041/*
1042 * Exactly one of the following descriptor "actions" should be set. (Calling any
1043 * one of these will replace the effect of any prior call to one of these.)
1044 * - pull dequeue from the given frame queue (FQ)
1045 * - pull dequeue from any FQ in the given work queue (WQ)
1046 * - pull dequeue from any FQ in any WQ in the given channel
1047 */
1048
1049/**
1050 * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
1051 * @d:    the pull dequeue descriptor to be set
1052 * @fqid: the frame queue index of the given FQ
1053 */
1054void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
1055{
1056	d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
1057	d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
1058	d->dq_src = cpu_to_le32(fqid);
1059}
1060
1061/**
1062 * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
1063 * @d:    the pull dequeue descriptor to be set
1064 * @wqid: composed of channel id and wqid within the channel
1065 * @dct:  the dequeue command type
1066 */
1067void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
1068			    enum qbman_pull_type_e dct)
1069{
1070	d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1071	d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
1072	d->dq_src = cpu_to_le32(wqid);
1073}
1074
1075/**
1076 * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
1077 *                                 dequeues
1078 * @d:    the pull dequeue descriptor to be set
1079 * @chid: the channel id to be dequeued
1080 * @dct:  the dequeue command type
1081 */
1082void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
1083				 enum qbman_pull_type_e dct)
1084{
1085	d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1086	d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
1087	d->dq_src = cpu_to_le32(chid);
1088}
1089
1090/**
1091 * qbman_swp_pull_direct() - Issue the pull dequeue command
1092 * @s: the software portal object
1093 * @d: the software portal descriptor which has been configured with
1094 *     the set of qbman_pull_desc_set_*() calls
1095 *
1096 * Return 0 for success, and -EBUSY if the software portal is not ready
1097 * to do pull dequeue.
1098 */
1099static
1100int qbman_swp_pull_direct(struct qbman_swp *s, struct qbman_pull_desc *d)
1101{
1102	struct qbman_pull_desc *p;
1103
1104	if (!atomic_dec_and_test(&s->vdq.available)) {
1105		atomic_inc(&s->vdq.available);
1106		return -EBUSY;
1107	}
1108	s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1109	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1110		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1111	else
1112		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1113	p->numf = d->numf;
1114	p->tok = QMAN_DQ_TOKEN_VALID;
1115	p->dq_src = d->dq_src;
1116	p->rsp_addr = d->rsp_addr;
1117	p->rsp_addr_virt = d->rsp_addr_virt;
1118	dma_wmb();
1119	/* Set the verb byte, have to substitute in the valid-bit */
1120	p->verb = d->verb | s->vdq.valid_bit;
1121	s->vdq.valid_bit ^= QB_VALID_BIT;
1122
1123	return 0;
1124}
1125
1126/**
1127 * qbman_swp_pull_mem_back() - Issue the pull dequeue command
1128 * @s: the software portal object
1129 * @d: the software portal descriptor which has been configured with
1130 *     the set of qbman_pull_desc_set_*() calls
1131 *
1132 * Return 0 for success, and -EBUSY if the software portal is not ready
1133 * to do pull dequeue.
1134 */
1135static
1136int qbman_swp_pull_mem_back(struct qbman_swp *s, struct qbman_pull_desc *d)
1137{
1138	struct qbman_pull_desc *p;
1139
1140	if (!atomic_dec_and_test(&s->vdq.available)) {
1141		atomic_inc(&s->vdq.available);
1142		return -EBUSY;
1143	}
1144	s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1145	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1146		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1147	else
1148		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1149	p->numf = d->numf;
1150	p->tok = QMAN_DQ_TOKEN_VALID;
1151	p->dq_src = d->dq_src;
1152	p->rsp_addr = d->rsp_addr;
1153	p->rsp_addr_virt = d->rsp_addr_virt;
1154
1155	/* Set the verb byte, have to substitute in the valid-bit */
1156	p->verb = d->verb | s->vdq.valid_bit;
1157	s->vdq.valid_bit ^= QB_VALID_BIT;
1158	dma_wmb();
1159	qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE);
1160
1161	return 0;
1162}
1163
1164#define QMAN_DQRR_PI_MASK   0xf
1165
1166/**
1167 * qbman_swp_dqrr_next_direct() - Get an valid DQRR entry
1168 * @s: the software portal object
1169 *
1170 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1171 * only once, so repeated calls can return a sequence of DQRR entries, without
1172 * requiring they be consumed immediately or in any particular order.
1173 */
1174const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s)
1175{
1176	u32 verb;
1177	u32 response_verb;
1178	u32 flags;
1179	struct dpaa2_dq *p;
1180
1181	/* Before using valid-bit to detect if something is there, we have to
1182	 * handle the case of the DQRR reset bug...
1183	 */
1184	if (unlikely(s->dqrr.reset_bug)) {
1185		/*
1186		 * We pick up new entries by cache-inhibited producer index,
1187		 * which means that a non-coherent mapping would require us to
1188		 * invalidate and read *only* once that PI has indicated that
1189		 * there's an entry here. The first trip around the DQRR ring
1190		 * will be much less efficient than all subsequent trips around
1191		 * it...
1192		 */
1193		u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1194			QMAN_DQRR_PI_MASK;
1195
1196		/* there are new entries if pi != next_idx */
1197		if (pi == s->dqrr.next_idx)
1198			return NULL;
1199
1200		/*
1201		 * if next_idx is/was the last ring index, and 'pi' is
1202		 * different, we can disable the workaround as all the ring
1203		 * entries have now been DMA'd to so valid-bit checking is
1204		 * repaired. Note: this logic needs to be based on next_idx
1205		 * (which increments one at a time), rather than on pi (which
1206		 * can burst and wrap-around between our snapshots of it).
1207		 */
1208		if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1209			pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1210				 s->dqrr.next_idx, pi);
1211			s->dqrr.reset_bug = 0;
1212		}
1213		prefetch(qbman_get_cmd(s,
1214				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1215	}
1216
1217	p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
1218	verb = p->dq.verb;
1219
1220	/*
1221	 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1222	 * in the DQRR reset bug workaround, we shouldn't need to skip these
1223	 * check, because we've already determined that a new entry is available
1224	 * and we've invalidated the cacheline before reading it, so the
1225	 * valid-bit behaviour is repaired and should tell us what we already
1226	 * knew from reading PI.
1227	 */
1228	if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1229		prefetch(qbman_get_cmd(s,
1230				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1231		return NULL;
1232	}
1233	/*
1234	 * There's something there. Move "next_idx" attention to the next ring
1235	 * entry (and prefetch it) before returning what we found.
1236	 */
1237	s->dqrr.next_idx++;
1238	s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1239	if (!s->dqrr.next_idx)
1240		s->dqrr.valid_bit ^= QB_VALID_BIT;
1241
1242	/*
1243	 * If this is the final response to a volatile dequeue command
1244	 * indicate that the vdq is available
1245	 */
1246	flags = p->dq.stat;
1247	response_verb = verb & QBMAN_RESULT_MASK;
1248	if ((response_verb == QBMAN_RESULT_DQ) &&
1249	    (flags & DPAA2_DQ_STAT_VOLATILE) &&
1250	    (flags & DPAA2_DQ_STAT_EXPIRED))
1251		atomic_inc(&s->vdq.available);
1252
1253	prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1254
1255	return p;
1256}
1257
1258/**
1259 * qbman_swp_dqrr_next_mem_back() - Get an valid DQRR entry
1260 * @s: the software portal object
1261 *
1262 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1263 * only once, so repeated calls can return a sequence of DQRR entries, without
1264 * requiring they be consumed immediately or in any particular order.
1265 */
1266const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s)
1267{
1268	u32 verb;
1269	u32 response_verb;
1270	u32 flags;
1271	struct dpaa2_dq *p;
1272
1273	/* Before using valid-bit to detect if something is there, we have to
1274	 * handle the case of the DQRR reset bug...
1275	 */
1276	if (unlikely(s->dqrr.reset_bug)) {
1277		/*
1278		 * We pick up new entries by cache-inhibited producer index,
1279		 * which means that a non-coherent mapping would require us to
1280		 * invalidate and read *only* once that PI has indicated that
1281		 * there's an entry here. The first trip around the DQRR ring
1282		 * will be much less efficient than all subsequent trips around
1283		 * it...
1284		 */
1285		u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1286			QMAN_DQRR_PI_MASK;
1287
1288		/* there are new entries if pi != next_idx */
1289		if (pi == s->dqrr.next_idx)
1290			return NULL;
1291
1292		/*
1293		 * if next_idx is/was the last ring index, and 'pi' is
1294		 * different, we can disable the workaround as all the ring
1295		 * entries have now been DMA'd to so valid-bit checking is
1296		 * repaired. Note: this logic needs to be based on next_idx
1297		 * (which increments one at a time), rather than on pi (which
1298		 * can burst and wrap-around between our snapshots of it).
1299		 */
1300		if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1301			pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1302				 s->dqrr.next_idx, pi);
1303			s->dqrr.reset_bug = 0;
1304		}
1305		prefetch(qbman_get_cmd(s,
1306				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1307	}
1308
1309	p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx));
1310	verb = p->dq.verb;
1311
1312	/*
1313	 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1314	 * in the DQRR reset bug workaround, we shouldn't need to skip these
1315	 * check, because we've already determined that a new entry is available
1316	 * and we've invalidated the cacheline before reading it, so the
1317	 * valid-bit behaviour is repaired and should tell us what we already
1318	 * knew from reading PI.
1319	 */
1320	if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1321		prefetch(qbman_get_cmd(s,
1322				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1323		return NULL;
1324	}
1325	/*
1326	 * There's something there. Move "next_idx" attention to the next ring
1327	 * entry (and prefetch it) before returning what we found.
1328	 */
1329	s->dqrr.next_idx++;
1330	s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1331	if (!s->dqrr.next_idx)
1332		s->dqrr.valid_bit ^= QB_VALID_BIT;
1333
1334	/*
1335	 * If this is the final response to a volatile dequeue command
1336	 * indicate that the vdq is available
1337	 */
1338	flags = p->dq.stat;
1339	response_verb = verb & QBMAN_RESULT_MASK;
1340	if ((response_verb == QBMAN_RESULT_DQ) &&
1341	    (flags & DPAA2_DQ_STAT_VOLATILE) &&
1342	    (flags & DPAA2_DQ_STAT_EXPIRED))
1343		atomic_inc(&s->vdq.available);
1344
1345	prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1346
1347	return p;
1348}
1349
1350/**
1351 * qbman_swp_dqrr_consume() -  Consume DQRR entries previously returned from
1352 *                             qbman_swp_dqrr_next().
1353 * @s: the software portal object
1354 * @dq: the DQRR entry to be consumed
1355 */
1356void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
1357{
1358	qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
1359}
1360
1361/**
1362 * qbman_result_has_new_result() - Check and get the dequeue response from the
1363 *                                 dq storage memory set in pull dequeue command
1364 * @s: the software portal object
1365 * @dq: the dequeue result read from the memory
1366 *
1367 * Return 1 for getting a valid dequeue result, or 0 for not getting a valid
1368 * dequeue result.
1369 *
1370 * Only used for user-provided storage of dequeue results, not DQRR. For
1371 * efficiency purposes, the driver will perform any required endianness
1372 * conversion to ensure that the user's dequeue result storage is in host-endian
1373 * format. As such, once the user has called qbman_result_has_new_result() and
1374 * been returned a valid dequeue result, they should not call it again on
1375 * the same memory location (except of course if another dequeue command has
1376 * been executed to produce a new result to that location).
1377 */
1378int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
1379{
1380	if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
1381		return 0;
1382
1383	/*
1384	 * Set token to be 0 so we will detect change back to 1
1385	 * next time the looping is traversed. Const is cast away here
1386	 * as we want users to treat the dequeue responses as read only.
1387	 */
1388	((struct dpaa2_dq *)dq)->dq.tok = 0;
1389
1390	/*
1391	 * Determine whether VDQCR is available based on whether the
1392	 * current result is sitting in the first storage location of
1393	 * the busy command.
1394	 */
1395	if (s->vdq.storage == dq) {
1396		s->vdq.storage = NULL;
1397		atomic_inc(&s->vdq.available);
1398	}
1399
1400	return 1;
1401}
1402
1403/**
1404 * qbman_release_desc_clear() - Clear the contents of a descriptor to
1405 *                              default/starting state.
1406 * @d: the pull dequeue descriptor to be cleared
1407 */
1408void qbman_release_desc_clear(struct qbman_release_desc *d)
1409{
1410	memset(d, 0, sizeof(*d));
1411	d->verb = 1 << 5; /* Release Command Valid */
1412}
1413
1414/**
1415 * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
1416 * @d:    the pull dequeue descriptor to be set
1417 * @bpid: the bpid value to be set
1418 */
1419void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
1420{
1421	d->bpid = cpu_to_le16(bpid);
1422}
1423
1424/**
1425 * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
1426 * interrupt source should be asserted after the release command is completed.
1427 * @d:      the pull dequeue descriptor to be set
1428 * @enable: enable (1) or disable (0) value
1429 */
1430void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
1431{
1432	if (enable)
1433		d->verb |= 1 << 6;
1434	else
1435		d->verb &= ~(1 << 6);
1436}
1437
1438#define RAR_IDX(rar)     ((rar) & 0x7)
1439#define RAR_VB(rar)      ((rar) & 0x80)
1440#define RAR_SUCCESS(rar) ((rar) & 0x100)
1441
1442/**
1443 * qbman_swp_release_direct() - Issue a buffer release command
1444 * @s:           the software portal object
1445 * @d:           the release descriptor
1446 * @buffers:     a pointer pointing to the buffer address to be released
1447 * @num_buffers: number of buffers to be released,  must be less than 8
1448 *
1449 * Return 0 for success, -EBUSY if the release command ring is not ready.
1450 */
1451int qbman_swp_release_direct(struct qbman_swp *s,
1452			     const struct qbman_release_desc *d,
1453			     const u64 *buffers, unsigned int num_buffers)
1454{
1455	int i;
1456	struct qbman_release_desc *p;
1457	u32 rar;
1458
1459	if (!num_buffers || (num_buffers > 7))
1460		return -EINVAL;
1461
1462	rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1463	if (!RAR_SUCCESS(rar))
1464		return -EBUSY;
1465
1466	/* Start the release command */
1467	p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
1468
1469	/* Copy the caller's buffer pointers to the command */
1470	for (i = 0; i < num_buffers; i++)
1471		p->buf[i] = cpu_to_le64(buffers[i]);
1472	p->bpid = d->bpid;
1473
1474	/*
1475	 * Set the verb byte, have to substitute in the valid-bit
1476	 * and the number of buffers.
1477	 */
1478	dma_wmb();
1479	p->verb = d->verb | RAR_VB(rar) | num_buffers;
1480
1481	return 0;
1482}
1483
1484/**
1485 * qbman_swp_release_mem_back() - Issue a buffer release command
1486 * @s:           the software portal object
1487 * @d:           the release descriptor
1488 * @buffers:     a pointer pointing to the buffer address to be released
1489 * @num_buffers: number of buffers to be released,  must be less than 8
1490 *
1491 * Return 0 for success, -EBUSY if the release command ring is not ready.
1492 */
1493int qbman_swp_release_mem_back(struct qbman_swp *s,
1494			       const struct qbman_release_desc *d,
1495			       const u64 *buffers, unsigned int num_buffers)
1496{
1497	int i;
1498	struct qbman_release_desc *p;
1499	u32 rar;
1500
1501	if (!num_buffers || (num_buffers > 7))
1502		return -EINVAL;
1503
1504	rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1505	if (!RAR_SUCCESS(rar))
1506		return -EBUSY;
1507
1508	/* Start the release command */
1509	p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar)));
1510
1511	/* Copy the caller's buffer pointers to the command */
1512	for (i = 0; i < num_buffers; i++)
1513		p->buf[i] = cpu_to_le64(buffers[i]);
1514	p->bpid = d->bpid;
1515
1516	p->verb = d->verb | RAR_VB(rar) | num_buffers;
1517	dma_wmb();
1518	qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT +
1519			     RAR_IDX(rar)  * 4, QMAN_RT_MODE);
1520
1521	return 0;
1522}
1523
1524struct qbman_acquire_desc {
1525	u8 verb;
1526	u8 reserved;
1527	__le16 bpid;
1528	u8 num;
1529	u8 reserved2[59];
1530};
1531
1532struct qbman_acquire_rslt {
1533	u8 verb;
1534	u8 rslt;
1535	__le16 reserved;
1536	u8 num;
1537	u8 reserved2[3];
1538	__le64 buf[7];
1539};
1540
1541/**
1542 * qbman_swp_acquire() - Issue a buffer acquire command
1543 * @s:           the software portal object
1544 * @bpid:        the buffer pool index
1545 * @buffers:     a pointer pointing to the acquired buffer addresses
1546 * @num_buffers: number of buffers to be acquired, must be less than 8
1547 *
1548 * Return 0 for success, or negative error code if the acquire command
1549 * fails.
1550 */
1551int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
1552		      unsigned int num_buffers)
1553{
1554	struct qbman_acquire_desc *p;
1555	struct qbman_acquire_rslt *r;
1556	int i;
1557
1558	if (!num_buffers || (num_buffers > 7))
1559		return -EINVAL;
1560
1561	/* Start the management command */
1562	p = qbman_swp_mc_start(s);
1563
1564	if (!p)
1565		return -EBUSY;
1566
1567	/* Encode the caller-provided attributes */
1568	p->bpid = cpu_to_le16(bpid);
1569	p->num = num_buffers;
1570
1571	/* Complete the management command */
1572	r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
1573	if (unlikely(!r)) {
1574		pr_err("qbman: acquire from BPID %d failed, no response\n",
1575		       bpid);
1576		return -EIO;
1577	}
1578
1579	/* Decode the outcome */
1580	WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
1581
1582	/* Determine success or failure */
1583	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1584		pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
1585		       bpid, r->rslt);
1586		return -EIO;
1587	}
1588
1589	WARN_ON(r->num > num_buffers);
1590
1591	/* Copy the acquired buffers to the caller's array */
1592	for (i = 0; i < r->num; i++)
1593		buffers[i] = le64_to_cpu(r->buf[i]);
1594
1595	return (int)r->num;
1596}
1597
1598struct qbman_alt_fq_state_desc {
1599	u8 verb;
1600	u8 reserved[3];
1601	__le32 fqid;
1602	u8 reserved2[56];
1603};
1604
1605struct qbman_alt_fq_state_rslt {
1606	u8 verb;
1607	u8 rslt;
1608	u8 reserved[62];
1609};
1610
1611#define ALT_FQ_FQID_MASK 0x00FFFFFF
1612
1613int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
1614			   u8 alt_fq_verb)
1615{
1616	struct qbman_alt_fq_state_desc *p;
1617	struct qbman_alt_fq_state_rslt *r;
1618
1619	/* Start the management command */
1620	p = qbman_swp_mc_start(s);
1621	if (!p)
1622		return -EBUSY;
1623
1624	p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
1625
1626	/* Complete the management command */
1627	r = qbman_swp_mc_complete(s, p, alt_fq_verb);
1628	if (unlikely(!r)) {
1629		pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
1630		       alt_fq_verb);
1631		return -EIO;
1632	}
1633
1634	/* Decode the outcome */
1635	WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
1636
1637	/* Determine success or failure */
1638	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1639		pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
1640		       fqid, r->verb, r->rslt);
1641		return -EIO;
1642	}
1643
1644	return 0;
1645}
1646
1647struct qbman_cdan_ctrl_desc {
1648	u8 verb;
1649	u8 reserved;
1650	__le16 ch;
1651	u8 we;
1652	u8 ctrl;
1653	__le16 reserved2;
1654	__le64 cdan_ctx;
1655	u8 reserved3[48];
1656
1657};
1658
1659struct qbman_cdan_ctrl_rslt {
1660	u8 verb;
1661	u8 rslt;
1662	__le16 ch;
1663	u8 reserved[60];
1664};
1665
1666int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
1667		       u8 we_mask, u8 cdan_en,
1668		       u64 ctx)
1669{
1670	struct qbman_cdan_ctrl_desc *p = NULL;
1671	struct qbman_cdan_ctrl_rslt *r = NULL;
1672
1673	/* Start the management command */
1674	p = qbman_swp_mc_start(s);
1675	if (!p)
1676		return -EBUSY;
1677
1678	/* Encode the caller-provided attributes */
1679	p->ch = cpu_to_le16(channelid);
1680	p->we = we_mask;
1681	if (cdan_en)
1682		p->ctrl = 1;
1683	else
1684		p->ctrl = 0;
1685	p->cdan_ctx = cpu_to_le64(ctx);
1686
1687	/* Complete the management command */
1688	r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
1689	if (unlikely(!r)) {
1690		pr_err("qbman: wqchan config failed, no response\n");
1691		return -EIO;
1692	}
1693
1694	WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
1695
1696	/* Determine success or failure */
1697	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1698		pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
1699		       channelid, r->rslt);
1700		return -EIO;
1701	}
1702
1703	return 0;
1704}
1705
1706#define QBMAN_RESPONSE_VERB_MASK	0x7f
1707#define QBMAN_FQ_QUERY_NP		0x45
1708#define QBMAN_BP_QUERY			0x32
1709
1710struct qbman_fq_query_desc {
1711	u8 verb;
1712	u8 reserved[3];
1713	__le32 fqid;
1714	u8 reserved2[56];
1715};
1716
1717int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
1718			 struct qbman_fq_query_np_rslt *r)
1719{
1720	struct qbman_fq_query_desc *p;
1721	void *resp;
1722
1723	p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
1724	if (!p)
1725		return -EBUSY;
1726
1727	/* FQID is a 24 bit value */
1728	p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
1729	resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
1730	if (!resp) {
1731		pr_err("qbman: Query FQID %d NP fields failed, no response\n",
1732		       fqid);
1733		return -EIO;
1734	}
1735	*r = *(struct qbman_fq_query_np_rslt *)resp;
1736	/* Decode the outcome */
1737	WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
1738
1739	/* Determine success or failure */
1740	if (r->rslt != QBMAN_MC_RSLT_OK) {
1741		pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
1742		       p->fqid, r->rslt);
1743		return -EIO;
1744	}
1745
1746	return 0;
1747}
1748
1749u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
1750{
1751	return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
1752}
1753
1754u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
1755{
1756	return le32_to_cpu(r->byte_cnt);
1757}
1758
1759struct qbman_bp_query_desc {
1760	u8 verb;
1761	u8 reserved;
1762	__le16 bpid;
1763	u8 reserved2[60];
1764};
1765
1766int qbman_bp_query(struct qbman_swp *s, u16 bpid,
1767		   struct qbman_bp_query_rslt *r)
1768{
1769	struct qbman_bp_query_desc *p;
1770	void *resp;
1771
1772	p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
1773	if (!p)
1774		return -EBUSY;
1775
1776	p->bpid = cpu_to_le16(bpid);
1777	resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
1778	if (!resp) {
1779		pr_err("qbman: Query BPID %d fields failed, no response\n",
1780		       bpid);
1781		return -EIO;
1782	}
1783	*r = *(struct qbman_bp_query_rslt *)resp;
1784	/* Decode the outcome */
1785	WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
1786
1787	/* Determine success or failure */
1788	if (r->rslt != QBMAN_MC_RSLT_OK) {
1789		pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
1790		       bpid, r->rslt);
1791		return -EIO;
1792	}
1793
1794	return 0;
1795}
1796
1797u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
1798{
1799	return le32_to_cpu(a->fill);
1800}
1801
1802/**
1803 * qbman_swp_set_irq_coalescing() - Set new IRQ coalescing values
1804 * @p: the software portal object
1805 * @irq_threshold: interrupt threshold
1806 * @irq_holdoff: interrupt holdoff (timeout) period in us
1807 *
1808 * Return 0 for success, or negative error code on error.
1809 */
1810int qbman_swp_set_irq_coalescing(struct qbman_swp *p, u32 irq_threshold,
1811				 u32 irq_holdoff)
1812{
1813	u32 itp, max_holdoff;
1814
1815	/* Convert irq_holdoff value from usecs to 256 QBMAN clock cycles
1816	 * increments. This depends on the QBMAN internal frequency.
1817	 */
1818	itp = (irq_holdoff * 1000) / p->desc->qman_256_cycles_per_ns;
1819	if (itp > 4096) {
1820		max_holdoff = (p->desc->qman_256_cycles_per_ns * 4096) / 1000;
1821		pr_err("irq_holdoff must be <= %uus\n", max_holdoff);
1822		return -EINVAL;
1823	}
1824
1825	if (irq_threshold >= p->dqrr.dqrr_size) {
1826		pr_err("irq_threshold must be < %u\n", p->dqrr.dqrr_size - 1);
1827		return -EINVAL;
1828	}
1829
1830	p->irq_threshold = irq_threshold;
1831	p->irq_holdoff = irq_holdoff;
1832
1833	qbman_write_register(p, QBMAN_CINH_SWP_DQRR_ITR, irq_threshold);
1834	qbman_write_register(p, QBMAN_CINH_SWP_ITPR, itp);
1835
1836	return 0;
1837}
1838
1839/**
1840 * qbman_swp_get_irq_coalescing() - Get the current IRQ coalescing parameters
1841 * @p: the software portal object
1842 * @irq_threshold: interrupt threshold (an IRQ is generated when there are more
1843 * DQRR entries in the portal than the threshold)
1844 * @irq_holdoff: interrupt holdoff (timeout) period in us
1845 */
1846void qbman_swp_get_irq_coalescing(struct qbman_swp *p, u32 *irq_threshold,
1847				  u32 *irq_holdoff)
1848{
1849	if (irq_threshold)
1850		*irq_threshold = p->irq_threshold;
1851	if (irq_holdoff)
1852		*irq_holdoff = p->irq_holdoff;
1853}
1854