1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *      sd.c Copyright (C) 1992 Drew Eckhardt
4 *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 *      Linux scsi disk driver
7 *              Initial versions: Drew Eckhardt
8 *              Subsequent revisions: Eric Youngdale
9 *	Modification history:
10 *       - Drew Eckhardt <drew@colorado.edu> original
11 *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 *         outstanding request, and other enhancements.
13 *         Support loadable low-level scsi drivers.
14 *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 *         eight major numbers.
16 *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 *	   sd_init and cleanups.
19 *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20 *	   not being read in sd_open. Fix problem where removable media
21 *	   could be ejected after sd_open.
22 *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 *	   Support 32k/1M disks.
26 *
27 *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32 *	Note: when the logging level is set by the user, it must be greater
33 *	than the level indicated above to trigger output.
34 */
35
36#include <linux/module.h>
37#include <linux/fs.h>
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/bio.h>
41#include <linux/hdreg.h>
42#include <linux/errno.h>
43#include <linux/idr.h>
44#include <linux/interrupt.h>
45#include <linux/init.h>
46#include <linux/blkdev.h>
47#include <linux/blkpg.h>
48#include <linux/blk-pm.h>
49#include <linux/delay.h>
50#include <linux/rw_hint.h>
51#include <linux/major.h>
52#include <linux/mutex.h>
53#include <linux/string_helpers.h>
54#include <linux/slab.h>
55#include <linux/sed-opal.h>
56#include <linux/pm_runtime.h>
57#include <linux/pr.h>
58#include <linux/t10-pi.h>
59#include <linux/uaccess.h>
60#include <asm/unaligned.h>
61
62#include <scsi/scsi.h>
63#include <scsi/scsi_cmnd.h>
64#include <scsi/scsi_dbg.h>
65#include <scsi/scsi_device.h>
66#include <scsi/scsi_driver.h>
67#include <scsi/scsi_eh.h>
68#include <scsi/scsi_host.h>
69#include <scsi/scsi_ioctl.h>
70#include <scsi/scsicam.h>
71#include <scsi/scsi_common.h>
72
73#include "sd.h"
74#include "scsi_priv.h"
75#include "scsi_logging.h"
76
77MODULE_AUTHOR("Eric Youngdale");
78MODULE_DESCRIPTION("SCSI disk (sd) driver");
79MODULE_LICENSE("GPL");
80
81MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
82MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
83MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
84MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
85MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
86MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
87MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
88MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
89MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
90MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
91MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
92MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
93MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
94MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
95MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
96MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
97MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
98MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
99MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
100MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
101
102#define SD_MINORS	16
103
104static void sd_config_discard(struct scsi_disk *, unsigned int);
105static void sd_config_write_same(struct scsi_disk *);
106static int  sd_revalidate_disk(struct gendisk *);
107static void sd_unlock_native_capacity(struct gendisk *disk);
108static void sd_shutdown(struct device *);
109static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
110static void scsi_disk_release(struct device *cdev);
111
112static DEFINE_IDA(sd_index_ida);
113
114static mempool_t *sd_page_pool;
115static struct lock_class_key sd_bio_compl_lkclass;
116
117static const char *sd_cache_types[] = {
118	"write through", "none", "write back",
119	"write back, no read (daft)"
120};
121
122static void sd_set_flush_flag(struct scsi_disk *sdkp)
123{
124	bool wc = false, fua = false;
125
126	if (sdkp->WCE) {
127		wc = true;
128		if (sdkp->DPOFUA)
129			fua = true;
130	}
131
132	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
133}
134
135static ssize_t
136cache_type_store(struct device *dev, struct device_attribute *attr,
137		 const char *buf, size_t count)
138{
139	int ct, rcd, wce, sp;
140	struct scsi_disk *sdkp = to_scsi_disk(dev);
141	struct scsi_device *sdp = sdkp->device;
142	char buffer[64];
143	char *buffer_data;
144	struct scsi_mode_data data;
145	struct scsi_sense_hdr sshdr;
146	static const char temp[] = "temporary ";
147	int len, ret;
148
149	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
150		/* no cache control on RBC devices; theoretically they
151		 * can do it, but there's probably so many exceptions
152		 * it's not worth the risk */
153		return -EINVAL;
154
155	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
156		buf += sizeof(temp) - 1;
157		sdkp->cache_override = 1;
158	} else {
159		sdkp->cache_override = 0;
160	}
161
162	ct = sysfs_match_string(sd_cache_types, buf);
163	if (ct < 0)
164		return -EINVAL;
165
166	rcd = ct & 0x01 ? 1 : 0;
167	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
168
169	if (sdkp->cache_override) {
170		sdkp->WCE = wce;
171		sdkp->RCD = rcd;
172		sd_set_flush_flag(sdkp);
173		return count;
174	}
175
176	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
177			    sdkp->max_retries, &data, NULL))
178		return -EINVAL;
179	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
180		  data.block_descriptor_length);
181	buffer_data = buffer + data.header_length +
182		data.block_descriptor_length;
183	buffer_data[2] &= ~0x05;
184	buffer_data[2] |= wce << 2 | rcd;
185	sp = buffer_data[0] & 0x80 ? 1 : 0;
186	buffer_data[0] &= ~0x80;
187
188	/*
189	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
190	 * received mode parameter buffer before doing MODE SELECT.
191	 */
192	data.device_specific = 0;
193
194	ret = scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
195			       sdkp->max_retries, &data, &sshdr);
196	if (ret) {
197		if (ret > 0 && scsi_sense_valid(&sshdr))
198			sd_print_sense_hdr(sdkp, &sshdr);
199		return -EINVAL;
200	}
201	sd_revalidate_disk(sdkp->disk);
202	return count;
203}
204
205static ssize_t
206manage_start_stop_show(struct device *dev,
207		       struct device_attribute *attr, char *buf)
208{
209	struct scsi_disk *sdkp = to_scsi_disk(dev);
210	struct scsi_device *sdp = sdkp->device;
211
212	return sysfs_emit(buf, "%u\n",
213			  sdp->manage_system_start_stop &&
214			  sdp->manage_runtime_start_stop &&
215			  sdp->manage_shutdown);
216}
217static DEVICE_ATTR_RO(manage_start_stop);
218
219static ssize_t
220manage_system_start_stop_show(struct device *dev,
221			      struct device_attribute *attr, char *buf)
222{
223	struct scsi_disk *sdkp = to_scsi_disk(dev);
224	struct scsi_device *sdp = sdkp->device;
225
226	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
227}
228
229static ssize_t
230manage_system_start_stop_store(struct device *dev,
231			       struct device_attribute *attr,
232			       const char *buf, size_t count)
233{
234	struct scsi_disk *sdkp = to_scsi_disk(dev);
235	struct scsi_device *sdp = sdkp->device;
236	bool v;
237
238	if (!capable(CAP_SYS_ADMIN))
239		return -EACCES;
240
241	if (kstrtobool(buf, &v))
242		return -EINVAL;
243
244	sdp->manage_system_start_stop = v;
245
246	return count;
247}
248static DEVICE_ATTR_RW(manage_system_start_stop);
249
250static ssize_t
251manage_runtime_start_stop_show(struct device *dev,
252			       struct device_attribute *attr, char *buf)
253{
254	struct scsi_disk *sdkp = to_scsi_disk(dev);
255	struct scsi_device *sdp = sdkp->device;
256
257	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
258}
259
260static ssize_t
261manage_runtime_start_stop_store(struct device *dev,
262				struct device_attribute *attr,
263				const char *buf, size_t count)
264{
265	struct scsi_disk *sdkp = to_scsi_disk(dev);
266	struct scsi_device *sdp = sdkp->device;
267	bool v;
268
269	if (!capable(CAP_SYS_ADMIN))
270		return -EACCES;
271
272	if (kstrtobool(buf, &v))
273		return -EINVAL;
274
275	sdp->manage_runtime_start_stop = v;
276
277	return count;
278}
279static DEVICE_ATTR_RW(manage_runtime_start_stop);
280
281static ssize_t manage_shutdown_show(struct device *dev,
282				    struct device_attribute *attr, char *buf)
283{
284	struct scsi_disk *sdkp = to_scsi_disk(dev);
285	struct scsi_device *sdp = sdkp->device;
286
287	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
288}
289
290static ssize_t manage_shutdown_store(struct device *dev,
291				     struct device_attribute *attr,
292				     const char *buf, size_t count)
293{
294	struct scsi_disk *sdkp = to_scsi_disk(dev);
295	struct scsi_device *sdp = sdkp->device;
296	bool v;
297
298	if (!capable(CAP_SYS_ADMIN))
299		return -EACCES;
300
301	if (kstrtobool(buf, &v))
302		return -EINVAL;
303
304	sdp->manage_shutdown = v;
305
306	return count;
307}
308static DEVICE_ATTR_RW(manage_shutdown);
309
310static ssize_t
311allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
312{
313	struct scsi_disk *sdkp = to_scsi_disk(dev);
314
315	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
316}
317
318static ssize_t
319allow_restart_store(struct device *dev, struct device_attribute *attr,
320		    const char *buf, size_t count)
321{
322	bool v;
323	struct scsi_disk *sdkp = to_scsi_disk(dev);
324	struct scsi_device *sdp = sdkp->device;
325
326	if (!capable(CAP_SYS_ADMIN))
327		return -EACCES;
328
329	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
330		return -EINVAL;
331
332	if (kstrtobool(buf, &v))
333		return -EINVAL;
334
335	sdp->allow_restart = v;
336
337	return count;
338}
339static DEVICE_ATTR_RW(allow_restart);
340
341static ssize_t
342cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
343{
344	struct scsi_disk *sdkp = to_scsi_disk(dev);
345	int ct = sdkp->RCD + 2*sdkp->WCE;
346
347	return sprintf(buf, "%s\n", sd_cache_types[ct]);
348}
349static DEVICE_ATTR_RW(cache_type);
350
351static ssize_t
352FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
353{
354	struct scsi_disk *sdkp = to_scsi_disk(dev);
355
356	return sprintf(buf, "%u\n", sdkp->DPOFUA);
357}
358static DEVICE_ATTR_RO(FUA);
359
360static ssize_t
361protection_type_show(struct device *dev, struct device_attribute *attr,
362		     char *buf)
363{
364	struct scsi_disk *sdkp = to_scsi_disk(dev);
365
366	return sprintf(buf, "%u\n", sdkp->protection_type);
367}
368
369static ssize_t
370protection_type_store(struct device *dev, struct device_attribute *attr,
371		      const char *buf, size_t count)
372{
373	struct scsi_disk *sdkp = to_scsi_disk(dev);
374	unsigned int val;
375	int err;
376
377	if (!capable(CAP_SYS_ADMIN))
378		return -EACCES;
379
380	err = kstrtouint(buf, 10, &val);
381
382	if (err)
383		return err;
384
385	if (val <= T10_PI_TYPE3_PROTECTION)
386		sdkp->protection_type = val;
387
388	return count;
389}
390static DEVICE_ATTR_RW(protection_type);
391
392static ssize_t
393protection_mode_show(struct device *dev, struct device_attribute *attr,
394		     char *buf)
395{
396	struct scsi_disk *sdkp = to_scsi_disk(dev);
397	struct scsi_device *sdp = sdkp->device;
398	unsigned int dif, dix;
399
400	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
401	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
402
403	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
404		dif = 0;
405		dix = 1;
406	}
407
408	if (!dif && !dix)
409		return sprintf(buf, "none\n");
410
411	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
412}
413static DEVICE_ATTR_RO(protection_mode);
414
415static ssize_t
416app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
417{
418	struct scsi_disk *sdkp = to_scsi_disk(dev);
419
420	return sprintf(buf, "%u\n", sdkp->ATO);
421}
422static DEVICE_ATTR_RO(app_tag_own);
423
424static ssize_t
425thin_provisioning_show(struct device *dev, struct device_attribute *attr,
426		       char *buf)
427{
428	struct scsi_disk *sdkp = to_scsi_disk(dev);
429
430	return sprintf(buf, "%u\n", sdkp->lbpme);
431}
432static DEVICE_ATTR_RO(thin_provisioning);
433
434/* sysfs_match_string() requires dense arrays */
435static const char *lbp_mode[] = {
436	[SD_LBP_FULL]		= "full",
437	[SD_LBP_UNMAP]		= "unmap",
438	[SD_LBP_WS16]		= "writesame_16",
439	[SD_LBP_WS10]		= "writesame_10",
440	[SD_LBP_ZERO]		= "writesame_zero",
441	[SD_LBP_DISABLE]	= "disabled",
442};
443
444static ssize_t
445provisioning_mode_show(struct device *dev, struct device_attribute *attr,
446		       char *buf)
447{
448	struct scsi_disk *sdkp = to_scsi_disk(dev);
449
450	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
451}
452
453static ssize_t
454provisioning_mode_store(struct device *dev, struct device_attribute *attr,
455			const char *buf, size_t count)
456{
457	struct scsi_disk *sdkp = to_scsi_disk(dev);
458	struct scsi_device *sdp = sdkp->device;
459	int mode;
460
461	if (!capable(CAP_SYS_ADMIN))
462		return -EACCES;
463
464	if (sd_is_zoned(sdkp)) {
465		sd_config_discard(sdkp, SD_LBP_DISABLE);
466		return count;
467	}
468
469	if (sdp->type != TYPE_DISK)
470		return -EINVAL;
471
472	mode = sysfs_match_string(lbp_mode, buf);
473	if (mode < 0)
474		return -EINVAL;
475
476	sd_config_discard(sdkp, mode);
477
478	return count;
479}
480static DEVICE_ATTR_RW(provisioning_mode);
481
482/* sysfs_match_string() requires dense arrays */
483static const char *zeroing_mode[] = {
484	[SD_ZERO_WRITE]		= "write",
485	[SD_ZERO_WS]		= "writesame",
486	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
487	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
488};
489
490static ssize_t
491zeroing_mode_show(struct device *dev, struct device_attribute *attr,
492		  char *buf)
493{
494	struct scsi_disk *sdkp = to_scsi_disk(dev);
495
496	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
497}
498
499static ssize_t
500zeroing_mode_store(struct device *dev, struct device_attribute *attr,
501		   const char *buf, size_t count)
502{
503	struct scsi_disk *sdkp = to_scsi_disk(dev);
504	int mode;
505
506	if (!capable(CAP_SYS_ADMIN))
507		return -EACCES;
508
509	mode = sysfs_match_string(zeroing_mode, buf);
510	if (mode < 0)
511		return -EINVAL;
512
513	sdkp->zeroing_mode = mode;
514
515	return count;
516}
517static DEVICE_ATTR_RW(zeroing_mode);
518
519static ssize_t
520max_medium_access_timeouts_show(struct device *dev,
521				struct device_attribute *attr, char *buf)
522{
523	struct scsi_disk *sdkp = to_scsi_disk(dev);
524
525	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
526}
527
528static ssize_t
529max_medium_access_timeouts_store(struct device *dev,
530				 struct device_attribute *attr, const char *buf,
531				 size_t count)
532{
533	struct scsi_disk *sdkp = to_scsi_disk(dev);
534	int err;
535
536	if (!capable(CAP_SYS_ADMIN))
537		return -EACCES;
538
539	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
540
541	return err ? err : count;
542}
543static DEVICE_ATTR_RW(max_medium_access_timeouts);
544
545static ssize_t
546max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
547			   char *buf)
548{
549	struct scsi_disk *sdkp = to_scsi_disk(dev);
550
551	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
552}
553
554static ssize_t
555max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
556			    const char *buf, size_t count)
557{
558	struct scsi_disk *sdkp = to_scsi_disk(dev);
559	struct scsi_device *sdp = sdkp->device;
560	unsigned long max;
561	int err;
562
563	if (!capable(CAP_SYS_ADMIN))
564		return -EACCES;
565
566	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
567		return -EINVAL;
568
569	err = kstrtoul(buf, 10, &max);
570
571	if (err)
572		return err;
573
574	if (max == 0)
575		sdp->no_write_same = 1;
576	else if (max <= SD_MAX_WS16_BLOCKS) {
577		sdp->no_write_same = 0;
578		sdkp->max_ws_blocks = max;
579	}
580
581	sd_config_write_same(sdkp);
582
583	return count;
584}
585static DEVICE_ATTR_RW(max_write_same_blocks);
586
587static ssize_t
588zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
589{
590	struct scsi_disk *sdkp = to_scsi_disk(dev);
591
592	if (sdkp->device->type == TYPE_ZBC)
593		return sprintf(buf, "host-managed\n");
594	if (sdkp->zoned == 1)
595		return sprintf(buf, "host-aware\n");
596	if (sdkp->zoned == 2)
597		return sprintf(buf, "drive-managed\n");
598	return sprintf(buf, "none\n");
599}
600static DEVICE_ATTR_RO(zoned_cap);
601
602static ssize_t
603max_retries_store(struct device *dev, struct device_attribute *attr,
604		  const char *buf, size_t count)
605{
606	struct scsi_disk *sdkp = to_scsi_disk(dev);
607	struct scsi_device *sdev = sdkp->device;
608	int retries, err;
609
610	err = kstrtoint(buf, 10, &retries);
611	if (err)
612		return err;
613
614	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
615		sdkp->max_retries = retries;
616		return count;
617	}
618
619	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
620		    SD_MAX_RETRIES);
621	return -EINVAL;
622}
623
624static ssize_t
625max_retries_show(struct device *dev, struct device_attribute *attr,
626		 char *buf)
627{
628	struct scsi_disk *sdkp = to_scsi_disk(dev);
629
630	return sprintf(buf, "%d\n", sdkp->max_retries);
631}
632
633static DEVICE_ATTR_RW(max_retries);
634
635static struct attribute *sd_disk_attrs[] = {
636	&dev_attr_cache_type.attr,
637	&dev_attr_FUA.attr,
638	&dev_attr_allow_restart.attr,
639	&dev_attr_manage_start_stop.attr,
640	&dev_attr_manage_system_start_stop.attr,
641	&dev_attr_manage_runtime_start_stop.attr,
642	&dev_attr_manage_shutdown.attr,
643	&dev_attr_protection_type.attr,
644	&dev_attr_protection_mode.attr,
645	&dev_attr_app_tag_own.attr,
646	&dev_attr_thin_provisioning.attr,
647	&dev_attr_provisioning_mode.attr,
648	&dev_attr_zeroing_mode.attr,
649	&dev_attr_max_write_same_blocks.attr,
650	&dev_attr_max_medium_access_timeouts.attr,
651	&dev_attr_zoned_cap.attr,
652	&dev_attr_max_retries.attr,
653	NULL,
654};
655ATTRIBUTE_GROUPS(sd_disk);
656
657static struct class sd_disk_class = {
658	.name		= "scsi_disk",
659	.dev_release	= scsi_disk_release,
660	.dev_groups	= sd_disk_groups,
661};
662
663/*
664 * Don't request a new module, as that could deadlock in multipath
665 * environment.
666 */
667static void sd_default_probe(dev_t devt)
668{
669}
670
671/*
672 * Device no to disk mapping:
673 *
674 *       major         disc2     disc  p1
675 *   |............|.............|....|....| <- dev_t
676 *    31        20 19          8 7  4 3  0
677 *
678 * Inside a major, we have 16k disks, however mapped non-
679 * contiguously. The first 16 disks are for major0, the next
680 * ones with major1, ... Disk 256 is for major0 again, disk 272
681 * for major1, ...
682 * As we stay compatible with our numbering scheme, we can reuse
683 * the well-know SCSI majors 8, 65--71, 136--143.
684 */
685static int sd_major(int major_idx)
686{
687	switch (major_idx) {
688	case 0:
689		return SCSI_DISK0_MAJOR;
690	case 1 ... 7:
691		return SCSI_DISK1_MAJOR + major_idx - 1;
692	case 8 ... 15:
693		return SCSI_DISK8_MAJOR + major_idx - 8;
694	default:
695		BUG();
696		return 0;	/* shut up gcc */
697	}
698}
699
700#ifdef CONFIG_BLK_SED_OPAL
701static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
702		size_t len, bool send)
703{
704	struct scsi_disk *sdkp = data;
705	struct scsi_device *sdev = sdkp->device;
706	u8 cdb[12] = { 0, };
707	const struct scsi_exec_args exec_args = {
708		.req_flags = BLK_MQ_REQ_PM,
709	};
710	int ret;
711
712	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
713	cdb[1] = secp;
714	put_unaligned_be16(spsp, &cdb[2]);
715	put_unaligned_be32(len, &cdb[6]);
716
717	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
718			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
719			       &exec_args);
720	return ret <= 0 ? ret : -EIO;
721}
722#endif /* CONFIG_BLK_SED_OPAL */
723
724/*
725 * Look up the DIX operation based on whether the command is read or
726 * write and whether dix and dif are enabled.
727 */
728static unsigned int sd_prot_op(bool write, bool dix, bool dif)
729{
730	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
731	static const unsigned int ops[] = {	/* wrt dix dif */
732		SCSI_PROT_NORMAL,		/*  0	0   0  */
733		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
734		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
735		SCSI_PROT_READ_PASS,		/*  0	1   1  */
736		SCSI_PROT_NORMAL,		/*  1	0   0  */
737		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
738		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
739		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
740	};
741
742	return ops[write << 2 | dix << 1 | dif];
743}
744
745/*
746 * Returns a mask of the protection flags that are valid for a given DIX
747 * operation.
748 */
749static unsigned int sd_prot_flag_mask(unsigned int prot_op)
750{
751	static const unsigned int flag_mask[] = {
752		[SCSI_PROT_NORMAL]		= 0,
753
754		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
755						  SCSI_PROT_GUARD_CHECK |
756						  SCSI_PROT_REF_CHECK |
757						  SCSI_PROT_REF_INCREMENT,
758
759		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
760						  SCSI_PROT_IP_CHECKSUM,
761
762		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
763						  SCSI_PROT_GUARD_CHECK |
764						  SCSI_PROT_REF_CHECK |
765						  SCSI_PROT_REF_INCREMENT |
766						  SCSI_PROT_IP_CHECKSUM,
767
768		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
769						  SCSI_PROT_REF_INCREMENT,
770
771		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
772						  SCSI_PROT_REF_CHECK |
773						  SCSI_PROT_REF_INCREMENT |
774						  SCSI_PROT_IP_CHECKSUM,
775
776		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
777						  SCSI_PROT_GUARD_CHECK |
778						  SCSI_PROT_REF_CHECK |
779						  SCSI_PROT_REF_INCREMENT |
780						  SCSI_PROT_IP_CHECKSUM,
781	};
782
783	return flag_mask[prot_op];
784}
785
786static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
787					   unsigned int dix, unsigned int dif)
788{
789	struct request *rq = scsi_cmd_to_rq(scmd);
790	struct bio *bio = rq->bio;
791	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
792	unsigned int protect = 0;
793
794	if (dix) {				/* DIX Type 0, 1, 2, 3 */
795		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
796			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
797
798		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
799			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
800	}
801
802	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
803		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
804
805		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
806			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
807	}
808
809	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
810		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
811
812		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
813			protect = 3 << 5;	/* Disable target PI checking */
814		else
815			protect = 1 << 5;	/* Enable target PI checking */
816	}
817
818	scsi_set_prot_op(scmd, prot_op);
819	scsi_set_prot_type(scmd, dif);
820	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
821
822	return protect;
823}
824
825static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
826{
827	struct request_queue *q = sdkp->disk->queue;
828	unsigned int logical_block_size = sdkp->device->sector_size;
829	unsigned int max_blocks = 0;
830
831	q->limits.discard_alignment =
832		sdkp->unmap_alignment * logical_block_size;
833	q->limits.discard_granularity =
834		max(sdkp->physical_block_size,
835		    sdkp->unmap_granularity * logical_block_size);
836	sdkp->provisioning_mode = mode;
837
838	switch (mode) {
839
840	case SD_LBP_FULL:
841	case SD_LBP_DISABLE:
842		blk_queue_max_discard_sectors(q, 0);
843		return;
844
845	case SD_LBP_UNMAP:
846		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
847					  (u32)SD_MAX_WS16_BLOCKS);
848		break;
849
850	case SD_LBP_WS16:
851		if (sdkp->device->unmap_limit_for_ws)
852			max_blocks = sdkp->max_unmap_blocks;
853		else
854			max_blocks = sdkp->max_ws_blocks;
855
856		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
857		break;
858
859	case SD_LBP_WS10:
860		if (sdkp->device->unmap_limit_for_ws)
861			max_blocks = sdkp->max_unmap_blocks;
862		else
863			max_blocks = sdkp->max_ws_blocks;
864
865		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
866		break;
867
868	case SD_LBP_ZERO:
869		max_blocks = min_not_zero(sdkp->max_ws_blocks,
870					  (u32)SD_MAX_WS10_BLOCKS);
871		break;
872	}
873
874	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
875}
876
877static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
878{
879	struct page *page;
880
881	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
882	if (!page)
883		return NULL;
884	clear_highpage(page);
885	bvec_set_page(&rq->special_vec, page, data_len, 0);
886	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
887	return bvec_virt(&rq->special_vec);
888}
889
890static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
891{
892	struct scsi_device *sdp = cmd->device;
893	struct request *rq = scsi_cmd_to_rq(cmd);
894	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
895	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
896	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
897	unsigned int data_len = 24;
898	char *buf;
899
900	buf = sd_set_special_bvec(rq, data_len);
901	if (!buf)
902		return BLK_STS_RESOURCE;
903
904	cmd->cmd_len = 10;
905	cmd->cmnd[0] = UNMAP;
906	cmd->cmnd[8] = 24;
907
908	put_unaligned_be16(6 + 16, &buf[0]);
909	put_unaligned_be16(16, &buf[2]);
910	put_unaligned_be64(lba, &buf[8]);
911	put_unaligned_be32(nr_blocks, &buf[16]);
912
913	cmd->allowed = sdkp->max_retries;
914	cmd->transfersize = data_len;
915	rq->timeout = SD_TIMEOUT;
916
917	return scsi_alloc_sgtables(cmd);
918}
919
920static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
921		bool unmap)
922{
923	struct scsi_device *sdp = cmd->device;
924	struct request *rq = scsi_cmd_to_rq(cmd);
925	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
926	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
927	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
928	u32 data_len = sdp->sector_size;
929
930	if (!sd_set_special_bvec(rq, data_len))
931		return BLK_STS_RESOURCE;
932
933	cmd->cmd_len = 16;
934	cmd->cmnd[0] = WRITE_SAME_16;
935	if (unmap)
936		cmd->cmnd[1] = 0x8; /* UNMAP */
937	put_unaligned_be64(lba, &cmd->cmnd[2]);
938	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
939
940	cmd->allowed = sdkp->max_retries;
941	cmd->transfersize = data_len;
942	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
943
944	return scsi_alloc_sgtables(cmd);
945}
946
947static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
948		bool unmap)
949{
950	struct scsi_device *sdp = cmd->device;
951	struct request *rq = scsi_cmd_to_rq(cmd);
952	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
953	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
954	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
955	u32 data_len = sdp->sector_size;
956
957	if (!sd_set_special_bvec(rq, data_len))
958		return BLK_STS_RESOURCE;
959
960	cmd->cmd_len = 10;
961	cmd->cmnd[0] = WRITE_SAME;
962	if (unmap)
963		cmd->cmnd[1] = 0x8; /* UNMAP */
964	put_unaligned_be32(lba, &cmd->cmnd[2]);
965	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
966
967	cmd->allowed = sdkp->max_retries;
968	cmd->transfersize = data_len;
969	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
970
971	return scsi_alloc_sgtables(cmd);
972}
973
974static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
975{
976	struct request *rq = scsi_cmd_to_rq(cmd);
977	struct scsi_device *sdp = cmd->device;
978	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
979	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
980	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
981
982	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
983		switch (sdkp->zeroing_mode) {
984		case SD_ZERO_WS16_UNMAP:
985			return sd_setup_write_same16_cmnd(cmd, true);
986		case SD_ZERO_WS10_UNMAP:
987			return sd_setup_write_same10_cmnd(cmd, true);
988		}
989	}
990
991	if (sdp->no_write_same) {
992		rq->rq_flags |= RQF_QUIET;
993		return BLK_STS_TARGET;
994	}
995
996	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
997		return sd_setup_write_same16_cmnd(cmd, false);
998
999	return sd_setup_write_same10_cmnd(cmd, false);
1000}
1001
1002static void sd_config_write_same(struct scsi_disk *sdkp)
1003{
1004	struct request_queue *q = sdkp->disk->queue;
1005	unsigned int logical_block_size = sdkp->device->sector_size;
1006
1007	if (sdkp->device->no_write_same) {
1008		sdkp->max_ws_blocks = 0;
1009		goto out;
1010	}
1011
1012	/* Some devices can not handle block counts above 0xffff despite
1013	 * supporting WRITE SAME(16). Consequently we default to 64k
1014	 * blocks per I/O unless the device explicitly advertises a
1015	 * bigger limit.
1016	 */
1017	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1018		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1019						   (u32)SD_MAX_WS16_BLOCKS);
1020	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1021		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1022						   (u32)SD_MAX_WS10_BLOCKS);
1023	else {
1024		sdkp->device->no_write_same = 1;
1025		sdkp->max_ws_blocks = 0;
1026	}
1027
1028	if (sdkp->lbprz && sdkp->lbpws)
1029		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1030	else if (sdkp->lbprz && sdkp->lbpws10)
1031		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1032	else if (sdkp->max_ws_blocks)
1033		sdkp->zeroing_mode = SD_ZERO_WS;
1034	else
1035		sdkp->zeroing_mode = SD_ZERO_WRITE;
1036
1037	if (sdkp->max_ws_blocks &&
1038	    sdkp->physical_block_size > logical_block_size) {
1039		/*
1040		 * Reporting a maximum number of blocks that is not aligned
1041		 * on the device physical size would cause a large write same
1042		 * request to be split into physically unaligned chunks by
1043		 * __blkdev_issue_write_zeroes() even if the caller of this
1044		 * functions took care to align the large request. So make sure
1045		 * the maximum reported is aligned to the device physical block
1046		 * size. This is only an optional optimization for regular
1047		 * disks, but this is mandatory to avoid failure of large write
1048		 * same requests directed at sequential write required zones of
1049		 * host-managed ZBC disks.
1050		 */
1051		sdkp->max_ws_blocks =
1052			round_down(sdkp->max_ws_blocks,
1053				   bytes_to_logical(sdkp->device,
1054						    sdkp->physical_block_size));
1055	}
1056
1057out:
1058	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1059					 (logical_block_size >> 9));
1060}
1061
1062static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1063{
1064	struct request *rq = scsi_cmd_to_rq(cmd);
1065	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1066
1067	/* flush requests don't perform I/O, zero the S/G table */
1068	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1069
1070	if (cmd->device->use_16_for_sync) {
1071		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1072		cmd->cmd_len = 16;
1073	} else {
1074		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1075		cmd->cmd_len = 10;
1076	}
1077	cmd->transfersize = 0;
1078	cmd->allowed = sdkp->max_retries;
1079
1080	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1081	return BLK_STS_OK;
1082}
1083
1084/**
1085 * sd_group_number() - Compute the GROUP NUMBER field
1086 * @cmd: SCSI command for which to compute the value of the six-bit GROUP NUMBER
1087 *	field.
1088 *
1089 * From SBC-5 r05 (https://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc5r05.pdf):
1090 * 0: no relative lifetime.
1091 * 1: shortest relative lifetime.
1092 * 2: second shortest relative lifetime.
1093 * 3 - 0x3d: intermediate relative lifetimes.
1094 * 0x3e: second longest relative lifetime.
1095 * 0x3f: longest relative lifetime.
1096 */
1097static u8 sd_group_number(struct scsi_cmnd *cmd)
1098{
1099	const struct request *rq = scsi_cmd_to_rq(cmd);
1100	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1101
1102	if (!sdkp->rscs)
1103		return 0;
1104
1105	return min3((u32)rq->write_hint, (u32)sdkp->permanent_stream_count,
1106		    0x3fu);
1107}
1108
1109static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1110				       sector_t lba, unsigned int nr_blocks,
1111				       unsigned char flags, unsigned int dld)
1112{
1113	cmd->cmd_len = SD_EXT_CDB_SIZE;
1114	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1115	cmd->cmnd[6]  = sd_group_number(cmd);
1116	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1117	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1118	cmd->cmnd[10] = flags;
1119	cmd->cmnd[11] = dld & 0x07;
1120	put_unaligned_be64(lba, &cmd->cmnd[12]);
1121	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1122	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1123
1124	return BLK_STS_OK;
1125}
1126
1127static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1128				       sector_t lba, unsigned int nr_blocks,
1129				       unsigned char flags, unsigned int dld)
1130{
1131	cmd->cmd_len  = 16;
1132	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1133	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1134	cmd->cmnd[14] = ((dld & 0x03) << 6) | sd_group_number(cmd);
1135	cmd->cmnd[15] = 0;
1136	put_unaligned_be64(lba, &cmd->cmnd[2]);
1137	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1138
1139	return BLK_STS_OK;
1140}
1141
1142static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1143				       sector_t lba, unsigned int nr_blocks,
1144				       unsigned char flags)
1145{
1146	cmd->cmd_len = 10;
1147	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1148	cmd->cmnd[1] = flags;
1149	cmd->cmnd[6] = sd_group_number(cmd);
1150	cmd->cmnd[9] = 0;
1151	put_unaligned_be32(lba, &cmd->cmnd[2]);
1152	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1153
1154	return BLK_STS_OK;
1155}
1156
1157static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1158				      sector_t lba, unsigned int nr_blocks,
1159				      unsigned char flags)
1160{
1161	/* Avoid that 0 blocks gets translated into 256 blocks. */
1162	if (WARN_ON_ONCE(nr_blocks == 0))
1163		return BLK_STS_IOERR;
1164
1165	if (unlikely(flags & 0x8)) {
1166		/*
1167		 * This happens only if this drive failed 10byte rw
1168		 * command with ILLEGAL_REQUEST during operation and
1169		 * thus turned off use_10_for_rw.
1170		 */
1171		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1172		return BLK_STS_IOERR;
1173	}
1174
1175	cmd->cmd_len = 6;
1176	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1177	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1178	cmd->cmnd[2] = (lba >> 8) & 0xff;
1179	cmd->cmnd[3] = lba & 0xff;
1180	cmd->cmnd[4] = nr_blocks;
1181	cmd->cmnd[5] = 0;
1182
1183	return BLK_STS_OK;
1184}
1185
1186/*
1187 * Check if a command has a duration limit set. If it does, and the target
1188 * device supports CDL and the feature is enabled, return the limit
1189 * descriptor index to use. Return 0 (no limit) otherwise.
1190 */
1191static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1192{
1193	struct scsi_device *sdp = sdkp->device;
1194	int hint;
1195
1196	if (!sdp->cdl_supported || !sdp->cdl_enable)
1197		return 0;
1198
1199	/*
1200	 * Use "no limit" if the request ioprio does not specify a duration
1201	 * limit hint.
1202	 */
1203	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1204	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1205	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1206		return 0;
1207
1208	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1209}
1210
1211static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1212{
1213	struct request *rq = scsi_cmd_to_rq(cmd);
1214	struct scsi_device *sdp = cmd->device;
1215	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1216	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1217	sector_t threshold;
1218	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1219	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1220	bool write = rq_data_dir(rq) == WRITE;
1221	unsigned char protect, fua;
1222	unsigned int dld;
1223	blk_status_t ret;
1224	unsigned int dif;
1225	bool dix;
1226
1227	ret = scsi_alloc_sgtables(cmd);
1228	if (ret != BLK_STS_OK)
1229		return ret;
1230
1231	ret = BLK_STS_IOERR;
1232	if (!scsi_device_online(sdp) || sdp->changed) {
1233		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1234		goto fail;
1235	}
1236
1237	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1238		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1239		goto fail;
1240	}
1241
1242	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1243		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1244		goto fail;
1245	}
1246
1247	/*
1248	 * Some SD card readers can't handle accesses which touch the
1249	 * last one or two logical blocks. Split accesses as needed.
1250	 */
1251	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1252
1253	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1254		if (lba < threshold) {
1255			/* Access up to the threshold but not beyond */
1256			nr_blocks = threshold - lba;
1257		} else {
1258			/* Access only a single logical block */
1259			nr_blocks = 1;
1260		}
1261	}
1262
1263	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1264		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1265		if (ret)
1266			goto fail;
1267	}
1268
1269	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1270	dix = scsi_prot_sg_count(cmd);
1271	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1272	dld = sd_cdl_dld(sdkp, cmd);
1273
1274	if (dif || dix)
1275		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1276	else
1277		protect = 0;
1278
1279	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1280		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1281					 protect | fua, dld);
1282	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1283		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1284					 protect | fua, dld);
1285	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1286		   sdp->use_10_for_rw || protect || rq->write_hint) {
1287		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1288					 protect | fua);
1289	} else {
1290		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1291					protect | fua);
1292	}
1293
1294	if (unlikely(ret != BLK_STS_OK))
1295		goto fail;
1296
1297	/*
1298	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1299	 * host adapter, it's safe to assume that we can at least transfer
1300	 * this many bytes between each connect / disconnect.
1301	 */
1302	cmd->transfersize = sdp->sector_size;
1303	cmd->underflow = nr_blocks << 9;
1304	cmd->allowed = sdkp->max_retries;
1305	cmd->sdb.length = nr_blocks * sdp->sector_size;
1306
1307	SCSI_LOG_HLQUEUE(1,
1308			 scmd_printk(KERN_INFO, cmd,
1309				     "%s: block=%llu, count=%d\n", __func__,
1310				     (unsigned long long)blk_rq_pos(rq),
1311				     blk_rq_sectors(rq)));
1312	SCSI_LOG_HLQUEUE(2,
1313			 scmd_printk(KERN_INFO, cmd,
1314				     "%s %d/%u 512 byte blocks.\n",
1315				     write ? "writing" : "reading", nr_blocks,
1316				     blk_rq_sectors(rq)));
1317
1318	/*
1319	 * This indicates that the command is ready from our end to be queued.
1320	 */
1321	return BLK_STS_OK;
1322fail:
1323	scsi_free_sgtables(cmd);
1324	return ret;
1325}
1326
1327static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1328{
1329	struct request *rq = scsi_cmd_to_rq(cmd);
1330
1331	switch (req_op(rq)) {
1332	case REQ_OP_DISCARD:
1333		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1334		case SD_LBP_UNMAP:
1335			return sd_setup_unmap_cmnd(cmd);
1336		case SD_LBP_WS16:
1337			return sd_setup_write_same16_cmnd(cmd, true);
1338		case SD_LBP_WS10:
1339			return sd_setup_write_same10_cmnd(cmd, true);
1340		case SD_LBP_ZERO:
1341			return sd_setup_write_same10_cmnd(cmd, false);
1342		default:
1343			return BLK_STS_TARGET;
1344		}
1345	case REQ_OP_WRITE_ZEROES:
1346		return sd_setup_write_zeroes_cmnd(cmd);
1347	case REQ_OP_FLUSH:
1348		return sd_setup_flush_cmnd(cmd);
1349	case REQ_OP_READ:
1350	case REQ_OP_WRITE:
1351	case REQ_OP_ZONE_APPEND:
1352		return sd_setup_read_write_cmnd(cmd);
1353	case REQ_OP_ZONE_RESET:
1354		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1355						   false);
1356	case REQ_OP_ZONE_RESET_ALL:
1357		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1358						   true);
1359	case REQ_OP_ZONE_OPEN:
1360		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1361	case REQ_OP_ZONE_CLOSE:
1362		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1363	case REQ_OP_ZONE_FINISH:
1364		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1365	default:
1366		WARN_ON_ONCE(1);
1367		return BLK_STS_NOTSUPP;
1368	}
1369}
1370
1371static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1372{
1373	struct request *rq = scsi_cmd_to_rq(SCpnt);
1374
1375	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1376		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1377}
1378
1379static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1380{
1381	if (sdkp->device->removable || sdkp->write_prot) {
1382		if (disk_check_media_change(disk))
1383			return true;
1384	}
1385
1386	/*
1387	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1388	 * nothing to do with partitions, BLKRRPART is used to force a full
1389	 * revalidate after things like a format for historical reasons.
1390	 */
1391	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1392}
1393
1394/**
1395 *	sd_open - open a scsi disk device
1396 *	@disk: disk to open
1397 *	@mode: open mode
1398 *
1399 *	Returns 0 if successful. Returns a negated errno value in case
1400 *	of error.
1401 *
1402 *	Note: This can be called from a user context (e.g. fsck(1) )
1403 *	or from within the kernel (e.g. as a result of a mount(1) ).
1404 *	In the latter case @inode and @filp carry an abridged amount
1405 *	of information as noted above.
1406 *
1407 *	Locking: called with disk->open_mutex held.
1408 **/
1409static int sd_open(struct gendisk *disk, blk_mode_t mode)
1410{
1411	struct scsi_disk *sdkp = scsi_disk(disk);
1412	struct scsi_device *sdev = sdkp->device;
1413	int retval;
1414
1415	if (scsi_device_get(sdev))
1416		return -ENXIO;
1417
1418	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1419
1420	/*
1421	 * If the device is in error recovery, wait until it is done.
1422	 * If the device is offline, then disallow any access to it.
1423	 */
1424	retval = -ENXIO;
1425	if (!scsi_block_when_processing_errors(sdev))
1426		goto error_out;
1427
1428	if (sd_need_revalidate(disk, sdkp))
1429		sd_revalidate_disk(disk);
1430
1431	/*
1432	 * If the drive is empty, just let the open fail.
1433	 */
1434	retval = -ENOMEDIUM;
1435	if (sdev->removable && !sdkp->media_present &&
1436	    !(mode & BLK_OPEN_NDELAY))
1437		goto error_out;
1438
1439	/*
1440	 * If the device has the write protect tab set, have the open fail
1441	 * if the user expects to be able to write to the thing.
1442	 */
1443	retval = -EROFS;
1444	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1445		goto error_out;
1446
1447	/*
1448	 * It is possible that the disk changing stuff resulted in
1449	 * the device being taken offline.  If this is the case,
1450	 * report this to the user, and don't pretend that the
1451	 * open actually succeeded.
1452	 */
1453	retval = -ENXIO;
1454	if (!scsi_device_online(sdev))
1455		goto error_out;
1456
1457	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1458		if (scsi_block_when_processing_errors(sdev))
1459			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1460	}
1461
1462	return 0;
1463
1464error_out:
1465	scsi_device_put(sdev);
1466	return retval;
1467}
1468
1469/**
1470 *	sd_release - invoked when the (last) close(2) is called on this
1471 *	scsi disk.
1472 *	@disk: disk to release
1473 *
1474 *	Returns 0.
1475 *
1476 *	Note: may block (uninterruptible) if error recovery is underway
1477 *	on this disk.
1478 *
1479 *	Locking: called with disk->open_mutex held.
1480 **/
1481static void sd_release(struct gendisk *disk)
1482{
1483	struct scsi_disk *sdkp = scsi_disk(disk);
1484	struct scsi_device *sdev = sdkp->device;
1485
1486	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1487
1488	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1489		if (scsi_block_when_processing_errors(sdev))
1490			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1491	}
1492
1493	scsi_device_put(sdev);
1494}
1495
1496static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1497{
1498	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1499	struct scsi_device *sdp = sdkp->device;
1500	struct Scsi_Host *host = sdp->host;
1501	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1502	int diskinfo[4];
1503
1504	/* default to most commonly used values */
1505	diskinfo[0] = 0x40;	/* 1 << 6 */
1506	diskinfo[1] = 0x20;	/* 1 << 5 */
1507	diskinfo[2] = capacity >> 11;
1508
1509	/* override with calculated, extended default, or driver values */
1510	if (host->hostt->bios_param)
1511		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1512	else
1513		scsicam_bios_param(bdev, capacity, diskinfo);
1514
1515	geo->heads = diskinfo[0];
1516	geo->sectors = diskinfo[1];
1517	geo->cylinders = diskinfo[2];
1518	return 0;
1519}
1520
1521/**
1522 *	sd_ioctl - process an ioctl
1523 *	@bdev: target block device
1524 *	@mode: open mode
1525 *	@cmd: ioctl command number
1526 *	@arg: this is third argument given to ioctl(2) system call.
1527 *	Often contains a pointer.
1528 *
1529 *	Returns 0 if successful (some ioctls return positive numbers on
1530 *	success as well). Returns a negated errno value in case of error.
1531 *
1532 *	Note: most ioctls are forward onto the block subsystem or further
1533 *	down in the scsi subsystem.
1534 **/
1535static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1536		    unsigned int cmd, unsigned long arg)
1537{
1538	struct gendisk *disk = bdev->bd_disk;
1539	struct scsi_disk *sdkp = scsi_disk(disk);
1540	struct scsi_device *sdp = sdkp->device;
1541	void __user *p = (void __user *)arg;
1542	int error;
1543
1544	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1545				    "cmd=0x%x\n", disk->disk_name, cmd));
1546
1547	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1548		return -ENOIOCTLCMD;
1549
1550	/*
1551	 * If we are in the middle of error recovery, don't let anyone
1552	 * else try and use this device.  Also, if error recovery fails, it
1553	 * may try and take the device offline, in which case all further
1554	 * access to the device is prohibited.
1555	 */
1556	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1557			(mode & BLK_OPEN_NDELAY));
1558	if (error)
1559		return error;
1560
1561	if (is_sed_ioctl(cmd))
1562		return sed_ioctl(sdkp->opal_dev, cmd, p);
1563	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1564}
1565
1566static void set_media_not_present(struct scsi_disk *sdkp)
1567{
1568	if (sdkp->media_present)
1569		sdkp->device->changed = 1;
1570
1571	if (sdkp->device->removable) {
1572		sdkp->media_present = 0;
1573		sdkp->capacity = 0;
1574	}
1575}
1576
1577static int media_not_present(struct scsi_disk *sdkp,
1578			     struct scsi_sense_hdr *sshdr)
1579{
1580	if (!scsi_sense_valid(sshdr))
1581		return 0;
1582
1583	/* not invoked for commands that could return deferred errors */
1584	switch (sshdr->sense_key) {
1585	case UNIT_ATTENTION:
1586	case NOT_READY:
1587		/* medium not present */
1588		if (sshdr->asc == 0x3A) {
1589			set_media_not_present(sdkp);
1590			return 1;
1591		}
1592	}
1593	return 0;
1594}
1595
1596/**
1597 *	sd_check_events - check media events
1598 *	@disk: kernel device descriptor
1599 *	@clearing: disk events currently being cleared
1600 *
1601 *	Returns mask of DISK_EVENT_*.
1602 *
1603 *	Note: this function is invoked from the block subsystem.
1604 **/
1605static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1606{
1607	struct scsi_disk *sdkp = disk->private_data;
1608	struct scsi_device *sdp;
1609	int retval;
1610	bool disk_changed;
1611
1612	if (!sdkp)
1613		return 0;
1614
1615	sdp = sdkp->device;
1616	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1617
1618	/*
1619	 * If the device is offline, don't send any commands - just pretend as
1620	 * if the command failed.  If the device ever comes back online, we
1621	 * can deal with it then.  It is only because of unrecoverable errors
1622	 * that we would ever take a device offline in the first place.
1623	 */
1624	if (!scsi_device_online(sdp)) {
1625		set_media_not_present(sdkp);
1626		goto out;
1627	}
1628
1629	/*
1630	 * Using TEST_UNIT_READY enables differentiation between drive with
1631	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1632	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1633	 *
1634	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1635	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1636	 * sd_revalidate() is called.
1637	 */
1638	if (scsi_block_when_processing_errors(sdp)) {
1639		struct scsi_sense_hdr sshdr = { 0, };
1640
1641		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1642					      &sshdr);
1643
1644		/* failed to execute TUR, assume media not present */
1645		if (retval < 0 || host_byte(retval)) {
1646			set_media_not_present(sdkp);
1647			goto out;
1648		}
1649
1650		if (media_not_present(sdkp, &sshdr))
1651			goto out;
1652	}
1653
1654	/*
1655	 * For removable scsi disk we have to recognise the presence
1656	 * of a disk in the drive.
1657	 */
1658	if (!sdkp->media_present)
1659		sdp->changed = 1;
1660	sdkp->media_present = 1;
1661out:
1662	/*
1663	 * sdp->changed is set under the following conditions:
1664	 *
1665	 *	Medium present state has changed in either direction.
1666	 *	Device has indicated UNIT_ATTENTION.
1667	 */
1668	disk_changed = sdp->changed;
1669	sdp->changed = 0;
1670	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1671}
1672
1673static int sd_sync_cache(struct scsi_disk *sdkp)
1674{
1675	int res;
1676	struct scsi_device *sdp = sdkp->device;
1677	const int timeout = sdp->request_queue->rq_timeout
1678		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1679	/* Leave the rest of the command zero to indicate flush everything. */
1680	const unsigned char cmd[16] = { sdp->use_16_for_sync ?
1681				SYNCHRONIZE_CACHE_16 : SYNCHRONIZE_CACHE };
1682	struct scsi_sense_hdr sshdr;
1683	struct scsi_failure failure_defs[] = {
1684		{
1685			.allowed = 3,
1686			.result = SCMD_FAILURE_RESULT_ANY,
1687		},
1688		{}
1689	};
1690	struct scsi_failures failures = {
1691		.failure_definitions = failure_defs,
1692	};
1693	const struct scsi_exec_args exec_args = {
1694		.req_flags = BLK_MQ_REQ_PM,
1695		.sshdr = &sshdr,
1696		.failures = &failures,
1697	};
1698
1699	if (!scsi_device_online(sdp))
1700		return -ENODEV;
1701
1702	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, timeout,
1703			       sdkp->max_retries, &exec_args);
1704	if (res) {
1705		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1706
1707		if (res < 0)
1708			return res;
1709
1710		if (scsi_status_is_check_condition(res) &&
1711		    scsi_sense_valid(&sshdr)) {
1712			sd_print_sense_hdr(sdkp, &sshdr);
1713
1714			/* we need to evaluate the error return  */
1715			if (sshdr.asc == 0x3a ||	/* medium not present */
1716			    sshdr.asc == 0x20 ||	/* invalid command */
1717			    (sshdr.asc == 0x74 && sshdr.ascq == 0x71))	/* drive is password locked */
1718				/* this is no error here */
1719				return 0;
1720			/*
1721			 * This drive doesn't support sync and there's not much
1722			 * we can do because this is called during shutdown
1723			 * or suspend so just return success so those operations
1724			 * can proceed.
1725			 */
1726			if (sshdr.sense_key == ILLEGAL_REQUEST)
1727				return 0;
1728		}
1729
1730		switch (host_byte(res)) {
1731		/* ignore errors due to racing a disconnection */
1732		case DID_BAD_TARGET:
1733		case DID_NO_CONNECT:
1734			return 0;
1735		/* signal the upper layer it might try again */
1736		case DID_BUS_BUSY:
1737		case DID_IMM_RETRY:
1738		case DID_REQUEUE:
1739		case DID_SOFT_ERROR:
1740			return -EBUSY;
1741		default:
1742			return -EIO;
1743		}
1744	}
1745	return 0;
1746}
1747
1748static void sd_rescan(struct device *dev)
1749{
1750	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1751
1752	sd_revalidate_disk(sdkp->disk);
1753}
1754
1755static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1756		enum blk_unique_id type)
1757{
1758	struct scsi_device *sdev = scsi_disk(disk)->device;
1759	const struct scsi_vpd *vpd;
1760	const unsigned char *d;
1761	int ret = -ENXIO, len;
1762
1763	rcu_read_lock();
1764	vpd = rcu_dereference(sdev->vpd_pg83);
1765	if (!vpd)
1766		goto out_unlock;
1767
1768	ret = -EINVAL;
1769	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1770		/* we only care about designators with LU association */
1771		if (((d[1] >> 4) & 0x3) != 0x00)
1772			continue;
1773		if ((d[1] & 0xf) != type)
1774			continue;
1775
1776		/*
1777		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1778		 * keep looking as one with more entropy might still show up.
1779		 */
1780		len = d[3];
1781		if (len != 8 && len != 12 && len != 16)
1782			continue;
1783		ret = len;
1784		memcpy(id, d + 4, len);
1785		if (len == 16)
1786			break;
1787	}
1788out_unlock:
1789	rcu_read_unlock();
1790	return ret;
1791}
1792
1793static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1794{
1795	switch (host_byte(result)) {
1796	case DID_TRANSPORT_MARGINAL:
1797	case DID_TRANSPORT_DISRUPTED:
1798	case DID_BUS_BUSY:
1799		return PR_STS_RETRY_PATH_FAILURE;
1800	case DID_NO_CONNECT:
1801		return PR_STS_PATH_FAILED;
1802	case DID_TRANSPORT_FAILFAST:
1803		return PR_STS_PATH_FAST_FAILED;
1804	}
1805
1806	switch (status_byte(result)) {
1807	case SAM_STAT_RESERVATION_CONFLICT:
1808		return PR_STS_RESERVATION_CONFLICT;
1809	case SAM_STAT_CHECK_CONDITION:
1810		if (!scsi_sense_valid(sshdr))
1811			return PR_STS_IOERR;
1812
1813		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1814		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1815			return -EINVAL;
1816
1817		fallthrough;
1818	default:
1819		return PR_STS_IOERR;
1820	}
1821}
1822
1823static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1824			    unsigned char *data, int data_len)
1825{
1826	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1827	struct scsi_device *sdev = sdkp->device;
1828	struct scsi_sense_hdr sshdr;
1829	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1830	struct scsi_failure failure_defs[] = {
1831		{
1832			.sense = UNIT_ATTENTION,
1833			.asc = SCMD_FAILURE_ASC_ANY,
1834			.ascq = SCMD_FAILURE_ASCQ_ANY,
1835			.allowed = 5,
1836			.result = SAM_STAT_CHECK_CONDITION,
1837		},
1838		{}
1839	};
1840	struct scsi_failures failures = {
1841		.failure_definitions = failure_defs,
1842	};
1843	const struct scsi_exec_args exec_args = {
1844		.sshdr = &sshdr,
1845		.failures = &failures,
1846	};
1847	int result;
1848
1849	put_unaligned_be16(data_len, &cmd[7]);
1850
1851	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1852				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1853	if (scsi_status_is_check_condition(result) &&
1854	    scsi_sense_valid(&sshdr)) {
1855		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1856		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1857	}
1858
1859	if (result <= 0)
1860		return result;
1861
1862	return sd_scsi_to_pr_err(&sshdr, result);
1863}
1864
1865static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1866{
1867	int result, i, data_offset, num_copy_keys;
1868	u32 num_keys = keys_info->num_keys;
1869	int data_len = num_keys * 8 + 8;
1870	u8 *data;
1871
1872	data = kzalloc(data_len, GFP_KERNEL);
1873	if (!data)
1874		return -ENOMEM;
1875
1876	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1877	if (result)
1878		goto free_data;
1879
1880	keys_info->generation = get_unaligned_be32(&data[0]);
1881	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1882
1883	data_offset = 8;
1884	num_copy_keys = min(num_keys, keys_info->num_keys);
1885
1886	for (i = 0; i < num_copy_keys; i++) {
1887		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1888		data_offset += 8;
1889	}
1890
1891free_data:
1892	kfree(data);
1893	return result;
1894}
1895
1896static int sd_pr_read_reservation(struct block_device *bdev,
1897				  struct pr_held_reservation *rsv)
1898{
1899	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1900	struct scsi_device *sdev = sdkp->device;
1901	u8 data[24] = { };
1902	int result, len;
1903
1904	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1905	if (result)
1906		return result;
1907
1908	len = get_unaligned_be32(&data[4]);
1909	if (!len)
1910		return 0;
1911
1912	/* Make sure we have at least the key and type */
1913	if (len < 14) {
1914		sdev_printk(KERN_INFO, sdev,
1915			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
1916			    len);
1917		return -EINVAL;
1918	}
1919
1920	rsv->generation = get_unaligned_be32(&data[0]);
1921	rsv->key = get_unaligned_be64(&data[8]);
1922	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1923	return 0;
1924}
1925
1926static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1927			     u64 sa_key, enum scsi_pr_type type, u8 flags)
1928{
1929	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1930	struct scsi_device *sdev = sdkp->device;
1931	struct scsi_sense_hdr sshdr;
1932	struct scsi_failure failure_defs[] = {
1933		{
1934			.sense = UNIT_ATTENTION,
1935			.asc = SCMD_FAILURE_ASC_ANY,
1936			.ascq = SCMD_FAILURE_ASCQ_ANY,
1937			.allowed = 5,
1938			.result = SAM_STAT_CHECK_CONDITION,
1939		},
1940		{}
1941	};
1942	struct scsi_failures failures = {
1943		.failure_definitions = failure_defs,
1944	};
1945	const struct scsi_exec_args exec_args = {
1946		.sshdr = &sshdr,
1947		.failures = &failures,
1948	};
1949	int result;
1950	u8 cmd[16] = { 0, };
1951	u8 data[24] = { 0, };
1952
1953	cmd[0] = PERSISTENT_RESERVE_OUT;
1954	cmd[1] = sa;
1955	cmd[2] = type;
1956	put_unaligned_be32(sizeof(data), &cmd[5]);
1957
1958	put_unaligned_be64(key, &data[0]);
1959	put_unaligned_be64(sa_key, &data[8]);
1960	data[20] = flags;
1961
1962	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1963				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1964				  &exec_args);
1965
1966	if (scsi_status_is_check_condition(result) &&
1967	    scsi_sense_valid(&sshdr)) {
1968		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1969		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1970	}
1971
1972	if (result <= 0)
1973		return result;
1974
1975	return sd_scsi_to_pr_err(&sshdr, result);
1976}
1977
1978static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1979		u32 flags)
1980{
1981	if (flags & ~PR_FL_IGNORE_KEY)
1982		return -EOPNOTSUPP;
1983	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1984			old_key, new_key, 0,
1985			(1 << 0) /* APTPL */);
1986}
1987
1988static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1989		u32 flags)
1990{
1991	if (flags)
1992		return -EOPNOTSUPP;
1993	return sd_pr_out_command(bdev, 0x01, key, 0,
1994				 block_pr_type_to_scsi(type), 0);
1995}
1996
1997static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1998{
1999	return sd_pr_out_command(bdev, 0x02, key, 0,
2000				 block_pr_type_to_scsi(type), 0);
2001}
2002
2003static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2004		enum pr_type type, bool abort)
2005{
2006	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
2007				 block_pr_type_to_scsi(type), 0);
2008}
2009
2010static int sd_pr_clear(struct block_device *bdev, u64 key)
2011{
2012	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
2013}
2014
2015static const struct pr_ops sd_pr_ops = {
2016	.pr_register	= sd_pr_register,
2017	.pr_reserve	= sd_pr_reserve,
2018	.pr_release	= sd_pr_release,
2019	.pr_preempt	= sd_pr_preempt,
2020	.pr_clear	= sd_pr_clear,
2021	.pr_read_keys	= sd_pr_read_keys,
2022	.pr_read_reservation = sd_pr_read_reservation,
2023};
2024
2025static void scsi_disk_free_disk(struct gendisk *disk)
2026{
2027	struct scsi_disk *sdkp = scsi_disk(disk);
2028
2029	put_device(&sdkp->disk_dev);
2030}
2031
2032static const struct block_device_operations sd_fops = {
2033	.owner			= THIS_MODULE,
2034	.open			= sd_open,
2035	.release		= sd_release,
2036	.ioctl			= sd_ioctl,
2037	.getgeo			= sd_getgeo,
2038	.compat_ioctl		= blkdev_compat_ptr_ioctl,
2039	.check_events		= sd_check_events,
2040	.unlock_native_capacity	= sd_unlock_native_capacity,
2041	.report_zones		= sd_zbc_report_zones,
2042	.get_unique_id		= sd_get_unique_id,
2043	.free_disk		= scsi_disk_free_disk,
2044	.pr_ops			= &sd_pr_ops,
2045};
2046
2047/**
2048 *	sd_eh_reset - reset error handling callback
2049 *	@scmd:		sd-issued command that has failed
2050 *
2051 *	This function is called by the SCSI midlayer before starting
2052 *	SCSI EH. When counting medium access failures we have to be
2053 *	careful to register it only only once per device and SCSI EH run;
2054 *	there might be several timed out commands which will cause the
2055 *	'max_medium_access_timeouts' counter to trigger after the first
2056 *	SCSI EH run already and set the device to offline.
2057 *	So this function resets the internal counter before starting SCSI EH.
2058 **/
2059static void sd_eh_reset(struct scsi_cmnd *scmd)
2060{
2061	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2062
2063	/* New SCSI EH run, reset gate variable */
2064	sdkp->ignore_medium_access_errors = false;
2065}
2066
2067/**
2068 *	sd_eh_action - error handling callback
2069 *	@scmd:		sd-issued command that has failed
2070 *	@eh_disp:	The recovery disposition suggested by the midlayer
2071 *
2072 *	This function is called by the SCSI midlayer upon completion of an
2073 *	error test command (currently TEST UNIT READY). The result of sending
2074 *	the eh command is passed in eh_disp.  We're looking for devices that
2075 *	fail medium access commands but are OK with non access commands like
2076 *	test unit ready (so wrongly see the device as having a successful
2077 *	recovery)
2078 **/
2079static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2080{
2081	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2082	struct scsi_device *sdev = scmd->device;
2083
2084	if (!scsi_device_online(sdev) ||
2085	    !scsi_medium_access_command(scmd) ||
2086	    host_byte(scmd->result) != DID_TIME_OUT ||
2087	    eh_disp != SUCCESS)
2088		return eh_disp;
2089
2090	/*
2091	 * The device has timed out executing a medium access command.
2092	 * However, the TEST UNIT READY command sent during error
2093	 * handling completed successfully. Either the device is in the
2094	 * process of recovering or has it suffered an internal failure
2095	 * that prevents access to the storage medium.
2096	 */
2097	if (!sdkp->ignore_medium_access_errors) {
2098		sdkp->medium_access_timed_out++;
2099		sdkp->ignore_medium_access_errors = true;
2100	}
2101
2102	/*
2103	 * If the device keeps failing read/write commands but TEST UNIT
2104	 * READY always completes successfully we assume that medium
2105	 * access is no longer possible and take the device offline.
2106	 */
2107	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2108		scmd_printk(KERN_ERR, scmd,
2109			    "Medium access timeout failure. Offlining disk!\n");
2110		mutex_lock(&sdev->state_mutex);
2111		scsi_device_set_state(sdev, SDEV_OFFLINE);
2112		mutex_unlock(&sdev->state_mutex);
2113
2114		return SUCCESS;
2115	}
2116
2117	return eh_disp;
2118}
2119
2120static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2121{
2122	struct request *req = scsi_cmd_to_rq(scmd);
2123	struct scsi_device *sdev = scmd->device;
2124	unsigned int transferred, good_bytes;
2125	u64 start_lba, end_lba, bad_lba;
2126
2127	/*
2128	 * Some commands have a payload smaller than the device logical
2129	 * block size (e.g. INQUIRY on a 4K disk).
2130	 */
2131	if (scsi_bufflen(scmd) <= sdev->sector_size)
2132		return 0;
2133
2134	/* Check if we have a 'bad_lba' information */
2135	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2136				     SCSI_SENSE_BUFFERSIZE,
2137				     &bad_lba))
2138		return 0;
2139
2140	/*
2141	 * If the bad lba was reported incorrectly, we have no idea where
2142	 * the error is.
2143	 */
2144	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2145	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2146	if (bad_lba < start_lba || bad_lba >= end_lba)
2147		return 0;
2148
2149	/*
2150	 * resid is optional but mostly filled in.  When it's unused,
2151	 * its value is zero, so we assume the whole buffer transferred
2152	 */
2153	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2154
2155	/* This computation should always be done in terms of the
2156	 * resolution of the device's medium.
2157	 */
2158	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2159
2160	return min(good_bytes, transferred);
2161}
2162
2163/**
2164 *	sd_done - bottom half handler: called when the lower level
2165 *	driver has completed (successfully or otherwise) a scsi command.
2166 *	@SCpnt: mid-level's per command structure.
2167 *
2168 *	Note: potentially run from within an ISR. Must not block.
2169 **/
2170static int sd_done(struct scsi_cmnd *SCpnt)
2171{
2172	int result = SCpnt->result;
2173	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2174	unsigned int sector_size = SCpnt->device->sector_size;
2175	unsigned int resid;
2176	struct scsi_sense_hdr sshdr;
2177	struct request *req = scsi_cmd_to_rq(SCpnt);
2178	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2179	int sense_valid = 0;
2180	int sense_deferred = 0;
2181
2182	switch (req_op(req)) {
2183	case REQ_OP_DISCARD:
2184	case REQ_OP_WRITE_ZEROES:
2185	case REQ_OP_ZONE_RESET:
2186	case REQ_OP_ZONE_RESET_ALL:
2187	case REQ_OP_ZONE_OPEN:
2188	case REQ_OP_ZONE_CLOSE:
2189	case REQ_OP_ZONE_FINISH:
2190		if (!result) {
2191			good_bytes = blk_rq_bytes(req);
2192			scsi_set_resid(SCpnt, 0);
2193		} else {
2194			good_bytes = 0;
2195			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2196		}
2197		break;
2198	default:
2199		/*
2200		 * In case of bogus fw or device, we could end up having
2201		 * an unaligned partial completion. Check this here and force
2202		 * alignment.
2203		 */
2204		resid = scsi_get_resid(SCpnt);
2205		if (resid & (sector_size - 1)) {
2206			sd_printk(KERN_INFO, sdkp,
2207				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2208				resid, sector_size);
2209			scsi_print_command(SCpnt);
2210			resid = min(scsi_bufflen(SCpnt),
2211				    round_up(resid, sector_size));
2212			scsi_set_resid(SCpnt, resid);
2213		}
2214	}
2215
2216	if (result) {
2217		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2218		if (sense_valid)
2219			sense_deferred = scsi_sense_is_deferred(&sshdr);
2220	}
2221	sdkp->medium_access_timed_out = 0;
2222
2223	if (!scsi_status_is_check_condition(result) &&
2224	    (!sense_valid || sense_deferred))
2225		goto out;
2226
2227	switch (sshdr.sense_key) {
2228	case HARDWARE_ERROR:
2229	case MEDIUM_ERROR:
2230		good_bytes = sd_completed_bytes(SCpnt);
2231		break;
2232	case RECOVERED_ERROR:
2233		good_bytes = scsi_bufflen(SCpnt);
2234		break;
2235	case NO_SENSE:
2236		/* This indicates a false check condition, so ignore it.  An
2237		 * unknown amount of data was transferred so treat it as an
2238		 * error.
2239		 */
2240		SCpnt->result = 0;
2241		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2242		break;
2243	case ABORTED_COMMAND:
2244		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2245			good_bytes = sd_completed_bytes(SCpnt);
2246		break;
2247	case ILLEGAL_REQUEST:
2248		switch (sshdr.asc) {
2249		case 0x10:	/* DIX: Host detected corruption */
2250			good_bytes = sd_completed_bytes(SCpnt);
2251			break;
2252		case 0x20:	/* INVALID COMMAND OPCODE */
2253		case 0x24:	/* INVALID FIELD IN CDB */
2254			switch (SCpnt->cmnd[0]) {
2255			case UNMAP:
2256				sd_config_discard(sdkp, SD_LBP_DISABLE);
2257				break;
2258			case WRITE_SAME_16:
2259			case WRITE_SAME:
2260				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2261					sd_config_discard(sdkp, SD_LBP_DISABLE);
2262				} else {
2263					sdkp->device->no_write_same = 1;
2264					sd_config_write_same(sdkp);
2265					req->rq_flags |= RQF_QUIET;
2266				}
2267				break;
2268			}
2269		}
2270		break;
2271	default:
2272		break;
2273	}
2274
2275 out:
2276	if (sd_is_zoned(sdkp))
2277		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2278
2279	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2280					   "sd_done: completed %d of %d bytes\n",
2281					   good_bytes, scsi_bufflen(SCpnt)));
2282
2283	return good_bytes;
2284}
2285
2286/*
2287 * spinup disk - called only in sd_revalidate_disk()
2288 */
2289static void
2290sd_spinup_disk(struct scsi_disk *sdkp)
2291{
2292	static const u8 cmd[10] = { TEST_UNIT_READY };
2293	unsigned long spintime_expire = 0;
2294	int spintime, sense_valid = 0;
2295	unsigned int the_result;
2296	struct scsi_sense_hdr sshdr;
2297	struct scsi_failure failure_defs[] = {
2298		/* Do not retry Medium Not Present */
2299		{
2300			.sense = UNIT_ATTENTION,
2301			.asc = 0x3A,
2302			.ascq = SCMD_FAILURE_ASCQ_ANY,
2303			.result = SAM_STAT_CHECK_CONDITION,
2304		},
2305		{
2306			.sense = NOT_READY,
2307			.asc = 0x3A,
2308			.ascq = SCMD_FAILURE_ASCQ_ANY,
2309			.result = SAM_STAT_CHECK_CONDITION,
2310		},
2311		/* Retry when scsi_status_is_good would return false 3 times */
2312		{
2313			.result = SCMD_FAILURE_STAT_ANY,
2314			.allowed = 3,
2315		},
2316		{}
2317	};
2318	struct scsi_failures failures = {
2319		.failure_definitions = failure_defs,
2320	};
2321	const struct scsi_exec_args exec_args = {
2322		.sshdr = &sshdr,
2323		.failures = &failures,
2324	};
2325
2326	spintime = 0;
2327
2328	/* Spin up drives, as required.  Only do this at boot time */
2329	/* Spinup needs to be done for module loads too. */
2330	do {
2331		bool media_was_present = sdkp->media_present;
2332
2333		scsi_failures_reset_retries(&failures);
2334
2335		the_result = scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN,
2336					      NULL, 0, SD_TIMEOUT,
2337					      sdkp->max_retries, &exec_args);
2338
2339
2340		if (the_result > 0) {
2341			/*
2342			 * If the drive has indicated to us that it doesn't
2343			 * have any media in it, don't bother with any more
2344			 * polling.
2345			 */
2346			if (media_not_present(sdkp, &sshdr)) {
2347				if (media_was_present)
2348					sd_printk(KERN_NOTICE, sdkp,
2349						  "Media removed, stopped polling\n");
2350				return;
2351			}
2352			sense_valid = scsi_sense_valid(&sshdr);
2353		}
2354
2355		if (!scsi_status_is_check_condition(the_result)) {
2356			/* no sense, TUR either succeeded or failed
2357			 * with a status error */
2358			if(!spintime && !scsi_status_is_good(the_result)) {
2359				sd_print_result(sdkp, "Test Unit Ready failed",
2360						the_result);
2361			}
2362			break;
2363		}
2364
2365		/*
2366		 * The device does not want the automatic start to be issued.
2367		 */
2368		if (sdkp->device->no_start_on_add)
2369			break;
2370
2371		if (sense_valid && sshdr.sense_key == NOT_READY) {
2372			if (sshdr.asc == 4 && sshdr.ascq == 3)
2373				break;	/* manual intervention required */
2374			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2375				break;	/* standby */
2376			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2377				break;	/* unavailable */
2378			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2379				break;	/* sanitize in progress */
2380			if (sshdr.asc == 4 && sshdr.ascq == 0x24)
2381				break;	/* depopulation in progress */
2382			if (sshdr.asc == 4 && sshdr.ascq == 0x25)
2383				break;	/* depopulation restoration in progress */
2384			/*
2385			 * Issue command to spin up drive when not ready
2386			 */
2387			if (!spintime) {
2388				/* Return immediately and start spin cycle */
2389				const u8 start_cmd[10] = {
2390					[0] = START_STOP,
2391					[1] = 1,
2392					[4] = sdkp->device->start_stop_pwr_cond ?
2393						0x11 : 1,
2394				};
2395
2396				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2397				scsi_execute_cmd(sdkp->device, start_cmd,
2398						 REQ_OP_DRV_IN, NULL, 0,
2399						 SD_TIMEOUT, sdkp->max_retries,
2400						 &exec_args);
2401				spintime_expire = jiffies + 100 * HZ;
2402				spintime = 1;
2403			}
2404			/* Wait 1 second for next try */
2405			msleep(1000);
2406			printk(KERN_CONT ".");
2407
2408		/*
2409		 * Wait for USB flash devices with slow firmware.
2410		 * Yes, this sense key/ASC combination shouldn't
2411		 * occur here.  It's characteristic of these devices.
2412		 */
2413		} else if (sense_valid &&
2414				sshdr.sense_key == UNIT_ATTENTION &&
2415				sshdr.asc == 0x28) {
2416			if (!spintime) {
2417				spintime_expire = jiffies + 5 * HZ;
2418				spintime = 1;
2419			}
2420			/* Wait 1 second for next try */
2421			msleep(1000);
2422		} else {
2423			/* we don't understand the sense code, so it's
2424			 * probably pointless to loop */
2425			if(!spintime) {
2426				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2427				sd_print_sense_hdr(sdkp, &sshdr);
2428			}
2429			break;
2430		}
2431
2432	} while (spintime && time_before_eq(jiffies, spintime_expire));
2433
2434	if (spintime) {
2435		if (scsi_status_is_good(the_result))
2436			printk(KERN_CONT "ready\n");
2437		else
2438			printk(KERN_CONT "not responding...\n");
2439	}
2440}
2441
2442/*
2443 * Determine whether disk supports Data Integrity Field.
2444 */
2445static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2446{
2447	struct scsi_device *sdp = sdkp->device;
2448	u8 type;
2449
2450	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2451		sdkp->protection_type = 0;
2452		return 0;
2453	}
2454
2455	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2456
2457	if (type > T10_PI_TYPE3_PROTECTION) {
2458		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2459			  " protection type %u. Disabling disk!\n",
2460			  type);
2461		sdkp->protection_type = 0;
2462		return -ENODEV;
2463	}
2464
2465	sdkp->protection_type = type;
2466
2467	return 0;
2468}
2469
2470static void sd_config_protection(struct scsi_disk *sdkp)
2471{
2472	struct scsi_device *sdp = sdkp->device;
2473
2474	sd_dif_config_host(sdkp);
2475
2476	if (!sdkp->protection_type)
2477		return;
2478
2479	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2480		sd_first_printk(KERN_NOTICE, sdkp,
2481				"Disabling DIF Type %u protection\n",
2482				sdkp->protection_type);
2483		sdkp->protection_type = 0;
2484	}
2485
2486	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2487			sdkp->protection_type);
2488}
2489
2490static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2491			struct scsi_sense_hdr *sshdr, int sense_valid,
2492			int the_result)
2493{
2494	if (sense_valid)
2495		sd_print_sense_hdr(sdkp, sshdr);
2496	else
2497		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2498
2499	/*
2500	 * Set dirty bit for removable devices if not ready -
2501	 * sometimes drives will not report this properly.
2502	 */
2503	if (sdp->removable &&
2504	    sense_valid && sshdr->sense_key == NOT_READY)
2505		set_media_not_present(sdkp);
2506
2507	/*
2508	 * We used to set media_present to 0 here to indicate no media
2509	 * in the drive, but some drives fail read capacity even with
2510	 * media present, so we can't do that.
2511	 */
2512	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2513}
2514
2515#define RC16_LEN 32
2516#if RC16_LEN > SD_BUF_SIZE
2517#error RC16_LEN must not be more than SD_BUF_SIZE
2518#endif
2519
2520#define READ_CAPACITY_RETRIES_ON_RESET	10
2521
2522static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2523						unsigned char *buffer)
2524{
2525	unsigned char cmd[16];
2526	struct scsi_sense_hdr sshdr;
2527	const struct scsi_exec_args exec_args = {
2528		.sshdr = &sshdr,
2529	};
2530	int sense_valid = 0;
2531	int the_result;
2532	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2533	unsigned int alignment;
2534	unsigned long long lba;
2535	unsigned sector_size;
2536
2537	if (sdp->no_read_capacity_16)
2538		return -EINVAL;
2539
2540	do {
2541		memset(cmd, 0, 16);
2542		cmd[0] = SERVICE_ACTION_IN_16;
2543		cmd[1] = SAI_READ_CAPACITY_16;
2544		cmd[13] = RC16_LEN;
2545		memset(buffer, 0, RC16_LEN);
2546
2547		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2548					      buffer, RC16_LEN, SD_TIMEOUT,
2549					      sdkp->max_retries, &exec_args);
2550		if (the_result > 0) {
2551			if (media_not_present(sdkp, &sshdr))
2552				return -ENODEV;
2553
2554			sense_valid = scsi_sense_valid(&sshdr);
2555			if (sense_valid &&
2556			    sshdr.sense_key == ILLEGAL_REQUEST &&
2557			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2558			    sshdr.ascq == 0x00)
2559				/* Invalid Command Operation Code or
2560				 * Invalid Field in CDB, just retry
2561				 * silently with RC10 */
2562				return -EINVAL;
2563			if (sense_valid &&
2564			    sshdr.sense_key == UNIT_ATTENTION &&
2565			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2566				/* Device reset might occur several times,
2567				 * give it one more chance */
2568				if (--reset_retries > 0)
2569					continue;
2570		}
2571		retries--;
2572
2573	} while (the_result && retries);
2574
2575	if (the_result) {
2576		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2577		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2578		return -EINVAL;
2579	}
2580
2581	sector_size = get_unaligned_be32(&buffer[8]);
2582	lba = get_unaligned_be64(&buffer[0]);
2583
2584	if (sd_read_protection_type(sdkp, buffer) < 0) {
2585		sdkp->capacity = 0;
2586		return -ENODEV;
2587	}
2588
2589	/* Logical blocks per physical block exponent */
2590	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2591
2592	/* RC basis */
2593	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2594
2595	/* Lowest aligned logical block */
2596	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2597	blk_queue_alignment_offset(sdp->request_queue, alignment);
2598	if (alignment && sdkp->first_scan)
2599		sd_printk(KERN_NOTICE, sdkp,
2600			  "physical block alignment offset: %u\n", alignment);
2601
2602	if (buffer[14] & 0x80) { /* LBPME */
2603		sdkp->lbpme = 1;
2604
2605		if (buffer[14] & 0x40) /* LBPRZ */
2606			sdkp->lbprz = 1;
2607
2608		sd_config_discard(sdkp, SD_LBP_WS16);
2609	}
2610
2611	sdkp->capacity = lba + 1;
2612	return sector_size;
2613}
2614
2615static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2616						unsigned char *buffer)
2617{
2618	static const u8 cmd[10] = { READ_CAPACITY };
2619	struct scsi_sense_hdr sshdr;
2620	struct scsi_failure failure_defs[] = {
2621		/* Do not retry Medium Not Present */
2622		{
2623			.sense = UNIT_ATTENTION,
2624			.asc = 0x3A,
2625			.result = SAM_STAT_CHECK_CONDITION,
2626		},
2627		{
2628			.sense = NOT_READY,
2629			.asc = 0x3A,
2630			.result = SAM_STAT_CHECK_CONDITION,
2631		},
2632		 /* Device reset might occur several times so retry a lot */
2633		{
2634			.sense = UNIT_ATTENTION,
2635			.asc = 0x29,
2636			.allowed = READ_CAPACITY_RETRIES_ON_RESET,
2637			.result = SAM_STAT_CHECK_CONDITION,
2638		},
2639		/* Any other error not listed above retry 3 times */
2640		{
2641			.result = SCMD_FAILURE_RESULT_ANY,
2642			.allowed = 3,
2643		},
2644		{}
2645	};
2646	struct scsi_failures failures = {
2647		.failure_definitions = failure_defs,
2648	};
2649	const struct scsi_exec_args exec_args = {
2650		.sshdr = &sshdr,
2651		.failures = &failures,
2652	};
2653	int sense_valid = 0;
2654	int the_result;
2655	sector_t lba;
2656	unsigned sector_size;
2657
2658	memset(buffer, 0, 8);
2659
2660	the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2661				      8, SD_TIMEOUT, sdkp->max_retries,
2662				      &exec_args);
2663
2664	if (the_result > 0) {
2665		sense_valid = scsi_sense_valid(&sshdr);
2666
2667		if (media_not_present(sdkp, &sshdr))
2668			return -ENODEV;
2669	}
2670
2671	if (the_result) {
2672		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2673		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2674		return -EINVAL;
2675	}
2676
2677	sector_size = get_unaligned_be32(&buffer[4]);
2678	lba = get_unaligned_be32(&buffer[0]);
2679
2680	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2681		/* Some buggy (usb cardreader) devices return an lba of
2682		   0xffffffff when the want to report a size of 0 (with
2683		   which they really mean no media is present) */
2684		sdkp->capacity = 0;
2685		sdkp->physical_block_size = sector_size;
2686		return sector_size;
2687	}
2688
2689	sdkp->capacity = lba + 1;
2690	sdkp->physical_block_size = sector_size;
2691	return sector_size;
2692}
2693
2694static int sd_try_rc16_first(struct scsi_device *sdp)
2695{
2696	if (sdp->host->max_cmd_len < 16)
2697		return 0;
2698	if (sdp->try_rc_10_first)
2699		return 0;
2700	if (sdp->scsi_level > SCSI_SPC_2)
2701		return 1;
2702	if (scsi_device_protection(sdp))
2703		return 1;
2704	return 0;
2705}
2706
2707/*
2708 * read disk capacity
2709 */
2710static void
2711sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2712{
2713	int sector_size;
2714	struct scsi_device *sdp = sdkp->device;
2715
2716	if (sd_try_rc16_first(sdp)) {
2717		sector_size = read_capacity_16(sdkp, sdp, buffer);
2718		if (sector_size == -EOVERFLOW)
2719			goto got_data;
2720		if (sector_size == -ENODEV)
2721			return;
2722		if (sector_size < 0)
2723			sector_size = read_capacity_10(sdkp, sdp, buffer);
2724		if (sector_size < 0)
2725			return;
2726	} else {
2727		sector_size = read_capacity_10(sdkp, sdp, buffer);
2728		if (sector_size == -EOVERFLOW)
2729			goto got_data;
2730		if (sector_size < 0)
2731			return;
2732		if ((sizeof(sdkp->capacity) > 4) &&
2733		    (sdkp->capacity > 0xffffffffULL)) {
2734			int old_sector_size = sector_size;
2735			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2736					"Trying to use READ CAPACITY(16).\n");
2737			sector_size = read_capacity_16(sdkp, sdp, buffer);
2738			if (sector_size < 0) {
2739				sd_printk(KERN_NOTICE, sdkp,
2740					"Using 0xffffffff as device size\n");
2741				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2742				sector_size = old_sector_size;
2743				goto got_data;
2744			}
2745			/* Remember that READ CAPACITY(16) succeeded */
2746			sdp->try_rc_10_first = 0;
2747		}
2748	}
2749
2750	/* Some devices are known to return the total number of blocks,
2751	 * not the highest block number.  Some devices have versions
2752	 * which do this and others which do not.  Some devices we might
2753	 * suspect of doing this but we don't know for certain.
2754	 *
2755	 * If we know the reported capacity is wrong, decrement it.  If
2756	 * we can only guess, then assume the number of blocks is even
2757	 * (usually true but not always) and err on the side of lowering
2758	 * the capacity.
2759	 */
2760	if (sdp->fix_capacity ||
2761	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2762		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2763				"from its reported value: %llu\n",
2764				(unsigned long long) sdkp->capacity);
2765		--sdkp->capacity;
2766	}
2767
2768got_data:
2769	if (sector_size == 0) {
2770		sector_size = 512;
2771		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2772			  "assuming 512.\n");
2773	}
2774
2775	if (sector_size != 512 &&
2776	    sector_size != 1024 &&
2777	    sector_size != 2048 &&
2778	    sector_size != 4096) {
2779		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2780			  sector_size);
2781		/*
2782		 * The user might want to re-format the drive with
2783		 * a supported sectorsize.  Once this happens, it
2784		 * would be relatively trivial to set the thing up.
2785		 * For this reason, we leave the thing in the table.
2786		 */
2787		sdkp->capacity = 0;
2788		/*
2789		 * set a bogus sector size so the normal read/write
2790		 * logic in the block layer will eventually refuse any
2791		 * request on this device without tripping over power
2792		 * of two sector size assumptions
2793		 */
2794		sector_size = 512;
2795	}
2796	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2797	blk_queue_physical_block_size(sdp->request_queue,
2798				      sdkp->physical_block_size);
2799	sdkp->device->sector_size = sector_size;
2800
2801	if (sdkp->capacity > 0xffffffff)
2802		sdp->use_16_for_rw = 1;
2803
2804}
2805
2806/*
2807 * Print disk capacity
2808 */
2809static void
2810sd_print_capacity(struct scsi_disk *sdkp,
2811		  sector_t old_capacity)
2812{
2813	int sector_size = sdkp->device->sector_size;
2814	char cap_str_2[10], cap_str_10[10];
2815
2816	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2817		return;
2818
2819	string_get_size(sdkp->capacity, sector_size,
2820			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2821	string_get_size(sdkp->capacity, sector_size,
2822			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2823
2824	sd_printk(KERN_NOTICE, sdkp,
2825		  "%llu %d-byte logical blocks: (%s/%s)\n",
2826		  (unsigned long long)sdkp->capacity,
2827		  sector_size, cap_str_10, cap_str_2);
2828
2829	if (sdkp->physical_block_size != sector_size)
2830		sd_printk(KERN_NOTICE, sdkp,
2831			  "%u-byte physical blocks\n",
2832			  sdkp->physical_block_size);
2833}
2834
2835/* called with buffer of length 512 */
2836static inline int
2837sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2838		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2839		 struct scsi_sense_hdr *sshdr)
2840{
2841	/*
2842	 * If we must use MODE SENSE(10), make sure that the buffer length
2843	 * is at least 8 bytes so that the mode sense header fits.
2844	 */
2845	if (sdkp->device->use_10_for_ms && len < 8)
2846		len = 8;
2847
2848	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2849			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2850}
2851
2852/*
2853 * read write protect setting, if possible - called only in sd_revalidate_disk()
2854 * called with buffer of length SD_BUF_SIZE
2855 */
2856static void
2857sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2858{
2859	int res;
2860	struct scsi_device *sdp = sdkp->device;
2861	struct scsi_mode_data data;
2862	int old_wp = sdkp->write_prot;
2863
2864	set_disk_ro(sdkp->disk, 0);
2865	if (sdp->skip_ms_page_3f) {
2866		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2867		return;
2868	}
2869
2870	if (sdp->use_192_bytes_for_3f) {
2871		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2872	} else {
2873		/*
2874		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2875		 * We have to start carefully: some devices hang if we ask
2876		 * for more than is available.
2877		 */
2878		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2879
2880		/*
2881		 * Second attempt: ask for page 0 When only page 0 is
2882		 * implemented, a request for page 3F may return Sense Key
2883		 * 5: Illegal Request, Sense Code 24: Invalid field in
2884		 * CDB.
2885		 */
2886		if (res < 0)
2887			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2888
2889		/*
2890		 * Third attempt: ask 255 bytes, as we did earlier.
2891		 */
2892		if (res < 0)
2893			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2894					       &data, NULL);
2895	}
2896
2897	if (res < 0) {
2898		sd_first_printk(KERN_WARNING, sdkp,
2899			  "Test WP failed, assume Write Enabled\n");
2900	} else {
2901		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2902		set_disk_ro(sdkp->disk, sdkp->write_prot);
2903		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2904			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2905				  sdkp->write_prot ? "on" : "off");
2906			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2907		}
2908	}
2909}
2910
2911/*
2912 * sd_read_cache_type - called only from sd_revalidate_disk()
2913 * called with buffer of length SD_BUF_SIZE
2914 */
2915static void
2916sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2917{
2918	int len = 0, res;
2919	struct scsi_device *sdp = sdkp->device;
2920
2921	int dbd;
2922	int modepage;
2923	int first_len;
2924	struct scsi_mode_data data;
2925	struct scsi_sense_hdr sshdr;
2926	int old_wce = sdkp->WCE;
2927	int old_rcd = sdkp->RCD;
2928	int old_dpofua = sdkp->DPOFUA;
2929
2930
2931	if (sdkp->cache_override)
2932		return;
2933
2934	first_len = 4;
2935	if (sdp->skip_ms_page_8) {
2936		if (sdp->type == TYPE_RBC)
2937			goto defaults;
2938		else {
2939			if (sdp->skip_ms_page_3f)
2940				goto defaults;
2941			modepage = 0x3F;
2942			if (sdp->use_192_bytes_for_3f)
2943				first_len = 192;
2944			dbd = 0;
2945		}
2946	} else if (sdp->type == TYPE_RBC) {
2947		modepage = 6;
2948		dbd = 8;
2949	} else {
2950		modepage = 8;
2951		dbd = 0;
2952	}
2953
2954	/* cautiously ask */
2955	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2956			&data, &sshdr);
2957
2958	if (res < 0)
2959		goto bad_sense;
2960
2961	if (!data.header_length) {
2962		modepage = 6;
2963		first_len = 0;
2964		sd_first_printk(KERN_ERR, sdkp,
2965				"Missing header in MODE_SENSE response\n");
2966	}
2967
2968	/* that went OK, now ask for the proper length */
2969	len = data.length;
2970
2971	/*
2972	 * We're only interested in the first three bytes, actually.
2973	 * But the data cache page is defined for the first 20.
2974	 */
2975	if (len < 3)
2976		goto bad_sense;
2977	else if (len > SD_BUF_SIZE) {
2978		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2979			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2980		len = SD_BUF_SIZE;
2981	}
2982	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2983		len = 192;
2984
2985	/* Get the data */
2986	if (len > first_len)
2987		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2988				&data, &sshdr);
2989
2990	if (!res) {
2991		int offset = data.header_length + data.block_descriptor_length;
2992
2993		while (offset < len) {
2994			u8 page_code = buffer[offset] & 0x3F;
2995			u8 spf       = buffer[offset] & 0x40;
2996
2997			if (page_code == 8 || page_code == 6) {
2998				/* We're interested only in the first 3 bytes.
2999				 */
3000				if (len - offset <= 2) {
3001					sd_first_printk(KERN_ERR, sdkp,
3002						"Incomplete mode parameter "
3003							"data\n");
3004					goto defaults;
3005				} else {
3006					modepage = page_code;
3007					goto Page_found;
3008				}
3009			} else {
3010				/* Go to the next page */
3011				if (spf && len - offset > 3)
3012					offset += 4 + (buffer[offset+2] << 8) +
3013						buffer[offset+3];
3014				else if (!spf && len - offset > 1)
3015					offset += 2 + buffer[offset+1];
3016				else {
3017					sd_first_printk(KERN_ERR, sdkp,
3018							"Incomplete mode "
3019							"parameter data\n");
3020					goto defaults;
3021				}
3022			}
3023		}
3024
3025		sd_first_printk(KERN_WARNING, sdkp,
3026				"No Caching mode page found\n");
3027		goto defaults;
3028
3029	Page_found:
3030		if (modepage == 8) {
3031			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
3032			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
3033		} else {
3034			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
3035			sdkp->RCD = 0;
3036		}
3037
3038		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
3039		if (sdp->broken_fua) {
3040			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
3041			sdkp->DPOFUA = 0;
3042		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
3043			   !sdkp->device->use_16_for_rw) {
3044			sd_first_printk(KERN_NOTICE, sdkp,
3045				  "Uses READ/WRITE(6), disabling FUA\n");
3046			sdkp->DPOFUA = 0;
3047		}
3048
3049		/* No cache flush allowed for write protected devices */
3050		if (sdkp->WCE && sdkp->write_prot)
3051			sdkp->WCE = 0;
3052
3053		if (sdkp->first_scan || old_wce != sdkp->WCE ||
3054		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
3055			sd_printk(KERN_NOTICE, sdkp,
3056				  "Write cache: %s, read cache: %s, %s\n",
3057				  sdkp->WCE ? "enabled" : "disabled",
3058				  sdkp->RCD ? "disabled" : "enabled",
3059				  sdkp->DPOFUA ? "supports DPO and FUA"
3060				  : "doesn't support DPO or FUA");
3061
3062		return;
3063	}
3064
3065bad_sense:
3066	if (res == -EIO && scsi_sense_valid(&sshdr) &&
3067	    sshdr.sense_key == ILLEGAL_REQUEST &&
3068	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
3069		/* Invalid field in CDB */
3070		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
3071	else
3072		sd_first_printk(KERN_ERR, sdkp,
3073				"Asking for cache data failed\n");
3074
3075defaults:
3076	if (sdp->wce_default_on) {
3077		sd_first_printk(KERN_NOTICE, sdkp,
3078				"Assuming drive cache: write back\n");
3079		sdkp->WCE = 1;
3080	} else {
3081		sd_first_printk(KERN_WARNING, sdkp,
3082				"Assuming drive cache: write through\n");
3083		sdkp->WCE = 0;
3084	}
3085	sdkp->RCD = 0;
3086	sdkp->DPOFUA = 0;
3087}
3088
3089static bool sd_is_perm_stream(struct scsi_disk *sdkp, unsigned int stream_id)
3090{
3091	u8 cdb[16] = { SERVICE_ACTION_IN_16, SAI_GET_STREAM_STATUS };
3092	struct {
3093		struct scsi_stream_status_header h;
3094		struct scsi_stream_status s;
3095	} buf;
3096	struct scsi_device *sdev = sdkp->device;
3097	struct scsi_sense_hdr sshdr;
3098	const struct scsi_exec_args exec_args = {
3099		.sshdr = &sshdr,
3100	};
3101	int res;
3102
3103	put_unaligned_be16(stream_id, &cdb[4]);
3104	put_unaligned_be32(sizeof(buf), &cdb[10]);
3105
3106	res = scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, &buf, sizeof(buf),
3107			       SD_TIMEOUT, sdkp->max_retries, &exec_args);
3108	if (res < 0)
3109		return false;
3110	if (scsi_status_is_check_condition(res) && scsi_sense_valid(&sshdr))
3111		sd_print_sense_hdr(sdkp, &sshdr);
3112	if (res)
3113		return false;
3114	if (get_unaligned_be32(&buf.h.len) < sizeof(struct scsi_stream_status))
3115		return false;
3116	return buf.h.stream_status[0].perm;
3117}
3118
3119static void sd_read_io_hints(struct scsi_disk *sdkp, unsigned char *buffer)
3120{
3121	struct scsi_device *sdp = sdkp->device;
3122	const struct scsi_io_group_descriptor *desc, *start, *end;
3123	struct scsi_sense_hdr sshdr;
3124	struct scsi_mode_data data;
3125	int res;
3126
3127	res = scsi_mode_sense(sdp, /*dbd=*/0x8, /*modepage=*/0x0a,
3128			      /*subpage=*/0x05, buffer, SD_BUF_SIZE, SD_TIMEOUT,
3129			      sdkp->max_retries, &data, &sshdr);
3130	if (res < 0)
3131		return;
3132	start = (void *)buffer + data.header_length + 16;
3133	end = (void *)buffer + ALIGN_DOWN(data.header_length + data.length,
3134					  sizeof(*end));
3135	/*
3136	 * From "SBC-5 Constrained Streams with Data Lifetimes": Device severs
3137	 * should assign the lowest numbered stream identifiers to permanent
3138	 * streams.
3139	 */
3140	for (desc = start; desc < end; desc++)
3141		if (!desc->st_enble || !sd_is_perm_stream(sdkp, desc - start))
3142			break;
3143	sdkp->permanent_stream_count = desc - start;
3144	if (sdkp->rscs && sdkp->permanent_stream_count < 2)
3145		sd_printk(KERN_INFO, sdkp,
3146			  "Unexpected: RSCS has been set and the permanent stream count is %u\n",
3147			  sdkp->permanent_stream_count);
3148	else if (sdkp->permanent_stream_count)
3149		sd_printk(KERN_INFO, sdkp, "permanent stream count = %d\n",
3150			  sdkp->permanent_stream_count);
3151}
3152
3153/*
3154 * The ATO bit indicates whether the DIF application tag is available
3155 * for use by the operating system.
3156 */
3157static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
3158{
3159	int res, offset;
3160	struct scsi_device *sdp = sdkp->device;
3161	struct scsi_mode_data data;
3162	struct scsi_sense_hdr sshdr;
3163
3164	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3165		return;
3166
3167	if (sdkp->protection_type == 0)
3168		return;
3169
3170	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3171			      sdkp->max_retries, &data, &sshdr);
3172
3173	if (res < 0 || !data.header_length ||
3174	    data.length < 6) {
3175		sd_first_printk(KERN_WARNING, sdkp,
3176			  "getting Control mode page failed, assume no ATO\n");
3177
3178		if (res == -EIO && scsi_sense_valid(&sshdr))
3179			sd_print_sense_hdr(sdkp, &sshdr);
3180
3181		return;
3182	}
3183
3184	offset = data.header_length + data.block_descriptor_length;
3185
3186	if ((buffer[offset] & 0x3f) != 0x0a) {
3187		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3188		return;
3189	}
3190
3191	if ((buffer[offset + 5] & 0x80) == 0)
3192		return;
3193
3194	sdkp->ATO = 1;
3195
3196	return;
3197}
3198
3199/**
3200 * sd_read_block_limits - Query disk device for preferred I/O sizes.
3201 * @sdkp: disk to query
3202 */
3203static void sd_read_block_limits(struct scsi_disk *sdkp)
3204{
3205	struct scsi_vpd *vpd;
3206
3207	rcu_read_lock();
3208
3209	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3210	if (!vpd || vpd->len < 16)
3211		goto out;
3212
3213	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3214	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3215	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3216
3217	if (vpd->len >= 64) {
3218		unsigned int lba_count, desc_count;
3219
3220		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3221
3222		if (!sdkp->lbpme)
3223			goto out;
3224
3225		lba_count = get_unaligned_be32(&vpd->data[20]);
3226		desc_count = get_unaligned_be32(&vpd->data[24]);
3227
3228		if (lba_count && desc_count)
3229			sdkp->max_unmap_blocks = lba_count;
3230
3231		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3232
3233		if (vpd->data[32] & 0x80)
3234			sdkp->unmap_alignment =
3235				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3236
3237		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3238
3239			if (sdkp->max_unmap_blocks)
3240				sd_config_discard(sdkp, SD_LBP_UNMAP);
3241			else
3242				sd_config_discard(sdkp, SD_LBP_WS16);
3243
3244		} else {	/* LBP VPD page tells us what to use */
3245			if (sdkp->lbpu && sdkp->max_unmap_blocks)
3246				sd_config_discard(sdkp, SD_LBP_UNMAP);
3247			else if (sdkp->lbpws)
3248				sd_config_discard(sdkp, SD_LBP_WS16);
3249			else if (sdkp->lbpws10)
3250				sd_config_discard(sdkp, SD_LBP_WS10);
3251			else
3252				sd_config_discard(sdkp, SD_LBP_DISABLE);
3253		}
3254	}
3255
3256 out:
3257	rcu_read_unlock();
3258}
3259
3260/* Parse the Block Limits Extension VPD page (0xb7) */
3261static void sd_read_block_limits_ext(struct scsi_disk *sdkp)
3262{
3263	struct scsi_vpd *vpd;
3264
3265	rcu_read_lock();
3266	vpd = rcu_dereference(sdkp->device->vpd_pgb7);
3267	if (vpd && vpd->len >= 2)
3268		sdkp->rscs = vpd->data[5] & 1;
3269	rcu_read_unlock();
3270}
3271
3272/**
3273 * sd_read_block_characteristics - Query block dev. characteristics
3274 * @sdkp: disk to query
3275 */
3276static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3277{
3278	struct request_queue *q = sdkp->disk->queue;
3279	struct scsi_vpd *vpd;
3280	u16 rot;
3281
3282	rcu_read_lock();
3283	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3284
3285	if (!vpd || vpd->len < 8) {
3286		rcu_read_unlock();
3287	        return;
3288	}
3289
3290	rot = get_unaligned_be16(&vpd->data[4]);
3291	sdkp->zoned = (vpd->data[8] >> 4) & 3;
3292	rcu_read_unlock();
3293
3294	if (rot == 1) {
3295		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3296		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3297	}
3298
3299
3300#ifdef CONFIG_BLK_DEV_ZONED /* sd_probe rejects ZBD devices early otherwise */
3301	if (sdkp->device->type == TYPE_ZBC) {
3302		/*
3303		 * Host-managed.
3304		 */
3305		disk_set_zoned(sdkp->disk);
3306
3307		/*
3308		 * Per ZBC and ZAC specifications, writes in sequential write
3309		 * required zones of host-managed devices must be aligned to
3310		 * the device physical block size.
3311		 */
3312		blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3313	} else {
3314		/*
3315		 * Host-aware devices are treated as conventional.
3316		 */
3317		WARN_ON_ONCE(blk_queue_is_zoned(q));
3318	}
3319#endif /* CONFIG_BLK_DEV_ZONED */
3320
3321	if (!sdkp->first_scan)
3322		return;
3323
3324	if (blk_queue_is_zoned(q))
3325		sd_printk(KERN_NOTICE, sdkp, "Host-managed zoned block device\n");
3326	else if (sdkp->zoned == 1)
3327		sd_printk(KERN_NOTICE, sdkp, "Host-aware SMR disk used as regular disk\n");
3328	else if (sdkp->zoned == 2)
3329		sd_printk(KERN_NOTICE, sdkp, "Drive-managed SMR disk\n");
3330}
3331
3332/**
3333 * sd_read_block_provisioning - Query provisioning VPD page
3334 * @sdkp: disk to query
3335 */
3336static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3337{
3338	struct scsi_vpd *vpd;
3339
3340	if (sdkp->lbpme == 0)
3341		return;
3342
3343	rcu_read_lock();
3344	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3345
3346	if (!vpd || vpd->len < 8) {
3347		rcu_read_unlock();
3348		return;
3349	}
3350
3351	sdkp->lbpvpd	= 1;
3352	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3353	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3354	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3355	rcu_read_unlock();
3356}
3357
3358static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3359{
3360	struct scsi_device *sdev = sdkp->device;
3361
3362	if (sdev->host->no_write_same) {
3363		sdev->no_write_same = 1;
3364
3365		return;
3366	}
3367
3368	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3369		struct scsi_vpd *vpd;
3370
3371		sdev->no_report_opcodes = 1;
3372
3373		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3374		 * CODES is unsupported and the device has an ATA
3375		 * Information VPD page (SAT).
3376		 */
3377		rcu_read_lock();
3378		vpd = rcu_dereference(sdev->vpd_pg89);
3379		if (vpd)
3380			sdev->no_write_same = 1;
3381		rcu_read_unlock();
3382	}
3383
3384	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3385		sdkp->ws16 = 1;
3386
3387	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3388		sdkp->ws10 = 1;
3389}
3390
3391static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3392{
3393	struct scsi_device *sdev = sdkp->device;
3394
3395	if (!sdev->security_supported)
3396		return;
3397
3398	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3399			SECURITY_PROTOCOL_IN, 0) == 1 &&
3400	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3401			SECURITY_PROTOCOL_OUT, 0) == 1)
3402		sdkp->security = 1;
3403}
3404
3405static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3406{
3407	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3408}
3409
3410/**
3411 * sd_read_cpr - Query concurrent positioning ranges
3412 * @sdkp:	disk to query
3413 */
3414static void sd_read_cpr(struct scsi_disk *sdkp)
3415{
3416	struct blk_independent_access_ranges *iars = NULL;
3417	unsigned char *buffer = NULL;
3418	unsigned int nr_cpr = 0;
3419	int i, vpd_len, buf_len = SD_BUF_SIZE;
3420	u8 *desc;
3421
3422	/*
3423	 * We need to have the capacity set first for the block layer to be
3424	 * able to check the ranges.
3425	 */
3426	if (sdkp->first_scan)
3427		return;
3428
3429	if (!sdkp->capacity)
3430		goto out;
3431
3432	/*
3433	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3434	 * leading to a maximum page size of 64 + 256*32 bytes.
3435	 */
3436	buf_len = 64 + 256*32;
3437	buffer = kmalloc(buf_len, GFP_KERNEL);
3438	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3439		goto out;
3440
3441	/* We must have at least a 64B header and one 32B range descriptor */
3442	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3443	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3444		sd_printk(KERN_ERR, sdkp,
3445			  "Invalid Concurrent Positioning Ranges VPD page\n");
3446		goto out;
3447	}
3448
3449	nr_cpr = (vpd_len - 64) / 32;
3450	if (nr_cpr == 1) {
3451		nr_cpr = 0;
3452		goto out;
3453	}
3454
3455	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3456	if (!iars) {
3457		nr_cpr = 0;
3458		goto out;
3459	}
3460
3461	desc = &buffer[64];
3462	for (i = 0; i < nr_cpr; i++, desc += 32) {
3463		if (desc[0] != i) {
3464			sd_printk(KERN_ERR, sdkp,
3465				"Invalid Concurrent Positioning Range number\n");
3466			nr_cpr = 0;
3467			break;
3468		}
3469
3470		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3471		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3472	}
3473
3474out:
3475	disk_set_independent_access_ranges(sdkp->disk, iars);
3476	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3477		sd_printk(KERN_NOTICE, sdkp,
3478			  "%u concurrent positioning ranges\n", nr_cpr);
3479		sdkp->nr_actuators = nr_cpr;
3480	}
3481
3482	kfree(buffer);
3483}
3484
3485static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3486{
3487	struct scsi_device *sdp = sdkp->device;
3488	unsigned int min_xfer_bytes =
3489		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3490
3491	if (sdkp->min_xfer_blocks == 0)
3492		return false;
3493
3494	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3495		sd_first_printk(KERN_WARNING, sdkp,
3496				"Preferred minimum I/O size %u bytes not a " \
3497				"multiple of physical block size (%u bytes)\n",
3498				min_xfer_bytes, sdkp->physical_block_size);
3499		sdkp->min_xfer_blocks = 0;
3500		return false;
3501	}
3502
3503	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3504			min_xfer_bytes);
3505	return true;
3506}
3507
3508/*
3509 * Determine the device's preferred I/O size for reads and writes
3510 * unless the reported value is unreasonably small, large, not a
3511 * multiple of the physical block size, or simply garbage.
3512 */
3513static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3514				      unsigned int dev_max)
3515{
3516	struct scsi_device *sdp = sdkp->device;
3517	unsigned int opt_xfer_bytes =
3518		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3519	unsigned int min_xfer_bytes =
3520		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3521
3522	if (sdkp->opt_xfer_blocks == 0)
3523		return false;
3524
3525	if (sdkp->opt_xfer_blocks > dev_max) {
3526		sd_first_printk(KERN_WARNING, sdkp,
3527				"Optimal transfer size %u logical blocks " \
3528				"> dev_max (%u logical blocks)\n",
3529				sdkp->opt_xfer_blocks, dev_max);
3530		return false;
3531	}
3532
3533	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3534		sd_first_printk(KERN_WARNING, sdkp,
3535				"Optimal transfer size %u logical blocks " \
3536				"> sd driver limit (%u logical blocks)\n",
3537				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3538		return false;
3539	}
3540
3541	if (opt_xfer_bytes < PAGE_SIZE) {
3542		sd_first_printk(KERN_WARNING, sdkp,
3543				"Optimal transfer size %u bytes < " \
3544				"PAGE_SIZE (%u bytes)\n",
3545				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3546		return false;
3547	}
3548
3549	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3550		sd_first_printk(KERN_WARNING, sdkp,
3551				"Optimal transfer size %u bytes not a " \
3552				"multiple of preferred minimum block " \
3553				"size (%u bytes)\n",
3554				opt_xfer_bytes, min_xfer_bytes);
3555		return false;
3556	}
3557
3558	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3559		sd_first_printk(KERN_WARNING, sdkp,
3560				"Optimal transfer size %u bytes not a " \
3561				"multiple of physical block size (%u bytes)\n",
3562				opt_xfer_bytes, sdkp->physical_block_size);
3563		return false;
3564	}
3565
3566	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3567			opt_xfer_bytes);
3568	return true;
3569}
3570
3571static void sd_read_block_zero(struct scsi_disk *sdkp)
3572{
3573	unsigned int buf_len = sdkp->device->sector_size;
3574	char *buffer, cmd[10] = { };
3575
3576	buffer = kmalloc(buf_len, GFP_KERNEL);
3577	if (!buffer)
3578		return;
3579
3580	cmd[0] = READ_10;
3581	put_unaligned_be32(0, &cmd[2]); /* Logical block address 0 */
3582	put_unaligned_be16(1, &cmd[7]);	/* Transfer 1 logical block */
3583
3584	scsi_execute_cmd(sdkp->device, cmd, REQ_OP_DRV_IN, buffer, buf_len,
3585			 SD_TIMEOUT, sdkp->max_retries, NULL);
3586	kfree(buffer);
3587}
3588
3589/**
3590 *	sd_revalidate_disk - called the first time a new disk is seen,
3591 *	performs disk spin up, read_capacity, etc.
3592 *	@disk: struct gendisk we care about
3593 **/
3594static int sd_revalidate_disk(struct gendisk *disk)
3595{
3596	struct scsi_disk *sdkp = scsi_disk(disk);
3597	struct scsi_device *sdp = sdkp->device;
3598	struct request_queue *q = sdkp->disk->queue;
3599	sector_t old_capacity = sdkp->capacity;
3600	unsigned char *buffer;
3601	unsigned int dev_max, rw_max;
3602
3603	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3604				      "sd_revalidate_disk\n"));
3605
3606	/*
3607	 * If the device is offline, don't try and read capacity or any
3608	 * of the other niceties.
3609	 */
3610	if (!scsi_device_online(sdp))
3611		goto out;
3612
3613	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3614	if (!buffer) {
3615		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3616			  "allocation failure.\n");
3617		goto out;
3618	}
3619
3620	sd_spinup_disk(sdkp);
3621
3622	/*
3623	 * Without media there is no reason to ask; moreover, some devices
3624	 * react badly if we do.
3625	 */
3626	if (sdkp->media_present) {
3627		sd_read_capacity(sdkp, buffer);
3628		/*
3629		 * Some USB/UAS devices return generic values for mode pages
3630		 * until the media has been accessed. Trigger a READ operation
3631		 * to force the device to populate mode pages.
3632		 */
3633		if (sdp->read_before_ms)
3634			sd_read_block_zero(sdkp);
3635		/*
3636		 * set the default to rotational.  All non-rotational devices
3637		 * support the block characteristics VPD page, which will
3638		 * cause this to be updated correctly and any device which
3639		 * doesn't support it should be treated as rotational.
3640		 */
3641		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3642		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3643
3644		if (scsi_device_supports_vpd(sdp)) {
3645			sd_read_block_provisioning(sdkp);
3646			sd_read_block_limits(sdkp);
3647			sd_read_block_limits_ext(sdkp);
3648			sd_read_block_characteristics(sdkp);
3649			sd_zbc_read_zones(sdkp, buffer);
3650			sd_read_cpr(sdkp);
3651		}
3652
3653		sd_print_capacity(sdkp, old_capacity);
3654
3655		sd_read_write_protect_flag(sdkp, buffer);
3656		sd_read_cache_type(sdkp, buffer);
3657		sd_read_io_hints(sdkp, buffer);
3658		sd_read_app_tag_own(sdkp, buffer);
3659		sd_read_write_same(sdkp, buffer);
3660		sd_read_security(sdkp, buffer);
3661		sd_config_protection(sdkp);
3662	}
3663
3664	/*
3665	 * We now have all cache related info, determine how we deal
3666	 * with flush requests.
3667	 */
3668	sd_set_flush_flag(sdkp);
3669
3670	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3671	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3672
3673	/* Some devices report a maximum block count for READ/WRITE requests. */
3674	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3675	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3676
3677	if (sd_validate_min_xfer_size(sdkp))
3678		blk_queue_io_min(sdkp->disk->queue,
3679				 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3680	else
3681		blk_queue_io_min(sdkp->disk->queue, 0);
3682
3683	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3684		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3685		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3686	} else {
3687		q->limits.io_opt = 0;
3688		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3689				      (sector_t)BLK_DEF_MAX_SECTORS_CAP);
3690	}
3691
3692	/*
3693	 * Limit default to SCSI host optimal sector limit if set. There may be
3694	 * an impact on performance for when the size of a request exceeds this
3695	 * host limit.
3696	 */
3697	rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3698
3699	/* Do not exceed controller limit */
3700	rw_max = min(rw_max, queue_max_hw_sectors(q));
3701
3702	/*
3703	 * Only update max_sectors if previously unset or if the current value
3704	 * exceeds the capabilities of the hardware.
3705	 */
3706	if (sdkp->first_scan ||
3707	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3708	    q->limits.max_sectors > q->limits.max_hw_sectors)
3709		q->limits.max_sectors = rw_max;
3710
3711	sdkp->first_scan = 0;
3712
3713	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3714	sd_config_write_same(sdkp);
3715	kfree(buffer);
3716
3717	/*
3718	 * For a zoned drive, revalidating the zones can be done only once
3719	 * the gendisk capacity is set. So if this fails, set back the gendisk
3720	 * capacity to 0.
3721	 */
3722	if (sd_zbc_revalidate_zones(sdkp))
3723		set_capacity_and_notify(disk, 0);
3724
3725 out:
3726	return 0;
3727}
3728
3729/**
3730 *	sd_unlock_native_capacity - unlock native capacity
3731 *	@disk: struct gendisk to set capacity for
3732 *
3733 *	Block layer calls this function if it detects that partitions
3734 *	on @disk reach beyond the end of the device.  If the SCSI host
3735 *	implements ->unlock_native_capacity() method, it's invoked to
3736 *	give it a chance to adjust the device capacity.
3737 *
3738 *	CONTEXT:
3739 *	Defined by block layer.  Might sleep.
3740 */
3741static void sd_unlock_native_capacity(struct gendisk *disk)
3742{
3743	struct scsi_device *sdev = scsi_disk(disk)->device;
3744
3745	if (sdev->host->hostt->unlock_native_capacity)
3746		sdev->host->hostt->unlock_native_capacity(sdev);
3747}
3748
3749/**
3750 *	sd_format_disk_name - format disk name
3751 *	@prefix: name prefix - ie. "sd" for SCSI disks
3752 *	@index: index of the disk to format name for
3753 *	@buf: output buffer
3754 *	@buflen: length of the output buffer
3755 *
3756 *	SCSI disk names starts at sda.  The 26th device is sdz and the
3757 *	27th is sdaa.  The last one for two lettered suffix is sdzz
3758 *	which is followed by sdaaa.
3759 *
3760 *	This is basically 26 base counting with one extra 'nil' entry
3761 *	at the beginning from the second digit on and can be
3762 *	determined using similar method as 26 base conversion with the
3763 *	index shifted -1 after each digit is computed.
3764 *
3765 *	CONTEXT:
3766 *	Don't care.
3767 *
3768 *	RETURNS:
3769 *	0 on success, -errno on failure.
3770 */
3771static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3772{
3773	const int base = 'z' - 'a' + 1;
3774	char *begin = buf + strlen(prefix);
3775	char *end = buf + buflen;
3776	char *p;
3777	int unit;
3778
3779	p = end - 1;
3780	*p = '\0';
3781	unit = base;
3782	do {
3783		if (p == begin)
3784			return -EINVAL;
3785		*--p = 'a' + (index % unit);
3786		index = (index / unit) - 1;
3787	} while (index >= 0);
3788
3789	memmove(begin, p, end - p);
3790	memcpy(buf, prefix, strlen(prefix));
3791
3792	return 0;
3793}
3794
3795/**
3796 *	sd_probe - called during driver initialization and whenever a
3797 *	new scsi device is attached to the system. It is called once
3798 *	for each scsi device (not just disks) present.
3799 *	@dev: pointer to device object
3800 *
3801 *	Returns 0 if successful (or not interested in this scsi device
3802 *	(e.g. scanner)); 1 when there is an error.
3803 *
3804 *	Note: this function is invoked from the scsi mid-level.
3805 *	This function sets up the mapping between a given
3806 *	<host,channel,id,lun> (found in sdp) and new device name
3807 *	(e.g. /dev/sda). More precisely it is the block device major
3808 *	and minor number that is chosen here.
3809 *
3810 *	Assume sd_probe is not re-entrant (for time being)
3811 *	Also think about sd_probe() and sd_remove() running coincidentally.
3812 **/
3813static int sd_probe(struct device *dev)
3814{
3815	struct scsi_device *sdp = to_scsi_device(dev);
3816	struct scsi_disk *sdkp;
3817	struct gendisk *gd;
3818	int index;
3819	int error;
3820
3821	scsi_autopm_get_device(sdp);
3822	error = -ENODEV;
3823	if (sdp->type != TYPE_DISK &&
3824	    sdp->type != TYPE_ZBC &&
3825	    sdp->type != TYPE_MOD &&
3826	    sdp->type != TYPE_RBC)
3827		goto out;
3828
3829	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3830		sdev_printk(KERN_WARNING, sdp,
3831			    "Unsupported ZBC host-managed device.\n");
3832		goto out;
3833	}
3834
3835	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3836					"sd_probe\n"));
3837
3838	error = -ENOMEM;
3839	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3840	if (!sdkp)
3841		goto out;
3842
3843	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3844					 &sd_bio_compl_lkclass);
3845	if (!gd)
3846		goto out_free;
3847
3848	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3849	if (index < 0) {
3850		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3851		goto out_put;
3852	}
3853
3854	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3855	if (error) {
3856		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3857		goto out_free_index;
3858	}
3859
3860	sdkp->device = sdp;
3861	sdkp->disk = gd;
3862	sdkp->index = index;
3863	sdkp->max_retries = SD_MAX_RETRIES;
3864	atomic_set(&sdkp->openers, 0);
3865	atomic_set(&sdkp->device->ioerr_cnt, 0);
3866
3867	if (!sdp->request_queue->rq_timeout) {
3868		if (sdp->type != TYPE_MOD)
3869			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3870		else
3871			blk_queue_rq_timeout(sdp->request_queue,
3872					     SD_MOD_TIMEOUT);
3873	}
3874
3875	device_initialize(&sdkp->disk_dev);
3876	sdkp->disk_dev.parent = get_device(dev);
3877	sdkp->disk_dev.class = &sd_disk_class;
3878	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3879
3880	error = device_add(&sdkp->disk_dev);
3881	if (error) {
3882		put_device(&sdkp->disk_dev);
3883		goto out;
3884	}
3885
3886	dev_set_drvdata(dev, sdkp);
3887
3888	gd->major = sd_major((index & 0xf0) >> 4);
3889	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3890	gd->minors = SD_MINORS;
3891
3892	gd->fops = &sd_fops;
3893	gd->private_data = sdkp;
3894
3895	/* defaults, until the device tells us otherwise */
3896	sdp->sector_size = 512;
3897	sdkp->capacity = 0;
3898	sdkp->media_present = 1;
3899	sdkp->write_prot = 0;
3900	sdkp->cache_override = 0;
3901	sdkp->WCE = 0;
3902	sdkp->RCD = 0;
3903	sdkp->ATO = 0;
3904	sdkp->first_scan = 1;
3905	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3906
3907	sd_revalidate_disk(gd);
3908
3909	if (sdp->removable) {
3910		gd->flags |= GENHD_FL_REMOVABLE;
3911		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3912		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3913	}
3914
3915	blk_pm_runtime_init(sdp->request_queue, dev);
3916	if (sdp->rpm_autosuspend) {
3917		pm_runtime_set_autosuspend_delay(dev,
3918			sdp->host->rpm_autosuspend_delay);
3919	}
3920
3921	error = device_add_disk(dev, gd, NULL);
3922	if (error) {
3923		device_unregister(&sdkp->disk_dev);
3924		put_disk(gd);
3925		goto out;
3926	}
3927
3928	if (sdkp->security) {
3929		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3930		if (sdkp->opal_dev)
3931			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3932	}
3933
3934	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3935		  sdp->removable ? "removable " : "");
3936	scsi_autopm_put_device(sdp);
3937
3938	return 0;
3939
3940 out_free_index:
3941	ida_free(&sd_index_ida, index);
3942 out_put:
3943	put_disk(gd);
3944 out_free:
3945	kfree(sdkp);
3946 out:
3947	scsi_autopm_put_device(sdp);
3948	return error;
3949}
3950
3951/**
3952 *	sd_remove - called whenever a scsi disk (previously recognized by
3953 *	sd_probe) is detached from the system. It is called (potentially
3954 *	multiple times) during sd module unload.
3955 *	@dev: pointer to device object
3956 *
3957 *	Note: this function is invoked from the scsi mid-level.
3958 *	This function potentially frees up a device name (e.g. /dev/sdc)
3959 *	that could be re-used by a subsequent sd_probe().
3960 *	This function is not called when the built-in sd driver is "exit-ed".
3961 **/
3962static int sd_remove(struct device *dev)
3963{
3964	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3965
3966	scsi_autopm_get_device(sdkp->device);
3967
3968	device_del(&sdkp->disk_dev);
3969	del_gendisk(sdkp->disk);
3970	if (!sdkp->suspended)
3971		sd_shutdown(dev);
3972
3973	put_disk(sdkp->disk);
3974	return 0;
3975}
3976
3977static void scsi_disk_release(struct device *dev)
3978{
3979	struct scsi_disk *sdkp = to_scsi_disk(dev);
3980
3981	ida_free(&sd_index_ida, sdkp->index);
3982	sd_zbc_free_zone_info(sdkp);
3983	put_device(&sdkp->device->sdev_gendev);
3984	free_opal_dev(sdkp->opal_dev);
3985
3986	kfree(sdkp);
3987}
3988
3989static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3990{
3991	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3992	struct scsi_sense_hdr sshdr;
3993	const struct scsi_exec_args exec_args = {
3994		.sshdr = &sshdr,
3995		.req_flags = BLK_MQ_REQ_PM,
3996	};
3997	struct scsi_device *sdp = sdkp->device;
3998	int res;
3999
4000	if (start)
4001		cmd[4] |= 1;	/* START */
4002
4003	if (sdp->start_stop_pwr_cond)
4004		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
4005
4006	if (!scsi_device_online(sdp))
4007		return -ENODEV;
4008
4009	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
4010			       sdkp->max_retries, &exec_args);
4011	if (res) {
4012		sd_print_result(sdkp, "Start/Stop Unit failed", res);
4013		if (res > 0 && scsi_sense_valid(&sshdr)) {
4014			sd_print_sense_hdr(sdkp, &sshdr);
4015			/* 0x3a is medium not present */
4016			if (sshdr.asc == 0x3a)
4017				res = 0;
4018		}
4019	}
4020
4021	/* SCSI error codes must not go to the generic layer */
4022	if (res)
4023		return -EIO;
4024
4025	return 0;
4026}
4027
4028/*
4029 * Send a SYNCHRONIZE CACHE instruction down to the device through
4030 * the normal SCSI command structure.  Wait for the command to
4031 * complete.
4032 */
4033static void sd_shutdown(struct device *dev)
4034{
4035	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4036
4037	if (!sdkp)
4038		return;         /* this can happen */
4039
4040	if (pm_runtime_suspended(dev))
4041		return;
4042
4043	if (sdkp->WCE && sdkp->media_present) {
4044		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4045		sd_sync_cache(sdkp);
4046	}
4047
4048	if ((system_state != SYSTEM_RESTART &&
4049	     sdkp->device->manage_system_start_stop) ||
4050	    (system_state == SYSTEM_POWER_OFF &&
4051	     sdkp->device->manage_shutdown)) {
4052		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4053		sd_start_stop_device(sdkp, 0);
4054	}
4055}
4056
4057static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
4058{
4059	return (sdev->manage_system_start_stop && !runtime) ||
4060		(sdev->manage_runtime_start_stop && runtime);
4061}
4062
4063static int sd_suspend_common(struct device *dev, bool runtime)
4064{
4065	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4066	int ret = 0;
4067
4068	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
4069		return 0;
4070
4071	if (sdkp->WCE && sdkp->media_present) {
4072		if (!sdkp->device->silence_suspend)
4073			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
4074		ret = sd_sync_cache(sdkp);
4075		/* ignore OFFLINE device */
4076		if (ret == -ENODEV)
4077			return 0;
4078
4079		if (ret)
4080			return ret;
4081	}
4082
4083	if (sd_do_start_stop(sdkp->device, runtime)) {
4084		if (!sdkp->device->silence_suspend)
4085			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
4086		/* an error is not worth aborting a system sleep */
4087		ret = sd_start_stop_device(sdkp, 0);
4088		if (!runtime)
4089			ret = 0;
4090	}
4091
4092	if (!ret)
4093		sdkp->suspended = true;
4094
4095	return ret;
4096}
4097
4098static int sd_suspend_system(struct device *dev)
4099{
4100	if (pm_runtime_suspended(dev))
4101		return 0;
4102
4103	return sd_suspend_common(dev, false);
4104}
4105
4106static int sd_suspend_runtime(struct device *dev)
4107{
4108	return sd_suspend_common(dev, true);
4109}
4110
4111static int sd_resume(struct device *dev)
4112{
4113	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4114
4115	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4116
4117	if (opal_unlock_from_suspend(sdkp->opal_dev)) {
4118		sd_printk(KERN_NOTICE, sdkp, "OPAL unlock failed\n");
4119		return -EIO;
4120	}
4121
4122	return 0;
4123}
4124
4125static int sd_resume_common(struct device *dev, bool runtime)
4126{
4127	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4128	int ret;
4129
4130	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4131		return 0;
4132
4133	if (!sd_do_start_stop(sdkp->device, runtime)) {
4134		sdkp->suspended = false;
4135		return 0;
4136	}
4137
4138	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
4139	ret = sd_start_stop_device(sdkp, 1);
4140	if (!ret) {
4141		sd_resume(dev);
4142		sdkp->suspended = false;
4143	}
4144
4145	return ret;
4146}
4147
4148static int sd_resume_system(struct device *dev)
4149{
4150	if (pm_runtime_suspended(dev)) {
4151		struct scsi_disk *sdkp = dev_get_drvdata(dev);
4152		struct scsi_device *sdp = sdkp ? sdkp->device : NULL;
4153
4154		if (sdp && sdp->force_runtime_start_on_system_start)
4155			pm_request_resume(dev);
4156
4157		return 0;
4158	}
4159
4160	return sd_resume_common(dev, false);
4161}
4162
4163static int sd_resume_runtime(struct device *dev)
4164{
4165	struct scsi_disk *sdkp = dev_get_drvdata(dev);
4166	struct scsi_device *sdp;
4167
4168	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
4169		return 0;
4170
4171	sdp = sdkp->device;
4172
4173	if (sdp->ignore_media_change) {
4174		/* clear the device's sense data */
4175		static const u8 cmd[10] = { REQUEST_SENSE };
4176		const struct scsi_exec_args exec_args = {
4177			.req_flags = BLK_MQ_REQ_PM,
4178		};
4179
4180		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
4181				     sdp->request_queue->rq_timeout, 1,
4182				     &exec_args))
4183			sd_printk(KERN_NOTICE, sdkp,
4184				  "Failed to clear sense data\n");
4185	}
4186
4187	return sd_resume_common(dev, true);
4188}
4189
4190static const struct dev_pm_ops sd_pm_ops = {
4191	.suspend		= sd_suspend_system,
4192	.resume			= sd_resume_system,
4193	.poweroff		= sd_suspend_system,
4194	.restore		= sd_resume_system,
4195	.runtime_suspend	= sd_suspend_runtime,
4196	.runtime_resume		= sd_resume_runtime,
4197};
4198
4199static struct scsi_driver sd_template = {
4200	.gendrv = {
4201		.name		= "sd",
4202		.owner		= THIS_MODULE,
4203		.probe		= sd_probe,
4204		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4205		.remove		= sd_remove,
4206		.shutdown	= sd_shutdown,
4207		.pm		= &sd_pm_ops,
4208	},
4209	.rescan			= sd_rescan,
4210	.resume			= sd_resume,
4211	.init_command		= sd_init_command,
4212	.uninit_command		= sd_uninit_command,
4213	.done			= sd_done,
4214	.eh_action		= sd_eh_action,
4215	.eh_reset		= sd_eh_reset,
4216};
4217
4218/**
4219 *	init_sd - entry point for this driver (both when built in or when
4220 *	a module).
4221 *
4222 *	Note: this function registers this driver with the scsi mid-level.
4223 **/
4224static int __init init_sd(void)
4225{
4226	int majors = 0, i, err;
4227
4228	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4229
4230	for (i = 0; i < SD_MAJORS; i++) {
4231		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4232			continue;
4233		majors++;
4234	}
4235
4236	if (!majors)
4237		return -ENODEV;
4238
4239	err = class_register(&sd_disk_class);
4240	if (err)
4241		goto err_out;
4242
4243	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4244	if (!sd_page_pool) {
4245		printk(KERN_ERR "sd: can't init discard page pool\n");
4246		err = -ENOMEM;
4247		goto err_out_class;
4248	}
4249
4250	err = scsi_register_driver(&sd_template.gendrv);
4251	if (err)
4252		goto err_out_driver;
4253
4254	return 0;
4255
4256err_out_driver:
4257	mempool_destroy(sd_page_pool);
4258err_out_class:
4259	class_unregister(&sd_disk_class);
4260err_out:
4261	for (i = 0; i < SD_MAJORS; i++)
4262		unregister_blkdev(sd_major(i), "sd");
4263	return err;
4264}
4265
4266/**
4267 *	exit_sd - exit point for this driver (when it is a module).
4268 *
4269 *	Note: this function unregisters this driver from the scsi mid-level.
4270 **/
4271static void __exit exit_sd(void)
4272{
4273	int i;
4274
4275	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4276
4277	scsi_unregister_driver(&sd_template.gendrv);
4278	mempool_destroy(sd_page_pool);
4279
4280	class_unregister(&sd_disk_class);
4281
4282	for (i = 0; i < SD_MAJORS; i++)
4283		unregister_blkdev(sd_major(i), "sd");
4284}
4285
4286module_init(init_sd);
4287module_exit(exit_sd);
4288
4289void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4290{
4291	scsi_print_sense_hdr(sdkp->device,
4292			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4293}
4294
4295void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4296{
4297	const char *hb_string = scsi_hostbyte_string(result);
4298
4299	if (hb_string)
4300		sd_printk(KERN_INFO, sdkp,
4301			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4302			  hb_string ? hb_string : "invalid",
4303			  "DRIVER_OK");
4304	else
4305		sd_printk(KERN_INFO, sdkp,
4306			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4307			  msg, host_byte(result), "DRIVER_OK");
4308}
4309