1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 *  SCSI queueing library.
7 *      Initial versions: Eric Youngdale (eric@andante.org).
8 *                        Based upon conversations with large numbers
9 *                        of people at Linux Expo.
10 */
11
12#include <linux/bio.h>
13#include <linux/bitops.h>
14#include <linux/blkdev.h>
15#include <linux/completion.h>
16#include <linux/kernel.h>
17#include <linux/export.h>
18#include <linux/init.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hardirq.h>
22#include <linux/scatterlist.h>
23#include <linux/blk-mq.h>
24#include <linux/blk-integrity.h>
25#include <linux/ratelimit.h>
26#include <asm/unaligned.h>
27
28#include <scsi/scsi.h>
29#include <scsi/scsi_cmnd.h>
30#include <scsi/scsi_dbg.h>
31#include <scsi/scsi_device.h>
32#include <scsi/scsi_driver.h>
33#include <scsi/scsi_eh.h>
34#include <scsi/scsi_host.h>
35#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36#include <scsi/scsi_dh.h>
37
38#include <trace/events/scsi.h>
39
40#include "scsi_debugfs.h"
41#include "scsi_priv.h"
42#include "scsi_logging.h"
43
44/*
45 * Size of integrity metadata is usually small, 1 inline sg should
46 * cover normal cases.
47 */
48#ifdef CONFIG_ARCH_NO_SG_CHAIN
49#define  SCSI_INLINE_PROT_SG_CNT  0
50#define  SCSI_INLINE_SG_CNT  0
51#else
52#define  SCSI_INLINE_PROT_SG_CNT  1
53#define  SCSI_INLINE_SG_CNT  2
54#endif
55
56static struct kmem_cache *scsi_sense_cache;
57static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61int scsi_init_sense_cache(struct Scsi_Host *shost)
62{
63	int ret = 0;
64
65	mutex_lock(&scsi_sense_cache_mutex);
66	if (!scsi_sense_cache) {
67		scsi_sense_cache =
68			kmem_cache_create_usercopy("scsi_sense_cache",
69				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70				0, SCSI_SENSE_BUFFERSIZE, NULL);
71		if (!scsi_sense_cache)
72			ret = -ENOMEM;
73	}
74	mutex_unlock(&scsi_sense_cache_mutex);
75	return ret;
76}
77
78static void
79scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80{
81	struct Scsi_Host *host = cmd->device->host;
82	struct scsi_device *device = cmd->device;
83	struct scsi_target *starget = scsi_target(device);
84
85	/*
86	 * Set the appropriate busy bit for the device/host.
87	 *
88	 * If the host/device isn't busy, assume that something actually
89	 * completed, and that we should be able to queue a command now.
90	 *
91	 * Note that the prior mid-layer assumption that any host could
92	 * always queue at least one command is now broken.  The mid-layer
93	 * will implement a user specifiable stall (see
94	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95	 * if a command is requeued with no other commands outstanding
96	 * either for the device or for the host.
97	 */
98	switch (reason) {
99	case SCSI_MLQUEUE_HOST_BUSY:
100		atomic_set(&host->host_blocked, host->max_host_blocked);
101		break;
102	case SCSI_MLQUEUE_DEVICE_BUSY:
103	case SCSI_MLQUEUE_EH_RETRY:
104		atomic_set(&device->device_blocked,
105			   device->max_device_blocked);
106		break;
107	case SCSI_MLQUEUE_TARGET_BUSY:
108		atomic_set(&starget->target_blocked,
109			   starget->max_target_blocked);
110		break;
111	}
112}
113
114static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115{
116	struct request *rq = scsi_cmd_to_rq(cmd);
117
118	if (rq->rq_flags & RQF_DONTPREP) {
119		rq->rq_flags &= ~RQF_DONTPREP;
120		scsi_mq_uninit_cmd(cmd);
121	} else {
122		WARN_ON_ONCE(true);
123	}
124
125	blk_mq_requeue_request(rq, false);
126	if (!scsi_host_in_recovery(cmd->device->host))
127		blk_mq_delay_kick_requeue_list(rq->q, msecs);
128}
129
130/**
131 * __scsi_queue_insert - private queue insertion
132 * @cmd: The SCSI command being requeued
133 * @reason:  The reason for the requeue
134 * @unbusy: Whether the queue should be unbusied
135 *
136 * This is a private queue insertion.  The public interface
137 * scsi_queue_insert() always assumes the queue should be unbusied
138 * because it's always called before the completion.  This function is
139 * for a requeue after completion, which should only occur in this
140 * file.
141 */
142static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143{
144	struct scsi_device *device = cmd->device;
145
146	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147		"Inserting command %p into mlqueue\n", cmd));
148
149	scsi_set_blocked(cmd, reason);
150
151	/*
152	 * Decrement the counters, since these commands are no longer
153	 * active on the host/device.
154	 */
155	if (unbusy)
156		scsi_device_unbusy(device, cmd);
157
158	/*
159	 * Requeue this command.  It will go before all other commands
160	 * that are already in the queue. Schedule requeue work under
161	 * lock such that the kblockd_schedule_work() call happens
162	 * before blk_mq_destroy_queue() finishes.
163	 */
164	cmd->result = 0;
165
166	blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167			       !scsi_host_in_recovery(cmd->device->host));
168}
169
170/**
171 * scsi_queue_insert - Reinsert a command in the queue.
172 * @cmd:    command that we are adding to queue.
173 * @reason: why we are inserting command to queue.
174 *
175 * We do this for one of two cases. Either the host is busy and it cannot accept
176 * any more commands for the time being, or the device returned QUEUE_FULL and
177 * can accept no more commands.
178 *
179 * Context: This could be called either from an interrupt context or a normal
180 * process context.
181 */
182void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183{
184	__scsi_queue_insert(cmd, reason, true);
185}
186
187void scsi_failures_reset_retries(struct scsi_failures *failures)
188{
189	struct scsi_failure *failure;
190
191	failures->total_retries = 0;
192
193	for (failure = failures->failure_definitions; failure->result;
194	     failure++)
195		failure->retries = 0;
196}
197EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
198
199/**
200 * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
201 * @scmd: scsi_cmnd to check.
202 * @failures: scsi_failures struct that lists failures to check for.
203 *
204 * Returns -EAGAIN if the caller should retry else 0.
205 */
206static int scsi_check_passthrough(struct scsi_cmnd *scmd,
207				  struct scsi_failures *failures)
208{
209	struct scsi_failure *failure;
210	struct scsi_sense_hdr sshdr;
211	enum sam_status status;
212
213	if (!failures)
214		return 0;
215
216	for (failure = failures->failure_definitions; failure->result;
217	     failure++) {
218		if (failure->result == SCMD_FAILURE_RESULT_ANY)
219			goto maybe_retry;
220
221		if (host_byte(scmd->result) &&
222		    host_byte(scmd->result) == host_byte(failure->result))
223			goto maybe_retry;
224
225		status = status_byte(scmd->result);
226		if (!status)
227			continue;
228
229		if (failure->result == SCMD_FAILURE_STAT_ANY &&
230		    !scsi_status_is_good(scmd->result))
231			goto maybe_retry;
232
233		if (status != status_byte(failure->result))
234			continue;
235
236		if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
237		    failure->sense == SCMD_FAILURE_SENSE_ANY)
238			goto maybe_retry;
239
240		if (!scsi_command_normalize_sense(scmd, &sshdr))
241			return 0;
242
243		if (failure->sense != sshdr.sense_key)
244			continue;
245
246		if (failure->asc == SCMD_FAILURE_ASC_ANY)
247			goto maybe_retry;
248
249		if (failure->asc != sshdr.asc)
250			continue;
251
252		if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
253		    failure->ascq == sshdr.ascq)
254			goto maybe_retry;
255	}
256
257	return 0;
258
259maybe_retry:
260	if (failure->allowed) {
261		if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
262		    ++failure->retries <= failure->allowed)
263			return -EAGAIN;
264	} else {
265		if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
266		    ++failures->total_retries <= failures->total_allowed)
267			return -EAGAIN;
268	}
269
270	return 0;
271}
272
273/**
274 * scsi_execute_cmd - insert request and wait for the result
275 * @sdev:	scsi_device
276 * @cmd:	scsi command
277 * @opf:	block layer request cmd_flags
278 * @buffer:	data buffer
279 * @bufflen:	len of buffer
280 * @timeout:	request timeout in HZ
281 * @ml_retries:	number of times SCSI midlayer will retry request
282 * @args:	Optional args. See struct definition for field descriptions
283 *
284 * Returns the scsi_cmnd result field if a command was executed, or a negative
285 * Linux error code if we didn't get that far.
286 */
287int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
288		     blk_opf_t opf, void *buffer, unsigned int bufflen,
289		     int timeout, int ml_retries,
290		     const struct scsi_exec_args *args)
291{
292	static const struct scsi_exec_args default_args;
293	struct request *req;
294	struct scsi_cmnd *scmd;
295	int ret;
296
297	if (!args)
298		args = &default_args;
299	else if (WARN_ON_ONCE(args->sense &&
300			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
301		return -EINVAL;
302
303retry:
304	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
305	if (IS_ERR(req))
306		return PTR_ERR(req);
307
308	if (bufflen) {
309		ret = blk_rq_map_kern(sdev->request_queue, req,
310				      buffer, bufflen, GFP_NOIO);
311		if (ret)
312			goto out;
313	}
314	scmd = blk_mq_rq_to_pdu(req);
315	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
316	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
317	scmd->allowed = ml_retries;
318	scmd->flags |= args->scmd_flags;
319	req->timeout = timeout;
320	req->rq_flags |= RQF_QUIET;
321
322	/*
323	 * head injection *required* here otherwise quiesce won't work
324	 */
325	blk_execute_rq(req, true);
326
327	if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
328		blk_mq_free_request(req);
329		goto retry;
330	}
331
332	/*
333	 * Some devices (USB mass-storage in particular) may transfer
334	 * garbage data together with a residue indicating that the data
335	 * is invalid.  Prevent the garbage from being misinterpreted
336	 * and prevent security leaks by zeroing out the excess data.
337	 */
338	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
339		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
340
341	if (args->resid)
342		*args->resid = scmd->resid_len;
343	if (args->sense)
344		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
345	if (args->sshdr)
346		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
347				     args->sshdr);
348
349	ret = scmd->result;
350 out:
351	blk_mq_free_request(req);
352
353	return ret;
354}
355EXPORT_SYMBOL(scsi_execute_cmd);
356
357/*
358 * Wake up the error handler if necessary. Avoid as follows that the error
359 * handler is not woken up if host in-flight requests number ==
360 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
361 * with an RCU read lock in this function to ensure that this function in
362 * its entirety either finishes before scsi_eh_scmd_add() increases the
363 * host_failed counter or that it notices the shost state change made by
364 * scsi_eh_scmd_add().
365 */
366static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
367{
368	unsigned long flags;
369
370	rcu_read_lock();
371	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
372	if (unlikely(scsi_host_in_recovery(shost))) {
373		unsigned int busy = scsi_host_busy(shost);
374
375		spin_lock_irqsave(shost->host_lock, flags);
376		if (shost->host_failed || shost->host_eh_scheduled)
377			scsi_eh_wakeup(shost, busy);
378		spin_unlock_irqrestore(shost->host_lock, flags);
379	}
380	rcu_read_unlock();
381}
382
383void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
384{
385	struct Scsi_Host *shost = sdev->host;
386	struct scsi_target *starget = scsi_target(sdev);
387
388	scsi_dec_host_busy(shost, cmd);
389
390	if (starget->can_queue > 0)
391		atomic_dec(&starget->target_busy);
392
393	sbitmap_put(&sdev->budget_map, cmd->budget_token);
394	cmd->budget_token = -1;
395}
396
397/*
398 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
399 * interrupts disabled.
400 */
401static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
402{
403	struct scsi_device *current_sdev = data;
404
405	if (sdev != current_sdev)
406		blk_mq_run_hw_queues(sdev->request_queue, true);
407}
408
409/*
410 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
411 * and call blk_run_queue for all the scsi_devices on the target -
412 * including current_sdev first.
413 *
414 * Called with *no* scsi locks held.
415 */
416static void scsi_single_lun_run(struct scsi_device *current_sdev)
417{
418	struct Scsi_Host *shost = current_sdev->host;
419	struct scsi_target *starget = scsi_target(current_sdev);
420	unsigned long flags;
421
422	spin_lock_irqsave(shost->host_lock, flags);
423	starget->starget_sdev_user = NULL;
424	spin_unlock_irqrestore(shost->host_lock, flags);
425
426	/*
427	 * Call blk_run_queue for all LUNs on the target, starting with
428	 * current_sdev. We race with others (to set starget_sdev_user),
429	 * but in most cases, we will be first. Ideally, each LU on the
430	 * target would get some limited time or requests on the target.
431	 */
432	blk_mq_run_hw_queues(current_sdev->request_queue,
433			     shost->queuecommand_may_block);
434
435	spin_lock_irqsave(shost->host_lock, flags);
436	if (!starget->starget_sdev_user)
437		__starget_for_each_device(starget, current_sdev,
438					  scsi_kick_sdev_queue);
439	spin_unlock_irqrestore(shost->host_lock, flags);
440}
441
442static inline bool scsi_device_is_busy(struct scsi_device *sdev)
443{
444	if (scsi_device_busy(sdev) >= sdev->queue_depth)
445		return true;
446	if (atomic_read(&sdev->device_blocked) > 0)
447		return true;
448	return false;
449}
450
451static inline bool scsi_target_is_busy(struct scsi_target *starget)
452{
453	if (starget->can_queue > 0) {
454		if (atomic_read(&starget->target_busy) >= starget->can_queue)
455			return true;
456		if (atomic_read(&starget->target_blocked) > 0)
457			return true;
458	}
459	return false;
460}
461
462static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
463{
464	if (atomic_read(&shost->host_blocked) > 0)
465		return true;
466	if (shost->host_self_blocked)
467		return true;
468	return false;
469}
470
471static void scsi_starved_list_run(struct Scsi_Host *shost)
472{
473	LIST_HEAD(starved_list);
474	struct scsi_device *sdev;
475	unsigned long flags;
476
477	spin_lock_irqsave(shost->host_lock, flags);
478	list_splice_init(&shost->starved_list, &starved_list);
479
480	while (!list_empty(&starved_list)) {
481		struct request_queue *slq;
482
483		/*
484		 * As long as shost is accepting commands and we have
485		 * starved queues, call blk_run_queue. scsi_request_fn
486		 * drops the queue_lock and can add us back to the
487		 * starved_list.
488		 *
489		 * host_lock protects the starved_list and starved_entry.
490		 * scsi_request_fn must get the host_lock before checking
491		 * or modifying starved_list or starved_entry.
492		 */
493		if (scsi_host_is_busy(shost))
494			break;
495
496		sdev = list_entry(starved_list.next,
497				  struct scsi_device, starved_entry);
498		list_del_init(&sdev->starved_entry);
499		if (scsi_target_is_busy(scsi_target(sdev))) {
500			list_move_tail(&sdev->starved_entry,
501				       &shost->starved_list);
502			continue;
503		}
504
505		/*
506		 * Once we drop the host lock, a racing scsi_remove_device()
507		 * call may remove the sdev from the starved list and destroy
508		 * it and the queue.  Mitigate by taking a reference to the
509		 * queue and never touching the sdev again after we drop the
510		 * host lock.  Note: if __scsi_remove_device() invokes
511		 * blk_mq_destroy_queue() before the queue is run from this
512		 * function then blk_run_queue() will return immediately since
513		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
514		 */
515		slq = sdev->request_queue;
516		if (!blk_get_queue(slq))
517			continue;
518		spin_unlock_irqrestore(shost->host_lock, flags);
519
520		blk_mq_run_hw_queues(slq, false);
521		blk_put_queue(slq);
522
523		spin_lock_irqsave(shost->host_lock, flags);
524	}
525	/* put any unprocessed entries back */
526	list_splice(&starved_list, &shost->starved_list);
527	spin_unlock_irqrestore(shost->host_lock, flags);
528}
529
530/**
531 * scsi_run_queue - Select a proper request queue to serve next.
532 * @q:  last request's queue
533 *
534 * The previous command was completely finished, start a new one if possible.
535 */
536static void scsi_run_queue(struct request_queue *q)
537{
538	struct scsi_device *sdev = q->queuedata;
539
540	if (scsi_target(sdev)->single_lun)
541		scsi_single_lun_run(sdev);
542	if (!list_empty(&sdev->host->starved_list))
543		scsi_starved_list_run(sdev->host);
544
545	/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
546	blk_mq_kick_requeue_list(q);
547}
548
549void scsi_requeue_run_queue(struct work_struct *work)
550{
551	struct scsi_device *sdev;
552	struct request_queue *q;
553
554	sdev = container_of(work, struct scsi_device, requeue_work);
555	q = sdev->request_queue;
556	scsi_run_queue(q);
557}
558
559void scsi_run_host_queues(struct Scsi_Host *shost)
560{
561	struct scsi_device *sdev;
562
563	shost_for_each_device(sdev, shost)
564		scsi_run_queue(sdev->request_queue);
565}
566
567static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
568{
569	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
570		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
571
572		if (drv->uninit_command)
573			drv->uninit_command(cmd);
574	}
575}
576
577void scsi_free_sgtables(struct scsi_cmnd *cmd)
578{
579	if (cmd->sdb.table.nents)
580		sg_free_table_chained(&cmd->sdb.table,
581				SCSI_INLINE_SG_CNT);
582	if (scsi_prot_sg_count(cmd))
583		sg_free_table_chained(&cmd->prot_sdb->table,
584				SCSI_INLINE_PROT_SG_CNT);
585}
586EXPORT_SYMBOL_GPL(scsi_free_sgtables);
587
588static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
589{
590	scsi_free_sgtables(cmd);
591	scsi_uninit_cmd(cmd);
592}
593
594static void scsi_run_queue_async(struct scsi_device *sdev)
595{
596	if (scsi_host_in_recovery(sdev->host))
597		return;
598
599	if (scsi_target(sdev)->single_lun ||
600	    !list_empty(&sdev->host->starved_list)) {
601		kblockd_schedule_work(&sdev->requeue_work);
602	} else {
603		/*
604		 * smp_mb() present in sbitmap_queue_clear() or implied in
605		 * .end_io is for ordering writing .device_busy in
606		 * scsi_device_unbusy() and reading sdev->restarts.
607		 */
608		int old = atomic_read(&sdev->restarts);
609
610		/*
611		 * ->restarts has to be kept as non-zero if new budget
612		 *  contention occurs.
613		 *
614		 *  No need to run queue when either another re-run
615		 *  queue wins in updating ->restarts or a new budget
616		 *  contention occurs.
617		 */
618		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
619			blk_mq_run_hw_queues(sdev->request_queue, true);
620	}
621}
622
623/* Returns false when no more bytes to process, true if there are more */
624static bool scsi_end_request(struct request *req, blk_status_t error,
625		unsigned int bytes)
626{
627	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
628	struct scsi_device *sdev = cmd->device;
629	struct request_queue *q = sdev->request_queue;
630
631	if (blk_update_request(req, error, bytes))
632		return true;
633
634	// XXX:
635	if (blk_queue_add_random(q))
636		add_disk_randomness(req->q->disk);
637
638	WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
639		     !(cmd->flags & SCMD_INITIALIZED));
640	cmd->flags = 0;
641
642	/*
643	 * Calling rcu_barrier() is not necessary here because the
644	 * SCSI error handler guarantees that the function called by
645	 * call_rcu() has been called before scsi_end_request() is
646	 * called.
647	 */
648	destroy_rcu_head(&cmd->rcu);
649
650	/*
651	 * In the MQ case the command gets freed by __blk_mq_end_request,
652	 * so we have to do all cleanup that depends on it earlier.
653	 *
654	 * We also can't kick the queues from irq context, so we
655	 * will have to defer it to a workqueue.
656	 */
657	scsi_mq_uninit_cmd(cmd);
658
659	/*
660	 * queue is still alive, so grab the ref for preventing it
661	 * from being cleaned up during running queue.
662	 */
663	percpu_ref_get(&q->q_usage_counter);
664
665	__blk_mq_end_request(req, error);
666
667	scsi_run_queue_async(sdev);
668
669	percpu_ref_put(&q->q_usage_counter);
670	return false;
671}
672
673/**
674 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
675 * @result:	scsi error code
676 *
677 * Translate a SCSI result code into a blk_status_t value.
678 */
679static blk_status_t scsi_result_to_blk_status(int result)
680{
681	/*
682	 * Check the scsi-ml byte first in case we converted a host or status
683	 * byte.
684	 */
685	switch (scsi_ml_byte(result)) {
686	case SCSIML_STAT_OK:
687		break;
688	case SCSIML_STAT_RESV_CONFLICT:
689		return BLK_STS_RESV_CONFLICT;
690	case SCSIML_STAT_NOSPC:
691		return BLK_STS_NOSPC;
692	case SCSIML_STAT_MED_ERROR:
693		return BLK_STS_MEDIUM;
694	case SCSIML_STAT_TGT_FAILURE:
695		return BLK_STS_TARGET;
696	case SCSIML_STAT_DL_TIMEOUT:
697		return BLK_STS_DURATION_LIMIT;
698	}
699
700	switch (host_byte(result)) {
701	case DID_OK:
702		if (scsi_status_is_good(result))
703			return BLK_STS_OK;
704		return BLK_STS_IOERR;
705	case DID_TRANSPORT_FAILFAST:
706	case DID_TRANSPORT_MARGINAL:
707		return BLK_STS_TRANSPORT;
708	default:
709		return BLK_STS_IOERR;
710	}
711}
712
713/**
714 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
715 * @rq: request to examine
716 *
717 * Description:
718 *     A request could be merge of IOs which require different failure
719 *     handling.  This function determines the number of bytes which
720 *     can be failed from the beginning of the request without
721 *     crossing into area which need to be retried further.
722 *
723 * Return:
724 *     The number of bytes to fail.
725 */
726static unsigned int scsi_rq_err_bytes(const struct request *rq)
727{
728	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
729	unsigned int bytes = 0;
730	struct bio *bio;
731
732	if (!(rq->rq_flags & RQF_MIXED_MERGE))
733		return blk_rq_bytes(rq);
734
735	/*
736	 * Currently the only 'mixing' which can happen is between
737	 * different fastfail types.  We can safely fail portions
738	 * which have all the failfast bits that the first one has -
739	 * the ones which are at least as eager to fail as the first
740	 * one.
741	 */
742	for (bio = rq->bio; bio; bio = bio->bi_next) {
743		if ((bio->bi_opf & ff) != ff)
744			break;
745		bytes += bio->bi_iter.bi_size;
746	}
747
748	/* this could lead to infinite loop */
749	BUG_ON(blk_rq_bytes(rq) && !bytes);
750	return bytes;
751}
752
753static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
754{
755	struct request *req = scsi_cmd_to_rq(cmd);
756	unsigned long wait_for;
757
758	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
759		return false;
760
761	wait_for = (cmd->allowed + 1) * req->timeout;
762	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
763		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
764			    wait_for/HZ);
765		return true;
766	}
767	return false;
768}
769
770/*
771 * When ALUA transition state is returned, reprep the cmd to
772 * use the ALUA handler's transition timeout. Delay the reprep
773 * 1 sec to avoid aggressive retries of the target in that
774 * state.
775 */
776#define ALUA_TRANSITION_REPREP_DELAY	1000
777
778/* Helper for scsi_io_completion() when special action required. */
779static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
780{
781	struct request *req = scsi_cmd_to_rq(cmd);
782	int level = 0;
783	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
784	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
785	struct scsi_sense_hdr sshdr;
786	bool sense_valid;
787	bool sense_current = true;      /* false implies "deferred sense" */
788	blk_status_t blk_stat;
789
790	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
791	if (sense_valid)
792		sense_current = !scsi_sense_is_deferred(&sshdr);
793
794	blk_stat = scsi_result_to_blk_status(result);
795
796	if (host_byte(result) == DID_RESET) {
797		/* Third party bus reset or reset for error recovery
798		 * reasons.  Just retry the command and see what
799		 * happens.
800		 */
801		action = ACTION_RETRY;
802	} else if (sense_valid && sense_current) {
803		switch (sshdr.sense_key) {
804		case UNIT_ATTENTION:
805			if (cmd->device->removable) {
806				/* Detected disc change.  Set a bit
807				 * and quietly refuse further access.
808				 */
809				cmd->device->changed = 1;
810				action = ACTION_FAIL;
811			} else {
812				/* Must have been a power glitch, or a
813				 * bus reset.  Could not have been a
814				 * media change, so we just retry the
815				 * command and see what happens.
816				 */
817				action = ACTION_RETRY;
818			}
819			break;
820		case ILLEGAL_REQUEST:
821			/* If we had an ILLEGAL REQUEST returned, then
822			 * we may have performed an unsupported
823			 * command.  The only thing this should be
824			 * would be a ten byte read where only a six
825			 * byte read was supported.  Also, on a system
826			 * where READ CAPACITY failed, we may have
827			 * read past the end of the disk.
828			 */
829			if ((cmd->device->use_10_for_rw &&
830			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
831			    (cmd->cmnd[0] == READ_10 ||
832			     cmd->cmnd[0] == WRITE_10)) {
833				/* This will issue a new 6-byte command. */
834				cmd->device->use_10_for_rw = 0;
835				action = ACTION_REPREP;
836			} else if (sshdr.asc == 0x10) /* DIX */ {
837				action = ACTION_FAIL;
838				blk_stat = BLK_STS_PROTECTION;
839			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
840			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
841				action = ACTION_FAIL;
842				blk_stat = BLK_STS_TARGET;
843			} else
844				action = ACTION_FAIL;
845			break;
846		case ABORTED_COMMAND:
847			action = ACTION_FAIL;
848			if (sshdr.asc == 0x10) /* DIF */
849				blk_stat = BLK_STS_PROTECTION;
850			break;
851		case NOT_READY:
852			/* If the device is in the process of becoming
853			 * ready, or has a temporary blockage, retry.
854			 */
855			if (sshdr.asc == 0x04) {
856				switch (sshdr.ascq) {
857				case 0x01: /* becoming ready */
858				case 0x04: /* format in progress */
859				case 0x05: /* rebuild in progress */
860				case 0x06: /* recalculation in progress */
861				case 0x07: /* operation in progress */
862				case 0x08: /* Long write in progress */
863				case 0x09: /* self test in progress */
864				case 0x11: /* notify (enable spinup) required */
865				case 0x14: /* space allocation in progress */
866				case 0x1a: /* start stop unit in progress */
867				case 0x1b: /* sanitize in progress */
868				case 0x1d: /* configuration in progress */
869				case 0x24: /* depopulation in progress */
870				case 0x25: /* depopulation restore in progress */
871					action = ACTION_DELAYED_RETRY;
872					break;
873				case 0x0a: /* ALUA state transition */
874					action = ACTION_DELAYED_REPREP;
875					break;
876				default:
877					action = ACTION_FAIL;
878					break;
879				}
880			} else
881				action = ACTION_FAIL;
882			break;
883		case VOLUME_OVERFLOW:
884			/* See SSC3rXX or current. */
885			action = ACTION_FAIL;
886			break;
887		case DATA_PROTECT:
888			action = ACTION_FAIL;
889			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
890			    (sshdr.asc == 0x55 &&
891			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
892				/* Insufficient zone resources */
893				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
894			}
895			break;
896		case COMPLETED:
897			fallthrough;
898		default:
899			action = ACTION_FAIL;
900			break;
901		}
902	} else
903		action = ACTION_FAIL;
904
905	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
906		action = ACTION_FAIL;
907
908	switch (action) {
909	case ACTION_FAIL:
910		/* Give up and fail the remainder of the request */
911		if (!(req->rq_flags & RQF_QUIET)) {
912			static DEFINE_RATELIMIT_STATE(_rs,
913					DEFAULT_RATELIMIT_INTERVAL,
914					DEFAULT_RATELIMIT_BURST);
915
916			if (unlikely(scsi_logging_level))
917				level =
918				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
919						    SCSI_LOG_MLCOMPLETE_BITS);
920
921			/*
922			 * if logging is enabled the failure will be printed
923			 * in scsi_log_completion(), so avoid duplicate messages
924			 */
925			if (!level && __ratelimit(&_rs)) {
926				scsi_print_result(cmd, NULL, FAILED);
927				if (sense_valid)
928					scsi_print_sense(cmd);
929				scsi_print_command(cmd);
930			}
931		}
932		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
933			return;
934		fallthrough;
935	case ACTION_REPREP:
936		scsi_mq_requeue_cmd(cmd, 0);
937		break;
938	case ACTION_DELAYED_REPREP:
939		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
940		break;
941	case ACTION_RETRY:
942		/* Retry the same command immediately */
943		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
944		break;
945	case ACTION_DELAYED_RETRY:
946		/* Retry the same command after a delay */
947		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
948		break;
949	}
950}
951
952/*
953 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
954 * new result that may suppress further error checking. Also modifies
955 * *blk_statp in some cases.
956 */
957static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
958					blk_status_t *blk_statp)
959{
960	bool sense_valid;
961	bool sense_current = true;	/* false implies "deferred sense" */
962	struct request *req = scsi_cmd_to_rq(cmd);
963	struct scsi_sense_hdr sshdr;
964
965	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
966	if (sense_valid)
967		sense_current = !scsi_sense_is_deferred(&sshdr);
968
969	if (blk_rq_is_passthrough(req)) {
970		if (sense_valid) {
971			/*
972			 * SG_IO wants current and deferred errors
973			 */
974			cmd->sense_len = min(8 + cmd->sense_buffer[7],
975					     SCSI_SENSE_BUFFERSIZE);
976		}
977		if (sense_current)
978			*blk_statp = scsi_result_to_blk_status(result);
979	} else if (blk_rq_bytes(req) == 0 && sense_current) {
980		/*
981		 * Flush commands do not transfers any data, and thus cannot use
982		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
983		 * This sets *blk_statp explicitly for the problem case.
984		 */
985		*blk_statp = scsi_result_to_blk_status(result);
986	}
987	/*
988	 * Recovered errors need reporting, but they're always treated as
989	 * success, so fiddle the result code here.  For passthrough requests
990	 * we already took a copy of the original into sreq->result which
991	 * is what gets returned to the user
992	 */
993	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
994		bool do_print = true;
995		/*
996		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
997		 * skip print since caller wants ATA registers. Only occurs
998		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
999		 */
1000		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1001			do_print = false;
1002		else if (req->rq_flags & RQF_QUIET)
1003			do_print = false;
1004		if (do_print)
1005			scsi_print_sense(cmd);
1006		result = 0;
1007		/* for passthrough, *blk_statp may be set */
1008		*blk_statp = BLK_STS_OK;
1009	}
1010	/*
1011	 * Another corner case: the SCSI status byte is non-zero but 'good'.
1012	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1013	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1014	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1015	 * intermediate statuses (both obsolete in SAM-4) as good.
1016	 */
1017	if ((result & 0xff) && scsi_status_is_good(result)) {
1018		result = 0;
1019		*blk_statp = BLK_STS_OK;
1020	}
1021	return result;
1022}
1023
1024/**
1025 * scsi_io_completion - Completion processing for SCSI commands.
1026 * @cmd:	command that is finished.
1027 * @good_bytes:	number of processed bytes.
1028 *
1029 * We will finish off the specified number of sectors. If we are done, the
1030 * command block will be released and the queue function will be goosed. If we
1031 * are not done then we have to figure out what to do next:
1032 *
1033 *   a) We can call scsi_mq_requeue_cmd().  The request will be
1034 *	unprepared and put back on the queue.  Then a new command will
1035 *	be created for it.  This should be used if we made forward
1036 *	progress, or if we want to switch from READ(10) to READ(6) for
1037 *	example.
1038 *
1039 *   b) We can call scsi_io_completion_action().  The request will be
1040 *	put back on the queue and retried using the same command as
1041 *	before, possibly after a delay.
1042 *
1043 *   c) We can call scsi_end_request() with blk_stat other than
1044 *	BLK_STS_OK, to fail the remainder of the request.
1045 */
1046void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1047{
1048	int result = cmd->result;
1049	struct request *req = scsi_cmd_to_rq(cmd);
1050	blk_status_t blk_stat = BLK_STS_OK;
1051
1052	if (unlikely(result))	/* a nz result may or may not be an error */
1053		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1054
1055	/*
1056	 * Next deal with any sectors which we were able to correctly
1057	 * handle.
1058	 */
1059	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1060		"%u sectors total, %d bytes done.\n",
1061		blk_rq_sectors(req), good_bytes));
1062
1063	/*
1064	 * Failed, zero length commands always need to drop down
1065	 * to retry code. Fast path should return in this block.
1066	 */
1067	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1068		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1069			return; /* no bytes remaining */
1070	}
1071
1072	/* Kill remainder if no retries. */
1073	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1074		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1075			WARN_ONCE(true,
1076			    "Bytes remaining after failed, no-retry command");
1077		return;
1078	}
1079
1080	/*
1081	 * If there had been no error, but we have leftover bytes in the
1082	 * request just queue the command up again.
1083	 */
1084	if (likely(result == 0))
1085		scsi_mq_requeue_cmd(cmd, 0);
1086	else
1087		scsi_io_completion_action(cmd, result);
1088}
1089
1090static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1091		struct request *rq)
1092{
1093	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1094	       !op_is_write(req_op(rq)) &&
1095	       sdev->host->hostt->dma_need_drain(rq);
1096}
1097
1098/**
1099 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1100 * @cmd: SCSI command data structure to initialize.
1101 *
1102 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1103 * for @cmd.
1104 *
1105 * Returns:
1106 * * BLK_STS_OK       - on success
1107 * * BLK_STS_RESOURCE - if the failure is retryable
1108 * * BLK_STS_IOERR    - if the failure is fatal
1109 */
1110blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1111{
1112	struct scsi_device *sdev = cmd->device;
1113	struct request *rq = scsi_cmd_to_rq(cmd);
1114	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1115	struct scatterlist *last_sg = NULL;
1116	blk_status_t ret;
1117	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1118	int count;
1119
1120	if (WARN_ON_ONCE(!nr_segs))
1121		return BLK_STS_IOERR;
1122
1123	/*
1124	 * Make sure there is space for the drain.  The driver must adjust
1125	 * max_hw_segments to be prepared for this.
1126	 */
1127	if (need_drain)
1128		nr_segs++;
1129
1130	/*
1131	 * If sg table allocation fails, requeue request later.
1132	 */
1133	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1134			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1135		return BLK_STS_RESOURCE;
1136
1137	/*
1138	 * Next, walk the list, and fill in the addresses and sizes of
1139	 * each segment.
1140	 */
1141	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1142
1143	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1144		unsigned int pad_len =
1145			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1146
1147		last_sg->length += pad_len;
1148		cmd->extra_len += pad_len;
1149	}
1150
1151	if (need_drain) {
1152		sg_unmark_end(last_sg);
1153		last_sg = sg_next(last_sg);
1154		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1155		sg_mark_end(last_sg);
1156
1157		cmd->extra_len += sdev->dma_drain_len;
1158		count++;
1159	}
1160
1161	BUG_ON(count > cmd->sdb.table.nents);
1162	cmd->sdb.table.nents = count;
1163	cmd->sdb.length = blk_rq_payload_bytes(rq);
1164
1165	if (blk_integrity_rq(rq)) {
1166		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1167		int ivecs;
1168
1169		if (WARN_ON_ONCE(!prot_sdb)) {
1170			/*
1171			 * This can happen if someone (e.g. multipath)
1172			 * queues a command to a device on an adapter
1173			 * that does not support DIX.
1174			 */
1175			ret = BLK_STS_IOERR;
1176			goto out_free_sgtables;
1177		}
1178
1179		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1180
1181		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1182				prot_sdb->table.sgl,
1183				SCSI_INLINE_PROT_SG_CNT)) {
1184			ret = BLK_STS_RESOURCE;
1185			goto out_free_sgtables;
1186		}
1187
1188		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1189						prot_sdb->table.sgl);
1190		BUG_ON(count > ivecs);
1191		BUG_ON(count > queue_max_integrity_segments(rq->q));
1192
1193		cmd->prot_sdb = prot_sdb;
1194		cmd->prot_sdb->table.nents = count;
1195	}
1196
1197	return BLK_STS_OK;
1198out_free_sgtables:
1199	scsi_free_sgtables(cmd);
1200	return ret;
1201}
1202EXPORT_SYMBOL(scsi_alloc_sgtables);
1203
1204/**
1205 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1206 * @rq: Request associated with the SCSI command to be initialized.
1207 *
1208 * This function initializes the members of struct scsi_cmnd that must be
1209 * initialized before request processing starts and that won't be
1210 * reinitialized if a SCSI command is requeued.
1211 */
1212static void scsi_initialize_rq(struct request *rq)
1213{
1214	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1215
1216	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1217	cmd->cmd_len = MAX_COMMAND_SIZE;
1218	cmd->sense_len = 0;
1219	init_rcu_head(&cmd->rcu);
1220	cmd->jiffies_at_alloc = jiffies;
1221	cmd->retries = 0;
1222}
1223
1224struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1225				   blk_mq_req_flags_t flags)
1226{
1227	struct request *rq;
1228
1229	rq = blk_mq_alloc_request(q, opf, flags);
1230	if (!IS_ERR(rq))
1231		scsi_initialize_rq(rq);
1232	return rq;
1233}
1234EXPORT_SYMBOL_GPL(scsi_alloc_request);
1235
1236/*
1237 * Only called when the request isn't completed by SCSI, and not freed by
1238 * SCSI
1239 */
1240static void scsi_cleanup_rq(struct request *rq)
1241{
1242	if (rq->rq_flags & RQF_DONTPREP) {
1243		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1244		rq->rq_flags &= ~RQF_DONTPREP;
1245	}
1246}
1247
1248/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1249void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1250{
1251	struct request *rq = scsi_cmd_to_rq(cmd);
1252
1253	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1254		cmd->flags |= SCMD_INITIALIZED;
1255		scsi_initialize_rq(rq);
1256	}
1257
1258	cmd->device = dev;
1259	INIT_LIST_HEAD(&cmd->eh_entry);
1260	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1261}
1262
1263static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1264		struct request *req)
1265{
1266	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1267
1268	/*
1269	 * Passthrough requests may transfer data, in which case they must
1270	 * a bio attached to them.  Or they might contain a SCSI command
1271	 * that does not transfer data, in which case they may optionally
1272	 * submit a request without an attached bio.
1273	 */
1274	if (req->bio) {
1275		blk_status_t ret = scsi_alloc_sgtables(cmd);
1276		if (unlikely(ret != BLK_STS_OK))
1277			return ret;
1278	} else {
1279		BUG_ON(blk_rq_bytes(req));
1280
1281		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1282	}
1283
1284	cmd->transfersize = blk_rq_bytes(req);
1285	return BLK_STS_OK;
1286}
1287
1288static blk_status_t
1289scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1290{
1291	switch (sdev->sdev_state) {
1292	case SDEV_CREATED:
1293		return BLK_STS_OK;
1294	case SDEV_OFFLINE:
1295	case SDEV_TRANSPORT_OFFLINE:
1296		/*
1297		 * If the device is offline we refuse to process any
1298		 * commands.  The device must be brought online
1299		 * before trying any recovery commands.
1300		 */
1301		if (!sdev->offline_already) {
1302			sdev->offline_already = true;
1303			sdev_printk(KERN_ERR, sdev,
1304				    "rejecting I/O to offline device\n");
1305		}
1306		return BLK_STS_IOERR;
1307	case SDEV_DEL:
1308		/*
1309		 * If the device is fully deleted, we refuse to
1310		 * process any commands as well.
1311		 */
1312		sdev_printk(KERN_ERR, sdev,
1313			    "rejecting I/O to dead device\n");
1314		return BLK_STS_IOERR;
1315	case SDEV_BLOCK:
1316	case SDEV_CREATED_BLOCK:
1317		return BLK_STS_RESOURCE;
1318	case SDEV_QUIESCE:
1319		/*
1320		 * If the device is blocked we only accept power management
1321		 * commands.
1322		 */
1323		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1324			return BLK_STS_RESOURCE;
1325		return BLK_STS_OK;
1326	default:
1327		/*
1328		 * For any other not fully online state we only allow
1329		 * power management commands.
1330		 */
1331		if (req && !(req->rq_flags & RQF_PM))
1332			return BLK_STS_OFFLINE;
1333		return BLK_STS_OK;
1334	}
1335}
1336
1337/*
1338 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1339 * and return the token else return -1.
1340 */
1341static inline int scsi_dev_queue_ready(struct request_queue *q,
1342				  struct scsi_device *sdev)
1343{
1344	int token;
1345
1346	token = sbitmap_get(&sdev->budget_map);
1347	if (token < 0)
1348		return -1;
1349
1350	if (!atomic_read(&sdev->device_blocked))
1351		return token;
1352
1353	/*
1354	 * Only unblock if no other commands are pending and
1355	 * if device_blocked has decreased to zero
1356	 */
1357	if (scsi_device_busy(sdev) > 1 ||
1358	    atomic_dec_return(&sdev->device_blocked) > 0) {
1359		sbitmap_put(&sdev->budget_map, token);
1360		return -1;
1361	}
1362
1363	SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1364			 "unblocking device at zero depth\n"));
1365
1366	return token;
1367}
1368
1369/*
1370 * scsi_target_queue_ready: checks if there we can send commands to target
1371 * @sdev: scsi device on starget to check.
1372 */
1373static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1374					   struct scsi_device *sdev)
1375{
1376	struct scsi_target *starget = scsi_target(sdev);
1377	unsigned int busy;
1378
1379	if (starget->single_lun) {
1380		spin_lock_irq(shost->host_lock);
1381		if (starget->starget_sdev_user &&
1382		    starget->starget_sdev_user != sdev) {
1383			spin_unlock_irq(shost->host_lock);
1384			return 0;
1385		}
1386		starget->starget_sdev_user = sdev;
1387		spin_unlock_irq(shost->host_lock);
1388	}
1389
1390	if (starget->can_queue <= 0)
1391		return 1;
1392
1393	busy = atomic_inc_return(&starget->target_busy) - 1;
1394	if (atomic_read(&starget->target_blocked) > 0) {
1395		if (busy)
1396			goto starved;
1397
1398		/*
1399		 * unblock after target_blocked iterates to zero
1400		 */
1401		if (atomic_dec_return(&starget->target_blocked) > 0)
1402			goto out_dec;
1403
1404		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1405				 "unblocking target at zero depth\n"));
1406	}
1407
1408	if (busy >= starget->can_queue)
1409		goto starved;
1410
1411	return 1;
1412
1413starved:
1414	spin_lock_irq(shost->host_lock);
1415	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1416	spin_unlock_irq(shost->host_lock);
1417out_dec:
1418	if (starget->can_queue > 0)
1419		atomic_dec(&starget->target_busy);
1420	return 0;
1421}
1422
1423/*
1424 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1425 * return 0. We must end up running the queue again whenever 0 is
1426 * returned, else IO can hang.
1427 */
1428static inline int scsi_host_queue_ready(struct request_queue *q,
1429				   struct Scsi_Host *shost,
1430				   struct scsi_device *sdev,
1431				   struct scsi_cmnd *cmd)
1432{
1433	if (atomic_read(&shost->host_blocked) > 0) {
1434		if (scsi_host_busy(shost) > 0)
1435			goto starved;
1436
1437		/*
1438		 * unblock after host_blocked iterates to zero
1439		 */
1440		if (atomic_dec_return(&shost->host_blocked) > 0)
1441			goto out_dec;
1442
1443		SCSI_LOG_MLQUEUE(3,
1444			shost_printk(KERN_INFO, shost,
1445				     "unblocking host at zero depth\n"));
1446	}
1447
1448	if (shost->host_self_blocked)
1449		goto starved;
1450
1451	/* We're OK to process the command, so we can't be starved */
1452	if (!list_empty(&sdev->starved_entry)) {
1453		spin_lock_irq(shost->host_lock);
1454		if (!list_empty(&sdev->starved_entry))
1455			list_del_init(&sdev->starved_entry);
1456		spin_unlock_irq(shost->host_lock);
1457	}
1458
1459	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1460
1461	return 1;
1462
1463starved:
1464	spin_lock_irq(shost->host_lock);
1465	if (list_empty(&sdev->starved_entry))
1466		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1467	spin_unlock_irq(shost->host_lock);
1468out_dec:
1469	scsi_dec_host_busy(shost, cmd);
1470	return 0;
1471}
1472
1473/*
1474 * Busy state exporting function for request stacking drivers.
1475 *
1476 * For efficiency, no lock is taken to check the busy state of
1477 * shost/starget/sdev, since the returned value is not guaranteed and
1478 * may be changed after request stacking drivers call the function,
1479 * regardless of taking lock or not.
1480 *
1481 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1482 * needs to return 'not busy'. Otherwise, request stacking drivers
1483 * may hold requests forever.
1484 */
1485static bool scsi_mq_lld_busy(struct request_queue *q)
1486{
1487	struct scsi_device *sdev = q->queuedata;
1488	struct Scsi_Host *shost;
1489
1490	if (blk_queue_dying(q))
1491		return false;
1492
1493	shost = sdev->host;
1494
1495	/*
1496	 * Ignore host/starget busy state.
1497	 * Since block layer does not have a concept of fairness across
1498	 * multiple queues, congestion of host/starget needs to be handled
1499	 * in SCSI layer.
1500	 */
1501	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1502		return true;
1503
1504	return false;
1505}
1506
1507/*
1508 * Block layer request completion callback. May be called from interrupt
1509 * context.
1510 */
1511static void scsi_complete(struct request *rq)
1512{
1513	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1514	enum scsi_disposition disposition;
1515
1516	INIT_LIST_HEAD(&cmd->eh_entry);
1517
1518	atomic_inc(&cmd->device->iodone_cnt);
1519	if (cmd->result)
1520		atomic_inc(&cmd->device->ioerr_cnt);
1521
1522	disposition = scsi_decide_disposition(cmd);
1523	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1524		disposition = SUCCESS;
1525
1526	scsi_log_completion(cmd, disposition);
1527
1528	switch (disposition) {
1529	case SUCCESS:
1530		scsi_finish_command(cmd);
1531		break;
1532	case NEEDS_RETRY:
1533		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1534		break;
1535	case ADD_TO_MLQUEUE:
1536		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1537		break;
1538	default:
1539		scsi_eh_scmd_add(cmd);
1540		break;
1541	}
1542}
1543
1544/**
1545 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1546 * @cmd: command block we are dispatching.
1547 *
1548 * Return: nonzero return request was rejected and device's queue needs to be
1549 * plugged.
1550 */
1551static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1552{
1553	struct Scsi_Host *host = cmd->device->host;
1554	int rtn = 0;
1555
1556	atomic_inc(&cmd->device->iorequest_cnt);
1557
1558	/* check if the device is still usable */
1559	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1560		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1561		 * returns an immediate error upwards, and signals
1562		 * that the device is no longer present */
1563		cmd->result = DID_NO_CONNECT << 16;
1564		goto done;
1565	}
1566
1567	/* Check to see if the scsi lld made this device blocked. */
1568	if (unlikely(scsi_device_blocked(cmd->device))) {
1569		/*
1570		 * in blocked state, the command is just put back on
1571		 * the device queue.  The suspend state has already
1572		 * blocked the queue so future requests should not
1573		 * occur until the device transitions out of the
1574		 * suspend state.
1575		 */
1576		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1577			"queuecommand : device blocked\n"));
1578		atomic_dec(&cmd->device->iorequest_cnt);
1579		return SCSI_MLQUEUE_DEVICE_BUSY;
1580	}
1581
1582	/* Store the LUN value in cmnd, if needed. */
1583	if (cmd->device->lun_in_cdb)
1584		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1585			       (cmd->device->lun << 5 & 0xe0);
1586
1587	scsi_log_send(cmd);
1588
1589	/*
1590	 * Before we queue this command, check if the command
1591	 * length exceeds what the host adapter can handle.
1592	 */
1593	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1594		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1595			       "queuecommand : command too long. "
1596			       "cdb_size=%d host->max_cmd_len=%d\n",
1597			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1598		cmd->result = (DID_ABORT << 16);
1599		goto done;
1600	}
1601
1602	if (unlikely(host->shost_state == SHOST_DEL)) {
1603		cmd->result = (DID_NO_CONNECT << 16);
1604		goto done;
1605
1606	}
1607
1608	trace_scsi_dispatch_cmd_start(cmd);
1609	rtn = host->hostt->queuecommand(host, cmd);
1610	if (rtn) {
1611		atomic_dec(&cmd->device->iorequest_cnt);
1612		trace_scsi_dispatch_cmd_error(cmd, rtn);
1613		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1614		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1615			rtn = SCSI_MLQUEUE_HOST_BUSY;
1616
1617		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1618			"queuecommand : request rejected\n"));
1619	}
1620
1621	return rtn;
1622 done:
1623	scsi_done(cmd);
1624	return 0;
1625}
1626
1627/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1628static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1629{
1630	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1631		sizeof(struct scatterlist);
1632}
1633
1634static blk_status_t scsi_prepare_cmd(struct request *req)
1635{
1636	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1637	struct scsi_device *sdev = req->q->queuedata;
1638	struct Scsi_Host *shost = sdev->host;
1639	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1640	struct scatterlist *sg;
1641
1642	scsi_init_command(sdev, cmd);
1643
1644	cmd->eh_eflags = 0;
1645	cmd->prot_type = 0;
1646	cmd->prot_flags = 0;
1647	cmd->submitter = 0;
1648	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1649	cmd->underflow = 0;
1650	cmd->transfersize = 0;
1651	cmd->host_scribble = NULL;
1652	cmd->result = 0;
1653	cmd->extra_len = 0;
1654	cmd->state = 0;
1655	if (in_flight)
1656		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1657
1658	/*
1659	 * Only clear the driver-private command data if the LLD does not supply
1660	 * a function to initialize that data.
1661	 */
1662	if (!shost->hostt->init_cmd_priv)
1663		memset(cmd + 1, 0, shost->hostt->cmd_size);
1664
1665	cmd->prot_op = SCSI_PROT_NORMAL;
1666	if (blk_rq_bytes(req))
1667		cmd->sc_data_direction = rq_dma_dir(req);
1668	else
1669		cmd->sc_data_direction = DMA_NONE;
1670
1671	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1672	cmd->sdb.table.sgl = sg;
1673
1674	if (scsi_host_get_prot(shost)) {
1675		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1676
1677		cmd->prot_sdb->table.sgl =
1678			(struct scatterlist *)(cmd->prot_sdb + 1);
1679	}
1680
1681	/*
1682	 * Special handling for passthrough commands, which don't go to the ULP
1683	 * at all:
1684	 */
1685	if (blk_rq_is_passthrough(req))
1686		return scsi_setup_scsi_cmnd(sdev, req);
1687
1688	if (sdev->handler && sdev->handler->prep_fn) {
1689		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1690
1691		if (ret != BLK_STS_OK)
1692			return ret;
1693	}
1694
1695	/* Usually overridden by the ULP */
1696	cmd->allowed = 0;
1697	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1698	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1699}
1700
1701static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1702{
1703	struct request *req = scsi_cmd_to_rq(cmd);
1704
1705	switch (cmd->submitter) {
1706	case SUBMITTED_BY_BLOCK_LAYER:
1707		break;
1708	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1709		return scsi_eh_done(cmd);
1710	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1711		return;
1712	}
1713
1714	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1715		return;
1716	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1717		return;
1718	trace_scsi_dispatch_cmd_done(cmd);
1719
1720	if (complete_directly)
1721		blk_mq_complete_request_direct(req, scsi_complete);
1722	else
1723		blk_mq_complete_request(req);
1724}
1725
1726void scsi_done(struct scsi_cmnd *cmd)
1727{
1728	scsi_done_internal(cmd, false);
1729}
1730EXPORT_SYMBOL(scsi_done);
1731
1732void scsi_done_direct(struct scsi_cmnd *cmd)
1733{
1734	scsi_done_internal(cmd, true);
1735}
1736EXPORT_SYMBOL(scsi_done_direct);
1737
1738static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1739{
1740	struct scsi_device *sdev = q->queuedata;
1741
1742	sbitmap_put(&sdev->budget_map, budget_token);
1743}
1744
1745/*
1746 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1747 * not change behaviour from the previous unplug mechanism, experimentation
1748 * may prove this needs changing.
1749 */
1750#define SCSI_QUEUE_DELAY 3
1751
1752static int scsi_mq_get_budget(struct request_queue *q)
1753{
1754	struct scsi_device *sdev = q->queuedata;
1755	int token = scsi_dev_queue_ready(q, sdev);
1756
1757	if (token >= 0)
1758		return token;
1759
1760	atomic_inc(&sdev->restarts);
1761
1762	/*
1763	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1764	 * .restarts must be incremented before .device_busy is read because the
1765	 * code in scsi_run_queue_async() depends on the order of these operations.
1766	 */
1767	smp_mb__after_atomic();
1768
1769	/*
1770	 * If all in-flight requests originated from this LUN are completed
1771	 * before reading .device_busy, sdev->device_busy will be observed as
1772	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1773	 * soon. Otherwise, completion of one of these requests will observe
1774	 * the .restarts flag, and the request queue will be run for handling
1775	 * this request, see scsi_end_request().
1776	 */
1777	if (unlikely(scsi_device_busy(sdev) == 0 &&
1778				!scsi_device_blocked(sdev)))
1779		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1780	return -1;
1781}
1782
1783static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1784{
1785	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1786
1787	cmd->budget_token = token;
1788}
1789
1790static int scsi_mq_get_rq_budget_token(struct request *req)
1791{
1792	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1793
1794	return cmd->budget_token;
1795}
1796
1797static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1798			 const struct blk_mq_queue_data *bd)
1799{
1800	struct request *req = bd->rq;
1801	struct request_queue *q = req->q;
1802	struct scsi_device *sdev = q->queuedata;
1803	struct Scsi_Host *shost = sdev->host;
1804	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1805	blk_status_t ret;
1806	int reason;
1807
1808	WARN_ON_ONCE(cmd->budget_token < 0);
1809
1810	/*
1811	 * If the device is not in running state we will reject some or all
1812	 * commands.
1813	 */
1814	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1815		ret = scsi_device_state_check(sdev, req);
1816		if (ret != BLK_STS_OK)
1817			goto out_put_budget;
1818	}
1819
1820	ret = BLK_STS_RESOURCE;
1821	if (!scsi_target_queue_ready(shost, sdev))
1822		goto out_put_budget;
1823	if (unlikely(scsi_host_in_recovery(shost))) {
1824		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1825			ret = BLK_STS_OFFLINE;
1826		goto out_dec_target_busy;
1827	}
1828	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1829		goto out_dec_target_busy;
1830
1831	if (!(req->rq_flags & RQF_DONTPREP)) {
1832		ret = scsi_prepare_cmd(req);
1833		if (ret != BLK_STS_OK)
1834			goto out_dec_host_busy;
1835		req->rq_flags |= RQF_DONTPREP;
1836	} else {
1837		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1838	}
1839
1840	cmd->flags &= SCMD_PRESERVED_FLAGS;
1841	if (sdev->simple_tags)
1842		cmd->flags |= SCMD_TAGGED;
1843	if (bd->last)
1844		cmd->flags |= SCMD_LAST;
1845
1846	scsi_set_resid(cmd, 0);
1847	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1848	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1849
1850	blk_mq_start_request(req);
1851	reason = scsi_dispatch_cmd(cmd);
1852	if (reason) {
1853		scsi_set_blocked(cmd, reason);
1854		ret = BLK_STS_RESOURCE;
1855		goto out_dec_host_busy;
1856	}
1857
1858	return BLK_STS_OK;
1859
1860out_dec_host_busy:
1861	scsi_dec_host_busy(shost, cmd);
1862out_dec_target_busy:
1863	if (scsi_target(sdev)->can_queue > 0)
1864		atomic_dec(&scsi_target(sdev)->target_busy);
1865out_put_budget:
1866	scsi_mq_put_budget(q, cmd->budget_token);
1867	cmd->budget_token = -1;
1868	switch (ret) {
1869	case BLK_STS_OK:
1870		break;
1871	case BLK_STS_RESOURCE:
1872	case BLK_STS_ZONE_RESOURCE:
1873		if (scsi_device_blocked(sdev))
1874			ret = BLK_STS_DEV_RESOURCE;
1875		break;
1876	case BLK_STS_AGAIN:
1877		cmd->result = DID_BUS_BUSY << 16;
1878		if (req->rq_flags & RQF_DONTPREP)
1879			scsi_mq_uninit_cmd(cmd);
1880		break;
1881	default:
1882		if (unlikely(!scsi_device_online(sdev)))
1883			cmd->result = DID_NO_CONNECT << 16;
1884		else
1885			cmd->result = DID_ERROR << 16;
1886		/*
1887		 * Make sure to release all allocated resources when
1888		 * we hit an error, as we will never see this command
1889		 * again.
1890		 */
1891		if (req->rq_flags & RQF_DONTPREP)
1892			scsi_mq_uninit_cmd(cmd);
1893		scsi_run_queue_async(sdev);
1894		break;
1895	}
1896	return ret;
1897}
1898
1899static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1900				unsigned int hctx_idx, unsigned int numa_node)
1901{
1902	struct Scsi_Host *shost = set->driver_data;
1903	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1904	struct scatterlist *sg;
1905	int ret = 0;
1906
1907	cmd->sense_buffer =
1908		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1909	if (!cmd->sense_buffer)
1910		return -ENOMEM;
1911
1912	if (scsi_host_get_prot(shost)) {
1913		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1914			shost->hostt->cmd_size;
1915		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1916	}
1917
1918	if (shost->hostt->init_cmd_priv) {
1919		ret = shost->hostt->init_cmd_priv(shost, cmd);
1920		if (ret < 0)
1921			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1922	}
1923
1924	return ret;
1925}
1926
1927static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1928				 unsigned int hctx_idx)
1929{
1930	struct Scsi_Host *shost = set->driver_data;
1931	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1932
1933	if (shost->hostt->exit_cmd_priv)
1934		shost->hostt->exit_cmd_priv(shost, cmd);
1935	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1936}
1937
1938
1939static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1940{
1941	struct Scsi_Host *shost = hctx->driver_data;
1942
1943	if (shost->hostt->mq_poll)
1944		return shost->hostt->mq_poll(shost, hctx->queue_num);
1945
1946	return 0;
1947}
1948
1949static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1950			  unsigned int hctx_idx)
1951{
1952	struct Scsi_Host *shost = data;
1953
1954	hctx->driver_data = shost;
1955	return 0;
1956}
1957
1958static void scsi_map_queues(struct blk_mq_tag_set *set)
1959{
1960	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1961
1962	if (shost->hostt->map_queues)
1963		return shost->hostt->map_queues(shost);
1964	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1965}
1966
1967void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1968{
1969	struct device *dev = shost->dma_dev;
1970
1971	/*
1972	 * this limit is imposed by hardware restrictions
1973	 */
1974	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1975					SG_MAX_SEGMENTS));
1976
1977	if (scsi_host_prot_dma(shost)) {
1978		shost->sg_prot_tablesize =
1979			min_not_zero(shost->sg_prot_tablesize,
1980				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1981		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1982		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1983	}
1984
1985	blk_queue_max_hw_sectors(q, shost->max_sectors);
1986	blk_queue_segment_boundary(q, shost->dma_boundary);
1987	dma_set_seg_boundary(dev, shost->dma_boundary);
1988
1989	blk_queue_max_segment_size(q, shost->max_segment_size);
1990	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1991	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1992
1993	/*
1994	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1995	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1996	 * which is set by the platform.
1997	 *
1998	 * Devices that require a bigger alignment can increase it later.
1999	 */
2000	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2001}
2002EXPORT_SYMBOL_GPL(__scsi_init_queue);
2003
2004static const struct blk_mq_ops scsi_mq_ops_no_commit = {
2005	.get_budget	= scsi_mq_get_budget,
2006	.put_budget	= scsi_mq_put_budget,
2007	.queue_rq	= scsi_queue_rq,
2008	.complete	= scsi_complete,
2009	.timeout	= scsi_timeout,
2010#ifdef CONFIG_BLK_DEBUG_FS
2011	.show_rq	= scsi_show_rq,
2012#endif
2013	.init_request	= scsi_mq_init_request,
2014	.exit_request	= scsi_mq_exit_request,
2015	.cleanup_rq	= scsi_cleanup_rq,
2016	.busy		= scsi_mq_lld_busy,
2017	.map_queues	= scsi_map_queues,
2018	.init_hctx	= scsi_init_hctx,
2019	.poll		= scsi_mq_poll,
2020	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2021	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2022};
2023
2024
2025static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2026{
2027	struct Scsi_Host *shost = hctx->driver_data;
2028
2029	shost->hostt->commit_rqs(shost, hctx->queue_num);
2030}
2031
2032static const struct blk_mq_ops scsi_mq_ops = {
2033	.get_budget	= scsi_mq_get_budget,
2034	.put_budget	= scsi_mq_put_budget,
2035	.queue_rq	= scsi_queue_rq,
2036	.commit_rqs	= scsi_commit_rqs,
2037	.complete	= scsi_complete,
2038	.timeout	= scsi_timeout,
2039#ifdef CONFIG_BLK_DEBUG_FS
2040	.show_rq	= scsi_show_rq,
2041#endif
2042	.init_request	= scsi_mq_init_request,
2043	.exit_request	= scsi_mq_exit_request,
2044	.cleanup_rq	= scsi_cleanup_rq,
2045	.busy		= scsi_mq_lld_busy,
2046	.map_queues	= scsi_map_queues,
2047	.init_hctx	= scsi_init_hctx,
2048	.poll		= scsi_mq_poll,
2049	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2050	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2051};
2052
2053int scsi_mq_setup_tags(struct Scsi_Host *shost)
2054{
2055	unsigned int cmd_size, sgl_size;
2056	struct blk_mq_tag_set *tag_set = &shost->tag_set;
2057
2058	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2059				scsi_mq_inline_sgl_size(shost));
2060	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2061	if (scsi_host_get_prot(shost))
2062		cmd_size += sizeof(struct scsi_data_buffer) +
2063			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2064
2065	memset(tag_set, 0, sizeof(*tag_set));
2066	if (shost->hostt->commit_rqs)
2067		tag_set->ops = &scsi_mq_ops;
2068	else
2069		tag_set->ops = &scsi_mq_ops_no_commit;
2070	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2071	tag_set->nr_maps = shost->nr_maps ? : 1;
2072	tag_set->queue_depth = shost->can_queue;
2073	tag_set->cmd_size = cmd_size;
2074	tag_set->numa_node = dev_to_node(shost->dma_dev);
2075	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
2076	tag_set->flags |=
2077		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2078	if (shost->queuecommand_may_block)
2079		tag_set->flags |= BLK_MQ_F_BLOCKING;
2080	tag_set->driver_data = shost;
2081	if (shost->host_tagset)
2082		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2083
2084	return blk_mq_alloc_tag_set(tag_set);
2085}
2086
2087void scsi_mq_free_tags(struct kref *kref)
2088{
2089	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2090					       tagset_refcnt);
2091
2092	blk_mq_free_tag_set(&shost->tag_set);
2093	complete(&shost->tagset_freed);
2094}
2095
2096/**
2097 * scsi_device_from_queue - return sdev associated with a request_queue
2098 * @q: The request queue to return the sdev from
2099 *
2100 * Return the sdev associated with a request queue or NULL if the
2101 * request_queue does not reference a SCSI device.
2102 */
2103struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2104{
2105	struct scsi_device *sdev = NULL;
2106
2107	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2108	    q->mq_ops == &scsi_mq_ops)
2109		sdev = q->queuedata;
2110	if (!sdev || !get_device(&sdev->sdev_gendev))
2111		sdev = NULL;
2112
2113	return sdev;
2114}
2115/*
2116 * pktcdvd should have been integrated into the SCSI layers, but for historical
2117 * reasons like the old IDE driver it isn't.  This export allows it to safely
2118 * probe if a given device is a SCSI one and only attach to that.
2119 */
2120#ifdef CONFIG_CDROM_PKTCDVD_MODULE
2121EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2122#endif
2123
2124/**
2125 * scsi_block_requests - Utility function used by low-level drivers to prevent
2126 * further commands from being queued to the device.
2127 * @shost:  host in question
2128 *
2129 * There is no timer nor any other means by which the requests get unblocked
2130 * other than the low-level driver calling scsi_unblock_requests().
2131 */
2132void scsi_block_requests(struct Scsi_Host *shost)
2133{
2134	shost->host_self_blocked = 1;
2135}
2136EXPORT_SYMBOL(scsi_block_requests);
2137
2138/**
2139 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2140 * further commands to be queued to the device.
2141 * @shost:  host in question
2142 *
2143 * There is no timer nor any other means by which the requests get unblocked
2144 * other than the low-level driver calling scsi_unblock_requests(). This is done
2145 * as an API function so that changes to the internals of the scsi mid-layer
2146 * won't require wholesale changes to drivers that use this feature.
2147 */
2148void scsi_unblock_requests(struct Scsi_Host *shost)
2149{
2150	shost->host_self_blocked = 0;
2151	scsi_run_host_queues(shost);
2152}
2153EXPORT_SYMBOL(scsi_unblock_requests);
2154
2155void scsi_exit_queue(void)
2156{
2157	kmem_cache_destroy(scsi_sense_cache);
2158}
2159
2160/**
2161 *	scsi_mode_select - issue a mode select
2162 *	@sdev:	SCSI device to be queried
2163 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2164 *	@sp:	Save page bit (0 == don't save, 1 == save)
2165 *	@buffer: request buffer (may not be smaller than eight bytes)
2166 *	@len:	length of request buffer.
2167 *	@timeout: command timeout
2168 *	@retries: number of retries before failing
2169 *	@data: returns a structure abstracting the mode header data
2170 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2171 *		must be SCSI_SENSE_BUFFERSIZE big.
2172 *
2173 *	Returns zero if successful; negative error number or scsi
2174 *	status on error
2175 *
2176 */
2177int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2178		     unsigned char *buffer, int len, int timeout, int retries,
2179		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2180{
2181	unsigned char cmd[10];
2182	unsigned char *real_buffer;
2183	const struct scsi_exec_args exec_args = {
2184		.sshdr = sshdr,
2185	};
2186	int ret;
2187
2188	memset(cmd, 0, sizeof(cmd));
2189	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2190
2191	/*
2192	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2193	 * and the mode select header cannot fit within the maximumm 255 bytes
2194	 * of the MODE SELECT(6) command.
2195	 */
2196	if (sdev->use_10_for_ms ||
2197	    len + 4 > 255 ||
2198	    data->block_descriptor_length > 255) {
2199		if (len > 65535 - 8)
2200			return -EINVAL;
2201		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2202		if (!real_buffer)
2203			return -ENOMEM;
2204		memcpy(real_buffer + 8, buffer, len);
2205		len += 8;
2206		real_buffer[0] = 0;
2207		real_buffer[1] = 0;
2208		real_buffer[2] = data->medium_type;
2209		real_buffer[3] = data->device_specific;
2210		real_buffer[4] = data->longlba ? 0x01 : 0;
2211		real_buffer[5] = 0;
2212		put_unaligned_be16(data->block_descriptor_length,
2213				   &real_buffer[6]);
2214
2215		cmd[0] = MODE_SELECT_10;
2216		put_unaligned_be16(len, &cmd[7]);
2217	} else {
2218		if (data->longlba)
2219			return -EINVAL;
2220
2221		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2222		if (!real_buffer)
2223			return -ENOMEM;
2224		memcpy(real_buffer + 4, buffer, len);
2225		len += 4;
2226		real_buffer[0] = 0;
2227		real_buffer[1] = data->medium_type;
2228		real_buffer[2] = data->device_specific;
2229		real_buffer[3] = data->block_descriptor_length;
2230
2231		cmd[0] = MODE_SELECT;
2232		cmd[4] = len;
2233	}
2234
2235	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2236			       timeout, retries, &exec_args);
2237	kfree(real_buffer);
2238	return ret;
2239}
2240EXPORT_SYMBOL_GPL(scsi_mode_select);
2241
2242/**
2243 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2244 *	@sdev:	SCSI device to be queried
2245 *	@dbd:	set to prevent mode sense from returning block descriptors
2246 *	@modepage: mode page being requested
2247 *	@subpage: sub-page of the mode page being requested
2248 *	@buffer: request buffer (may not be smaller than eight bytes)
2249 *	@len:	length of request buffer.
2250 *	@timeout: command timeout
2251 *	@retries: number of retries before failing
2252 *	@data: returns a structure abstracting the mode header data
2253 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2254 *		must be SCSI_SENSE_BUFFERSIZE big.
2255 *
2256 *	Returns zero if successful, or a negative error number on failure
2257 */
2258int
2259scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2260		  unsigned char *buffer, int len, int timeout, int retries,
2261		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2262{
2263	unsigned char cmd[12];
2264	int use_10_for_ms;
2265	int header_length;
2266	int result;
2267	struct scsi_sense_hdr my_sshdr;
2268	struct scsi_failure failure_defs[] = {
2269		{
2270			.sense = UNIT_ATTENTION,
2271			.asc = SCMD_FAILURE_ASC_ANY,
2272			.ascq = SCMD_FAILURE_ASCQ_ANY,
2273			.allowed = retries,
2274			.result = SAM_STAT_CHECK_CONDITION,
2275		},
2276		{}
2277	};
2278	struct scsi_failures failures = {
2279		.failure_definitions = failure_defs,
2280	};
2281	const struct scsi_exec_args exec_args = {
2282		/* caller might not be interested in sense, but we need it */
2283		.sshdr = sshdr ? : &my_sshdr,
2284		.failures = &failures,
2285	};
2286
2287	memset(data, 0, sizeof(*data));
2288	memset(&cmd[0], 0, 12);
2289
2290	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2291	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2292	cmd[2] = modepage;
2293	cmd[3] = subpage;
2294
2295	sshdr = exec_args.sshdr;
2296
2297 retry:
2298	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2299
2300	if (use_10_for_ms) {
2301		if (len < 8 || len > 65535)
2302			return -EINVAL;
2303
2304		cmd[0] = MODE_SENSE_10;
2305		put_unaligned_be16(len, &cmd[7]);
2306		header_length = 8;
2307	} else {
2308		if (len < 4)
2309			return -EINVAL;
2310
2311		cmd[0] = MODE_SENSE;
2312		cmd[4] = len;
2313		header_length = 4;
2314	}
2315
2316	memset(buffer, 0, len);
2317
2318	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2319				  timeout, retries, &exec_args);
2320	if (result < 0)
2321		return result;
2322
2323	/* This code looks awful: what it's doing is making sure an
2324	 * ILLEGAL REQUEST sense return identifies the actual command
2325	 * byte as the problem.  MODE_SENSE commands can return
2326	 * ILLEGAL REQUEST if the code page isn't supported */
2327
2328	if (!scsi_status_is_good(result)) {
2329		if (scsi_sense_valid(sshdr)) {
2330			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2331			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2332				/*
2333				 * Invalid command operation code: retry using
2334				 * MODE SENSE(6) if this was a MODE SENSE(10)
2335				 * request, except if the request mode page is
2336				 * too large for MODE SENSE single byte
2337				 * allocation length field.
2338				 */
2339				if (use_10_for_ms) {
2340					if (len > 255)
2341						return -EIO;
2342					sdev->use_10_for_ms = 0;
2343					goto retry;
2344				}
2345			}
2346		}
2347		return -EIO;
2348	}
2349	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2350		     (modepage == 6 || modepage == 8))) {
2351		/* Initio breakage? */
2352		header_length = 0;
2353		data->length = 13;
2354		data->medium_type = 0;
2355		data->device_specific = 0;
2356		data->longlba = 0;
2357		data->block_descriptor_length = 0;
2358	} else if (use_10_for_ms) {
2359		data->length = get_unaligned_be16(&buffer[0]) + 2;
2360		data->medium_type = buffer[2];
2361		data->device_specific = buffer[3];
2362		data->longlba = buffer[4] & 0x01;
2363		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2364	} else {
2365		data->length = buffer[0] + 1;
2366		data->medium_type = buffer[1];
2367		data->device_specific = buffer[2];
2368		data->block_descriptor_length = buffer[3];
2369	}
2370	data->header_length = header_length;
2371
2372	return 0;
2373}
2374EXPORT_SYMBOL(scsi_mode_sense);
2375
2376/**
2377 *	scsi_test_unit_ready - test if unit is ready
2378 *	@sdev:	scsi device to change the state of.
2379 *	@timeout: command timeout
2380 *	@retries: number of retries before failing
2381 *	@sshdr: outpout pointer for decoded sense information.
2382 *
2383 *	Returns zero if unsuccessful or an error if TUR failed.  For
2384 *	removable media, UNIT_ATTENTION sets ->changed flag.
2385 **/
2386int
2387scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2388		     struct scsi_sense_hdr *sshdr)
2389{
2390	char cmd[] = {
2391		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2392	};
2393	const struct scsi_exec_args exec_args = {
2394		.sshdr = sshdr,
2395	};
2396	int result;
2397
2398	/* try to eat the UNIT_ATTENTION if there are enough retries */
2399	do {
2400		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2401					  timeout, 1, &exec_args);
2402		if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2403		    sshdr->sense_key == UNIT_ATTENTION)
2404			sdev->changed = 1;
2405	} while (result > 0 && scsi_sense_valid(sshdr) &&
2406		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2407
2408	return result;
2409}
2410EXPORT_SYMBOL(scsi_test_unit_ready);
2411
2412/**
2413 *	scsi_device_set_state - Take the given device through the device state model.
2414 *	@sdev:	scsi device to change the state of.
2415 *	@state:	state to change to.
2416 *
2417 *	Returns zero if successful or an error if the requested
2418 *	transition is illegal.
2419 */
2420int
2421scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2422{
2423	enum scsi_device_state oldstate = sdev->sdev_state;
2424
2425	if (state == oldstate)
2426		return 0;
2427
2428	switch (state) {
2429	case SDEV_CREATED:
2430		switch (oldstate) {
2431		case SDEV_CREATED_BLOCK:
2432			break;
2433		default:
2434			goto illegal;
2435		}
2436		break;
2437
2438	case SDEV_RUNNING:
2439		switch (oldstate) {
2440		case SDEV_CREATED:
2441		case SDEV_OFFLINE:
2442		case SDEV_TRANSPORT_OFFLINE:
2443		case SDEV_QUIESCE:
2444		case SDEV_BLOCK:
2445			break;
2446		default:
2447			goto illegal;
2448		}
2449		break;
2450
2451	case SDEV_QUIESCE:
2452		switch (oldstate) {
2453		case SDEV_RUNNING:
2454		case SDEV_OFFLINE:
2455		case SDEV_TRANSPORT_OFFLINE:
2456			break;
2457		default:
2458			goto illegal;
2459		}
2460		break;
2461
2462	case SDEV_OFFLINE:
2463	case SDEV_TRANSPORT_OFFLINE:
2464		switch (oldstate) {
2465		case SDEV_CREATED:
2466		case SDEV_RUNNING:
2467		case SDEV_QUIESCE:
2468		case SDEV_BLOCK:
2469			break;
2470		default:
2471			goto illegal;
2472		}
2473		break;
2474
2475	case SDEV_BLOCK:
2476		switch (oldstate) {
2477		case SDEV_RUNNING:
2478		case SDEV_CREATED_BLOCK:
2479		case SDEV_QUIESCE:
2480		case SDEV_OFFLINE:
2481			break;
2482		default:
2483			goto illegal;
2484		}
2485		break;
2486
2487	case SDEV_CREATED_BLOCK:
2488		switch (oldstate) {
2489		case SDEV_CREATED:
2490			break;
2491		default:
2492			goto illegal;
2493		}
2494		break;
2495
2496	case SDEV_CANCEL:
2497		switch (oldstate) {
2498		case SDEV_CREATED:
2499		case SDEV_RUNNING:
2500		case SDEV_QUIESCE:
2501		case SDEV_OFFLINE:
2502		case SDEV_TRANSPORT_OFFLINE:
2503			break;
2504		default:
2505			goto illegal;
2506		}
2507		break;
2508
2509	case SDEV_DEL:
2510		switch (oldstate) {
2511		case SDEV_CREATED:
2512		case SDEV_RUNNING:
2513		case SDEV_OFFLINE:
2514		case SDEV_TRANSPORT_OFFLINE:
2515		case SDEV_CANCEL:
2516		case SDEV_BLOCK:
2517		case SDEV_CREATED_BLOCK:
2518			break;
2519		default:
2520			goto illegal;
2521		}
2522		break;
2523
2524	}
2525	sdev->offline_already = false;
2526	sdev->sdev_state = state;
2527	return 0;
2528
2529 illegal:
2530	SCSI_LOG_ERROR_RECOVERY(1,
2531				sdev_printk(KERN_ERR, sdev,
2532					    "Illegal state transition %s->%s",
2533					    scsi_device_state_name(oldstate),
2534					    scsi_device_state_name(state))
2535				);
2536	return -EINVAL;
2537}
2538EXPORT_SYMBOL(scsi_device_set_state);
2539
2540/**
2541 *	scsi_evt_emit - emit a single SCSI device uevent
2542 *	@sdev: associated SCSI device
2543 *	@evt: event to emit
2544 *
2545 *	Send a single uevent (scsi_event) to the associated scsi_device.
2546 */
2547static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2548{
2549	int idx = 0;
2550	char *envp[3];
2551
2552	switch (evt->evt_type) {
2553	case SDEV_EVT_MEDIA_CHANGE:
2554		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2555		break;
2556	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2557		scsi_rescan_device(sdev);
2558		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2559		break;
2560	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2561		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2562		break;
2563	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2564	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2565		break;
2566	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2567		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2568		break;
2569	case SDEV_EVT_LUN_CHANGE_REPORTED:
2570		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2571		break;
2572	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2573		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2574		break;
2575	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2576		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2577		break;
2578	default:
2579		/* do nothing */
2580		break;
2581	}
2582
2583	envp[idx++] = NULL;
2584
2585	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2586}
2587
2588/**
2589 *	scsi_evt_thread - send a uevent for each scsi event
2590 *	@work: work struct for scsi_device
2591 *
2592 *	Dispatch queued events to their associated scsi_device kobjects
2593 *	as uevents.
2594 */
2595void scsi_evt_thread(struct work_struct *work)
2596{
2597	struct scsi_device *sdev;
2598	enum scsi_device_event evt_type;
2599	LIST_HEAD(event_list);
2600
2601	sdev = container_of(work, struct scsi_device, event_work);
2602
2603	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2604		if (test_and_clear_bit(evt_type, sdev->pending_events))
2605			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2606
2607	while (1) {
2608		struct scsi_event *evt;
2609		struct list_head *this, *tmp;
2610		unsigned long flags;
2611
2612		spin_lock_irqsave(&sdev->list_lock, flags);
2613		list_splice_init(&sdev->event_list, &event_list);
2614		spin_unlock_irqrestore(&sdev->list_lock, flags);
2615
2616		if (list_empty(&event_list))
2617			break;
2618
2619		list_for_each_safe(this, tmp, &event_list) {
2620			evt = list_entry(this, struct scsi_event, node);
2621			list_del(&evt->node);
2622			scsi_evt_emit(sdev, evt);
2623			kfree(evt);
2624		}
2625	}
2626}
2627
2628/**
2629 * 	sdev_evt_send - send asserted event to uevent thread
2630 *	@sdev: scsi_device event occurred on
2631 *	@evt: event to send
2632 *
2633 *	Assert scsi device event asynchronously.
2634 */
2635void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2636{
2637	unsigned long flags;
2638
2639#if 0
2640	/* FIXME: currently this check eliminates all media change events
2641	 * for polled devices.  Need to update to discriminate between AN
2642	 * and polled events */
2643	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2644		kfree(evt);
2645		return;
2646	}
2647#endif
2648
2649	spin_lock_irqsave(&sdev->list_lock, flags);
2650	list_add_tail(&evt->node, &sdev->event_list);
2651	schedule_work(&sdev->event_work);
2652	spin_unlock_irqrestore(&sdev->list_lock, flags);
2653}
2654EXPORT_SYMBOL_GPL(sdev_evt_send);
2655
2656/**
2657 * 	sdev_evt_alloc - allocate a new scsi event
2658 *	@evt_type: type of event to allocate
2659 *	@gfpflags: GFP flags for allocation
2660 *
2661 *	Allocates and returns a new scsi_event.
2662 */
2663struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2664				  gfp_t gfpflags)
2665{
2666	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2667	if (!evt)
2668		return NULL;
2669
2670	evt->evt_type = evt_type;
2671	INIT_LIST_HEAD(&evt->node);
2672
2673	/* evt_type-specific initialization, if any */
2674	switch (evt_type) {
2675	case SDEV_EVT_MEDIA_CHANGE:
2676	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2677	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2678	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2679	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2680	case SDEV_EVT_LUN_CHANGE_REPORTED:
2681	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2682	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2683	default:
2684		/* do nothing */
2685		break;
2686	}
2687
2688	return evt;
2689}
2690EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2691
2692/**
2693 * 	sdev_evt_send_simple - send asserted event to uevent thread
2694 *	@sdev: scsi_device event occurred on
2695 *	@evt_type: type of event to send
2696 *	@gfpflags: GFP flags for allocation
2697 *
2698 *	Assert scsi device event asynchronously, given an event type.
2699 */
2700void sdev_evt_send_simple(struct scsi_device *sdev,
2701			  enum scsi_device_event evt_type, gfp_t gfpflags)
2702{
2703	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2704	if (!evt) {
2705		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2706			    evt_type);
2707		return;
2708	}
2709
2710	sdev_evt_send(sdev, evt);
2711}
2712EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2713
2714/**
2715 *	scsi_device_quiesce - Block all commands except power management.
2716 *	@sdev:	scsi device to quiesce.
2717 *
2718 *	This works by trying to transition to the SDEV_QUIESCE state
2719 *	(which must be a legal transition).  When the device is in this
2720 *	state, only power management requests will be accepted, all others will
2721 *	be deferred.
2722 *
2723 *	Must be called with user context, may sleep.
2724 *
2725 *	Returns zero if unsuccessful or an error if not.
2726 */
2727int
2728scsi_device_quiesce(struct scsi_device *sdev)
2729{
2730	struct request_queue *q = sdev->request_queue;
2731	int err;
2732
2733	/*
2734	 * It is allowed to call scsi_device_quiesce() multiple times from
2735	 * the same context but concurrent scsi_device_quiesce() calls are
2736	 * not allowed.
2737	 */
2738	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2739
2740	if (sdev->quiesced_by == current)
2741		return 0;
2742
2743	blk_set_pm_only(q);
2744
2745	blk_mq_freeze_queue(q);
2746	/*
2747	 * Ensure that the effect of blk_set_pm_only() will be visible
2748	 * for percpu_ref_tryget() callers that occur after the queue
2749	 * unfreeze even if the queue was already frozen before this function
2750	 * was called. See also https://lwn.net/Articles/573497/.
2751	 */
2752	synchronize_rcu();
2753	blk_mq_unfreeze_queue(q);
2754
2755	mutex_lock(&sdev->state_mutex);
2756	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2757	if (err == 0)
2758		sdev->quiesced_by = current;
2759	else
2760		blk_clear_pm_only(q);
2761	mutex_unlock(&sdev->state_mutex);
2762
2763	return err;
2764}
2765EXPORT_SYMBOL(scsi_device_quiesce);
2766
2767/**
2768 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2769 *	@sdev:	scsi device to resume.
2770 *
2771 *	Moves the device from quiesced back to running and restarts the
2772 *	queues.
2773 *
2774 *	Must be called with user context, may sleep.
2775 */
2776void scsi_device_resume(struct scsi_device *sdev)
2777{
2778	/* check if the device state was mutated prior to resume, and if
2779	 * so assume the state is being managed elsewhere (for example
2780	 * device deleted during suspend)
2781	 */
2782	mutex_lock(&sdev->state_mutex);
2783	if (sdev->sdev_state == SDEV_QUIESCE)
2784		scsi_device_set_state(sdev, SDEV_RUNNING);
2785	if (sdev->quiesced_by) {
2786		sdev->quiesced_by = NULL;
2787		blk_clear_pm_only(sdev->request_queue);
2788	}
2789	mutex_unlock(&sdev->state_mutex);
2790}
2791EXPORT_SYMBOL(scsi_device_resume);
2792
2793static void
2794device_quiesce_fn(struct scsi_device *sdev, void *data)
2795{
2796	scsi_device_quiesce(sdev);
2797}
2798
2799void
2800scsi_target_quiesce(struct scsi_target *starget)
2801{
2802	starget_for_each_device(starget, NULL, device_quiesce_fn);
2803}
2804EXPORT_SYMBOL(scsi_target_quiesce);
2805
2806static void
2807device_resume_fn(struct scsi_device *sdev, void *data)
2808{
2809	scsi_device_resume(sdev);
2810}
2811
2812void
2813scsi_target_resume(struct scsi_target *starget)
2814{
2815	starget_for_each_device(starget, NULL, device_resume_fn);
2816}
2817EXPORT_SYMBOL(scsi_target_resume);
2818
2819static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2820{
2821	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2822		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2823
2824	return 0;
2825}
2826
2827void scsi_start_queue(struct scsi_device *sdev)
2828{
2829	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2830		blk_mq_unquiesce_queue(sdev->request_queue);
2831}
2832
2833static void scsi_stop_queue(struct scsi_device *sdev)
2834{
2835	/*
2836	 * The atomic variable of ->queue_stopped covers that
2837	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2838	 *
2839	 * The caller needs to wait until quiesce is done.
2840	 */
2841	if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2842		blk_mq_quiesce_queue_nowait(sdev->request_queue);
2843}
2844
2845/**
2846 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2847 * @sdev: device to block
2848 *
2849 * Pause SCSI command processing on the specified device. Does not sleep.
2850 *
2851 * Returns zero if successful or a negative error code upon failure.
2852 *
2853 * Notes:
2854 * This routine transitions the device to the SDEV_BLOCK state (which must be
2855 * a legal transition). When the device is in this state, command processing
2856 * is paused until the device leaves the SDEV_BLOCK state. See also
2857 * scsi_internal_device_unblock_nowait().
2858 */
2859int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2860{
2861	int ret = __scsi_internal_device_block_nowait(sdev);
2862
2863	/*
2864	 * The device has transitioned to SDEV_BLOCK.  Stop the
2865	 * block layer from calling the midlayer with this device's
2866	 * request queue.
2867	 */
2868	if (!ret)
2869		scsi_stop_queue(sdev);
2870	return ret;
2871}
2872EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2873
2874/**
2875 * scsi_device_block - try to transition to the SDEV_BLOCK state
2876 * @sdev: device to block
2877 * @data: dummy argument, ignored
2878 *
2879 * Pause SCSI command processing on the specified device. Callers must wait
2880 * until all ongoing scsi_queue_rq() calls have finished after this function
2881 * returns.
2882 *
2883 * Note:
2884 * This routine transitions the device to the SDEV_BLOCK state (which must be
2885 * a legal transition). When the device is in this state, command processing
2886 * is paused until the device leaves the SDEV_BLOCK state. See also
2887 * scsi_internal_device_unblock().
2888 */
2889static void scsi_device_block(struct scsi_device *sdev, void *data)
2890{
2891	int err;
2892	enum scsi_device_state state;
2893
2894	mutex_lock(&sdev->state_mutex);
2895	err = __scsi_internal_device_block_nowait(sdev);
2896	state = sdev->sdev_state;
2897	if (err == 0)
2898		/*
2899		 * scsi_stop_queue() must be called with the state_mutex
2900		 * held. Otherwise a simultaneous scsi_start_queue() call
2901		 * might unquiesce the queue before we quiesce it.
2902		 */
2903		scsi_stop_queue(sdev);
2904
2905	mutex_unlock(&sdev->state_mutex);
2906
2907	WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2908		  __func__, dev_name(&sdev->sdev_gendev), state);
2909}
2910
2911/**
2912 * scsi_internal_device_unblock_nowait - resume a device after a block request
2913 * @sdev:	device to resume
2914 * @new_state:	state to set the device to after unblocking
2915 *
2916 * Restart the device queue for a previously suspended SCSI device. Does not
2917 * sleep.
2918 *
2919 * Returns zero if successful or a negative error code upon failure.
2920 *
2921 * Notes:
2922 * This routine transitions the device to the SDEV_RUNNING state or to one of
2923 * the offline states (which must be a legal transition) allowing the midlayer
2924 * to goose the queue for this device.
2925 */
2926int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2927					enum scsi_device_state new_state)
2928{
2929	switch (new_state) {
2930	case SDEV_RUNNING:
2931	case SDEV_TRANSPORT_OFFLINE:
2932		break;
2933	default:
2934		return -EINVAL;
2935	}
2936
2937	/*
2938	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2939	 * offlined states and goose the device queue if successful.
2940	 */
2941	switch (sdev->sdev_state) {
2942	case SDEV_BLOCK:
2943	case SDEV_TRANSPORT_OFFLINE:
2944		sdev->sdev_state = new_state;
2945		break;
2946	case SDEV_CREATED_BLOCK:
2947		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2948		    new_state == SDEV_OFFLINE)
2949			sdev->sdev_state = new_state;
2950		else
2951			sdev->sdev_state = SDEV_CREATED;
2952		break;
2953	case SDEV_CANCEL:
2954	case SDEV_OFFLINE:
2955		break;
2956	default:
2957		return -EINVAL;
2958	}
2959	scsi_start_queue(sdev);
2960
2961	return 0;
2962}
2963EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2964
2965/**
2966 * scsi_internal_device_unblock - resume a device after a block request
2967 * @sdev:	device to resume
2968 * @new_state:	state to set the device to after unblocking
2969 *
2970 * Restart the device queue for a previously suspended SCSI device. May sleep.
2971 *
2972 * Returns zero if successful or a negative error code upon failure.
2973 *
2974 * Notes:
2975 * This routine transitions the device to the SDEV_RUNNING state or to one of
2976 * the offline states (which must be a legal transition) allowing the midlayer
2977 * to goose the queue for this device.
2978 */
2979static int scsi_internal_device_unblock(struct scsi_device *sdev,
2980					enum scsi_device_state new_state)
2981{
2982	int ret;
2983
2984	mutex_lock(&sdev->state_mutex);
2985	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2986	mutex_unlock(&sdev->state_mutex);
2987
2988	return ret;
2989}
2990
2991static int
2992target_block(struct device *dev, void *data)
2993{
2994	if (scsi_is_target_device(dev))
2995		starget_for_each_device(to_scsi_target(dev), NULL,
2996					scsi_device_block);
2997	return 0;
2998}
2999
3000/**
3001 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
3002 * @dev: a parent device of one or more scsi_target devices
3003 * @shost: the Scsi_Host to which this device belongs
3004 *
3005 * Iterate over all children of @dev, which should be scsi_target devices,
3006 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3007 * ongoing scsi_queue_rq() calls to finish. May sleep.
3008 *
3009 * Note:
3010 * @dev must not itself be a scsi_target device.
3011 */
3012void
3013scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3014{
3015	WARN_ON_ONCE(scsi_is_target_device(dev));
3016	device_for_each_child(dev, NULL, target_block);
3017	blk_mq_wait_quiesce_done(&shost->tag_set);
3018}
3019EXPORT_SYMBOL_GPL(scsi_block_targets);
3020
3021static void
3022device_unblock(struct scsi_device *sdev, void *data)
3023{
3024	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3025}
3026
3027static int
3028target_unblock(struct device *dev, void *data)
3029{
3030	if (scsi_is_target_device(dev))
3031		starget_for_each_device(to_scsi_target(dev), data,
3032					device_unblock);
3033	return 0;
3034}
3035
3036void
3037scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3038{
3039	if (scsi_is_target_device(dev))
3040		starget_for_each_device(to_scsi_target(dev), &new_state,
3041					device_unblock);
3042	else
3043		device_for_each_child(dev, &new_state, target_unblock);
3044}
3045EXPORT_SYMBOL_GPL(scsi_target_unblock);
3046
3047/**
3048 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3049 * @shost: device to block
3050 *
3051 * Pause SCSI command processing for all logical units associated with the SCSI
3052 * host and wait until pending scsi_queue_rq() calls have finished.
3053 *
3054 * Returns zero if successful or a negative error code upon failure.
3055 */
3056int
3057scsi_host_block(struct Scsi_Host *shost)
3058{
3059	struct scsi_device *sdev;
3060	int ret;
3061
3062	/*
3063	 * Call scsi_internal_device_block_nowait so we can avoid
3064	 * calling synchronize_rcu() for each LUN.
3065	 */
3066	shost_for_each_device(sdev, shost) {
3067		mutex_lock(&sdev->state_mutex);
3068		ret = scsi_internal_device_block_nowait(sdev);
3069		mutex_unlock(&sdev->state_mutex);
3070		if (ret) {
3071			scsi_device_put(sdev);
3072			return ret;
3073		}
3074	}
3075
3076	/* Wait for ongoing scsi_queue_rq() calls to finish. */
3077	blk_mq_wait_quiesce_done(&shost->tag_set);
3078
3079	return 0;
3080}
3081EXPORT_SYMBOL_GPL(scsi_host_block);
3082
3083int
3084scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3085{
3086	struct scsi_device *sdev;
3087	int ret = 0;
3088
3089	shost_for_each_device(sdev, shost) {
3090		ret = scsi_internal_device_unblock(sdev, new_state);
3091		if (ret) {
3092			scsi_device_put(sdev);
3093			break;
3094		}
3095	}
3096	return ret;
3097}
3098EXPORT_SYMBOL_GPL(scsi_host_unblock);
3099
3100/**
3101 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3102 * @sgl:	scatter-gather list
3103 * @sg_count:	number of segments in sg
3104 * @offset:	offset in bytes into sg, on return offset into the mapped area
3105 * @len:	bytes to map, on return number of bytes mapped
3106 *
3107 * Returns virtual address of the start of the mapped page
3108 */
3109void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3110			  size_t *offset, size_t *len)
3111{
3112	int i;
3113	size_t sg_len = 0, len_complete = 0;
3114	struct scatterlist *sg;
3115	struct page *page;
3116
3117	WARN_ON(!irqs_disabled());
3118
3119	for_each_sg(sgl, sg, sg_count, i) {
3120		len_complete = sg_len; /* Complete sg-entries */
3121		sg_len += sg->length;
3122		if (sg_len > *offset)
3123			break;
3124	}
3125
3126	if (unlikely(i == sg_count)) {
3127		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3128			"elements %d\n",
3129		       __func__, sg_len, *offset, sg_count);
3130		WARN_ON(1);
3131		return NULL;
3132	}
3133
3134	/* Offset starting from the beginning of first page in this sg-entry */
3135	*offset = *offset - len_complete + sg->offset;
3136
3137	/* Assumption: contiguous pages can be accessed as "page + i" */
3138	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3139	*offset &= ~PAGE_MASK;
3140
3141	/* Bytes in this sg-entry from *offset to the end of the page */
3142	sg_len = PAGE_SIZE - *offset;
3143	if (*len > sg_len)
3144		*len = sg_len;
3145
3146	return kmap_atomic(page);
3147}
3148EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3149
3150/**
3151 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3152 * @virt:	virtual address to be unmapped
3153 */
3154void scsi_kunmap_atomic_sg(void *virt)
3155{
3156	kunmap_atomic(virt);
3157}
3158EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3159
3160void sdev_disable_disk_events(struct scsi_device *sdev)
3161{
3162	atomic_inc(&sdev->disk_events_disable_depth);
3163}
3164EXPORT_SYMBOL(sdev_disable_disk_events);
3165
3166void sdev_enable_disk_events(struct scsi_device *sdev)
3167{
3168	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3169		return;
3170	atomic_dec(&sdev->disk_events_disable_depth);
3171}
3172EXPORT_SYMBOL(sdev_enable_disk_events);
3173
3174static unsigned char designator_prio(const unsigned char *d)
3175{
3176	if (d[1] & 0x30)
3177		/* not associated with LUN */
3178		return 0;
3179
3180	if (d[3] == 0)
3181		/* invalid length */
3182		return 0;
3183
3184	/*
3185	 * Order of preference for lun descriptor:
3186	 * - SCSI name string
3187	 * - NAA IEEE Registered Extended
3188	 * - EUI-64 based 16-byte
3189	 * - EUI-64 based 12-byte
3190	 * - NAA IEEE Registered
3191	 * - NAA IEEE Extended
3192	 * - EUI-64 based 8-byte
3193	 * - SCSI name string (truncated)
3194	 * - T10 Vendor ID
3195	 * as longer descriptors reduce the likelyhood
3196	 * of identification clashes.
3197	 */
3198
3199	switch (d[1] & 0xf) {
3200	case 8:
3201		/* SCSI name string, variable-length UTF-8 */
3202		return 9;
3203	case 3:
3204		switch (d[4] >> 4) {
3205		case 6:
3206			/* NAA registered extended */
3207			return 8;
3208		case 5:
3209			/* NAA registered */
3210			return 5;
3211		case 4:
3212			/* NAA extended */
3213			return 4;
3214		case 3:
3215			/* NAA locally assigned */
3216			return 1;
3217		default:
3218			break;
3219		}
3220		break;
3221	case 2:
3222		switch (d[3]) {
3223		case 16:
3224			/* EUI64-based, 16 byte */
3225			return 7;
3226		case 12:
3227			/* EUI64-based, 12 byte */
3228			return 6;
3229		case 8:
3230			/* EUI64-based, 8 byte */
3231			return 3;
3232		default:
3233			break;
3234		}
3235		break;
3236	case 1:
3237		/* T10 vendor ID */
3238		return 1;
3239	default:
3240		break;
3241	}
3242
3243	return 0;
3244}
3245
3246/**
3247 * scsi_vpd_lun_id - return a unique device identification
3248 * @sdev: SCSI device
3249 * @id:   buffer for the identification
3250 * @id_len:  length of the buffer
3251 *
3252 * Copies a unique device identification into @id based
3253 * on the information in the VPD page 0x83 of the device.
3254 * The string will be formatted as a SCSI name string.
3255 *
3256 * Returns the length of the identification or error on failure.
3257 * If the identifier is longer than the supplied buffer the actual
3258 * identifier length is returned and the buffer is not zero-padded.
3259 */
3260int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3261{
3262	u8 cur_id_prio = 0;
3263	u8 cur_id_size = 0;
3264	const unsigned char *d, *cur_id_str;
3265	const struct scsi_vpd *vpd_pg83;
3266	int id_size = -EINVAL;
3267
3268	rcu_read_lock();
3269	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3270	if (!vpd_pg83) {
3271		rcu_read_unlock();
3272		return -ENXIO;
3273	}
3274
3275	/* The id string must be at least 20 bytes + terminating NULL byte */
3276	if (id_len < 21) {
3277		rcu_read_unlock();
3278		return -EINVAL;
3279	}
3280
3281	memset(id, 0, id_len);
3282	for (d = vpd_pg83->data + 4;
3283	     d < vpd_pg83->data + vpd_pg83->len;
3284	     d += d[3] + 4) {
3285		u8 prio = designator_prio(d);
3286
3287		if (prio == 0 || cur_id_prio > prio)
3288			continue;
3289
3290		switch (d[1] & 0xf) {
3291		case 0x1:
3292			/* T10 Vendor ID */
3293			if (cur_id_size > d[3])
3294				break;
3295			cur_id_prio = prio;
3296			cur_id_size = d[3];
3297			if (cur_id_size + 4 > id_len)
3298				cur_id_size = id_len - 4;
3299			cur_id_str = d + 4;
3300			id_size = snprintf(id, id_len, "t10.%*pE",
3301					   cur_id_size, cur_id_str);
3302			break;
3303		case 0x2:
3304			/* EUI-64 */
3305			cur_id_prio = prio;
3306			cur_id_size = d[3];
3307			cur_id_str = d + 4;
3308			switch (cur_id_size) {
3309			case 8:
3310				id_size = snprintf(id, id_len,
3311						   "eui.%8phN",
3312						   cur_id_str);
3313				break;
3314			case 12:
3315				id_size = snprintf(id, id_len,
3316						   "eui.%12phN",
3317						   cur_id_str);
3318				break;
3319			case 16:
3320				id_size = snprintf(id, id_len,
3321						   "eui.%16phN",
3322						   cur_id_str);
3323				break;
3324			default:
3325				break;
3326			}
3327			break;
3328		case 0x3:
3329			/* NAA */
3330			cur_id_prio = prio;
3331			cur_id_size = d[3];
3332			cur_id_str = d + 4;
3333			switch (cur_id_size) {
3334			case 8:
3335				id_size = snprintf(id, id_len,
3336						   "naa.%8phN",
3337						   cur_id_str);
3338				break;
3339			case 16:
3340				id_size = snprintf(id, id_len,
3341						   "naa.%16phN",
3342						   cur_id_str);
3343				break;
3344			default:
3345				break;
3346			}
3347			break;
3348		case 0x8:
3349			/* SCSI name string */
3350			if (cur_id_size > d[3])
3351				break;
3352			/* Prefer others for truncated descriptor */
3353			if (d[3] > id_len) {
3354				prio = 2;
3355				if (cur_id_prio > prio)
3356					break;
3357			}
3358			cur_id_prio = prio;
3359			cur_id_size = id_size = d[3];
3360			cur_id_str = d + 4;
3361			if (cur_id_size >= id_len)
3362				cur_id_size = id_len - 1;
3363			memcpy(id, cur_id_str, cur_id_size);
3364			break;
3365		default:
3366			break;
3367		}
3368	}
3369	rcu_read_unlock();
3370
3371	return id_size;
3372}
3373EXPORT_SYMBOL(scsi_vpd_lun_id);
3374
3375/*
3376 * scsi_vpd_tpg_id - return a target port group identifier
3377 * @sdev: SCSI device
3378 *
3379 * Returns the Target Port Group identifier from the information
3380 * froom VPD page 0x83 of the device.
3381 *
3382 * Returns the identifier or error on failure.
3383 */
3384int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3385{
3386	const unsigned char *d;
3387	const struct scsi_vpd *vpd_pg83;
3388	int group_id = -EAGAIN, rel_port = -1;
3389
3390	rcu_read_lock();
3391	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3392	if (!vpd_pg83) {
3393		rcu_read_unlock();
3394		return -ENXIO;
3395	}
3396
3397	d = vpd_pg83->data + 4;
3398	while (d < vpd_pg83->data + vpd_pg83->len) {
3399		switch (d[1] & 0xf) {
3400		case 0x4:
3401			/* Relative target port */
3402			rel_port = get_unaligned_be16(&d[6]);
3403			break;
3404		case 0x5:
3405			/* Target port group */
3406			group_id = get_unaligned_be16(&d[6]);
3407			break;
3408		default:
3409			break;
3410		}
3411		d += d[3] + 4;
3412	}
3413	rcu_read_unlock();
3414
3415	if (group_id >= 0 && rel_id && rel_port != -1)
3416		*rel_id = rel_port;
3417
3418	return group_id;
3419}
3420EXPORT_SYMBOL(scsi_vpd_tpg_id);
3421
3422/**
3423 * scsi_build_sense - build sense data for a command
3424 * @scmd:	scsi command for which the sense should be formatted
3425 * @desc:	Sense format (non-zero == descriptor format,
3426 *              0 == fixed format)
3427 * @key:	Sense key
3428 * @asc:	Additional sense code
3429 * @ascq:	Additional sense code qualifier
3430 *
3431 **/
3432void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3433{
3434	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3435	scmd->result = SAM_STAT_CHECK_CONDITION;
3436}
3437EXPORT_SYMBOL_GPL(scsi_build_sense);
3438
3439#ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3440#include "scsi_lib_test.c"
3441#endif
3442