1/*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014  LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43 * USA.
44 */
45
46#include <linux/kernel.h>
47#include <linux/module.h>
48#include <linux/errno.h>
49#include <linux/init.h>
50#include <linux/slab.h>
51#include <linux/types.h>
52#include <linux/pci.h>
53#include <linux/kdev_t.h>
54#include <linux/blkdev.h>
55#include <linux/delay.h>
56#include <linux/interrupt.h>
57#include <linux/dma-mapping.h>
58#include <linux/io.h>
59#include <linux/time.h>
60#include <linux/ktime.h>
61#include <linux/kthread.h>
62#include <asm/page.h>        /* To get host page size per arch */
63
64
65#include "mpt3sas_base.h"
66
67static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
68
69
70#define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71
72 /* maximum controller queue depth */
73#define MAX_HBA_QUEUE_DEPTH	30000
74#define MAX_CHAIN_DEPTH		100000
75static int max_queue_depth = -1;
76module_param(max_queue_depth, int, 0444);
77MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78
79static int max_sgl_entries = -1;
80module_param(max_sgl_entries, int, 0444);
81MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82
83static int msix_disable = -1;
84module_param(msix_disable, int, 0444);
85MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86
87static int smp_affinity_enable = 1;
88module_param(smp_affinity_enable, int, 0444);
89MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
90
91static int max_msix_vectors = -1;
92module_param(max_msix_vectors, int, 0444);
93MODULE_PARM_DESC(max_msix_vectors,
94	" max msix vectors");
95
96static int irqpoll_weight = -1;
97module_param(irqpoll_weight, int, 0444);
98MODULE_PARM_DESC(irqpoll_weight,
99	"irq poll weight (default= one fourth of HBA queue depth)");
100
101static int mpt3sas_fwfault_debug;
102MODULE_PARM_DESC(mpt3sas_fwfault_debug,
103	" enable detection of firmware fault and halt firmware - (default=0)");
104
105static int perf_mode = -1;
106module_param(perf_mode, int, 0444);
107MODULE_PARM_DESC(perf_mode,
108	"Performance mode (only for Aero/Sea Generation), options:\n\t\t"
109	"0 - balanced: high iops mode is enabled &\n\t\t"
110	"interrupt coalescing is enabled only on high iops queues,\n\t\t"
111	"1 - iops: high iops mode is disabled &\n\t\t"
112	"interrupt coalescing is enabled on all queues,\n\t\t"
113	"2 - latency: high iops mode is disabled &\n\t\t"
114	"interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
115	"\t\tdefault - default perf_mode is 'balanced'"
116	);
117
118static int poll_queues;
119module_param(poll_queues, int, 0444);
120MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
121	"This parameter is effective only if host_tagset_enable=1. &\n\t\t"
122	"when poll_queues are enabled then &\n\t\t"
123	"perf_mode is set to latency mode. &\n\t\t"
124	);
125
126enum mpt3sas_perf_mode {
127	MPT_PERF_MODE_DEFAULT	= -1,
128	MPT_PERF_MODE_BALANCED	= 0,
129	MPT_PERF_MODE_IOPS	= 1,
130	MPT_PERF_MODE_LATENCY	= 2,
131};
132
133static int
134_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
135		u32 ioc_state, int timeout);
136static int
137_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
138static void
139_base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
140
141static u32
142_base_readl_ext_retry(const void __iomem *addr);
143
144/**
145 * mpt3sas_base_check_cmd_timeout - Function
146 *		to check timeout and command termination due
147 *		to Host reset.
148 *
149 * @ioc:	per adapter object.
150 * @status:	Status of issued command.
151 * @mpi_request:mf request pointer.
152 * @sz:		size of buffer.
153 *
154 * Return: 1/0 Reset to be done or Not
155 */
156u8
157mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
158		u8 status, void *mpi_request, int sz)
159{
160	u8 issue_reset = 0;
161
162	if (!(status & MPT3_CMD_RESET))
163		issue_reset = 1;
164
165	ioc_err(ioc, "Command %s\n",
166		issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
167	_debug_dump_mf(mpi_request, sz);
168
169	return issue_reset;
170}
171
172/**
173 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
174 * @val: ?
175 * @kp: ?
176 *
177 * Return: ?
178 */
179static int
180_scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
181{
182	int ret = param_set_int(val, kp);
183	struct MPT3SAS_ADAPTER *ioc;
184
185	if (ret)
186		return ret;
187
188	/* global ioc spinlock to protect controller list on list operations */
189	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
190	spin_lock(&gioc_lock);
191	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
192		ioc->fwfault_debug = mpt3sas_fwfault_debug;
193	spin_unlock(&gioc_lock);
194	return 0;
195}
196module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
197	param_get_int, &mpt3sas_fwfault_debug, 0644);
198
199/**
200 * _base_readl_aero - retry readl for max three times.
201 * @addr: MPT Fusion system interface register address
202 *
203 * Retry the readl() for max three times if it gets zero value
204 * while reading the system interface register.
205 */
206static inline u32
207_base_readl_aero(const void __iomem *addr)
208{
209	u32 i = 0, ret_val;
210
211	do {
212		ret_val = readl(addr);
213		i++;
214	} while (ret_val == 0 && i < 3);
215
216	return ret_val;
217}
218
219static u32
220_base_readl_ext_retry(const void __iomem *addr)
221{
222	u32 i, ret_val;
223
224	for (i = 0 ; i < 30 ; i++) {
225		ret_val = readl(addr);
226		if (ret_val != 0)
227			break;
228	}
229
230	return ret_val;
231}
232
233static inline u32
234_base_readl(const void __iomem *addr)
235{
236	return readl(addr);
237}
238
239/**
240 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
241 *				  in BAR0 space.
242 *
243 * @ioc: per adapter object
244 * @reply: reply message frame(lower 32bit addr)
245 * @index: System request message index.
246 */
247static void
248_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
249		u32 index)
250{
251	/*
252	 * 256 is offset within sys register.
253	 * 256 offset MPI frame starts. Max MPI frame supported is 32.
254	 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
255	 */
256	u16 cmd_credit = ioc->facts.RequestCredit + 1;
257	void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
258			MPI_FRAME_START_OFFSET +
259			(cmd_credit * ioc->request_sz) + (index * sizeof(u32));
260
261	writel(reply, reply_free_iomem);
262}
263
264/**
265 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
266 *				to system/BAR0 region.
267 *
268 * @dst_iomem: Pointer to the destination location in BAR0 space.
269 * @src: Pointer to the Source data.
270 * @size: Size of data to be copied.
271 */
272static void
273_base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
274{
275	int i;
276	u32 *src_virt_mem = (u32 *)src;
277
278	for (i = 0; i < size/4; i++)
279		writel((u32)src_virt_mem[i],
280				(void __iomem *)dst_iomem + (i * 4));
281}
282
283/**
284 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
285 *
286 * @dst_iomem: Pointer to the destination location in BAR0 space.
287 * @src: Pointer to the Source data.
288 * @size: Size of data to be copied.
289 */
290static void
291_base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
292{
293	int i;
294	u32 *src_virt_mem = (u32 *)(src);
295
296	for (i = 0; i < size/4; i++)
297		writel((u32)src_virt_mem[i],
298			(void __iomem *)dst_iomem + (i * 4));
299}
300
301/**
302 * _base_get_chain - Calculates and Returns virtual chain address
303 *			 for the provided smid in BAR0 space.
304 *
305 * @ioc: per adapter object
306 * @smid: system request message index
307 * @sge_chain_count: Scatter gather chain count.
308 *
309 * Return: the chain address.
310 */
311static inline void __iomem*
312_base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
313		u8 sge_chain_count)
314{
315	void __iomem *base_chain, *chain_virt;
316	u16 cmd_credit = ioc->facts.RequestCredit + 1;
317
318	base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
319		(cmd_credit * ioc->request_sz) +
320		REPLY_FREE_POOL_SIZE;
321	chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
322			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
323	return chain_virt;
324}
325
326/**
327 * _base_get_chain_phys - Calculates and Returns physical address
328 *			in BAR0 for scatter gather chains, for
329 *			the provided smid.
330 *
331 * @ioc: per adapter object
332 * @smid: system request message index
333 * @sge_chain_count: Scatter gather chain count.
334 *
335 * Return: Physical chain address.
336 */
337static inline phys_addr_t
338_base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
339		u8 sge_chain_count)
340{
341	phys_addr_t base_chain_phys, chain_phys;
342	u16 cmd_credit = ioc->facts.RequestCredit + 1;
343
344	base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
345		(cmd_credit * ioc->request_sz) +
346		REPLY_FREE_POOL_SIZE;
347	chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
348			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
349	return chain_phys;
350}
351
352/**
353 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
354 *			buffer address for the provided smid.
355 *			(Each smid can have 64K starts from 17024)
356 *
357 * @ioc: per adapter object
358 * @smid: system request message index
359 *
360 * Return: Pointer to buffer location in BAR0.
361 */
362
363static void __iomem *
364_base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
365{
366	u16 cmd_credit = ioc->facts.RequestCredit + 1;
367	// Added extra 1 to reach end of chain.
368	void __iomem *chain_end = _base_get_chain(ioc,
369			cmd_credit + 1,
370			ioc->facts.MaxChainDepth);
371	return chain_end + (smid * 64 * 1024);
372}
373
374/**
375 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
376 *		Host buffer Physical address for the provided smid.
377 *		(Each smid can have 64K starts from 17024)
378 *
379 * @ioc: per adapter object
380 * @smid: system request message index
381 *
382 * Return: Pointer to buffer location in BAR0.
383 */
384static phys_addr_t
385_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
386{
387	u16 cmd_credit = ioc->facts.RequestCredit + 1;
388	phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
389			cmd_credit + 1,
390			ioc->facts.MaxChainDepth);
391	return chain_end_phys + (smid * 64 * 1024);
392}
393
394/**
395 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
396 *			lookup list and Provides chain_buffer
397 *			address for the matching dma address.
398 *			(Each smid can have 64K starts from 17024)
399 *
400 * @ioc: per adapter object
401 * @chain_buffer_dma: Chain buffer dma address.
402 *
403 * Return: Pointer to chain buffer. Or Null on Failure.
404 */
405static void *
406_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
407		dma_addr_t chain_buffer_dma)
408{
409	u16 index, j;
410	struct chain_tracker *ct;
411
412	for (index = 0; index < ioc->scsiio_depth; index++) {
413		for (j = 0; j < ioc->chains_needed_per_io; j++) {
414			ct = &ioc->chain_lookup[index].chains_per_smid[j];
415			if (ct && ct->chain_buffer_dma == chain_buffer_dma)
416				return ct->chain_buffer;
417		}
418	}
419	ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
420	return NULL;
421}
422
423/**
424 * _clone_sg_entries -	MPI EP's scsiio and config requests
425 *			are handled here. Base function for
426 *			double buffering, before submitting
427 *			the requests.
428 *
429 * @ioc: per adapter object.
430 * @mpi_request: mf request pointer.
431 * @smid: system request message index.
432 */
433static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
434		void *mpi_request, u16 smid)
435{
436	Mpi2SGESimple32_t *sgel, *sgel_next;
437	u32  sgl_flags, sge_chain_count = 0;
438	bool is_write = false;
439	u16 i = 0;
440	void __iomem *buffer_iomem;
441	phys_addr_t buffer_iomem_phys;
442	void __iomem *buff_ptr;
443	phys_addr_t buff_ptr_phys;
444	void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
445	void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
446	phys_addr_t dst_addr_phys;
447	MPI2RequestHeader_t *request_hdr;
448	struct scsi_cmnd *scmd;
449	struct scatterlist *sg_scmd = NULL;
450	int is_scsiio_req = 0;
451
452	request_hdr = (MPI2RequestHeader_t *) mpi_request;
453
454	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
455		Mpi25SCSIIORequest_t *scsiio_request =
456			(Mpi25SCSIIORequest_t *)mpi_request;
457		sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
458		is_scsiio_req = 1;
459	} else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
460		Mpi2ConfigRequest_t  *config_req =
461			(Mpi2ConfigRequest_t *)mpi_request;
462		sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
463	} else
464		return;
465
466	/* From smid we can get scsi_cmd, once we have sg_scmd,
467	 * we just need to get sg_virt and sg_next to get virtual
468	 * address associated with sgel->Address.
469	 */
470
471	if (is_scsiio_req) {
472		/* Get scsi_cmd using smid */
473		scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
474		if (scmd == NULL) {
475			ioc_err(ioc, "scmd is NULL\n");
476			return;
477		}
478
479		/* Get sg_scmd from scmd provided */
480		sg_scmd = scsi_sglist(scmd);
481	}
482
483	/*
484	 * 0 - 255	System register
485	 * 256 - 4352	MPI Frame. (This is based on maxCredit 32)
486	 * 4352 - 4864	Reply_free pool (512 byte is reserved
487	 *		considering maxCredit 32. Reply need extra
488	 *		room, for mCPU case kept four times of
489	 *		maxCredit).
490	 * 4864 - 17152	SGE chain element. (32cmd * 3 chain of
491	 *		128 byte size = 12288)
492	 * 17152 - x	Host buffer mapped with smid.
493	 *		(Each smid can have 64K Max IO.)
494	 * BAR0+Last 1K MSIX Addr and Data
495	 * Total size in use 2113664 bytes of 4MB BAR0
496	 */
497
498	buffer_iomem = _base_get_buffer_bar0(ioc, smid);
499	buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
500
501	buff_ptr = buffer_iomem;
502	buff_ptr_phys = buffer_iomem_phys;
503	WARN_ON(buff_ptr_phys > U32_MAX);
504
505	if (le32_to_cpu(sgel->FlagsLength) &
506			(MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
507		is_write = true;
508
509	for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
510
511		sgl_flags =
512		    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
513
514		switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
515		case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
516			/*
517			 * Helper function which on passing
518			 * chain_buffer_dma returns chain_buffer. Get
519			 * the virtual address for sgel->Address
520			 */
521			sgel_next =
522				_base_get_chain_buffer_dma_to_chain_buffer(ioc,
523						le32_to_cpu(sgel->Address));
524			if (sgel_next == NULL)
525				return;
526			/*
527			 * This is coping 128 byte chain
528			 * frame (not a host buffer)
529			 */
530			dst_chain_addr[sge_chain_count] =
531				_base_get_chain(ioc,
532					smid, sge_chain_count);
533			src_chain_addr[sge_chain_count] =
534						(void *) sgel_next;
535			dst_addr_phys = _base_get_chain_phys(ioc,
536						smid, sge_chain_count);
537			WARN_ON(dst_addr_phys > U32_MAX);
538			sgel->Address =
539				cpu_to_le32(lower_32_bits(dst_addr_phys));
540			sgel = sgel_next;
541			sge_chain_count++;
542			break;
543		case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
544			if (is_write) {
545				if (is_scsiio_req) {
546					_base_clone_to_sys_mem(buff_ptr,
547					    sg_virt(sg_scmd),
548					    (le32_to_cpu(sgel->FlagsLength) &
549					    0x00ffffff));
550					/*
551					 * FIXME: this relies on a a zero
552					 * PCI mem_offset.
553					 */
554					sgel->Address =
555					    cpu_to_le32((u32)buff_ptr_phys);
556				} else {
557					_base_clone_to_sys_mem(buff_ptr,
558					    ioc->config_vaddr,
559					    (le32_to_cpu(sgel->FlagsLength) &
560					    0x00ffffff));
561					sgel->Address =
562					    cpu_to_le32((u32)buff_ptr_phys);
563				}
564			}
565			buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
566			    0x00ffffff);
567			buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
568			    0x00ffffff);
569			if ((le32_to_cpu(sgel->FlagsLength) &
570			    (MPI2_SGE_FLAGS_END_OF_BUFFER
571					<< MPI2_SGE_FLAGS_SHIFT)))
572				goto eob_clone_chain;
573			else {
574				/*
575				 * Every single element in MPT will have
576				 * associated sg_next. Better to sanity that
577				 * sg_next is not NULL, but it will be a bug
578				 * if it is null.
579				 */
580				if (is_scsiio_req) {
581					sg_scmd = sg_next(sg_scmd);
582					if (sg_scmd)
583						sgel++;
584					else
585						goto eob_clone_chain;
586				}
587			}
588			break;
589		}
590	}
591
592eob_clone_chain:
593	for (i = 0; i < sge_chain_count; i++) {
594		if (is_scsiio_req)
595			_base_clone_to_sys_mem(dst_chain_addr[i],
596				src_chain_addr[i], ioc->request_sz);
597	}
598}
599
600/**
601 *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
602 * @arg: input argument, used to derive ioc
603 *
604 * Return:
605 * 0 if controller is removed from pci subsystem.
606 * -1 for other case.
607 */
608static int mpt3sas_remove_dead_ioc_func(void *arg)
609{
610	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
611	struct pci_dev *pdev;
612
613	if (!ioc)
614		return -1;
615
616	pdev = ioc->pdev;
617	if (!pdev)
618		return -1;
619	pci_stop_and_remove_bus_device_locked(pdev);
620	return 0;
621}
622
623/**
624 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
625 * @ioc: Per Adapter Object
626 *
627 * Return: nothing.
628 */
629static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
630{
631	Mpi26IoUnitControlRequest_t *mpi_request;
632	Mpi26IoUnitControlReply_t *mpi_reply;
633	u16 smid;
634	ktime_t current_time;
635	u64 TimeStamp = 0;
636	u8 issue_reset = 0;
637
638	mutex_lock(&ioc->scsih_cmds.mutex);
639	if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
640		ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
641		goto out;
642	}
643	ioc->scsih_cmds.status = MPT3_CMD_PENDING;
644	smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
645	if (!smid) {
646		ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
647		ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
648		goto out;
649	}
650	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
651	ioc->scsih_cmds.smid = smid;
652	memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
653	mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
654	mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
655	mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
656	current_time = ktime_get_real();
657	TimeStamp = ktime_to_ms(current_time);
658	mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
659	mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
660	init_completion(&ioc->scsih_cmds.done);
661	ioc->put_smid_default(ioc, smid);
662	dinitprintk(ioc, ioc_info(ioc,
663	    "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
664	    TimeStamp));
665	wait_for_completion_timeout(&ioc->scsih_cmds.done,
666		MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
667	if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
668		mpt3sas_check_cmd_timeout(ioc,
669		    ioc->scsih_cmds.status, mpi_request,
670		    sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
671		goto issue_host_reset;
672	}
673	if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
674		mpi_reply = ioc->scsih_cmds.reply;
675		dinitprintk(ioc, ioc_info(ioc,
676		    "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
677		    le16_to_cpu(mpi_reply->IOCStatus),
678		    le32_to_cpu(mpi_reply->IOCLogInfo)));
679	}
680issue_host_reset:
681	if (issue_reset)
682		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
683	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
684out:
685	mutex_unlock(&ioc->scsih_cmds.mutex);
686}
687
688/**
689 * _base_fault_reset_work - workq handling ioc fault conditions
690 * @work: input argument, used to derive ioc
691 *
692 * Context: sleep.
693 */
694static void
695_base_fault_reset_work(struct work_struct *work)
696{
697	struct MPT3SAS_ADAPTER *ioc =
698	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
699	unsigned long	 flags;
700	u32 doorbell;
701	int rc;
702	struct task_struct *p;
703
704
705	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
706	if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
707			ioc->pci_error_recovery)
708		goto rearm_timer;
709	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
710
711	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
712	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
713		ioc_err(ioc, "SAS host is non-operational !!!!\n");
714
715		/* It may be possible that EEH recovery can resolve some of
716		 * pci bus failure issues rather removing the dead ioc function
717		 * by considering controller is in a non-operational state. So
718		 * here priority is given to the EEH recovery. If it doesn't
719		 * not resolve this issue, mpt3sas driver will consider this
720		 * controller to non-operational state and remove the dead ioc
721		 * function.
722		 */
723		if (ioc->non_operational_loop++ < 5) {
724			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
725							 flags);
726			goto rearm_timer;
727		}
728
729		/*
730		 * Call _scsih_flush_pending_cmds callback so that we flush all
731		 * pending commands back to OS. This call is required to avoid
732		 * deadlock at block layer. Dead IOC will fail to do diag reset,
733		 * and this call is safe since dead ioc will never return any
734		 * command back from HW.
735		 */
736		mpt3sas_base_pause_mq_polling(ioc);
737		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
738		/*
739		 * Set remove_host flag early since kernel thread will
740		 * take some time to execute.
741		 */
742		ioc->remove_host = 1;
743		/*Remove the Dead Host */
744		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
745		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
746		if (IS_ERR(p))
747			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
748				__func__);
749		else
750			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
751				__func__);
752		return; /* don't rearm timer */
753	}
754
755	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
756		u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
757		    ioc->manu_pg11.CoreDumpTOSec :
758		    MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
759
760		timeout /= (FAULT_POLLING_INTERVAL/1000);
761
762		if (ioc->ioc_coredump_loop == 0) {
763			mpt3sas_print_coredump_info(ioc,
764			    doorbell & MPI2_DOORBELL_DATA_MASK);
765			/* do not accept any IOs and disable the interrupts */
766			spin_lock_irqsave(
767			    &ioc->ioc_reset_in_progress_lock, flags);
768			ioc->shost_recovery = 1;
769			spin_unlock_irqrestore(
770			    &ioc->ioc_reset_in_progress_lock, flags);
771			mpt3sas_base_mask_interrupts(ioc);
772			mpt3sas_base_pause_mq_polling(ioc);
773			_base_clear_outstanding_commands(ioc);
774		}
775
776		ioc_info(ioc, "%s: CoreDump loop %d.",
777		    __func__, ioc->ioc_coredump_loop);
778
779		/* Wait until CoreDump completes or times out */
780		if (ioc->ioc_coredump_loop++ < timeout) {
781			spin_lock_irqsave(
782			    &ioc->ioc_reset_in_progress_lock, flags);
783			goto rearm_timer;
784		}
785	}
786
787	if (ioc->ioc_coredump_loop) {
788		if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
789			ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
790			    __func__, ioc->ioc_coredump_loop);
791		else
792			ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
793			    __func__, ioc->ioc_coredump_loop);
794		ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
795	}
796	ioc->non_operational_loop = 0;
797	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
798		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
799		ioc_warn(ioc, "%s: hard reset: %s\n",
800			 __func__, rc == 0 ? "success" : "failed");
801		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
802		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
803			mpt3sas_print_fault_code(ioc, doorbell &
804			    MPI2_DOORBELL_DATA_MASK);
805		} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
806		    MPI2_IOC_STATE_COREDUMP)
807			mpt3sas_print_coredump_info(ioc, doorbell &
808			    MPI2_DOORBELL_DATA_MASK);
809		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
810		    MPI2_IOC_STATE_OPERATIONAL)
811			return; /* don't rearm timer */
812	}
813	ioc->ioc_coredump_loop = 0;
814	if (ioc->time_sync_interval &&
815	    ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
816		ioc->timestamp_update_count = 0;
817		_base_sync_drv_fw_timestamp(ioc);
818	}
819	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
820 rearm_timer:
821	if (ioc->fault_reset_work_q)
822		queue_delayed_work(ioc->fault_reset_work_q,
823		    &ioc->fault_reset_work,
824		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
825	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
826}
827
828/**
829 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
830 * @ioc: per adapter object
831 *
832 * Context: sleep.
833 */
834void
835mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
836{
837	unsigned long	 flags;
838
839	if (ioc->fault_reset_work_q)
840		return;
841
842	ioc->timestamp_update_count = 0;
843	/* initialize fault polling */
844
845	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
846	snprintf(ioc->fault_reset_work_q_name,
847	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
848	    ioc->driver_name, ioc->id);
849	ioc->fault_reset_work_q =
850		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
851	if (!ioc->fault_reset_work_q) {
852		ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
853		return;
854	}
855	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
856	if (ioc->fault_reset_work_q)
857		queue_delayed_work(ioc->fault_reset_work_q,
858		    &ioc->fault_reset_work,
859		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
860	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
861}
862
863/**
864 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
865 * @ioc: per adapter object
866 *
867 * Context: sleep.
868 */
869void
870mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
871{
872	unsigned long flags;
873	struct workqueue_struct *wq;
874
875	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
876	wq = ioc->fault_reset_work_q;
877	ioc->fault_reset_work_q = NULL;
878	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
879	if (wq) {
880		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
881			flush_workqueue(wq);
882		destroy_workqueue(wq);
883	}
884}
885
886/**
887 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
888 * @ioc: per adapter object
889 * @fault_code: fault code
890 */
891void
892mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
893{
894	ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
895}
896
897/**
898 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
899 * @ioc: per adapter object
900 * @fault_code: fault code
901 *
902 * Return: nothing.
903 */
904void
905mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
906{
907	ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
908}
909
910/**
911 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
912 * completes or times out
913 * @ioc: per adapter object
914 * @caller: caller function name
915 *
916 * Return: 0 for success, non-zero for failure.
917 */
918int
919mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
920		const char *caller)
921{
922	u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
923			ioc->manu_pg11.CoreDumpTOSec :
924			MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
925
926	int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
927					timeout);
928
929	if (ioc_state)
930		ioc_err(ioc,
931		    "%s: CoreDump timed out. (ioc_state=0x%x)\n",
932		    caller, ioc_state);
933	else
934		ioc_info(ioc,
935		    "%s: CoreDump completed. (ioc_state=0x%x)\n",
936		    caller, ioc_state);
937
938	return ioc_state;
939}
940
941/**
942 * mpt3sas_halt_firmware - halt's mpt controller firmware
943 * @ioc: per adapter object
944 *
945 * For debugging timeout related issues.  Writing 0xCOFFEE00
946 * to the doorbell register will halt controller firmware. With
947 * the purpose to stop both driver and firmware, the enduser can
948 * obtain a ring buffer from controller UART.
949 */
950void
951mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
952{
953	u32 doorbell;
954
955	if (!ioc->fwfault_debug)
956		return;
957
958	dump_stack();
959
960	doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
961	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
962		mpt3sas_print_fault_code(ioc, doorbell &
963		    MPI2_DOORBELL_DATA_MASK);
964	} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
965	    MPI2_IOC_STATE_COREDUMP) {
966		mpt3sas_print_coredump_info(ioc, doorbell &
967		    MPI2_DOORBELL_DATA_MASK);
968	} else {
969		writel(0xC0FFEE00, &ioc->chip->Doorbell);
970		ioc_err(ioc, "Firmware is halted due to command timeout\n");
971	}
972
973	if (ioc->fwfault_debug == 2)
974		for (;;)
975			;
976	else
977		panic("panic in %s\n", __func__);
978}
979
980/**
981 * _base_sas_ioc_info - verbose translation of the ioc status
982 * @ioc: per adapter object
983 * @mpi_reply: reply mf payload returned from firmware
984 * @request_hdr: request mf
985 */
986static void
987_base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
988	MPI2RequestHeader_t *request_hdr)
989{
990	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
991	    MPI2_IOCSTATUS_MASK;
992	char *desc = NULL;
993	u16 frame_sz;
994	char *func_str = NULL;
995
996	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
997	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
998	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
999	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
1000		return;
1001
1002	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
1003		return;
1004	/*
1005	 * Older Firmware version doesn't support driver trigger pages.
1006	 * So, skip displaying 'config invalid type' type
1007	 * of error message.
1008	 */
1009	if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
1010		Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
1011
1012		if ((rqst->ExtPageType ==
1013		    MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
1014		    !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
1015			return;
1016		}
1017	}
1018
1019	switch (ioc_status) {
1020
1021/****************************************************************************
1022*  Common IOCStatus values for all replies
1023****************************************************************************/
1024
1025	case MPI2_IOCSTATUS_INVALID_FUNCTION:
1026		desc = "invalid function";
1027		break;
1028	case MPI2_IOCSTATUS_BUSY:
1029		desc = "busy";
1030		break;
1031	case MPI2_IOCSTATUS_INVALID_SGL:
1032		desc = "invalid sgl";
1033		break;
1034	case MPI2_IOCSTATUS_INTERNAL_ERROR:
1035		desc = "internal error";
1036		break;
1037	case MPI2_IOCSTATUS_INVALID_VPID:
1038		desc = "invalid vpid";
1039		break;
1040	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1041		desc = "insufficient resources";
1042		break;
1043	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1044		desc = "insufficient power";
1045		break;
1046	case MPI2_IOCSTATUS_INVALID_FIELD:
1047		desc = "invalid field";
1048		break;
1049	case MPI2_IOCSTATUS_INVALID_STATE:
1050		desc = "invalid state";
1051		break;
1052	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1053		desc = "op state not supported";
1054		break;
1055
1056/****************************************************************************
1057*  Config IOCStatus values
1058****************************************************************************/
1059
1060	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1061		desc = "config invalid action";
1062		break;
1063	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1064		desc = "config invalid type";
1065		break;
1066	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1067		desc = "config invalid page";
1068		break;
1069	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1070		desc = "config invalid data";
1071		break;
1072	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1073		desc = "config no defaults";
1074		break;
1075	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1076		desc = "config can't commit";
1077		break;
1078
1079/****************************************************************************
1080*  SCSI IO Reply
1081****************************************************************************/
1082
1083	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1084	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1085	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1086	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1087	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1088	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1089	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1090	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1091	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1092	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1093	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1094	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1095		break;
1096
1097/****************************************************************************
1098*  For use by SCSI Initiator and SCSI Target end-to-end data protection
1099****************************************************************************/
1100
1101	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1102		desc = "eedp guard error";
1103		break;
1104	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1105		desc = "eedp ref tag error";
1106		break;
1107	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1108		desc = "eedp app tag error";
1109		break;
1110
1111/****************************************************************************
1112*  SCSI Target values
1113****************************************************************************/
1114
1115	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1116		desc = "target invalid io index";
1117		break;
1118	case MPI2_IOCSTATUS_TARGET_ABORTED:
1119		desc = "target aborted";
1120		break;
1121	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1122		desc = "target no conn retryable";
1123		break;
1124	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1125		desc = "target no connection";
1126		break;
1127	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1128		desc = "target xfer count mismatch";
1129		break;
1130	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1131		desc = "target data offset error";
1132		break;
1133	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1134		desc = "target too much write data";
1135		break;
1136	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1137		desc = "target iu too short";
1138		break;
1139	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1140		desc = "target ack nak timeout";
1141		break;
1142	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1143		desc = "target nak received";
1144		break;
1145
1146/****************************************************************************
1147*  Serial Attached SCSI values
1148****************************************************************************/
1149
1150	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1151		desc = "smp request failed";
1152		break;
1153	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1154		desc = "smp data overrun";
1155		break;
1156
1157/****************************************************************************
1158*  Diagnostic Buffer Post / Diagnostic Release values
1159****************************************************************************/
1160
1161	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1162		desc = "diagnostic released";
1163		break;
1164	default:
1165		break;
1166	}
1167
1168	if (!desc)
1169		return;
1170
1171	switch (request_hdr->Function) {
1172	case MPI2_FUNCTION_CONFIG:
1173		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1174		func_str = "config_page";
1175		break;
1176	case MPI2_FUNCTION_SCSI_TASK_MGMT:
1177		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1178		func_str = "task_mgmt";
1179		break;
1180	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1181		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1182		func_str = "sas_iounit_ctl";
1183		break;
1184	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1185		frame_sz = sizeof(Mpi2SepRequest_t);
1186		func_str = "enclosure";
1187		break;
1188	case MPI2_FUNCTION_IOC_INIT:
1189		frame_sz = sizeof(Mpi2IOCInitRequest_t);
1190		func_str = "ioc_init";
1191		break;
1192	case MPI2_FUNCTION_PORT_ENABLE:
1193		frame_sz = sizeof(Mpi2PortEnableRequest_t);
1194		func_str = "port_enable";
1195		break;
1196	case MPI2_FUNCTION_SMP_PASSTHROUGH:
1197		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1198		func_str = "smp_passthru";
1199		break;
1200	case MPI2_FUNCTION_NVME_ENCAPSULATED:
1201		frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1202		    ioc->sge_size;
1203		func_str = "nvme_encapsulated";
1204		break;
1205	default:
1206		frame_sz = 32;
1207		func_str = "unknown";
1208		break;
1209	}
1210
1211	ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1212		 desc, ioc_status, request_hdr, func_str);
1213
1214	_debug_dump_mf(request_hdr, frame_sz/4);
1215}
1216
1217/**
1218 * _base_display_event_data - verbose translation of firmware asyn events
1219 * @ioc: per adapter object
1220 * @mpi_reply: reply mf payload returned from firmware
1221 */
1222static void
1223_base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1224	Mpi2EventNotificationReply_t *mpi_reply)
1225{
1226	char *desc = NULL;
1227	u16 event;
1228
1229	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1230		return;
1231
1232	event = le16_to_cpu(mpi_reply->Event);
1233
1234	switch (event) {
1235	case MPI2_EVENT_LOG_DATA:
1236		desc = "Log Data";
1237		break;
1238	case MPI2_EVENT_STATE_CHANGE:
1239		desc = "Status Change";
1240		break;
1241	case MPI2_EVENT_HARD_RESET_RECEIVED:
1242		desc = "Hard Reset Received";
1243		break;
1244	case MPI2_EVENT_EVENT_CHANGE:
1245		desc = "Event Change";
1246		break;
1247	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1248		desc = "Device Status Change";
1249		break;
1250	case MPI2_EVENT_IR_OPERATION_STATUS:
1251		if (!ioc->hide_ir_msg)
1252			desc = "IR Operation Status";
1253		break;
1254	case MPI2_EVENT_SAS_DISCOVERY:
1255	{
1256		Mpi2EventDataSasDiscovery_t *event_data =
1257		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1258		ioc_info(ioc, "Discovery: (%s)",
1259			 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1260			 "start" : "stop");
1261		if (event_data->DiscoveryStatus)
1262			pr_cont(" discovery_status(0x%08x)",
1263			    le32_to_cpu(event_data->DiscoveryStatus));
1264		pr_cont("\n");
1265		return;
1266	}
1267	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1268		desc = "SAS Broadcast Primitive";
1269		break;
1270	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1271		desc = "SAS Init Device Status Change";
1272		break;
1273	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1274		desc = "SAS Init Table Overflow";
1275		break;
1276	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1277		desc = "SAS Topology Change List";
1278		break;
1279	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1280		desc = "SAS Enclosure Device Status Change";
1281		break;
1282	case MPI2_EVENT_IR_VOLUME:
1283		if (!ioc->hide_ir_msg)
1284			desc = "IR Volume";
1285		break;
1286	case MPI2_EVENT_IR_PHYSICAL_DISK:
1287		if (!ioc->hide_ir_msg)
1288			desc = "IR Physical Disk";
1289		break;
1290	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1291		if (!ioc->hide_ir_msg)
1292			desc = "IR Configuration Change List";
1293		break;
1294	case MPI2_EVENT_LOG_ENTRY_ADDED:
1295		if (!ioc->hide_ir_msg)
1296			desc = "Log Entry Added";
1297		break;
1298	case MPI2_EVENT_TEMP_THRESHOLD:
1299		desc = "Temperature Threshold";
1300		break;
1301	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1302		desc = "Cable Event";
1303		break;
1304	case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1305		desc = "SAS Device Discovery Error";
1306		break;
1307	case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1308		desc = "PCIE Device Status Change";
1309		break;
1310	case MPI2_EVENT_PCIE_ENUMERATION:
1311	{
1312		Mpi26EventDataPCIeEnumeration_t *event_data =
1313			(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1314		ioc_info(ioc, "PCIE Enumeration: (%s)",
1315			 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1316			 "start" : "stop");
1317		if (event_data->EnumerationStatus)
1318			pr_cont("enumeration_status(0x%08x)",
1319				le32_to_cpu(event_data->EnumerationStatus));
1320		pr_cont("\n");
1321		return;
1322	}
1323	case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1324		desc = "PCIE Topology Change List";
1325		break;
1326	}
1327
1328	if (!desc)
1329		return;
1330
1331	ioc_info(ioc, "%s\n", desc);
1332}
1333
1334/**
1335 * _base_sas_log_info - verbose translation of firmware log info
1336 * @ioc: per adapter object
1337 * @log_info: log info
1338 */
1339static void
1340_base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info)
1341{
1342	union loginfo_type {
1343		u32	loginfo;
1344		struct {
1345			u32	subcode:16;
1346			u32	code:8;
1347			u32	originator:4;
1348			u32	bus_type:4;
1349		} dw;
1350	};
1351	union loginfo_type sas_loginfo;
1352	char *originator_str = NULL;
1353
1354	sas_loginfo.loginfo = log_info;
1355	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1356		return;
1357
1358	/* each nexus loss loginfo */
1359	if (log_info == 0x31170000)
1360		return;
1361
1362	/* eat the loginfos associated with task aborts */
1363	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1364	    0x31140000 || log_info == 0x31130000))
1365		return;
1366
1367	switch (sas_loginfo.dw.originator) {
1368	case 0:
1369		originator_str = "IOP";
1370		break;
1371	case 1:
1372		originator_str = "PL";
1373		break;
1374	case 2:
1375		if (!ioc->hide_ir_msg)
1376			originator_str = "IR";
1377		else
1378			originator_str = "WarpDrive";
1379		break;
1380	}
1381
1382	ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1383		 log_info,
1384		 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1385}
1386
1387/**
1388 * _base_display_reply_info - handle reply descriptors depending on IOC Status
1389 * @ioc: per adapter object
1390 * @smid: system request message index
1391 * @msix_index: MSIX table index supplied by the OS
1392 * @reply: reply message frame (lower 32bit addr)
1393 */
1394static void
1395_base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1396	u32 reply)
1397{
1398	MPI2DefaultReply_t *mpi_reply;
1399	u16 ioc_status;
1400	u32 loginfo = 0;
1401
1402	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1403	if (unlikely(!mpi_reply)) {
1404		ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1405			__FILE__, __LINE__, __func__);
1406		return;
1407	}
1408	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1409
1410	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1411	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
1412		_base_sas_ioc_info(ioc, mpi_reply,
1413		   mpt3sas_base_get_msg_frame(ioc, smid));
1414	}
1415
1416	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1417		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1418		_base_sas_log_info(ioc, loginfo);
1419	}
1420
1421	if (ioc_status || loginfo) {
1422		ioc_status &= MPI2_IOCSTATUS_MASK;
1423		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1424	}
1425}
1426
1427/**
1428 * mpt3sas_base_done - base internal command completion routine
1429 * @ioc: per adapter object
1430 * @smid: system request message index
1431 * @msix_index: MSIX table index supplied by the OS
1432 * @reply: reply message frame(lower 32bit addr)
1433 *
1434 * Return:
1435 * 1 meaning mf should be freed from _base_interrupt
1436 * 0 means the mf is freed from this function.
1437 */
1438u8
1439mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1440	u32 reply)
1441{
1442	MPI2DefaultReply_t *mpi_reply;
1443
1444	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1445	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1446		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1447
1448	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1449		return 1;
1450
1451	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1452	if (mpi_reply) {
1453		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1454		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1455	}
1456	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1457
1458	complete(&ioc->base_cmds.done);
1459	return 1;
1460}
1461
1462/**
1463 * _base_async_event - main callback handler for firmware asyn events
1464 * @ioc: per adapter object
1465 * @msix_index: MSIX table index supplied by the OS
1466 * @reply: reply message frame(lower 32bit addr)
1467 *
1468 * Return:
1469 * 1 meaning mf should be freed from _base_interrupt
1470 * 0 means the mf is freed from this function.
1471 */
1472static u8
1473_base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1474{
1475	Mpi2EventNotificationReply_t *mpi_reply;
1476	Mpi2EventAckRequest_t *ack_request;
1477	u16 smid;
1478	struct _event_ack_list *delayed_event_ack;
1479
1480	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1481	if (!mpi_reply)
1482		return 1;
1483	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1484		return 1;
1485
1486	_base_display_event_data(ioc, mpi_reply);
1487
1488	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1489		goto out;
1490	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1491	if (!smid) {
1492		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1493					GFP_ATOMIC);
1494		if (!delayed_event_ack)
1495			goto out;
1496		INIT_LIST_HEAD(&delayed_event_ack->list);
1497		delayed_event_ack->Event = mpi_reply->Event;
1498		delayed_event_ack->EventContext = mpi_reply->EventContext;
1499		list_add_tail(&delayed_event_ack->list,
1500				&ioc->delayed_event_ack_list);
1501		dewtprintk(ioc,
1502			   ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1503				    le16_to_cpu(mpi_reply->Event)));
1504		goto out;
1505	}
1506
1507	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1508	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1509	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1510	ack_request->Event = mpi_reply->Event;
1511	ack_request->EventContext = mpi_reply->EventContext;
1512	ack_request->VF_ID = 0;  /* TODO */
1513	ack_request->VP_ID = 0;
1514	ioc->put_smid_default(ioc, smid);
1515
1516 out:
1517
1518	/* scsih callback handler */
1519	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1520
1521	/* ctl callback handler */
1522	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1523
1524	return 1;
1525}
1526
1527static struct scsiio_tracker *
1528_get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1529{
1530	struct scsi_cmnd *cmd;
1531
1532	if (WARN_ON(!smid) ||
1533	    WARN_ON(smid >= ioc->hi_priority_smid))
1534		return NULL;
1535
1536	cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1537	if (cmd)
1538		return scsi_cmd_priv(cmd);
1539
1540	return NULL;
1541}
1542
1543/**
1544 * _base_get_cb_idx - obtain the callback index
1545 * @ioc: per adapter object
1546 * @smid: system request message index
1547 *
1548 * Return: callback index.
1549 */
1550static u8
1551_base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1552{
1553	int i;
1554	u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1555	u8 cb_idx = 0xFF;
1556
1557	if (smid < ioc->hi_priority_smid) {
1558		struct scsiio_tracker *st;
1559
1560		if (smid < ctl_smid) {
1561			st = _get_st_from_smid(ioc, smid);
1562			if (st)
1563				cb_idx = st->cb_idx;
1564		} else if (smid == ctl_smid)
1565			cb_idx = ioc->ctl_cb_idx;
1566	} else if (smid < ioc->internal_smid) {
1567		i = smid - ioc->hi_priority_smid;
1568		cb_idx = ioc->hpr_lookup[i].cb_idx;
1569	} else if (smid <= ioc->hba_queue_depth) {
1570		i = smid - ioc->internal_smid;
1571		cb_idx = ioc->internal_lookup[i].cb_idx;
1572	}
1573	return cb_idx;
1574}
1575
1576/**
1577 * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1578 *				when driver is flushing out the IOs.
1579 * @ioc: per adapter object
1580 *
1581 * Pause polling on the mq poll (io uring) queues when driver is flushing
1582 * out the IOs. Otherwise we may see the race condition of completing the same
1583 * IO from two paths.
1584 *
1585 * Returns nothing.
1586 */
1587void
1588mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1589{
1590	int iopoll_q_count =
1591	    ioc->reply_queue_count - ioc->iopoll_q_start_index;
1592	int qid;
1593
1594	for (qid = 0; qid < iopoll_q_count; qid++)
1595		atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1596
1597	/*
1598	 * wait for current poll to complete.
1599	 */
1600	for (qid = 0; qid < iopoll_q_count; qid++) {
1601		while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1602			cpu_relax();
1603			udelay(500);
1604		}
1605	}
1606}
1607
1608/**
1609 * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1610 * @ioc: per adapter object
1611 *
1612 * Returns nothing.
1613 */
1614void
1615mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1616{
1617	int iopoll_q_count =
1618	    ioc->reply_queue_count - ioc->iopoll_q_start_index;
1619	int qid;
1620
1621	for (qid = 0; qid < iopoll_q_count; qid++)
1622		atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1623}
1624
1625/**
1626 * mpt3sas_base_mask_interrupts - disable interrupts
1627 * @ioc: per adapter object
1628 *
1629 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1630 */
1631void
1632mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1633{
1634	u32 him_register;
1635
1636	ioc->mask_interrupts = 1;
1637	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1638	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1639	writel(him_register, &ioc->chip->HostInterruptMask);
1640	ioc->base_readl(&ioc->chip->HostInterruptMask);
1641}
1642
1643/**
1644 * mpt3sas_base_unmask_interrupts - enable interrupts
1645 * @ioc: per adapter object
1646 *
1647 * Enabling only Reply Interrupts
1648 */
1649void
1650mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1651{
1652	u32 him_register;
1653
1654	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1655	him_register &= ~MPI2_HIM_RIM;
1656	writel(him_register, &ioc->chip->HostInterruptMask);
1657	ioc->mask_interrupts = 0;
1658}
1659
1660union reply_descriptor {
1661	u64 word;
1662	struct {
1663		u32 low;
1664		u32 high;
1665	} u;
1666};
1667
1668static u32 base_mod64(u64 dividend, u32 divisor)
1669{
1670	u32 remainder;
1671
1672	if (!divisor)
1673		pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1674	remainder = do_div(dividend, divisor);
1675	return remainder;
1676}
1677
1678/**
1679 * _base_process_reply_queue - Process reply descriptors from reply
1680 *		descriptor post queue.
1681 * @reply_q: per IRQ's reply queue object.
1682 *
1683 * Return: number of reply descriptors processed from reply
1684 *		descriptor queue.
1685 */
1686static int
1687_base_process_reply_queue(struct adapter_reply_queue *reply_q)
1688{
1689	union reply_descriptor rd;
1690	u64 completed_cmds;
1691	u8 request_descript_type;
1692	u16 smid;
1693	u8 cb_idx;
1694	u32 reply;
1695	u8 msix_index = reply_q->msix_index;
1696	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1697	Mpi2ReplyDescriptorsUnion_t *rpf;
1698	u8 rc;
1699
1700	completed_cmds = 0;
1701	if (!atomic_add_unless(&reply_q->busy, 1, 1))
1702		return completed_cmds;
1703
1704	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1705	request_descript_type = rpf->Default.ReplyFlags
1706	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1707	if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1708		atomic_dec(&reply_q->busy);
1709		return completed_cmds;
1710	}
1711
1712	cb_idx = 0xFF;
1713	do {
1714		rd.word = le64_to_cpu(rpf->Words);
1715		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1716			goto out;
1717		reply = 0;
1718		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1719		if (request_descript_type ==
1720		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1721		    request_descript_type ==
1722		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1723		    request_descript_type ==
1724		    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1725			cb_idx = _base_get_cb_idx(ioc, smid);
1726			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1727			    (likely(mpt_callbacks[cb_idx] != NULL))) {
1728				rc = mpt_callbacks[cb_idx](ioc, smid,
1729				    msix_index, 0);
1730				if (rc)
1731					mpt3sas_base_free_smid(ioc, smid);
1732			}
1733		} else if (request_descript_type ==
1734		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1735			reply = le32_to_cpu(
1736			    rpf->AddressReply.ReplyFrameAddress);
1737			if (reply > ioc->reply_dma_max_address ||
1738			    reply < ioc->reply_dma_min_address)
1739				reply = 0;
1740			if (smid) {
1741				cb_idx = _base_get_cb_idx(ioc, smid);
1742				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1743				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1744					rc = mpt_callbacks[cb_idx](ioc, smid,
1745					    msix_index, reply);
1746					if (reply)
1747						_base_display_reply_info(ioc,
1748						    smid, msix_index, reply);
1749					if (rc)
1750						mpt3sas_base_free_smid(ioc,
1751						    smid);
1752				}
1753			} else {
1754				_base_async_event(ioc, msix_index, reply);
1755			}
1756
1757			/* reply free queue handling */
1758			if (reply) {
1759				ioc->reply_free_host_index =
1760				    (ioc->reply_free_host_index ==
1761				    (ioc->reply_free_queue_depth - 1)) ?
1762				    0 : ioc->reply_free_host_index + 1;
1763				ioc->reply_free[ioc->reply_free_host_index] =
1764				    cpu_to_le32(reply);
1765				if (ioc->is_mcpu_endpoint)
1766					_base_clone_reply_to_sys_mem(ioc,
1767						reply,
1768						ioc->reply_free_host_index);
1769				writel(ioc->reply_free_host_index,
1770				    &ioc->chip->ReplyFreeHostIndex);
1771			}
1772		}
1773
1774		rpf->Words = cpu_to_le64(ULLONG_MAX);
1775		reply_q->reply_post_host_index =
1776		    (reply_q->reply_post_host_index ==
1777		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1778		    reply_q->reply_post_host_index + 1;
1779		request_descript_type =
1780		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1781		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1782		completed_cmds++;
1783		/* Update the reply post host index after continuously
1784		 * processing the threshold number of Reply Descriptors.
1785		 * So that FW can find enough entries to post the Reply
1786		 * Descriptors in the reply descriptor post queue.
1787		 */
1788		if (completed_cmds >= ioc->thresh_hold) {
1789			if (ioc->combined_reply_queue) {
1790				writel(reply_q->reply_post_host_index |
1791						((msix_index  & 7) <<
1792						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1793				    ioc->replyPostRegisterIndex[msix_index/8]);
1794			} else {
1795				writel(reply_q->reply_post_host_index |
1796						(msix_index <<
1797						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1798						&ioc->chip->ReplyPostHostIndex);
1799			}
1800			if (!reply_q->is_iouring_poll_q &&
1801			    !reply_q->irq_poll_scheduled) {
1802				reply_q->irq_poll_scheduled = true;
1803				irq_poll_sched(&reply_q->irqpoll);
1804			}
1805			atomic_dec(&reply_q->busy);
1806			return completed_cmds;
1807		}
1808		if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1809			goto out;
1810		if (!reply_q->reply_post_host_index)
1811			rpf = reply_q->reply_post_free;
1812		else
1813			rpf++;
1814	} while (1);
1815
1816 out:
1817
1818	if (!completed_cmds) {
1819		atomic_dec(&reply_q->busy);
1820		return completed_cmds;
1821	}
1822
1823	if (ioc->is_warpdrive) {
1824		writel(reply_q->reply_post_host_index,
1825		ioc->reply_post_host_index[msix_index]);
1826		atomic_dec(&reply_q->busy);
1827		return completed_cmds;
1828	}
1829
1830	/* Update Reply Post Host Index.
1831	 * For those HBA's which support combined reply queue feature
1832	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1833	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1834	 *    Index Register address bank i.e replyPostRegisterIndex[],
1835	 * 2. Then update this register with new reply host index value
1836	 *    in ReplyPostIndex field and the MSIxIndex field with
1837	 *    msix_index value reduced to a value between 0 and 7,
1838	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1839	 *    Host Index Register supports 8 MSI-X vectors.
1840	 *
1841	 * For other HBA's just update the Reply Post Host Index register with
1842	 * new reply host index value in ReplyPostIndex Field and msix_index
1843	 * value in MSIxIndex field.
1844	 */
1845	if (ioc->combined_reply_queue)
1846		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1847			MPI2_RPHI_MSIX_INDEX_SHIFT),
1848			ioc->replyPostRegisterIndex[msix_index/8]);
1849	else
1850		writel(reply_q->reply_post_host_index | (msix_index <<
1851			MPI2_RPHI_MSIX_INDEX_SHIFT),
1852			&ioc->chip->ReplyPostHostIndex);
1853	atomic_dec(&reply_q->busy);
1854	return completed_cmds;
1855}
1856
1857/**
1858 * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1859 * @shost: Scsi_Host object
1860 * @queue_num: hw ctx queue number
1861 *
1862 * Return number of entries that has been processed from poll queue.
1863 */
1864int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1865{
1866	struct MPT3SAS_ADAPTER *ioc =
1867	    (struct MPT3SAS_ADAPTER *)shost->hostdata;
1868	struct adapter_reply_queue *reply_q;
1869	int num_entries = 0;
1870	int qid = queue_num - ioc->iopoll_q_start_index;
1871
1872	if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1873	    !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1874		return 0;
1875
1876	reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1877
1878	num_entries = _base_process_reply_queue(reply_q);
1879	atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1880
1881	return num_entries;
1882}
1883
1884/**
1885 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1886 * @irq: irq number (not used)
1887 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1888 *
1889 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1890 */
1891static irqreturn_t
1892_base_interrupt(int irq, void *bus_id)
1893{
1894	struct adapter_reply_queue *reply_q = bus_id;
1895	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1896
1897	if (ioc->mask_interrupts)
1898		return IRQ_NONE;
1899	if (reply_q->irq_poll_scheduled)
1900		return IRQ_HANDLED;
1901	return ((_base_process_reply_queue(reply_q) > 0) ?
1902			IRQ_HANDLED : IRQ_NONE);
1903}
1904
1905/**
1906 * _base_irqpoll - IRQ poll callback handler
1907 * @irqpoll: irq_poll object
1908 * @budget: irq poll weight
1909 *
1910 * Return: number of reply descriptors processed
1911 */
1912static int
1913_base_irqpoll(struct irq_poll *irqpoll, int budget)
1914{
1915	struct adapter_reply_queue *reply_q;
1916	int num_entries = 0;
1917
1918	reply_q = container_of(irqpoll, struct adapter_reply_queue,
1919			irqpoll);
1920	if (reply_q->irq_line_enable) {
1921		disable_irq_nosync(reply_q->os_irq);
1922		reply_q->irq_line_enable = false;
1923	}
1924	num_entries = _base_process_reply_queue(reply_q);
1925	if (num_entries < budget) {
1926		irq_poll_complete(irqpoll);
1927		reply_q->irq_poll_scheduled = false;
1928		reply_q->irq_line_enable = true;
1929		enable_irq(reply_q->os_irq);
1930		/*
1931		 * Go for one more round of processing the
1932		 * reply descriptor post queue in case the HBA
1933		 * Firmware has posted some reply descriptors
1934		 * while reenabling the IRQ.
1935		 */
1936		_base_process_reply_queue(reply_q);
1937	}
1938
1939	return num_entries;
1940}
1941
1942/**
1943 * _base_init_irqpolls - initliaze IRQ polls
1944 * @ioc: per adapter object
1945 *
1946 * Return: nothing
1947 */
1948static void
1949_base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1950{
1951	struct adapter_reply_queue *reply_q, *next;
1952
1953	if (list_empty(&ioc->reply_queue_list))
1954		return;
1955
1956	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1957		if (reply_q->is_iouring_poll_q)
1958			continue;
1959		irq_poll_init(&reply_q->irqpoll,
1960			ioc->hba_queue_depth/4, _base_irqpoll);
1961		reply_q->irq_poll_scheduled = false;
1962		reply_q->irq_line_enable = true;
1963		reply_q->os_irq = pci_irq_vector(ioc->pdev,
1964		    reply_q->msix_index);
1965	}
1966}
1967
1968/**
1969 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1970 * @ioc: per adapter object
1971 *
1972 * Return: Whether or not MSI/X is enabled.
1973 */
1974static inline int
1975_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1976{
1977	return (ioc->facts.IOCCapabilities &
1978	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1979}
1980
1981/**
1982 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1983 * @ioc: per adapter object
1984 * @poll: poll over reply descriptor pools incase interrupt for
1985 *		timed-out SCSI command got delayed
1986 * Context: non-ISR context
1987 *
1988 * Called when a Task Management request has completed.
1989 */
1990void
1991mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1992{
1993	struct adapter_reply_queue *reply_q;
1994
1995	/* If MSIX capability is turned off
1996	 * then multi-queues are not enabled
1997	 */
1998	if (!_base_is_controller_msix_enabled(ioc))
1999		return;
2000
2001	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2002		if (ioc->shost_recovery || ioc->remove_host ||
2003				ioc->pci_error_recovery)
2004			return;
2005		/* TMs are on msix_index == 0 */
2006		if (reply_q->msix_index == 0)
2007			continue;
2008
2009		if (reply_q->is_iouring_poll_q) {
2010			_base_process_reply_queue(reply_q);
2011			continue;
2012		}
2013
2014		synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
2015		if (reply_q->irq_poll_scheduled) {
2016			/* Calling irq_poll_disable will wait for any pending
2017			 * callbacks to have completed.
2018			 */
2019			irq_poll_disable(&reply_q->irqpoll);
2020			irq_poll_enable(&reply_q->irqpoll);
2021			/* check how the scheduled poll has ended,
2022			 * clean up only if necessary
2023			 */
2024			if (reply_q->irq_poll_scheduled) {
2025				reply_q->irq_poll_scheduled = false;
2026				reply_q->irq_line_enable = true;
2027				enable_irq(reply_q->os_irq);
2028			}
2029		}
2030
2031		if (poll)
2032			_base_process_reply_queue(reply_q);
2033	}
2034}
2035
2036/**
2037 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2038 * @cb_idx: callback index
2039 */
2040void
2041mpt3sas_base_release_callback_handler(u8 cb_idx)
2042{
2043	mpt_callbacks[cb_idx] = NULL;
2044}
2045
2046/**
2047 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2048 * @cb_func: callback function
2049 *
2050 * Return: Index of @cb_func.
2051 */
2052u8
2053mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2054{
2055	u8 cb_idx;
2056
2057	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2058		if (mpt_callbacks[cb_idx] == NULL)
2059			break;
2060
2061	mpt_callbacks[cb_idx] = cb_func;
2062	return cb_idx;
2063}
2064
2065/**
2066 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2067 */
2068void
2069mpt3sas_base_initialize_callback_handler(void)
2070{
2071	u8 cb_idx;
2072
2073	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2074		mpt3sas_base_release_callback_handler(cb_idx);
2075}
2076
2077
2078/**
2079 * _base_build_zero_len_sge - build zero length sg entry
2080 * @ioc: per adapter object
2081 * @paddr: virtual address for SGE
2082 *
2083 * Create a zero length scatter gather entry to insure the IOCs hardware has
2084 * something to use if the target device goes brain dead and tries
2085 * to send data even when none is asked for.
2086 */
2087static void
2088_base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2089{
2090	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2091	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2092	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2093	    MPI2_SGE_FLAGS_SHIFT);
2094	ioc->base_add_sg_single(paddr, flags_length, -1);
2095}
2096
2097/**
2098 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2099 * @paddr: virtual address for SGE
2100 * @flags_length: SGE flags and data transfer length
2101 * @dma_addr: Physical address
2102 */
2103static void
2104_base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2105{
2106	Mpi2SGESimple32_t *sgel = paddr;
2107
2108	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2109	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2110	sgel->FlagsLength = cpu_to_le32(flags_length);
2111	sgel->Address = cpu_to_le32(dma_addr);
2112}
2113
2114
2115/**
2116 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2117 * @paddr: virtual address for SGE
2118 * @flags_length: SGE flags and data transfer length
2119 * @dma_addr: Physical address
2120 */
2121static void
2122_base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2123{
2124	Mpi2SGESimple64_t *sgel = paddr;
2125
2126	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2127	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2128	sgel->FlagsLength = cpu_to_le32(flags_length);
2129	sgel->Address = cpu_to_le64(dma_addr);
2130}
2131
2132/**
2133 * _base_get_chain_buffer_tracker - obtain chain tracker
2134 * @ioc: per adapter object
2135 * @scmd: SCSI commands of the IO request
2136 *
2137 * Return: chain tracker from chain_lookup table using key as
2138 * smid and smid's chain_offset.
2139 */
2140static struct chain_tracker *
2141_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2142			       struct scsi_cmnd *scmd)
2143{
2144	struct chain_tracker *chain_req;
2145	struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2146	u16 smid = st->smid;
2147	u8 chain_offset =
2148	   atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2149
2150	if (chain_offset == ioc->chains_needed_per_io)
2151		return NULL;
2152
2153	chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2154	atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2155	return chain_req;
2156}
2157
2158
2159/**
2160 * _base_build_sg - build generic sg
2161 * @ioc: per adapter object
2162 * @psge: virtual address for SGE
2163 * @data_out_dma: physical address for WRITES
2164 * @data_out_sz: data xfer size for WRITES
2165 * @data_in_dma: physical address for READS
2166 * @data_in_sz: data xfer size for READS
2167 */
2168static void
2169_base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2170	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2171	size_t data_in_sz)
2172{
2173	u32 sgl_flags;
2174
2175	if (!data_out_sz && !data_in_sz) {
2176		_base_build_zero_len_sge(ioc, psge);
2177		return;
2178	}
2179
2180	if (data_out_sz && data_in_sz) {
2181		/* WRITE sgel first */
2182		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2183		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2184		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2185		ioc->base_add_sg_single(psge, sgl_flags |
2186		    data_out_sz, data_out_dma);
2187
2188		/* incr sgel */
2189		psge += ioc->sge_size;
2190
2191		/* READ sgel last */
2192		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2193		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2194		    MPI2_SGE_FLAGS_END_OF_LIST);
2195		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2196		ioc->base_add_sg_single(psge, sgl_flags |
2197		    data_in_sz, data_in_dma);
2198	} else if (data_out_sz) /* WRITE */ {
2199		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2200		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2201		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2202		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2203		ioc->base_add_sg_single(psge, sgl_flags |
2204		    data_out_sz, data_out_dma);
2205	} else if (data_in_sz) /* READ */ {
2206		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2207		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2208		    MPI2_SGE_FLAGS_END_OF_LIST);
2209		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2210		ioc->base_add_sg_single(psge, sgl_flags |
2211		    data_in_sz, data_in_dma);
2212	}
2213}
2214
2215/* IEEE format sgls */
2216
2217/**
2218 * _base_build_nvme_prp - This function is called for NVMe end devices to build
2219 *                        a native SGL (NVMe PRP).
2220 * @ioc: per adapter object
2221 * @smid: system request message index for getting asscociated SGL
2222 * @nvme_encap_request: the NVMe request msg frame pointer
2223 * @data_out_dma: physical address for WRITES
2224 * @data_out_sz: data xfer size for WRITES
2225 * @data_in_dma: physical address for READS
2226 * @data_in_sz: data xfer size for READS
2227 *
2228 * The native SGL is built starting in the first PRP
2229 * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2230 * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2231 * used to describe a larger data buffer.  If the data buffer is too large to
2232 * describe using the two PRP entriess inside the NVMe message, then PRP1
2233 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2234 * list located elsewhere in memory to describe the remaining data memory
2235 * segments.  The PRP list will be contiguous.
2236 *
2237 * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2238 * consists of a list of PRP entries to describe a number of noncontigous
2239 * physical memory segments as a single memory buffer, just as a SGL does.  Note
2240 * however, that this function is only used by the IOCTL call, so the memory
2241 * given will be guaranteed to be contiguous.  There is no need to translate
2242 * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2243 * contiguous space that is one page size each.
2244 *
2245 * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2246 * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2247 * contains the second PRP element if the memory being described fits within 2
2248 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2249 *
2250 * A PRP list pointer contains the address of a PRP list, structured as a linear
2251 * array of PRP entries.  Each PRP entry in this list describes a segment of
2252 * physical memory.
2253 *
2254 * Each 64-bit PRP entry comprises an address and an offset field.  The address
2255 * always points at the beginning of a 4KB physical memory page, and the offset
2256 * describes where within that 4KB page the memory segment begins.  Only the
2257 * first element in a PRP list may contain a non-zero offset, implying that all
2258 * memory segments following the first begin at the start of a 4KB page.
2259 *
2260 * Each PRP element normally describes 4KB of physical memory, with exceptions
2261 * for the first and last elements in the list.  If the memory being described
2262 * by the list begins at a non-zero offset within the first 4KB page, then the
2263 * first PRP element will contain a non-zero offset indicating where the region
2264 * begins within the 4KB page.  The last memory segment may end before the end
2265 * of the 4KB segment, depending upon the overall size of the memory being
2266 * described by the PRP list.
2267 *
2268 * Since PRP entries lack any indication of size, the overall data buffer length
2269 * is used to determine where the end of the data memory buffer is located, and
2270 * how many PRP entries are required to describe it.
2271 */
2272static void
2273_base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2274	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2275	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2276	size_t data_in_sz)
2277{
2278	int		prp_size = NVME_PRP_SIZE;
2279	__le64		*prp_entry, *prp1_entry, *prp2_entry;
2280	__le64		*prp_page;
2281	dma_addr_t	prp_entry_dma, prp_page_dma, dma_addr;
2282	u32		offset, entry_len;
2283	u32		page_mask_result, page_mask;
2284	size_t		length;
2285	struct mpt3sas_nvme_cmd *nvme_cmd =
2286		(void *)nvme_encap_request->NVMe_Command;
2287
2288	/*
2289	 * Not all commands require a data transfer. If no data, just return
2290	 * without constructing any PRP.
2291	 */
2292	if (!data_in_sz && !data_out_sz)
2293		return;
2294	prp1_entry = &nvme_cmd->prp1;
2295	prp2_entry = &nvme_cmd->prp2;
2296	prp_entry = prp1_entry;
2297	/*
2298	 * For the PRP entries, use the specially allocated buffer of
2299	 * contiguous memory.
2300	 */
2301	prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2302	prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2303
2304	/*
2305	 * Check if we are within 1 entry of a page boundary we don't
2306	 * want our first entry to be a PRP List entry.
2307	 */
2308	page_mask = ioc->page_size - 1;
2309	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2310	if (!page_mask_result) {
2311		/* Bump up to next page boundary. */
2312		prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2313		prp_page_dma = prp_page_dma + prp_size;
2314	}
2315
2316	/*
2317	 * Set PRP physical pointer, which initially points to the current PRP
2318	 * DMA memory page.
2319	 */
2320	prp_entry_dma = prp_page_dma;
2321
2322	/* Get physical address and length of the data buffer. */
2323	if (data_in_sz) {
2324		dma_addr = data_in_dma;
2325		length = data_in_sz;
2326	} else {
2327		dma_addr = data_out_dma;
2328		length = data_out_sz;
2329	}
2330
2331	/* Loop while the length is not zero. */
2332	while (length) {
2333		/*
2334		 * Check if we need to put a list pointer here if we are at
2335		 * page boundary - prp_size (8 bytes).
2336		 */
2337		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2338		if (!page_mask_result) {
2339			/*
2340			 * This is the last entry in a PRP List, so we need to
2341			 * put a PRP list pointer here.  What this does is:
2342			 *   - bump the current memory pointer to the next
2343			 *     address, which will be the next full page.
2344			 *   - set the PRP Entry to point to that page.  This
2345			 *     is now the PRP List pointer.
2346			 *   - bump the PRP Entry pointer the start of the
2347			 *     next page.  Since all of this PRP memory is
2348			 *     contiguous, no need to get a new page - it's
2349			 *     just the next address.
2350			 */
2351			prp_entry_dma++;
2352			*prp_entry = cpu_to_le64(prp_entry_dma);
2353			prp_entry++;
2354		}
2355
2356		/* Need to handle if entry will be part of a page. */
2357		offset = dma_addr & page_mask;
2358		entry_len = ioc->page_size - offset;
2359
2360		if (prp_entry == prp1_entry) {
2361			/*
2362			 * Must fill in the first PRP pointer (PRP1) before
2363			 * moving on.
2364			 */
2365			*prp1_entry = cpu_to_le64(dma_addr);
2366
2367			/*
2368			 * Now point to the second PRP entry within the
2369			 * command (PRP2).
2370			 */
2371			prp_entry = prp2_entry;
2372		} else if (prp_entry == prp2_entry) {
2373			/*
2374			 * Should the PRP2 entry be a PRP List pointer or just
2375			 * a regular PRP pointer?  If there is more than one
2376			 * more page of data, must use a PRP List pointer.
2377			 */
2378			if (length > ioc->page_size) {
2379				/*
2380				 * PRP2 will contain a PRP List pointer because
2381				 * more PRP's are needed with this command. The
2382				 * list will start at the beginning of the
2383				 * contiguous buffer.
2384				 */
2385				*prp2_entry = cpu_to_le64(prp_entry_dma);
2386
2387				/*
2388				 * The next PRP Entry will be the start of the
2389				 * first PRP List.
2390				 */
2391				prp_entry = prp_page;
2392			} else {
2393				/*
2394				 * After this, the PRP Entries are complete.
2395				 * This command uses 2 PRP's and no PRP list.
2396				 */
2397				*prp2_entry = cpu_to_le64(dma_addr);
2398			}
2399		} else {
2400			/*
2401			 * Put entry in list and bump the addresses.
2402			 *
2403			 * After PRP1 and PRP2 are filled in, this will fill in
2404			 * all remaining PRP entries in a PRP List, one per
2405			 * each time through the loop.
2406			 */
2407			*prp_entry = cpu_to_le64(dma_addr);
2408			prp_entry++;
2409			prp_entry_dma++;
2410		}
2411
2412		/*
2413		 * Bump the phys address of the command's data buffer by the
2414		 * entry_len.
2415		 */
2416		dma_addr += entry_len;
2417
2418		/* Decrement length accounting for last partial page. */
2419		if (entry_len > length)
2420			length = 0;
2421		else
2422			length -= entry_len;
2423	}
2424}
2425
2426/**
2427 * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2428 *			SGLs specific to NVMe drives only
2429 *
2430 * @ioc:		per adapter object
2431 * @scmd:		SCSI command from the mid-layer
2432 * @mpi_request:	mpi request
2433 * @smid:		msg Index
2434 * @sge_count:		scatter gather element count.
2435 *
2436 * Return:		true: PRPs are built
2437 *			false: IEEE SGLs needs to be built
2438 */
2439static void
2440base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2441		struct scsi_cmnd *scmd,
2442		Mpi25SCSIIORequest_t *mpi_request,
2443		u16 smid, int sge_count)
2444{
2445	int sge_len, num_prp_in_chain = 0;
2446	Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2447	__le64 *curr_buff;
2448	dma_addr_t msg_dma, sge_addr, offset;
2449	u32 page_mask, page_mask_result;
2450	struct scatterlist *sg_scmd;
2451	u32 first_prp_len;
2452	int data_len = scsi_bufflen(scmd);
2453	u32 nvme_pg_size;
2454
2455	nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2456	/*
2457	 * Nvme has a very convoluted prp format.  One prp is required
2458	 * for each page or partial page. Driver need to split up OS sg_list
2459	 * entries if it is longer than one page or cross a page
2460	 * boundary.  Driver also have to insert a PRP list pointer entry as
2461	 * the last entry in each physical page of the PRP list.
2462	 *
2463	 * NOTE: The first PRP "entry" is actually placed in the first
2464	 * SGL entry in the main message as IEEE 64 format.  The 2nd
2465	 * entry in the main message is the chain element, and the rest
2466	 * of the PRP entries are built in the contiguous pcie buffer.
2467	 */
2468	page_mask = nvme_pg_size - 1;
2469
2470	/*
2471	 * Native SGL is needed.
2472	 * Put a chain element in main message frame that points to the first
2473	 * chain buffer.
2474	 *
2475	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2476	 *        a native SGL.
2477	 */
2478
2479	/* Set main message chain element pointer */
2480	main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2481	/*
2482	 * For NVMe the chain element needs to be the 2nd SG entry in the main
2483	 * message.
2484	 */
2485	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2486		((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2487
2488	/*
2489	 * For the PRP entries, use the specially allocated buffer of
2490	 * contiguous memory.  Normal chain buffers can't be used
2491	 * because each chain buffer would need to be the size of an OS
2492	 * page (4k).
2493	 */
2494	curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2495	msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2496
2497	main_chain_element->Address = cpu_to_le64(msg_dma);
2498	main_chain_element->NextChainOffset = 0;
2499	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2500			MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2501			MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2502
2503	/* Build first prp, sge need not to be page aligned*/
2504	ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2505	sg_scmd = scsi_sglist(scmd);
2506	sge_addr = sg_dma_address(sg_scmd);
2507	sge_len = sg_dma_len(sg_scmd);
2508
2509	offset = sge_addr & page_mask;
2510	first_prp_len = nvme_pg_size - offset;
2511
2512	ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2513	ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2514
2515	data_len -= first_prp_len;
2516
2517	if (sge_len > first_prp_len) {
2518		sge_addr += first_prp_len;
2519		sge_len -= first_prp_len;
2520	} else if (data_len && (sge_len == first_prp_len)) {
2521		sg_scmd = sg_next(sg_scmd);
2522		sge_addr = sg_dma_address(sg_scmd);
2523		sge_len = sg_dma_len(sg_scmd);
2524	}
2525
2526	for (;;) {
2527		offset = sge_addr & page_mask;
2528
2529		/* Put PRP pointer due to page boundary*/
2530		page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2531		if (unlikely(!page_mask_result)) {
2532			scmd_printk(KERN_NOTICE,
2533				scmd, "page boundary curr_buff: 0x%p\n",
2534				curr_buff);
2535			msg_dma += 8;
2536			*curr_buff = cpu_to_le64(msg_dma);
2537			curr_buff++;
2538			num_prp_in_chain++;
2539		}
2540
2541		*curr_buff = cpu_to_le64(sge_addr);
2542		curr_buff++;
2543		msg_dma += 8;
2544		num_prp_in_chain++;
2545
2546		sge_addr += nvme_pg_size;
2547		sge_len -= nvme_pg_size;
2548		data_len -= nvme_pg_size;
2549
2550		if (data_len <= 0)
2551			break;
2552
2553		if (sge_len > 0)
2554			continue;
2555
2556		sg_scmd = sg_next(sg_scmd);
2557		sge_addr = sg_dma_address(sg_scmd);
2558		sge_len = sg_dma_len(sg_scmd);
2559	}
2560
2561	main_chain_element->Length =
2562		cpu_to_le32(num_prp_in_chain * sizeof(u64));
2563	return;
2564}
2565
2566static bool
2567base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2568	struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2569{
2570	u32 data_length = 0;
2571	bool build_prp = true;
2572
2573	data_length = scsi_bufflen(scmd);
2574	if (pcie_device &&
2575	    (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2576		build_prp = false;
2577		return build_prp;
2578	}
2579
2580	/* If Datalenth is <= 16K and number of SGE���s entries are <= 2
2581	 * we built IEEE SGL
2582	 */
2583	if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2584		build_prp = false;
2585
2586	return build_prp;
2587}
2588
2589/**
2590 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2591 * determine if the driver needs to build a native SGL.  If so, that native
2592 * SGL is built in the special contiguous buffers allocated especially for
2593 * PCIe SGL creation.  If the driver will not build a native SGL, return
2594 * TRUE and a normal IEEE SGL will be built.  Currently this routine
2595 * supports NVMe.
2596 * @ioc: per adapter object
2597 * @mpi_request: mf request pointer
2598 * @smid: system request message index
2599 * @scmd: scsi command
2600 * @pcie_device: points to the PCIe device's info
2601 *
2602 * Return: 0 if native SGL was built, 1 if no SGL was built
2603 */
2604static int
2605_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2606	Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2607	struct _pcie_device *pcie_device)
2608{
2609	int sges_left;
2610
2611	/* Get the SG list pointer and info. */
2612	sges_left = scsi_dma_map(scmd);
2613	if (sges_left < 0)
2614		return 1;
2615
2616	/* Check if we need to build a native SG list. */
2617	if (!base_is_prp_possible(ioc, pcie_device,
2618				scmd, sges_left)) {
2619		/* We built a native SG list, just return. */
2620		goto out;
2621	}
2622
2623	/*
2624	 * Build native NVMe PRP.
2625	 */
2626	base_make_prp_nvme(ioc, scmd, mpi_request,
2627			smid, sges_left);
2628
2629	return 0;
2630out:
2631	scsi_dma_unmap(scmd);
2632	return 1;
2633}
2634
2635/**
2636 * _base_add_sg_single_ieee - add sg element for IEEE format
2637 * @paddr: virtual address for SGE
2638 * @flags: SGE flags
2639 * @chain_offset: number of 128 byte elements from start of segment
2640 * @length: data transfer length
2641 * @dma_addr: Physical address
2642 */
2643static void
2644_base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2645	dma_addr_t dma_addr)
2646{
2647	Mpi25IeeeSgeChain64_t *sgel = paddr;
2648
2649	sgel->Flags = flags;
2650	sgel->NextChainOffset = chain_offset;
2651	sgel->Length = cpu_to_le32(length);
2652	sgel->Address = cpu_to_le64(dma_addr);
2653}
2654
2655/**
2656 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2657 * @ioc: per adapter object
2658 * @paddr: virtual address for SGE
2659 *
2660 * Create a zero length scatter gather entry to insure the IOCs hardware has
2661 * something to use if the target device goes brain dead and tries
2662 * to send data even when none is asked for.
2663 */
2664static void
2665_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2666{
2667	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2668		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2669		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2670
2671	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2672}
2673
2674/**
2675 * _base_build_sg_scmd - main sg creation routine
2676 *		pcie_device is unused here!
2677 * @ioc: per adapter object
2678 * @scmd: scsi command
2679 * @smid: system request message index
2680 * @unused: unused pcie_device pointer
2681 * Context: none.
2682 *
2683 * The main routine that builds scatter gather table from a given
2684 * scsi request sent via the .queuecommand main handler.
2685 *
2686 * Return: 0 success, anything else error
2687 */
2688static int
2689_base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2690	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2691{
2692	Mpi2SCSIIORequest_t *mpi_request;
2693	dma_addr_t chain_dma;
2694	struct scatterlist *sg_scmd;
2695	void *sg_local, *chain;
2696	u32 chain_offset;
2697	u32 chain_length;
2698	u32 chain_flags;
2699	int sges_left;
2700	u32 sges_in_segment;
2701	u32 sgl_flags;
2702	u32 sgl_flags_last_element;
2703	u32 sgl_flags_end_buffer;
2704	struct chain_tracker *chain_req;
2705
2706	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2707
2708	/* init scatter gather flags */
2709	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2710	if (scmd->sc_data_direction == DMA_TO_DEVICE)
2711		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2712	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2713	    << MPI2_SGE_FLAGS_SHIFT;
2714	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2715	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2716	    << MPI2_SGE_FLAGS_SHIFT;
2717	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2718
2719	sg_scmd = scsi_sglist(scmd);
2720	sges_left = scsi_dma_map(scmd);
2721	if (sges_left < 0)
2722		return -ENOMEM;
2723
2724	sg_local = &mpi_request->SGL;
2725	sges_in_segment = ioc->max_sges_in_main_message;
2726	if (sges_left <= sges_in_segment)
2727		goto fill_in_last_segment;
2728
2729	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2730	    (sges_in_segment * ioc->sge_size))/4;
2731
2732	/* fill in main message segment when there is a chain following */
2733	while (sges_in_segment) {
2734		if (sges_in_segment == 1)
2735			ioc->base_add_sg_single(sg_local,
2736			    sgl_flags_last_element | sg_dma_len(sg_scmd),
2737			    sg_dma_address(sg_scmd));
2738		else
2739			ioc->base_add_sg_single(sg_local, sgl_flags |
2740			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2741		sg_scmd = sg_next(sg_scmd);
2742		sg_local += ioc->sge_size;
2743		sges_left--;
2744		sges_in_segment--;
2745	}
2746
2747	/* initializing the chain flags and pointers */
2748	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2749	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2750	if (!chain_req)
2751		return -1;
2752	chain = chain_req->chain_buffer;
2753	chain_dma = chain_req->chain_buffer_dma;
2754	do {
2755		sges_in_segment = (sges_left <=
2756		    ioc->max_sges_in_chain_message) ? sges_left :
2757		    ioc->max_sges_in_chain_message;
2758		chain_offset = (sges_left == sges_in_segment) ?
2759		    0 : (sges_in_segment * ioc->sge_size)/4;
2760		chain_length = sges_in_segment * ioc->sge_size;
2761		if (chain_offset) {
2762			chain_offset = chain_offset <<
2763			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
2764			chain_length += ioc->sge_size;
2765		}
2766		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2767		    chain_length, chain_dma);
2768		sg_local = chain;
2769		if (!chain_offset)
2770			goto fill_in_last_segment;
2771
2772		/* fill in chain segments */
2773		while (sges_in_segment) {
2774			if (sges_in_segment == 1)
2775				ioc->base_add_sg_single(sg_local,
2776				    sgl_flags_last_element |
2777				    sg_dma_len(sg_scmd),
2778				    sg_dma_address(sg_scmd));
2779			else
2780				ioc->base_add_sg_single(sg_local, sgl_flags |
2781				    sg_dma_len(sg_scmd),
2782				    sg_dma_address(sg_scmd));
2783			sg_scmd = sg_next(sg_scmd);
2784			sg_local += ioc->sge_size;
2785			sges_left--;
2786			sges_in_segment--;
2787		}
2788
2789		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2790		if (!chain_req)
2791			return -1;
2792		chain = chain_req->chain_buffer;
2793		chain_dma = chain_req->chain_buffer_dma;
2794	} while (1);
2795
2796
2797 fill_in_last_segment:
2798
2799	/* fill the last segment */
2800	while (sges_left) {
2801		if (sges_left == 1)
2802			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2803			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2804		else
2805			ioc->base_add_sg_single(sg_local, sgl_flags |
2806			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2807		sg_scmd = sg_next(sg_scmd);
2808		sg_local += ioc->sge_size;
2809		sges_left--;
2810	}
2811
2812	return 0;
2813}
2814
2815/**
2816 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2817 * @ioc: per adapter object
2818 * @scmd: scsi command
2819 * @smid: system request message index
2820 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2821 * constructed on need.
2822 * Context: none.
2823 *
2824 * The main routine that builds scatter gather table from a given
2825 * scsi request sent via the .queuecommand main handler.
2826 *
2827 * Return: 0 success, anything else error
2828 */
2829static int
2830_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2831	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2832{
2833	Mpi25SCSIIORequest_t *mpi_request;
2834	dma_addr_t chain_dma;
2835	struct scatterlist *sg_scmd;
2836	void *sg_local, *chain;
2837	u32 chain_offset;
2838	u32 chain_length;
2839	int sges_left;
2840	u32 sges_in_segment;
2841	u8 simple_sgl_flags;
2842	u8 simple_sgl_flags_last;
2843	u8 chain_sgl_flags;
2844	struct chain_tracker *chain_req;
2845
2846	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2847
2848	/* init scatter gather flags */
2849	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2850	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2851	simple_sgl_flags_last = simple_sgl_flags |
2852	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2853	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2854	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2855
2856	/* Check if we need to build a native SG list. */
2857	if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2858			smid, scmd, pcie_device) == 0)) {
2859		/* We built a native SG list, just return. */
2860		return 0;
2861	}
2862
2863	sg_scmd = scsi_sglist(scmd);
2864	sges_left = scsi_dma_map(scmd);
2865	if (sges_left < 0)
2866		return -ENOMEM;
2867
2868	sg_local = &mpi_request->SGL;
2869	sges_in_segment = (ioc->request_sz -
2870		   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2871	if (sges_left <= sges_in_segment)
2872		goto fill_in_last_segment;
2873
2874	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2875	    (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2876
2877	/* fill in main message segment when there is a chain following */
2878	while (sges_in_segment > 1) {
2879		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2880		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2881		sg_scmd = sg_next(sg_scmd);
2882		sg_local += ioc->sge_size_ieee;
2883		sges_left--;
2884		sges_in_segment--;
2885	}
2886
2887	/* initializing the pointers */
2888	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2889	if (!chain_req)
2890		return -1;
2891	chain = chain_req->chain_buffer;
2892	chain_dma = chain_req->chain_buffer_dma;
2893	do {
2894		sges_in_segment = (sges_left <=
2895		    ioc->max_sges_in_chain_message) ? sges_left :
2896		    ioc->max_sges_in_chain_message;
2897		chain_offset = (sges_left == sges_in_segment) ?
2898		    0 : sges_in_segment;
2899		chain_length = sges_in_segment * ioc->sge_size_ieee;
2900		if (chain_offset)
2901			chain_length += ioc->sge_size_ieee;
2902		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2903		    chain_offset, chain_length, chain_dma);
2904
2905		sg_local = chain;
2906		if (!chain_offset)
2907			goto fill_in_last_segment;
2908
2909		/* fill in chain segments */
2910		while (sges_in_segment) {
2911			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2912			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2913			sg_scmd = sg_next(sg_scmd);
2914			sg_local += ioc->sge_size_ieee;
2915			sges_left--;
2916			sges_in_segment--;
2917		}
2918
2919		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2920		if (!chain_req)
2921			return -1;
2922		chain = chain_req->chain_buffer;
2923		chain_dma = chain_req->chain_buffer_dma;
2924	} while (1);
2925
2926
2927 fill_in_last_segment:
2928
2929	/* fill the last segment */
2930	while (sges_left > 0) {
2931		if (sges_left == 1)
2932			_base_add_sg_single_ieee(sg_local,
2933			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2934			    sg_dma_address(sg_scmd));
2935		else
2936			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2937			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2938		sg_scmd = sg_next(sg_scmd);
2939		sg_local += ioc->sge_size_ieee;
2940		sges_left--;
2941	}
2942
2943	return 0;
2944}
2945
2946/**
2947 * _base_build_sg_ieee - build generic sg for IEEE format
2948 * @ioc: per adapter object
2949 * @psge: virtual address for SGE
2950 * @data_out_dma: physical address for WRITES
2951 * @data_out_sz: data xfer size for WRITES
2952 * @data_in_dma: physical address for READS
2953 * @data_in_sz: data xfer size for READS
2954 */
2955static void
2956_base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2957	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2958	size_t data_in_sz)
2959{
2960	u8 sgl_flags;
2961
2962	if (!data_out_sz && !data_in_sz) {
2963		_base_build_zero_len_sge_ieee(ioc, psge);
2964		return;
2965	}
2966
2967	if (data_out_sz && data_in_sz) {
2968		/* WRITE sgel first */
2969		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2970		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2971		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2972		    data_out_dma);
2973
2974		/* incr sgel */
2975		psge += ioc->sge_size_ieee;
2976
2977		/* READ sgel last */
2978		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2979		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2980		    data_in_dma);
2981	} else if (data_out_sz) /* WRITE */ {
2982		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2983		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2984		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2985		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2986		    data_out_dma);
2987	} else if (data_in_sz) /* READ */ {
2988		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2989		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2990		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2991		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2992		    data_in_dma);
2993	}
2994}
2995
2996#define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2997
2998/**
2999 * _base_config_dma_addressing - set dma addressing
3000 * @ioc: per adapter object
3001 * @pdev: PCI device struct
3002 *
3003 * Return: 0 for success, non-zero for failure.
3004 */
3005static int
3006_base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
3007{
3008	struct sysinfo s;
3009	u64 coherent_dma_mask, dma_mask;
3010
3011	if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4) {
3012		ioc->dma_mask = 32;
3013		coherent_dma_mask = dma_mask = DMA_BIT_MASK(32);
3014	/* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
3015	} else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) {
3016		ioc->dma_mask = 63;
3017		coherent_dma_mask = dma_mask = DMA_BIT_MASK(63);
3018	} else {
3019		ioc->dma_mask = 64;
3020		coherent_dma_mask = dma_mask = DMA_BIT_MASK(64);
3021	}
3022
3023	if (ioc->use_32bit_dma)
3024		coherent_dma_mask = DMA_BIT_MASK(32);
3025
3026	if (dma_set_mask(&pdev->dev, dma_mask) ||
3027	    dma_set_coherent_mask(&pdev->dev, coherent_dma_mask))
3028		return -ENODEV;
3029
3030	if (ioc->dma_mask > 32) {
3031		ioc->base_add_sg_single = &_base_add_sg_single_64;
3032		ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3033	} else {
3034		ioc->base_add_sg_single = &_base_add_sg_single_32;
3035		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3036	}
3037
3038	si_meminfo(&s);
3039	ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3040		ioc->dma_mask, convert_to_kb(s.totalram));
3041
3042	return 0;
3043}
3044
3045/**
3046 * _base_check_enable_msix - checks MSIX capabable.
3047 * @ioc: per adapter object
3048 *
3049 * Check to see if card is capable of MSIX, and set number
3050 * of available msix vectors
3051 */
3052static int
3053_base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3054{
3055	int base;
3056	u16 message_control;
3057
3058	/* Check whether controller SAS2008 B0 controller,
3059	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3060	 */
3061	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3062	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3063		return -EINVAL;
3064	}
3065
3066	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3067	if (!base) {
3068		dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3069		return -EINVAL;
3070	}
3071
3072	/* get msix vector count */
3073	/* NUMA_IO not supported for older controllers */
3074	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3075	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3076	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3077	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3078	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3079	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3080	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3081		ioc->msix_vector_count = 1;
3082	else {
3083		pci_read_config_word(ioc->pdev, base + 2, &message_control);
3084		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3085	}
3086	dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3087				  ioc->msix_vector_count));
3088	return 0;
3089}
3090
3091/**
3092 * mpt3sas_base_free_irq - free irq
3093 * @ioc: per adapter object
3094 *
3095 * Freeing respective reply_queue from the list.
3096 */
3097void
3098mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3099{
3100	unsigned int irq;
3101	struct adapter_reply_queue *reply_q, *next;
3102
3103	if (list_empty(&ioc->reply_queue_list))
3104		return;
3105
3106	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3107		list_del(&reply_q->list);
3108		if (reply_q->is_iouring_poll_q) {
3109			kfree(reply_q);
3110			continue;
3111		}
3112
3113		if (ioc->smp_affinity_enable) {
3114			irq = pci_irq_vector(ioc->pdev, reply_q->msix_index);
3115			irq_update_affinity_hint(irq, NULL);
3116		}
3117		free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3118			 reply_q);
3119		kfree(reply_q);
3120	}
3121}
3122
3123/**
3124 * _base_request_irq - request irq
3125 * @ioc: per adapter object
3126 * @index: msix index into vector table
3127 *
3128 * Inserting respective reply_queue into the list.
3129 */
3130static int
3131_base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3132{
3133	struct pci_dev *pdev = ioc->pdev;
3134	struct adapter_reply_queue *reply_q;
3135	int r, qid;
3136
3137	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3138	if (!reply_q) {
3139		ioc_err(ioc, "unable to allocate memory %zu!\n",
3140			sizeof(struct adapter_reply_queue));
3141		return -ENOMEM;
3142	}
3143	reply_q->ioc = ioc;
3144	reply_q->msix_index = index;
3145
3146	atomic_set(&reply_q->busy, 0);
3147
3148	if (index >= ioc->iopoll_q_start_index) {
3149		qid = index - ioc->iopoll_q_start_index;
3150		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3151		    ioc->driver_name, ioc->id, qid);
3152		reply_q->is_iouring_poll_q = 1;
3153		ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3154		goto out;
3155	}
3156
3157
3158	if (ioc->msix_enable)
3159		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3160		    ioc->driver_name, ioc->id, index);
3161	else
3162		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3163		    ioc->driver_name, ioc->id);
3164	r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3165			IRQF_SHARED, reply_q->name, reply_q);
3166	if (r) {
3167		pr_err("%s: unable to allocate interrupt %d!\n",
3168		       reply_q->name, pci_irq_vector(pdev, index));
3169		kfree(reply_q);
3170		return -EBUSY;
3171	}
3172out:
3173	INIT_LIST_HEAD(&reply_q->list);
3174	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3175	return 0;
3176}
3177
3178/**
3179 * _base_assign_reply_queues - assigning msix index for each cpu
3180 * @ioc: per adapter object
3181 *
3182 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3183 */
3184static void
3185_base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3186{
3187	unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3188	struct adapter_reply_queue *reply_q;
3189	int iopoll_q_count = ioc->reply_queue_count -
3190	    ioc->iopoll_q_start_index;
3191	const struct cpumask *mask;
3192
3193	if (!_base_is_controller_msix_enabled(ioc))
3194		return;
3195
3196	if (ioc->msix_load_balance)
3197		return;
3198
3199	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3200
3201	nr_cpus = num_online_cpus();
3202	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3203					       ioc->facts.MaxMSIxVectors);
3204	if (!nr_msix)
3205		return;
3206
3207	if (ioc->smp_affinity_enable) {
3208
3209		/*
3210		 * set irq affinity to local numa node for those irqs
3211		 * corresponding to high iops queues.
3212		 */
3213		if (ioc->high_iops_queues) {
3214			mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev));
3215			for (index = 0; index < ioc->high_iops_queues;
3216			    index++) {
3217				irq = pci_irq_vector(ioc->pdev, index);
3218				irq_set_affinity_and_hint(irq, mask);
3219			}
3220		}
3221
3222		list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3223			const cpumask_t *mask;
3224
3225			if (reply_q->msix_index < ioc->high_iops_queues ||
3226			    reply_q->msix_index >= ioc->iopoll_q_start_index)
3227				continue;
3228
3229			mask = pci_irq_get_affinity(ioc->pdev,
3230			    reply_q->msix_index);
3231			if (!mask) {
3232				ioc_warn(ioc, "no affinity for msi %x\n",
3233					 reply_q->msix_index);
3234				goto fall_back;
3235			}
3236
3237			for_each_cpu_and(cpu, mask, cpu_online_mask) {
3238				if (cpu >= ioc->cpu_msix_table_sz)
3239					break;
3240				ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3241			}
3242		}
3243		return;
3244	}
3245
3246fall_back:
3247	cpu = cpumask_first(cpu_online_mask);
3248	nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3249	index = 0;
3250
3251	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3252		unsigned int i, group = nr_cpus / nr_msix;
3253
3254		if (reply_q->msix_index < ioc->high_iops_queues ||
3255		    reply_q->msix_index >= ioc->iopoll_q_start_index)
3256			continue;
3257
3258		if (cpu >= nr_cpus)
3259			break;
3260
3261		if (index < nr_cpus % nr_msix)
3262			group++;
3263
3264		for (i = 0 ; i < group ; i++) {
3265			ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3266			cpu = cpumask_next(cpu, cpu_online_mask);
3267		}
3268		index++;
3269	}
3270}
3271
3272/**
3273 * _base_check_and_enable_high_iops_queues - enable high iops mode
3274 * @ioc: per adapter object
3275 * @hba_msix_vector_count: msix vectors supported by HBA
3276 *
3277 * Enable high iops queues only if
3278 *  - HBA is a SEA/AERO controller and
3279 *  - MSI-Xs vector supported by the HBA is 128 and
3280 *  - total CPU count in the system >=16 and
3281 *  - loaded driver with default max_msix_vectors module parameter and
3282 *  - system booted in non kdump mode
3283 *
3284 * Return: nothing.
3285 */
3286static void
3287_base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3288		int hba_msix_vector_count)
3289{
3290	u16 lnksta, speed;
3291
3292	/*
3293	 * Disable high iops queues if io uring poll queues are enabled.
3294	 */
3295	if (perf_mode == MPT_PERF_MODE_IOPS ||
3296	    perf_mode == MPT_PERF_MODE_LATENCY ||
3297	    ioc->io_uring_poll_queues) {
3298		ioc->high_iops_queues = 0;
3299		return;
3300	}
3301
3302	if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3303
3304		pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3305		speed = lnksta & PCI_EXP_LNKSTA_CLS;
3306
3307		if (speed < 0x4) {
3308			ioc->high_iops_queues = 0;
3309			return;
3310		}
3311	}
3312
3313	if (!reset_devices && ioc->is_aero_ioc &&
3314	    hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3315	    num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3316	    max_msix_vectors == -1)
3317		ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3318	else
3319		ioc->high_iops_queues = 0;
3320}
3321
3322/**
3323 * mpt3sas_base_disable_msix - disables msix
3324 * @ioc: per adapter object
3325 *
3326 */
3327void
3328mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3329{
3330	if (!ioc->msix_enable)
3331		return;
3332	pci_free_irq_vectors(ioc->pdev);
3333	ioc->msix_enable = 0;
3334	kfree(ioc->io_uring_poll_queues);
3335}
3336
3337/**
3338 * _base_alloc_irq_vectors - allocate msix vectors
3339 * @ioc: per adapter object
3340 *
3341 */
3342static int
3343_base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3344{
3345	int i, irq_flags = PCI_IRQ_MSIX;
3346	struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3347	struct irq_affinity *descp = &desc;
3348	/*
3349	 * Don't allocate msix vectors for poll_queues.
3350	 * msix_vectors is always within a range of FW supported reply queue.
3351	 */
3352	int nr_msix_vectors = ioc->iopoll_q_start_index;
3353
3354
3355	if (ioc->smp_affinity_enable)
3356		irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3357	else
3358		descp = NULL;
3359
3360	ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3361	    ioc->reply_queue_count, nr_msix_vectors);
3362
3363	i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3364	    ioc->high_iops_queues,
3365	    nr_msix_vectors, irq_flags, descp);
3366
3367	return i;
3368}
3369
3370/**
3371 * _base_enable_msix - enables msix, failback to io_apic
3372 * @ioc: per adapter object
3373 *
3374 */
3375static int
3376_base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3377{
3378	int r;
3379	int i, local_max_msix_vectors;
3380	u8 try_msix = 0;
3381	int iopoll_q_count = 0;
3382
3383	ioc->msix_load_balance = false;
3384
3385	if (msix_disable == -1 || msix_disable == 0)
3386		try_msix = 1;
3387
3388	if (!try_msix)
3389		goto try_ioapic;
3390
3391	if (_base_check_enable_msix(ioc) != 0)
3392		goto try_ioapic;
3393
3394	ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3395	pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3396		ioc->cpu_count, max_msix_vectors);
3397
3398	ioc->reply_queue_count =
3399		min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3400
3401	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3402		local_max_msix_vectors = (reset_devices) ? 1 : 8;
3403	else
3404		local_max_msix_vectors = max_msix_vectors;
3405
3406	if (local_max_msix_vectors == 0)
3407		goto try_ioapic;
3408
3409	/*
3410	 * Enable msix_load_balance only if combined reply queue mode is
3411	 * disabled on SAS3 & above generation HBA devices.
3412	 */
3413	if (!ioc->combined_reply_queue &&
3414	    ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3415		ioc_info(ioc,
3416		    "combined ReplyQueue is off, Enabling msix load balance\n");
3417		ioc->msix_load_balance = true;
3418	}
3419
3420	/*
3421	 * smp affinity setting is not need when msix load balance
3422	 * is enabled.
3423	 */
3424	if (ioc->msix_load_balance)
3425		ioc->smp_affinity_enable = 0;
3426
3427	if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3428		ioc->shost->host_tagset = 0;
3429
3430	/*
3431	 * Enable io uring poll queues only if host_tagset is enabled.
3432	 */
3433	if (ioc->shost->host_tagset)
3434		iopoll_q_count = poll_queues;
3435
3436	if (iopoll_q_count) {
3437		ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3438		    sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3439		if (!ioc->io_uring_poll_queues)
3440			iopoll_q_count = 0;
3441	}
3442
3443	if (ioc->is_aero_ioc)
3444		_base_check_and_enable_high_iops_queues(ioc,
3445		    ioc->msix_vector_count);
3446
3447	/*
3448	 * Add high iops queues count to reply queue count if high iops queues
3449	 * are enabled.
3450	 */
3451	ioc->reply_queue_count = min_t(int,
3452	    ioc->reply_queue_count + ioc->high_iops_queues,
3453	    ioc->msix_vector_count);
3454
3455	/*
3456	 * Adjust the reply queue count incase reply queue count
3457	 * exceeds the user provided MSIx vectors count.
3458	 */
3459	if (local_max_msix_vectors > 0)
3460		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3461		    ioc->reply_queue_count);
3462	/*
3463	 * Add io uring poll queues count to reply queues count
3464	 * if io uring is enabled in driver.
3465	 */
3466	if (iopoll_q_count) {
3467		if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3468			iopoll_q_count = 0;
3469		ioc->reply_queue_count = min_t(int,
3470		    ioc->reply_queue_count + iopoll_q_count,
3471		    ioc->msix_vector_count);
3472	}
3473
3474	/*
3475	 * Starting index of io uring poll queues in reply queue list.
3476	 */
3477	ioc->iopoll_q_start_index =
3478	    ioc->reply_queue_count - iopoll_q_count;
3479
3480	r = _base_alloc_irq_vectors(ioc);
3481	if (r < 0) {
3482		ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3483		goto try_ioapic;
3484	}
3485
3486	/*
3487	 * Adjust the reply queue count if the allocated
3488	 * MSIx vectors is less then the requested number
3489	 * of MSIx vectors.
3490	 */
3491	if (r < ioc->iopoll_q_start_index) {
3492		ioc->reply_queue_count = r + iopoll_q_count;
3493		ioc->iopoll_q_start_index =
3494		    ioc->reply_queue_count - iopoll_q_count;
3495	}
3496
3497	ioc->msix_enable = 1;
3498	for (i = 0; i < ioc->reply_queue_count; i++) {
3499		r = _base_request_irq(ioc, i);
3500		if (r) {
3501			mpt3sas_base_free_irq(ioc);
3502			mpt3sas_base_disable_msix(ioc);
3503			goto try_ioapic;
3504		}
3505	}
3506
3507	ioc_info(ioc, "High IOPs queues : %s\n",
3508			ioc->high_iops_queues ? "enabled" : "disabled");
3509
3510	return 0;
3511
3512/* failback to io_apic interrupt routing */
3513 try_ioapic:
3514	ioc->high_iops_queues = 0;
3515	ioc_info(ioc, "High IOPs queues : disabled\n");
3516	ioc->reply_queue_count = 1;
3517	ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3518	r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3519	if (r < 0) {
3520		dfailprintk(ioc,
3521			    ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3522				     r));
3523	} else
3524		r = _base_request_irq(ioc, 0);
3525
3526	return r;
3527}
3528
3529/**
3530 * mpt3sas_base_unmap_resources - free controller resources
3531 * @ioc: per adapter object
3532 */
3533static void
3534mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3535{
3536	struct pci_dev *pdev = ioc->pdev;
3537
3538	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3539
3540	mpt3sas_base_free_irq(ioc);
3541	mpt3sas_base_disable_msix(ioc);
3542
3543	kfree(ioc->replyPostRegisterIndex);
3544	ioc->replyPostRegisterIndex = NULL;
3545
3546
3547	if (ioc->chip_phys) {
3548		iounmap(ioc->chip);
3549		ioc->chip_phys = 0;
3550	}
3551
3552	if (pci_is_enabled(pdev)) {
3553		pci_release_selected_regions(ioc->pdev, ioc->bars);
3554		pci_disable_device(pdev);
3555	}
3556}
3557
3558static int
3559_base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3560
3561/**
3562 * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3563 *     and if it is in fault state then issue diag reset.
3564 * @ioc: per adapter object
3565 *
3566 * Return: 0 for success, non-zero for failure.
3567 */
3568int
3569mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3570{
3571	u32 ioc_state;
3572	int rc = -EFAULT;
3573
3574	dinitprintk(ioc, pr_info("%s\n", __func__));
3575	if (ioc->pci_error_recovery)
3576		return 0;
3577	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3578	dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3579
3580	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3581		mpt3sas_print_fault_code(ioc, ioc_state &
3582		    MPI2_DOORBELL_DATA_MASK);
3583		mpt3sas_base_mask_interrupts(ioc);
3584		rc = _base_diag_reset(ioc);
3585	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3586	    MPI2_IOC_STATE_COREDUMP) {
3587		mpt3sas_print_coredump_info(ioc, ioc_state &
3588		     MPI2_DOORBELL_DATA_MASK);
3589		mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3590		mpt3sas_base_mask_interrupts(ioc);
3591		rc = _base_diag_reset(ioc);
3592	}
3593
3594	return rc;
3595}
3596
3597/**
3598 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3599 * @ioc: per adapter object
3600 *
3601 * Return: 0 for success, non-zero for failure.
3602 */
3603int
3604mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3605{
3606	struct pci_dev *pdev = ioc->pdev;
3607	u32 memap_sz;
3608	u32 pio_sz;
3609	int i, r = 0, rc;
3610	u64 pio_chip = 0;
3611	phys_addr_t chip_phys = 0;
3612	struct adapter_reply_queue *reply_q;
3613	int iopoll_q_count = 0;
3614
3615	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3616
3617	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3618	if (pci_enable_device_mem(pdev)) {
3619		ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3620		ioc->bars = 0;
3621		return -ENODEV;
3622	}
3623
3624
3625	if (pci_request_selected_regions(pdev, ioc->bars,
3626	    ioc->driver_name)) {
3627		ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3628		ioc->bars = 0;
3629		r = -ENODEV;
3630		goto out_fail;
3631	}
3632
3633	pci_set_master(pdev);
3634
3635
3636	if (_base_config_dma_addressing(ioc, pdev) != 0) {
3637		ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3638		r = -ENODEV;
3639		goto out_fail;
3640	}
3641
3642	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3643	     (!memap_sz || !pio_sz); i++) {
3644		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3645			if (pio_sz)
3646				continue;
3647			pio_chip = (u64)pci_resource_start(pdev, i);
3648			pio_sz = pci_resource_len(pdev, i);
3649		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3650			if (memap_sz)
3651				continue;
3652			ioc->chip_phys = pci_resource_start(pdev, i);
3653			chip_phys = ioc->chip_phys;
3654			memap_sz = pci_resource_len(pdev, i);
3655			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3656		}
3657	}
3658
3659	if (ioc->chip == NULL) {
3660		ioc_err(ioc,
3661		    "unable to map adapter memory! or resource not found\n");
3662		r = -EINVAL;
3663		goto out_fail;
3664	}
3665
3666	mpt3sas_base_mask_interrupts(ioc);
3667
3668	r = _base_get_ioc_facts(ioc);
3669	if (r) {
3670		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3671		if (rc || (_base_get_ioc_facts(ioc)))
3672			goto out_fail;
3673	}
3674
3675	if (!ioc->rdpq_array_enable_assigned) {
3676		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3677		ioc->rdpq_array_enable_assigned = 1;
3678	}
3679
3680	r = _base_enable_msix(ioc);
3681	if (r)
3682		goto out_fail;
3683
3684	iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3685	for (i = 0; i < iopoll_q_count; i++) {
3686		atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3687		atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3688	}
3689
3690	if (!ioc->is_driver_loading)
3691		_base_init_irqpolls(ioc);
3692	/* Use the Combined reply queue feature only for SAS3 C0 & higher
3693	 * revision HBAs and also only when reply queue count is greater than 8
3694	 */
3695	if (ioc->combined_reply_queue) {
3696		/* Determine the Supplemental Reply Post Host Index Registers
3697		 * Addresse. Supplemental Reply Post Host Index Registers
3698		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3699		 * each register is at offset bytes of
3700		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3701		 */
3702		ioc->replyPostRegisterIndex = kcalloc(
3703		     ioc->combined_reply_index_count,
3704		     sizeof(resource_size_t *), GFP_KERNEL);
3705		if (!ioc->replyPostRegisterIndex) {
3706			ioc_err(ioc,
3707			    "allocation for replyPostRegisterIndex failed!\n");
3708			r = -ENOMEM;
3709			goto out_fail;
3710		}
3711
3712		for (i = 0; i < ioc->combined_reply_index_count; i++) {
3713			ioc->replyPostRegisterIndex[i] =
3714				(resource_size_t __iomem *)
3715				((u8 __force *)&ioc->chip->Doorbell +
3716				 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3717				 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3718		}
3719	}
3720
3721	if (ioc->is_warpdrive) {
3722		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3723		    &ioc->chip->ReplyPostHostIndex;
3724
3725		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3726			ioc->reply_post_host_index[i] =
3727			(resource_size_t __iomem *)
3728			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3729			* 4)));
3730	}
3731
3732	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3733		if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3734			pr_info("%s: enabled: index: %d\n",
3735			    reply_q->name, reply_q->msix_index);
3736			continue;
3737		}
3738
3739		pr_info("%s: %s enabled: IRQ %d\n",
3740			reply_q->name,
3741			ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3742			pci_irq_vector(ioc->pdev, reply_q->msix_index));
3743	}
3744
3745	ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3746		 &chip_phys, ioc->chip, memap_sz);
3747	ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3748		 (unsigned long long)pio_chip, pio_sz);
3749
3750	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
3751	pci_save_state(pdev);
3752	return 0;
3753
3754 out_fail:
3755	mpt3sas_base_unmap_resources(ioc);
3756	return r;
3757}
3758
3759/**
3760 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3761 * @ioc: per adapter object
3762 * @smid: system request message index(smid zero is invalid)
3763 *
3764 * Return: virt pointer to message frame.
3765 */
3766void *
3767mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3768{
3769	return (void *)(ioc->request + (smid * ioc->request_sz));
3770}
3771
3772/**
3773 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3774 * @ioc: per adapter object
3775 * @smid: system request message index
3776 *
3777 * Return: virt pointer to sense buffer.
3778 */
3779void *
3780mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3781{
3782	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3783}
3784
3785/**
3786 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3787 * @ioc: per adapter object
3788 * @smid: system request message index
3789 *
3790 * Return: phys pointer to the low 32bit address of the sense buffer.
3791 */
3792__le32
3793mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3794{
3795	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3796	    SCSI_SENSE_BUFFERSIZE));
3797}
3798
3799/**
3800 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3801 * @ioc: per adapter object
3802 * @smid: system request message index
3803 *
3804 * Return: virt pointer to a PCIe SGL.
3805 */
3806void *
3807mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3808{
3809	return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3810}
3811
3812/**
3813 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3814 * @ioc: per adapter object
3815 * @smid: system request message index
3816 *
3817 * Return: phys pointer to the address of the PCIe buffer.
3818 */
3819dma_addr_t
3820mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3821{
3822	return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3823}
3824
3825/**
3826 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3827 * @ioc: per adapter object
3828 * @phys_addr: lower 32 physical addr of the reply
3829 *
3830 * Converts 32bit lower physical addr into a virt address.
3831 */
3832void *
3833mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3834{
3835	if (!phys_addr)
3836		return NULL;
3837	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3838}
3839
3840/**
3841 * _base_get_msix_index - get the msix index
3842 * @ioc: per adapter object
3843 * @scmd: scsi_cmnd object
3844 *
3845 * Return: msix index of general reply queues,
3846 * i.e. reply queue on which IO request's reply
3847 * should be posted by the HBA firmware.
3848 */
3849static inline u8
3850_base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3851	struct scsi_cmnd *scmd)
3852{
3853	/* Enables reply_queue load balancing */
3854	if (ioc->msix_load_balance)
3855		return ioc->reply_queue_count ?
3856		    base_mod64(atomic64_add_return(1,
3857		    &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3858
3859	if (scmd && ioc->shost->nr_hw_queues > 1) {
3860		u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3861
3862		return blk_mq_unique_tag_to_hwq(tag) +
3863			ioc->high_iops_queues;
3864	}
3865
3866	return ioc->cpu_msix_table[raw_smp_processor_id()];
3867}
3868
3869/**
3870 * _base_get_high_iops_msix_index - get the msix index of
3871 *				high iops queues
3872 * @ioc: per adapter object
3873 * @scmd: scsi_cmnd object
3874 *
3875 * Return: msix index of high iops reply queues.
3876 * i.e. high iops reply queue on which IO request's
3877 * reply should be posted by the HBA firmware.
3878 */
3879static inline u8
3880_base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3881	struct scsi_cmnd *scmd)
3882{
3883	/**
3884	 * Round robin the IO interrupts among the high iops
3885	 * reply queues in terms of batch count 16 when outstanding
3886	 * IOs on the target device is >=8.
3887	 */
3888
3889	if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3890		return base_mod64((
3891		    atomic64_add_return(1, &ioc->high_iops_outstanding) /
3892		    MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3893		    MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3894
3895	return _base_get_msix_index(ioc, scmd);
3896}
3897
3898/**
3899 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3900 * @ioc: per adapter object
3901 * @cb_idx: callback index
3902 *
3903 * Return: smid (zero is invalid)
3904 */
3905u16
3906mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3907{
3908	unsigned long flags;
3909	struct request_tracker *request;
3910	u16 smid;
3911
3912	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3913	if (list_empty(&ioc->internal_free_list)) {
3914		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3915		ioc_err(ioc, "%s: smid not available\n", __func__);
3916		return 0;
3917	}
3918
3919	request = list_entry(ioc->internal_free_list.next,
3920	    struct request_tracker, tracker_list);
3921	request->cb_idx = cb_idx;
3922	smid = request->smid;
3923	list_del(&request->tracker_list);
3924	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3925	return smid;
3926}
3927
3928/**
3929 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3930 * @ioc: per adapter object
3931 * @cb_idx: callback index
3932 * @scmd: pointer to scsi command object
3933 *
3934 * Return: smid (zero is invalid)
3935 */
3936u16
3937mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3938	struct scsi_cmnd *scmd)
3939{
3940	struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3941	u16 smid;
3942	u32 tag, unique_tag;
3943
3944	unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3945	tag = blk_mq_unique_tag_to_tag(unique_tag);
3946
3947	/*
3948	 * Store hw queue number corresponding to the tag.
3949	 * This hw queue number is used later to determine
3950	 * the unique_tag using the logic below. This unique_tag
3951	 * is used to retrieve the scmd pointer corresponding
3952	 * to tag using scsi_host_find_tag() API.
3953	 *
3954	 * tag = smid - 1;
3955	 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3956	 */
3957	ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3958
3959	smid = tag + 1;
3960	request->cb_idx = cb_idx;
3961	request->smid = smid;
3962	request->scmd = scmd;
3963	INIT_LIST_HEAD(&request->chain_list);
3964	return smid;
3965}
3966
3967/**
3968 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3969 * @ioc: per adapter object
3970 * @cb_idx: callback index
3971 *
3972 * Return: smid (zero is invalid)
3973 */
3974u16
3975mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3976{
3977	unsigned long flags;
3978	struct request_tracker *request;
3979	u16 smid;
3980
3981	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3982	if (list_empty(&ioc->hpr_free_list)) {
3983		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3984		return 0;
3985	}
3986
3987	request = list_entry(ioc->hpr_free_list.next,
3988	    struct request_tracker, tracker_list);
3989	request->cb_idx = cb_idx;
3990	smid = request->smid;
3991	list_del(&request->tracker_list);
3992	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3993	return smid;
3994}
3995
3996static void
3997_base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3998{
3999	/*
4000	 * See _wait_for_commands_to_complete() call with regards to this code.
4001	 */
4002	if (ioc->shost_recovery && ioc->pending_io_count) {
4003		ioc->pending_io_count = scsi_host_busy(ioc->shost);
4004		if (ioc->pending_io_count == 0)
4005			wake_up(&ioc->reset_wq);
4006	}
4007}
4008
4009void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
4010			   struct scsiio_tracker *st)
4011{
4012	if (WARN_ON(st->smid == 0))
4013		return;
4014	st->cb_idx = 0xFF;
4015	st->direct_io = 0;
4016	st->scmd = NULL;
4017	atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4018	st->smid = 0;
4019}
4020
4021/**
4022 * mpt3sas_base_free_smid - put smid back on free_list
4023 * @ioc: per adapter object
4024 * @smid: system request message index
4025 */
4026void
4027mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4028{
4029	unsigned long flags;
4030	int i;
4031
4032	if (smid < ioc->hi_priority_smid) {
4033		struct scsiio_tracker *st;
4034		void *request;
4035
4036		st = _get_st_from_smid(ioc, smid);
4037		if (!st) {
4038			_base_recovery_check(ioc);
4039			return;
4040		}
4041
4042		/* Clear MPI request frame */
4043		request = mpt3sas_base_get_msg_frame(ioc, smid);
4044		memset(request, 0, ioc->request_sz);
4045
4046		mpt3sas_base_clear_st(ioc, st);
4047		_base_recovery_check(ioc);
4048		ioc->io_queue_num[smid - 1] = 0;
4049		return;
4050	}
4051
4052	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4053	if (smid < ioc->internal_smid) {
4054		/* hi-priority */
4055		i = smid - ioc->hi_priority_smid;
4056		ioc->hpr_lookup[i].cb_idx = 0xFF;
4057		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4058	} else if (smid <= ioc->hba_queue_depth) {
4059		/* internal queue */
4060		i = smid - ioc->internal_smid;
4061		ioc->internal_lookup[i].cb_idx = 0xFF;
4062		list_add(&ioc->internal_lookup[i].tracker_list,
4063		    &ioc->internal_free_list);
4064	}
4065	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4066}
4067
4068/**
4069 * _base_mpi_ep_writeq - 32 bit write to MMIO
4070 * @b: data payload
4071 * @addr: address in MMIO space
4072 * @writeq_lock: spin lock
4073 *
4074 * This special handling for MPI EP to take care of 32 bit
4075 * environment where its not quarenteed to send the entire word
4076 * in one transfer.
4077 */
4078static inline void
4079_base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4080					spinlock_t *writeq_lock)
4081{
4082	unsigned long flags;
4083
4084	spin_lock_irqsave(writeq_lock, flags);
4085	__raw_writel((u32)(b), addr);
4086	__raw_writel((u32)(b >> 32), (addr + 4));
4087	spin_unlock_irqrestore(writeq_lock, flags);
4088}
4089
4090/**
4091 * _base_writeq - 64 bit write to MMIO
4092 * @b: data payload
4093 * @addr: address in MMIO space
4094 * @writeq_lock: spin lock
4095 *
4096 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4097 * care of 32 bit environment where its not quarenteed to send the entire word
4098 * in one transfer.
4099 */
4100#if defined(writeq) && defined(CONFIG_64BIT)
4101static inline void
4102_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4103{
4104	wmb();
4105	__raw_writeq(b, addr);
4106	barrier();
4107}
4108#else
4109static inline void
4110_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4111{
4112	_base_mpi_ep_writeq(b, addr, writeq_lock);
4113}
4114#endif
4115
4116/**
4117 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4118 *                                variable of scsi tracker
4119 * @ioc: per adapter object
4120 * @smid: system request message index
4121 *
4122 * Return: msix index.
4123 */
4124static u8
4125_base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4126{
4127	struct scsiio_tracker *st = NULL;
4128
4129	if (smid < ioc->hi_priority_smid)
4130		st = _get_st_from_smid(ioc, smid);
4131
4132	if (st == NULL)
4133		return  _base_get_msix_index(ioc, NULL);
4134
4135	st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4136	return st->msix_io;
4137}
4138
4139/**
4140 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4141 * @ioc: per adapter object
4142 * @smid: system request message index
4143 * @handle: device handle
4144 */
4145static void
4146_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4147	u16 smid, u16 handle)
4148{
4149	Mpi2RequestDescriptorUnion_t descriptor;
4150	u64 *request = (u64 *)&descriptor;
4151	void *mpi_req_iomem;
4152	__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4153
4154	_clone_sg_entries(ioc, (void *) mfp, smid);
4155	mpi_req_iomem = (void __force *)ioc->chip +
4156			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4157	_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4158					ioc->request_sz);
4159	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4160	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4161	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4162	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4163	descriptor.SCSIIO.LMID = 0;
4164	_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4165	    &ioc->scsi_lookup_lock);
4166}
4167
4168/**
4169 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4170 * @ioc: per adapter object
4171 * @smid: system request message index
4172 * @handle: device handle
4173 */
4174static void
4175_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4176{
4177	Mpi2RequestDescriptorUnion_t descriptor;
4178	u64 *request = (u64 *)&descriptor;
4179
4180
4181	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4182	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4183	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4184	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4185	descriptor.SCSIIO.LMID = 0;
4186	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4187	    &ioc->scsi_lookup_lock);
4188}
4189
4190/**
4191 * _base_put_smid_fast_path - send fast path request to firmware
4192 * @ioc: per adapter object
4193 * @smid: system request message index
4194 * @handle: device handle
4195 */
4196static void
4197_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4198	u16 handle)
4199{
4200	Mpi2RequestDescriptorUnion_t descriptor;
4201	u64 *request = (u64 *)&descriptor;
4202
4203	descriptor.SCSIIO.RequestFlags =
4204	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4205	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4206	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4207	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4208	descriptor.SCSIIO.LMID = 0;
4209	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4210	    &ioc->scsi_lookup_lock);
4211}
4212
4213/**
4214 * _base_put_smid_hi_priority - send Task Management request to firmware
4215 * @ioc: per adapter object
4216 * @smid: system request message index
4217 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4218 */
4219static void
4220_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4221	u16 msix_task)
4222{
4223	Mpi2RequestDescriptorUnion_t descriptor;
4224	void *mpi_req_iomem;
4225	u64 *request;
4226
4227	if (ioc->is_mcpu_endpoint) {
4228		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4229
4230		/* TBD 256 is offset within sys register. */
4231		mpi_req_iomem = (void __force *)ioc->chip
4232					+ MPI_FRAME_START_OFFSET
4233					+ (smid * ioc->request_sz);
4234		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4235							ioc->request_sz);
4236	}
4237
4238	request = (u64 *)&descriptor;
4239
4240	descriptor.HighPriority.RequestFlags =
4241	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4242	descriptor.HighPriority.MSIxIndex =  msix_task;
4243	descriptor.HighPriority.SMID = cpu_to_le16(smid);
4244	descriptor.HighPriority.LMID = 0;
4245	descriptor.HighPriority.Reserved1 = 0;
4246	if (ioc->is_mcpu_endpoint)
4247		_base_mpi_ep_writeq(*request,
4248				&ioc->chip->RequestDescriptorPostLow,
4249				&ioc->scsi_lookup_lock);
4250	else
4251		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4252		    &ioc->scsi_lookup_lock);
4253}
4254
4255/**
4256 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4257 *  firmware
4258 * @ioc: per adapter object
4259 * @smid: system request message index
4260 */
4261void
4262mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4263{
4264	Mpi2RequestDescriptorUnion_t descriptor;
4265	u64 *request = (u64 *)&descriptor;
4266
4267	descriptor.Default.RequestFlags =
4268		MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4269	descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4270	descriptor.Default.SMID = cpu_to_le16(smid);
4271	descriptor.Default.LMID = 0;
4272	descriptor.Default.DescriptorTypeDependent = 0;
4273	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4274	    &ioc->scsi_lookup_lock);
4275}
4276
4277/**
4278 * _base_put_smid_default - Default, primarily used for config pages
4279 * @ioc: per adapter object
4280 * @smid: system request message index
4281 */
4282static void
4283_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4284{
4285	Mpi2RequestDescriptorUnion_t descriptor;
4286	void *mpi_req_iomem;
4287	u64 *request;
4288
4289	if (ioc->is_mcpu_endpoint) {
4290		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4291
4292		_clone_sg_entries(ioc, (void *) mfp, smid);
4293		/* TBD 256 is offset within sys register */
4294		mpi_req_iomem = (void __force *)ioc->chip +
4295			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4296		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4297							ioc->request_sz);
4298	}
4299	request = (u64 *)&descriptor;
4300	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4301	descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4302	descriptor.Default.SMID = cpu_to_le16(smid);
4303	descriptor.Default.LMID = 0;
4304	descriptor.Default.DescriptorTypeDependent = 0;
4305	if (ioc->is_mcpu_endpoint)
4306		_base_mpi_ep_writeq(*request,
4307				&ioc->chip->RequestDescriptorPostLow,
4308				&ioc->scsi_lookup_lock);
4309	else
4310		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4311				&ioc->scsi_lookup_lock);
4312}
4313
4314/**
4315 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4316 *   Atomic Request Descriptor
4317 * @ioc: per adapter object
4318 * @smid: system request message index
4319 * @handle: device handle, unused in this function, for function type match
4320 *
4321 * Return: nothing.
4322 */
4323static void
4324_base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4325	u16 handle)
4326{
4327	Mpi26AtomicRequestDescriptor_t descriptor;
4328	u32 *request = (u32 *)&descriptor;
4329
4330	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4331	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4332	descriptor.SMID = cpu_to_le16(smid);
4333
4334	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4335}
4336
4337/**
4338 * _base_put_smid_fast_path_atomic - send fast path request to firmware
4339 * using Atomic Request Descriptor
4340 * @ioc: per adapter object
4341 * @smid: system request message index
4342 * @handle: device handle, unused in this function, for function type match
4343 * Return: nothing
4344 */
4345static void
4346_base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4347	u16 handle)
4348{
4349	Mpi26AtomicRequestDescriptor_t descriptor;
4350	u32 *request = (u32 *)&descriptor;
4351
4352	descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4353	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4354	descriptor.SMID = cpu_to_le16(smid);
4355
4356	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4357}
4358
4359/**
4360 * _base_put_smid_hi_priority_atomic - send Task Management request to
4361 * firmware using Atomic Request Descriptor
4362 * @ioc: per adapter object
4363 * @smid: system request message index
4364 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4365 *
4366 * Return: nothing.
4367 */
4368static void
4369_base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4370	u16 msix_task)
4371{
4372	Mpi26AtomicRequestDescriptor_t descriptor;
4373	u32 *request = (u32 *)&descriptor;
4374
4375	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4376	descriptor.MSIxIndex = msix_task;
4377	descriptor.SMID = cpu_to_le16(smid);
4378
4379	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4380}
4381
4382/**
4383 * _base_put_smid_default_atomic - Default, primarily used for config pages
4384 * use Atomic Request Descriptor
4385 * @ioc: per adapter object
4386 * @smid: system request message index
4387 *
4388 * Return: nothing.
4389 */
4390static void
4391_base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4392{
4393	Mpi26AtomicRequestDescriptor_t descriptor;
4394	u32 *request = (u32 *)&descriptor;
4395
4396	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4397	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4398	descriptor.SMID = cpu_to_le16(smid);
4399
4400	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4401}
4402
4403/**
4404 * _base_display_OEMs_branding - Display branding string
4405 * @ioc: per adapter object
4406 */
4407static void
4408_base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4409{
4410	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4411		return;
4412
4413	switch (ioc->pdev->subsystem_vendor) {
4414	case PCI_VENDOR_ID_INTEL:
4415		switch (ioc->pdev->device) {
4416		case MPI2_MFGPAGE_DEVID_SAS2008:
4417			switch (ioc->pdev->subsystem_device) {
4418			case MPT2SAS_INTEL_RMS2LL080_SSDID:
4419				ioc_info(ioc, "%s\n",
4420					 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4421				break;
4422			case MPT2SAS_INTEL_RMS2LL040_SSDID:
4423				ioc_info(ioc, "%s\n",
4424					 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4425				break;
4426			case MPT2SAS_INTEL_SSD910_SSDID:
4427				ioc_info(ioc, "%s\n",
4428					 MPT2SAS_INTEL_SSD910_BRANDING);
4429				break;
4430			default:
4431				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4432					 ioc->pdev->subsystem_device);
4433				break;
4434			}
4435			break;
4436		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4437			switch (ioc->pdev->subsystem_device) {
4438			case MPT2SAS_INTEL_RS25GB008_SSDID:
4439				ioc_info(ioc, "%s\n",
4440					 MPT2SAS_INTEL_RS25GB008_BRANDING);
4441				break;
4442			case MPT2SAS_INTEL_RMS25JB080_SSDID:
4443				ioc_info(ioc, "%s\n",
4444					 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4445				break;
4446			case MPT2SAS_INTEL_RMS25JB040_SSDID:
4447				ioc_info(ioc, "%s\n",
4448					 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4449				break;
4450			case MPT2SAS_INTEL_RMS25KB080_SSDID:
4451				ioc_info(ioc, "%s\n",
4452					 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4453				break;
4454			case MPT2SAS_INTEL_RMS25KB040_SSDID:
4455				ioc_info(ioc, "%s\n",
4456					 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4457				break;
4458			case MPT2SAS_INTEL_RMS25LB040_SSDID:
4459				ioc_info(ioc, "%s\n",
4460					 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4461				break;
4462			case MPT2SAS_INTEL_RMS25LB080_SSDID:
4463				ioc_info(ioc, "%s\n",
4464					 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4465				break;
4466			default:
4467				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4468					 ioc->pdev->subsystem_device);
4469				break;
4470			}
4471			break;
4472		case MPI25_MFGPAGE_DEVID_SAS3008:
4473			switch (ioc->pdev->subsystem_device) {
4474			case MPT3SAS_INTEL_RMS3JC080_SSDID:
4475				ioc_info(ioc, "%s\n",
4476					 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4477				break;
4478
4479			case MPT3SAS_INTEL_RS3GC008_SSDID:
4480				ioc_info(ioc, "%s\n",
4481					 MPT3SAS_INTEL_RS3GC008_BRANDING);
4482				break;
4483			case MPT3SAS_INTEL_RS3FC044_SSDID:
4484				ioc_info(ioc, "%s\n",
4485					 MPT3SAS_INTEL_RS3FC044_BRANDING);
4486				break;
4487			case MPT3SAS_INTEL_RS3UC080_SSDID:
4488				ioc_info(ioc, "%s\n",
4489					 MPT3SAS_INTEL_RS3UC080_BRANDING);
4490				break;
4491			default:
4492				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4493					 ioc->pdev->subsystem_device);
4494				break;
4495			}
4496			break;
4497		default:
4498			ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4499				 ioc->pdev->subsystem_device);
4500			break;
4501		}
4502		break;
4503	case PCI_VENDOR_ID_DELL:
4504		switch (ioc->pdev->device) {
4505		case MPI2_MFGPAGE_DEVID_SAS2008:
4506			switch (ioc->pdev->subsystem_device) {
4507			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4508				ioc_info(ioc, "%s\n",
4509					 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4510				break;
4511			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4512				ioc_info(ioc, "%s\n",
4513					 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4514				break;
4515			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4516				ioc_info(ioc, "%s\n",
4517					 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4518				break;
4519			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4520				ioc_info(ioc, "%s\n",
4521					 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4522				break;
4523			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4524				ioc_info(ioc, "%s\n",
4525					 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4526				break;
4527			case MPT2SAS_DELL_PERC_H200_SSDID:
4528				ioc_info(ioc, "%s\n",
4529					 MPT2SAS_DELL_PERC_H200_BRANDING);
4530				break;
4531			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4532				ioc_info(ioc, "%s\n",
4533					 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4534				break;
4535			default:
4536				ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4537					 ioc->pdev->subsystem_device);
4538				break;
4539			}
4540			break;
4541		case MPI25_MFGPAGE_DEVID_SAS3008:
4542			switch (ioc->pdev->subsystem_device) {
4543			case MPT3SAS_DELL_12G_HBA_SSDID:
4544				ioc_info(ioc, "%s\n",
4545					 MPT3SAS_DELL_12G_HBA_BRANDING);
4546				break;
4547			default:
4548				ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4549					 ioc->pdev->subsystem_device);
4550				break;
4551			}
4552			break;
4553		default:
4554			ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4555				 ioc->pdev->subsystem_device);
4556			break;
4557		}
4558		break;
4559	case PCI_VENDOR_ID_CISCO:
4560		switch (ioc->pdev->device) {
4561		case MPI25_MFGPAGE_DEVID_SAS3008:
4562			switch (ioc->pdev->subsystem_device) {
4563			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4564				ioc_info(ioc, "%s\n",
4565					 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4566				break;
4567			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4568				ioc_info(ioc, "%s\n",
4569					 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4570				break;
4571			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4572				ioc_info(ioc, "%s\n",
4573					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4574				break;
4575			default:
4576				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4577					 ioc->pdev->subsystem_device);
4578				break;
4579			}
4580			break;
4581		case MPI25_MFGPAGE_DEVID_SAS3108_1:
4582			switch (ioc->pdev->subsystem_device) {
4583			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4584				ioc_info(ioc, "%s\n",
4585					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4586				break;
4587			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4588				ioc_info(ioc, "%s\n",
4589					 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4590				break;
4591			default:
4592				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4593					 ioc->pdev->subsystem_device);
4594				break;
4595			}
4596			break;
4597		default:
4598			ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4599				 ioc->pdev->subsystem_device);
4600			break;
4601		}
4602		break;
4603	case MPT2SAS_HP_3PAR_SSVID:
4604		switch (ioc->pdev->device) {
4605		case MPI2_MFGPAGE_DEVID_SAS2004:
4606			switch (ioc->pdev->subsystem_device) {
4607			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4608				ioc_info(ioc, "%s\n",
4609					 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4610				break;
4611			default:
4612				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4613					 ioc->pdev->subsystem_device);
4614				break;
4615			}
4616			break;
4617		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4618			switch (ioc->pdev->subsystem_device) {
4619			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4620				ioc_info(ioc, "%s\n",
4621					 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4622				break;
4623			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4624				ioc_info(ioc, "%s\n",
4625					 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4626				break;
4627			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4628				ioc_info(ioc, "%s\n",
4629					 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4630				break;
4631			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4632				ioc_info(ioc, "%s\n",
4633					 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4634				break;
4635			default:
4636				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4637					 ioc->pdev->subsystem_device);
4638				break;
4639			}
4640			break;
4641		default:
4642			ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4643				 ioc->pdev->subsystem_device);
4644			break;
4645		}
4646		break;
4647	default:
4648		break;
4649	}
4650}
4651
4652/**
4653 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4654 *				version from FW Image Header.
4655 * @ioc: per adapter object
4656 *
4657 * Return: 0 for success, non-zero for failure.
4658 */
4659	static int
4660_base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4661{
4662	Mpi2FWImageHeader_t *fw_img_hdr;
4663	Mpi26ComponentImageHeader_t *cmp_img_hdr;
4664	Mpi25FWUploadRequest_t *mpi_request;
4665	Mpi2FWUploadReply_t mpi_reply;
4666	int r = 0, issue_diag_reset = 0;
4667	u32  package_version = 0;
4668	void *fwpkg_data = NULL;
4669	dma_addr_t fwpkg_data_dma;
4670	u16 smid, ioc_status;
4671	size_t data_length;
4672
4673	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4674
4675	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4676		ioc_err(ioc, "%s: internal command already in use\n", __func__);
4677		return -EAGAIN;
4678	}
4679
4680	data_length = sizeof(Mpi2FWImageHeader_t);
4681	fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4682			&fwpkg_data_dma, GFP_KERNEL);
4683	if (!fwpkg_data) {
4684		ioc_err(ioc,
4685		    "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4686			__FILE__, __LINE__, __func__);
4687		return -ENOMEM;
4688	}
4689
4690	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4691	if (!smid) {
4692		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4693		r = -EAGAIN;
4694		goto out;
4695	}
4696
4697	ioc->base_cmds.status = MPT3_CMD_PENDING;
4698	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4699	ioc->base_cmds.smid = smid;
4700	memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4701	mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4702	mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4703	mpi_request->ImageSize = cpu_to_le32(data_length);
4704	ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4705			data_length);
4706	init_completion(&ioc->base_cmds.done);
4707	ioc->put_smid_default(ioc, smid);
4708	/* Wait for 15 seconds */
4709	wait_for_completion_timeout(&ioc->base_cmds.done,
4710			FW_IMG_HDR_READ_TIMEOUT*HZ);
4711	ioc_info(ioc, "%s: complete\n", __func__);
4712	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4713		ioc_err(ioc, "%s: timeout\n", __func__);
4714		_debug_dump_mf(mpi_request,
4715				sizeof(Mpi25FWUploadRequest_t)/4);
4716		issue_diag_reset = 1;
4717	} else {
4718		memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4719		if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4720			memcpy(&mpi_reply, ioc->base_cmds.reply,
4721					sizeof(Mpi2FWUploadReply_t));
4722			ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4723						MPI2_IOCSTATUS_MASK;
4724			if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4725				fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4726				if (le32_to_cpu(fw_img_hdr->Signature) ==
4727				    MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4728					cmp_img_hdr =
4729					    (Mpi26ComponentImageHeader_t *)
4730					    (fwpkg_data);
4731					package_version =
4732					    le32_to_cpu(
4733					    cmp_img_hdr->ApplicationSpecific);
4734				} else
4735					package_version =
4736					    le32_to_cpu(
4737					    fw_img_hdr->PackageVersion.Word);
4738				if (package_version)
4739					ioc_info(ioc,
4740					"FW Package Ver(%02d.%02d.%02d.%02d)\n",
4741					((package_version) & 0xFF000000) >> 24,
4742					((package_version) & 0x00FF0000) >> 16,
4743					((package_version) & 0x0000FF00) >> 8,
4744					(package_version) & 0x000000FF);
4745			} else {
4746				_debug_dump_mf(&mpi_reply,
4747						sizeof(Mpi2FWUploadReply_t)/4);
4748			}
4749		}
4750	}
4751	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4752out:
4753	if (fwpkg_data)
4754		dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4755				fwpkg_data_dma);
4756	if (issue_diag_reset) {
4757		if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4758			return -EFAULT;
4759		if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4760			return -EFAULT;
4761		r = -EAGAIN;
4762	}
4763	return r;
4764}
4765
4766/**
4767 * _base_display_ioc_capabilities - Display IOC's capabilities.
4768 * @ioc: per adapter object
4769 */
4770static void
4771_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4772{
4773	int i = 0;
4774	char desc[17] = {0};
4775	u32 iounit_pg1_flags;
4776
4777	strncpy(desc, ioc->manu_pg0.ChipName, 16);
4778	ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x)\n",
4779		 desc,
4780		 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4781		 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4782		 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4783		 ioc->facts.FWVersion.Word & 0x000000FF,
4784		 ioc->pdev->revision);
4785
4786	_base_display_OEMs_branding(ioc);
4787
4788	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4789		pr_info("%sNVMe", i ? "," : "");
4790		i++;
4791	}
4792
4793	ioc_info(ioc, "Protocol=(");
4794
4795	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4796		pr_cont("Initiator");
4797		i++;
4798	}
4799
4800	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4801		pr_cont("%sTarget", i ? "," : "");
4802		i++;
4803	}
4804
4805	i = 0;
4806	pr_cont("), Capabilities=(");
4807
4808	if (!ioc->hide_ir_msg) {
4809		if (ioc->facts.IOCCapabilities &
4810		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4811			pr_cont("Raid");
4812			i++;
4813		}
4814	}
4815
4816	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4817		pr_cont("%sTLR", i ? "," : "");
4818		i++;
4819	}
4820
4821	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4822		pr_cont("%sMulticast", i ? "," : "");
4823		i++;
4824	}
4825
4826	if (ioc->facts.IOCCapabilities &
4827	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4828		pr_cont("%sBIDI Target", i ? "," : "");
4829		i++;
4830	}
4831
4832	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4833		pr_cont("%sEEDP", i ? "," : "");
4834		i++;
4835	}
4836
4837	if (ioc->facts.IOCCapabilities &
4838	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4839		pr_cont("%sSnapshot Buffer", i ? "," : "");
4840		i++;
4841	}
4842
4843	if (ioc->facts.IOCCapabilities &
4844	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4845		pr_cont("%sDiag Trace Buffer", i ? "," : "");
4846		i++;
4847	}
4848
4849	if (ioc->facts.IOCCapabilities &
4850	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4851		pr_cont("%sDiag Extended Buffer", i ? "," : "");
4852		i++;
4853	}
4854
4855	if (ioc->facts.IOCCapabilities &
4856	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4857		pr_cont("%sTask Set Full", i ? "," : "");
4858		i++;
4859	}
4860
4861	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4862	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4863		pr_cont("%sNCQ", i ? "," : "");
4864		i++;
4865	}
4866
4867	pr_cont(")\n");
4868}
4869
4870/**
4871 * mpt3sas_base_update_missing_delay - change the missing delay timers
4872 * @ioc: per adapter object
4873 * @device_missing_delay: amount of time till device is reported missing
4874 * @io_missing_delay: interval IO is returned when there is a missing device
4875 *
4876 * Passed on the command line, this function will modify the device missing
4877 * delay, as well as the io missing delay. This should be called at driver
4878 * load time.
4879 */
4880void
4881mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4882	u16 device_missing_delay, u8 io_missing_delay)
4883{
4884	u16 dmd, dmd_new, dmd_orignal;
4885	u8 io_missing_delay_original;
4886	u16 sz;
4887	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4888	Mpi2ConfigReply_t mpi_reply;
4889	u8 num_phys = 0;
4890	u16 ioc_status;
4891
4892	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4893	if (!num_phys)
4894		return;
4895
4896	sz = struct_size(sas_iounit_pg1, PhyData, num_phys);
4897	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4898	if (!sas_iounit_pg1) {
4899		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4900			__FILE__, __LINE__, __func__);
4901		goto out;
4902	}
4903	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4904	    sas_iounit_pg1, sz))) {
4905		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4906			__FILE__, __LINE__, __func__);
4907		goto out;
4908	}
4909	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4910	    MPI2_IOCSTATUS_MASK;
4911	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4912		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4913			__FILE__, __LINE__, __func__);
4914		goto out;
4915	}
4916
4917	/* device missing delay */
4918	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4919	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4920		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4921	else
4922		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4923	dmd_orignal = dmd;
4924	if (device_missing_delay > 0x7F) {
4925		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4926		    device_missing_delay;
4927		dmd = dmd / 16;
4928		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4929	} else
4930		dmd = device_missing_delay;
4931	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4932
4933	/* io missing delay */
4934	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4935	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4936
4937	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4938	    sz)) {
4939		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4940			dmd_new = (dmd &
4941			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4942		else
4943			dmd_new =
4944		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4945		ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4946			 dmd_orignal, dmd_new);
4947		ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4948			 io_missing_delay_original,
4949			 io_missing_delay);
4950		ioc->device_missing_delay = dmd_new;
4951		ioc->io_missing_delay = io_missing_delay;
4952	}
4953
4954out:
4955	kfree(sas_iounit_pg1);
4956}
4957
4958/**
4959 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4960 *    according to performance mode.
4961 * @ioc : per adapter object
4962 *
4963 * Return: zero on success; otherwise return EAGAIN error code asking the
4964 * caller to retry.
4965 */
4966static int
4967_base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4968{
4969	Mpi2IOCPage1_t ioc_pg1;
4970	Mpi2ConfigReply_t mpi_reply;
4971	int rc;
4972
4973	rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4974	if (rc)
4975		return rc;
4976	memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4977
4978	switch (perf_mode) {
4979	case MPT_PERF_MODE_DEFAULT:
4980	case MPT_PERF_MODE_BALANCED:
4981		if (ioc->high_iops_queues) {
4982			ioc_info(ioc,
4983				"Enable interrupt coalescing only for first\t"
4984				"%d reply queues\n",
4985				MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4986			/*
4987			 * If 31st bit is zero then interrupt coalescing is
4988			 * enabled for all reply descriptor post queues.
4989			 * If 31st bit is set to one then user can
4990			 * enable/disable interrupt coalescing on per reply
4991			 * descriptor post queue group(8) basis. So to enable
4992			 * interrupt coalescing only on first reply descriptor
4993			 * post queue group 31st bit and zero th bit is enabled.
4994			 */
4995			ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4996			    ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4997			rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4998			if (rc)
4999				return rc;
5000			ioc_info(ioc, "performance mode: balanced\n");
5001			return 0;
5002		}
5003		fallthrough;
5004	case MPT_PERF_MODE_LATENCY:
5005		/*
5006		 * Enable interrupt coalescing on all reply queues
5007		 * with timeout value 0xA
5008		 */
5009		ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
5010		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5011		ioc_pg1.ProductSpecific = 0;
5012		rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5013		if (rc)
5014			return rc;
5015		ioc_info(ioc, "performance mode: latency\n");
5016		break;
5017	case MPT_PERF_MODE_IOPS:
5018		/*
5019		 * Enable interrupt coalescing on all reply queues.
5020		 */
5021		ioc_info(ioc,
5022		    "performance mode: iops with coalescing timeout: 0x%x\n",
5023		    le32_to_cpu(ioc_pg1.CoalescingTimeout));
5024		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5025		ioc_pg1.ProductSpecific = 0;
5026		rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5027		if (rc)
5028			return rc;
5029		break;
5030	}
5031	return 0;
5032}
5033
5034/**
5035 * _base_get_event_diag_triggers - get event diag trigger values from
5036 *				persistent pages
5037 * @ioc : per adapter object
5038 *
5039 * Return: nothing.
5040 */
5041static int
5042_base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5043{
5044	Mpi26DriverTriggerPage2_t trigger_pg2;
5045	struct SL_WH_EVENT_TRIGGER_T *event_tg;
5046	MPI26_DRIVER_MPI_EVENT_TRIGGER_ENTRY *mpi_event_tg;
5047	Mpi2ConfigReply_t mpi_reply;
5048	int r = 0, i = 0;
5049	u16 count = 0;
5050	u16 ioc_status;
5051
5052	r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5053	    &trigger_pg2);
5054	if (r)
5055		return r;
5056
5057	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5058	    MPI2_IOCSTATUS_MASK;
5059	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5060		dinitprintk(ioc,
5061		    ioc_err(ioc,
5062		    "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5063		   __func__, ioc_status));
5064		return 0;
5065	}
5066
5067	if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5068		count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5069		count = min_t(u16, NUM_VALID_ENTRIES, count);
5070		ioc->diag_trigger_event.ValidEntries = count;
5071
5072		event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5073		mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5074		for (i = 0; i < count; i++) {
5075			event_tg->EventValue = le16_to_cpu(
5076			    mpi_event_tg->MPIEventCode);
5077			event_tg->LogEntryQualifier = le16_to_cpu(
5078			    mpi_event_tg->MPIEventCodeSpecific);
5079			event_tg++;
5080			mpi_event_tg++;
5081		}
5082	}
5083	return 0;
5084}
5085
5086/**
5087 * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5088 *				persistent pages
5089 * @ioc : per adapter object
5090 *
5091 * Return: 0 on success; otherwise return failure status.
5092 */
5093static int
5094_base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5095{
5096	Mpi26DriverTriggerPage3_t trigger_pg3;
5097	struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5098	MPI26_DRIVER_SCSI_SENSE_TRIGGER_ENTRY *mpi_scsi_tg;
5099	Mpi2ConfigReply_t mpi_reply;
5100	int r = 0, i = 0;
5101	u16 count = 0;
5102	u16 ioc_status;
5103
5104	r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5105	    &trigger_pg3);
5106	if (r)
5107		return r;
5108
5109	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5110	    MPI2_IOCSTATUS_MASK;
5111	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5112		dinitprintk(ioc,
5113		    ioc_err(ioc,
5114		    "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5115		    __func__, ioc_status));
5116		return 0;
5117	}
5118
5119	if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5120		count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5121		count = min_t(u16, NUM_VALID_ENTRIES, count);
5122		ioc->diag_trigger_scsi.ValidEntries = count;
5123
5124		scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5125		mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5126		for (i = 0; i < count; i++) {
5127			scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5128			scsi_tg->ASC = mpi_scsi_tg->ASC;
5129			scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5130
5131			scsi_tg++;
5132			mpi_scsi_tg++;
5133		}
5134	}
5135	return 0;
5136}
5137
5138/**
5139 * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5140 *				persistent pages
5141 * @ioc : per adapter object
5142 *
5143 * Return: 0 on success; otherwise return failure status.
5144 */
5145static int
5146_base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5147{
5148	Mpi26DriverTriggerPage4_t trigger_pg4;
5149	struct SL_WH_MPI_TRIGGER_T *status_tg;
5150	MPI26_DRIVER_IOCSTATUS_LOGINFO_TRIGGER_ENTRY *mpi_status_tg;
5151	Mpi2ConfigReply_t mpi_reply;
5152	int r = 0, i = 0;
5153	u16 count = 0;
5154	u16 ioc_status;
5155
5156	r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5157	    &trigger_pg4);
5158	if (r)
5159		return r;
5160
5161	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5162	    MPI2_IOCSTATUS_MASK;
5163	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5164		dinitprintk(ioc,
5165		    ioc_err(ioc,
5166		    "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5167		    __func__, ioc_status));
5168		return 0;
5169	}
5170
5171	if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5172		count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5173		count = min_t(u16, NUM_VALID_ENTRIES, count);
5174		ioc->diag_trigger_mpi.ValidEntries = count;
5175
5176		status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5177		mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5178
5179		for (i = 0; i < count; i++) {
5180			status_tg->IOCStatus = le16_to_cpu(
5181			    mpi_status_tg->IOCStatus);
5182			status_tg->IocLogInfo = le32_to_cpu(
5183			    mpi_status_tg->LogInfo);
5184
5185			status_tg++;
5186			mpi_status_tg++;
5187		}
5188	}
5189	return 0;
5190}
5191
5192/**
5193 * _base_get_master_diag_triggers - get master diag trigger values from
5194 *				persistent pages
5195 * @ioc : per adapter object
5196 *
5197 * Return: nothing.
5198 */
5199static int
5200_base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5201{
5202	Mpi26DriverTriggerPage1_t trigger_pg1;
5203	Mpi2ConfigReply_t mpi_reply;
5204	int r;
5205	u16 ioc_status;
5206
5207	r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5208	    &trigger_pg1);
5209	if (r)
5210		return r;
5211
5212	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5213	    MPI2_IOCSTATUS_MASK;
5214	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5215		dinitprintk(ioc,
5216		    ioc_err(ioc,
5217		    "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5218		   __func__, ioc_status));
5219		return 0;
5220	}
5221
5222	if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5223		ioc->diag_trigger_master.MasterData |=
5224		    le32_to_cpu(
5225		    trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5226	return 0;
5227}
5228
5229/**
5230 * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5231 *					driver trigger pages or not
5232 * @ioc : per adapter object
5233 * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5234 *
5235 * Return: trigger flags mask if HBA FW supports driver trigger pages;
5236 * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5237 * return EAGAIN if diag reset occurred due to FW fault and asking the
5238 * caller to retry the command.
5239 *
5240 */
5241static int
5242_base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5243{
5244	Mpi26DriverTriggerPage0_t trigger_pg0;
5245	int r = 0;
5246	Mpi2ConfigReply_t mpi_reply;
5247	u16 ioc_status;
5248
5249	r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5250	    &trigger_pg0);
5251	if (r)
5252		return r;
5253
5254	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5255	    MPI2_IOCSTATUS_MASK;
5256	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5257		return -EFAULT;
5258
5259	*trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5260	return 0;
5261}
5262
5263/**
5264 * _base_get_diag_triggers - Retrieve diag trigger values from
5265 *				persistent pages.
5266 * @ioc : per adapter object
5267 *
5268 * Return: zero on success; otherwise return EAGAIN error codes
5269 * asking the caller to retry.
5270 */
5271static int
5272_base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5273{
5274	int trigger_flags;
5275	int r;
5276
5277	/*
5278	 * Default setting of master trigger.
5279	 */
5280	ioc->diag_trigger_master.MasterData =
5281	    (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5282
5283	r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5284	if (r) {
5285		if (r == -EAGAIN)
5286			return r;
5287		/*
5288		 * Don't go for error handling when FW doesn't support
5289		 * driver trigger pages.
5290		 */
5291		return 0;
5292	}
5293
5294	ioc->supports_trigger_pages = 1;
5295
5296	/*
5297	 * Retrieve master diag trigger values from driver trigger pg1
5298	 * if master trigger bit enabled in TriggerFlags.
5299	 */
5300	if ((u16)trigger_flags &
5301	    MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5302		r = _base_get_master_diag_triggers(ioc);
5303		if (r)
5304			return r;
5305	}
5306
5307	/*
5308	 * Retrieve event diag trigger values from driver trigger pg2
5309	 * if event trigger bit enabled in TriggerFlags.
5310	 */
5311	if ((u16)trigger_flags &
5312	    MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5313		r = _base_get_event_diag_triggers(ioc);
5314		if (r)
5315			return r;
5316	}
5317
5318	/*
5319	 * Retrieve scsi diag trigger values from driver trigger pg3
5320	 * if scsi trigger bit enabled in TriggerFlags.
5321	 */
5322	if ((u16)trigger_flags &
5323	    MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5324		r = _base_get_scsi_diag_triggers(ioc);
5325		if (r)
5326			return r;
5327	}
5328	/*
5329	 * Retrieve mpi error diag trigger values from driver trigger pg4
5330	 * if loginfo trigger bit enabled in TriggerFlags.
5331	 */
5332	if ((u16)trigger_flags &
5333	    MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5334		r = _base_get_mpi_diag_triggers(ioc);
5335		if (r)
5336			return r;
5337	}
5338	return 0;
5339}
5340
5341/**
5342 * _base_update_diag_trigger_pages - Update the driver trigger pages after
5343 *			online FW update, in case updated FW supports driver
5344 *			trigger pages.
5345 * @ioc : per adapter object
5346 *
5347 * Return: nothing.
5348 */
5349static void
5350_base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5351{
5352
5353	if (ioc->diag_trigger_master.MasterData)
5354		mpt3sas_config_update_driver_trigger_pg1(ioc,
5355		    &ioc->diag_trigger_master, 1);
5356
5357	if (ioc->diag_trigger_event.ValidEntries)
5358		mpt3sas_config_update_driver_trigger_pg2(ioc,
5359		    &ioc->diag_trigger_event, 1);
5360
5361	if (ioc->diag_trigger_scsi.ValidEntries)
5362		mpt3sas_config_update_driver_trigger_pg3(ioc,
5363		    &ioc->diag_trigger_scsi, 1);
5364
5365	if (ioc->diag_trigger_mpi.ValidEntries)
5366		mpt3sas_config_update_driver_trigger_pg4(ioc,
5367		    &ioc->diag_trigger_mpi, 1);
5368}
5369
5370/**
5371 * _base_assign_fw_reported_qd	- Get FW reported QD for SAS/SATA devices.
5372 *				- On failure set default QD values.
5373 * @ioc : per adapter object
5374 *
5375 * Returns 0 for success, non-zero for failure.
5376 *
5377 */
5378static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5379{
5380	Mpi2ConfigReply_t mpi_reply;
5381	Mpi2SasIOUnitPage1_t sas_iounit_pg1;
5382	Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5383	u16 depth;
5384	int rc = 0;
5385
5386	ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5387	ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5388	ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5389	ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5390	if (!ioc->is_gen35_ioc)
5391		goto out;
5392	/* sas iounit page 1 */
5393	rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5394	    &sas_iounit_pg1, sizeof(Mpi2SasIOUnitPage1_t));
5395	if (rc) {
5396		pr_err("%s: failure at %s:%d/%s()!\n",
5397		    ioc->name, __FILE__, __LINE__, __func__);
5398		goto out;
5399	}
5400
5401	depth = le16_to_cpu(sas_iounit_pg1.SASWideMaxQueueDepth);
5402	ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5403
5404	depth = le16_to_cpu(sas_iounit_pg1.SASNarrowMaxQueueDepth);
5405	ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5406
5407	depth = sas_iounit_pg1.SATAMaxQDepth;
5408	ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH);
5409
5410	/* pcie iounit page 1 */
5411	rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5412	    &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5413	if (rc) {
5414		pr_err("%s: failure at %s:%d/%s()!\n",
5415		    ioc->name, __FILE__, __LINE__, __func__);
5416		goto out;
5417	}
5418	ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5419	    (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5420	    MPT3SAS_NVME_QUEUE_DEPTH;
5421out:
5422	dinitprintk(ioc, pr_err(
5423	    "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5424	    ioc->max_wideport_qd, ioc->max_narrowport_qd,
5425	    ioc->max_sata_qd, ioc->max_nvme_qd));
5426	return rc;
5427}
5428
5429/**
5430 * mpt3sas_atto_validate_nvram - validate the ATTO nvram read from mfg pg1
5431 *
5432 * @ioc : per adapter object
5433 * @n   : ptr to the ATTO nvram structure
5434 * Return: 0 for success, non-zero for failure.
5435 */
5436static int
5437mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER *ioc,
5438			    struct ATTO_SAS_NVRAM *n)
5439{
5440	int r = -EINVAL;
5441	union ATTO_SAS_ADDRESS *s1;
5442	u32 len;
5443	u8 *pb;
5444	u8 ckSum;
5445
5446	/* validate nvram checksum */
5447	pb = (u8 *) n;
5448	ckSum = ATTO_SASNVR_CKSUM_SEED;
5449	len = sizeof(struct ATTO_SAS_NVRAM);
5450
5451	while (len--)
5452		ckSum = ckSum + pb[len];
5453
5454	if (ckSum) {
5455		ioc_err(ioc, "Invalid ATTO NVRAM checksum\n");
5456		return r;
5457	}
5458
5459	s1 = (union ATTO_SAS_ADDRESS *) n->SasAddr;
5460
5461	if (n->Signature[0] != 'E'
5462	|| n->Signature[1] != 'S'
5463	|| n->Signature[2] != 'A'
5464	|| n->Signature[3] != 'S')
5465		ioc_err(ioc, "Invalid ATTO NVRAM signature\n");
5466	else if (n->Version > ATTO_SASNVR_VERSION)
5467		ioc_info(ioc, "Invalid ATTO NVRAM version");
5468	else if ((n->SasAddr[7] & (ATTO_SAS_ADDR_ALIGN - 1))
5469			|| s1->b[0] != 0x50
5470			|| s1->b[1] != 0x01
5471			|| s1->b[2] != 0x08
5472			|| (s1->b[3] & 0xF0) != 0x60
5473			|| ((s1->b[3] & 0x0F) | le32_to_cpu(s1->d[1])) == 0) {
5474		ioc_err(ioc, "Invalid ATTO SAS address\n");
5475	} else
5476		r = 0;
5477	return r;
5478}
5479
5480/**
5481 * mpt3sas_atto_get_sas_addr - get the ATTO SAS address from mfg page 1
5482 *
5483 * @ioc : per adapter object
5484 * @sas_addr : return sas address
5485 * Return: 0 for success, non-zero for failure.
5486 */
5487static int
5488mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER *ioc, union ATTO_SAS_ADDRESS *sas_addr)
5489{
5490	Mpi2ManufacturingPage1_t mfg_pg1;
5491	Mpi2ConfigReply_t mpi_reply;
5492	struct ATTO_SAS_NVRAM *nvram;
5493	int r;
5494	__be64 addr;
5495
5496	r = mpt3sas_config_get_manufacturing_pg1(ioc, &mpi_reply, &mfg_pg1);
5497	if (r) {
5498		ioc_err(ioc, "Failed to read manufacturing page 1\n");
5499		return r;
5500	}
5501
5502	/* validate nvram */
5503	nvram = (struct ATTO_SAS_NVRAM *) mfg_pg1.VPD;
5504	r = mpt3sas_atto_validate_nvram(ioc, nvram);
5505	if (r)
5506		return r;
5507
5508	addr = *((__be64 *) nvram->SasAddr);
5509	sas_addr->q = cpu_to_le64(be64_to_cpu(addr));
5510	return r;
5511}
5512
5513/**
5514 * mpt3sas_atto_init - perform initializaion for ATTO branded
5515 *					adapter.
5516 * @ioc : per adapter object
5517 *5
5518 * Return: 0 for success, non-zero for failure.
5519 */
5520static int
5521mpt3sas_atto_init(struct MPT3SAS_ADAPTER *ioc)
5522{
5523	int sz = 0;
5524	Mpi2BiosPage4_t *bios_pg4 = NULL;
5525	Mpi2ConfigReply_t mpi_reply;
5526	int r;
5527	int ix;
5528	union ATTO_SAS_ADDRESS sas_addr;
5529	union ATTO_SAS_ADDRESS temp;
5530	union ATTO_SAS_ADDRESS bias;
5531
5532	r = mpt3sas_atto_get_sas_addr(ioc, &sas_addr);
5533	if (r)
5534		return r;
5535
5536	/* get header first to get size */
5537	r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, NULL, 0);
5538	if (r) {
5539		ioc_err(ioc, "Failed to read ATTO bios page 4 header.\n");
5540		return r;
5541	}
5542
5543	sz = mpi_reply.Header.PageLength * sizeof(u32);
5544	bios_pg4 = kzalloc(sz, GFP_KERNEL);
5545	if (!bios_pg4) {
5546		ioc_err(ioc, "Failed to allocate memory for ATTO bios page.\n");
5547		return -ENOMEM;
5548	}
5549
5550	/* read bios page 4 */
5551	r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5552	if (r) {
5553		ioc_err(ioc, "Failed to read ATTO bios page 4\n");
5554		goto out;
5555	}
5556
5557	/* Update bios page 4 with the ATTO WWID */
5558	bias.q = sas_addr.q;
5559	bias.b[7] += ATTO_SAS_ADDR_DEVNAME_BIAS;
5560
5561	for (ix = 0; ix < bios_pg4->NumPhys; ix++) {
5562		temp.q = sas_addr.q;
5563		temp.b[7] += ix;
5564		bios_pg4->Phy[ix].ReassignmentWWID = temp.q;
5565		bios_pg4->Phy[ix].ReassignmentDeviceName = bias.q;
5566	}
5567	r = mpt3sas_config_set_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5568
5569out:
5570	kfree(bios_pg4);
5571	return r;
5572}
5573
5574/**
5575 * _base_static_config_pages - static start of day config pages
5576 * @ioc: per adapter object
5577 */
5578static int
5579_base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5580{
5581	Mpi2IOUnitPage8_t iounit_pg8;
5582	Mpi2ConfigReply_t mpi_reply;
5583	u32 iounit_pg1_flags;
5584	int tg_flags = 0;
5585	int rc;
5586	ioc->nvme_abort_timeout = 30;
5587
5588	rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5589	    &ioc->manu_pg0);
5590	if (rc)
5591		return rc;
5592	if (ioc->ir_firmware) {
5593		rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5594		    &ioc->manu_pg10);
5595		if (rc)
5596			return rc;
5597	}
5598
5599	if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) {
5600		rc = mpt3sas_atto_init(ioc);
5601		if (rc)
5602			return rc;
5603	}
5604
5605	/*
5606	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
5607	 * flag unset in NVDATA.
5608	 */
5609	rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5610	    &ioc->manu_pg11);
5611	if (rc)
5612		return rc;
5613	if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5614		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5615		    ioc->name);
5616		ioc->manu_pg11.EEDPTagMode &= ~0x3;
5617		ioc->manu_pg11.EEDPTagMode |= 0x1;
5618		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5619		    &ioc->manu_pg11);
5620	}
5621	if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5622		ioc->tm_custom_handling = 1;
5623	else {
5624		ioc->tm_custom_handling = 0;
5625		if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5626			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5627		else if (ioc->manu_pg11.NVMeAbortTO >
5628					NVME_TASK_ABORT_MAX_TIMEOUT)
5629			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5630		else
5631			ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5632	}
5633	ioc->time_sync_interval =
5634	    ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5635	if (ioc->time_sync_interval) {
5636		if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5637			ioc->time_sync_interval =
5638			    ioc->time_sync_interval * SECONDS_PER_HOUR;
5639		else
5640			ioc->time_sync_interval =
5641			    ioc->time_sync_interval * SECONDS_PER_MIN;
5642		dinitprintk(ioc, ioc_info(ioc,
5643		    "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5644		    ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5645		    MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5646	} else {
5647		if (ioc->is_gen35_ioc)
5648			ioc_warn(ioc,
5649			    "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5650	}
5651	rc = _base_assign_fw_reported_qd(ioc);
5652	if (rc)
5653		return rc;
5654
5655	/*
5656	 * ATTO doesn't use bios page 2 and 3 for bios settings.
5657	 */
5658	if (ioc->pdev->vendor ==  MPI2_MFGPAGE_VENDORID_ATTO)
5659		ioc->bios_pg3.BiosVersion = 0;
5660	else {
5661		rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5662		if (rc)
5663			return rc;
5664		rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5665		if (rc)
5666			return rc;
5667	}
5668
5669	rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5670	if (rc)
5671		return rc;
5672	rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5673	if (rc)
5674		return rc;
5675	rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5676	if (rc)
5677		return rc;
5678	rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &iounit_pg8);
5679	if (rc)
5680		return rc;
5681	_base_display_ioc_capabilities(ioc);
5682
5683	/*
5684	 * Enable task_set_full handling in iounit_pg1 when the
5685	 * facts capabilities indicate that its supported.
5686	 */
5687	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5688	if ((ioc->facts.IOCCapabilities &
5689	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5690		iounit_pg1_flags &=
5691		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5692	else
5693		iounit_pg1_flags |=
5694		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5695	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5696	rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5697	if (rc)
5698		return rc;
5699
5700	if (iounit_pg8.NumSensors)
5701		ioc->temp_sensors_count = iounit_pg8.NumSensors;
5702	if (ioc->is_aero_ioc) {
5703		rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5704		if (rc)
5705			return rc;
5706	}
5707	if (ioc->is_gen35_ioc) {
5708		if (ioc->is_driver_loading) {
5709			rc = _base_get_diag_triggers(ioc);
5710			if (rc)
5711				return rc;
5712		} else {
5713			/*
5714			 * In case of online HBA FW update operation,
5715			 * check whether updated FW supports the driver trigger
5716			 * pages or not.
5717			 * - If previous FW has not supported driver trigger
5718			 *   pages and newer FW supports them then update these
5719			 *   pages with current diag trigger values.
5720			 * - If previous FW has supported driver trigger pages
5721			 *   and new FW doesn't support them then disable
5722			 *   support_trigger_pages flag.
5723			 */
5724			_base_check_for_trigger_pages_support(ioc, &tg_flags);
5725			if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5726				_base_update_diag_trigger_pages(ioc);
5727			else if (ioc->supports_trigger_pages &&
5728			    tg_flags == -EFAULT)
5729				ioc->supports_trigger_pages = 0;
5730		}
5731	}
5732	return 0;
5733}
5734
5735/**
5736 * mpt3sas_free_enclosure_list - release memory
5737 * @ioc: per adapter object
5738 *
5739 * Free memory allocated during enclosure add.
5740 */
5741void
5742mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5743{
5744	struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5745
5746	/* Free enclosure list */
5747	list_for_each_entry_safe(enclosure_dev,
5748			enclosure_dev_next, &ioc->enclosure_list, list) {
5749		list_del(&enclosure_dev->list);
5750		kfree(enclosure_dev);
5751	}
5752}
5753
5754/**
5755 * _base_release_memory_pools - release memory
5756 * @ioc: per adapter object
5757 *
5758 * Free memory allocated from _base_allocate_memory_pools.
5759 */
5760static void
5761_base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5762{
5763	int i = 0;
5764	int j = 0;
5765	int dma_alloc_count = 0;
5766	struct chain_tracker *ct;
5767	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5768
5769	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5770
5771	if (ioc->request) {
5772		dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5773		    ioc->request,  ioc->request_dma);
5774		dexitprintk(ioc,
5775			    ioc_info(ioc, "request_pool(0x%p): free\n",
5776				     ioc->request));
5777		ioc->request = NULL;
5778	}
5779
5780	if (ioc->sense) {
5781		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5782		dma_pool_destroy(ioc->sense_dma_pool);
5783		dexitprintk(ioc,
5784			    ioc_info(ioc, "sense_pool(0x%p): free\n",
5785				     ioc->sense));
5786		ioc->sense = NULL;
5787	}
5788
5789	if (ioc->reply) {
5790		dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5791		dma_pool_destroy(ioc->reply_dma_pool);
5792		dexitprintk(ioc,
5793			    ioc_info(ioc, "reply_pool(0x%p): free\n",
5794				     ioc->reply));
5795		ioc->reply = NULL;
5796	}
5797
5798	if (ioc->reply_free) {
5799		dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5800		    ioc->reply_free_dma);
5801		dma_pool_destroy(ioc->reply_free_dma_pool);
5802		dexitprintk(ioc,
5803			    ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5804				     ioc->reply_free));
5805		ioc->reply_free = NULL;
5806	}
5807
5808	if (ioc->reply_post) {
5809		dma_alloc_count = DIV_ROUND_UP(count,
5810				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5811		for (i = 0; i < count; i++) {
5812			if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5813			    && dma_alloc_count) {
5814				if (ioc->reply_post[i].reply_post_free) {
5815					dma_pool_free(
5816					    ioc->reply_post_free_dma_pool,
5817					    ioc->reply_post[i].reply_post_free,
5818					ioc->reply_post[i].reply_post_free_dma);
5819					dexitprintk(ioc, ioc_info(ioc,
5820					   "reply_post_free_pool(0x%p): free\n",
5821					   ioc->reply_post[i].reply_post_free));
5822					ioc->reply_post[i].reply_post_free =
5823									NULL;
5824				}
5825				--dma_alloc_count;
5826			}
5827		}
5828		dma_pool_destroy(ioc->reply_post_free_dma_pool);
5829		if (ioc->reply_post_free_array &&
5830			ioc->rdpq_array_enable) {
5831			dma_pool_free(ioc->reply_post_free_array_dma_pool,
5832			    ioc->reply_post_free_array,
5833			    ioc->reply_post_free_array_dma);
5834			ioc->reply_post_free_array = NULL;
5835		}
5836		dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5837		kfree(ioc->reply_post);
5838	}
5839
5840	if (ioc->pcie_sgl_dma_pool) {
5841		for (i = 0; i < ioc->scsiio_depth; i++) {
5842			dma_pool_free(ioc->pcie_sgl_dma_pool,
5843					ioc->pcie_sg_lookup[i].pcie_sgl,
5844					ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5845			ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5846		}
5847		dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5848	}
5849	kfree(ioc->pcie_sg_lookup);
5850	ioc->pcie_sg_lookup = NULL;
5851
5852	if (ioc->config_page) {
5853		dexitprintk(ioc,
5854			    ioc_info(ioc, "config_page(0x%p): free\n",
5855				     ioc->config_page));
5856		dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5857		    ioc->config_page, ioc->config_page_dma);
5858	}
5859
5860	kfree(ioc->hpr_lookup);
5861	ioc->hpr_lookup = NULL;
5862	kfree(ioc->internal_lookup);
5863	ioc->internal_lookup = NULL;
5864	if (ioc->chain_lookup) {
5865		for (i = 0; i < ioc->scsiio_depth; i++) {
5866			for (j = ioc->chains_per_prp_buffer;
5867			    j < ioc->chains_needed_per_io; j++) {
5868				ct = &ioc->chain_lookup[i].chains_per_smid[j];
5869				if (ct && ct->chain_buffer)
5870					dma_pool_free(ioc->chain_dma_pool,
5871						ct->chain_buffer,
5872						ct->chain_buffer_dma);
5873			}
5874			kfree(ioc->chain_lookup[i].chains_per_smid);
5875		}
5876		dma_pool_destroy(ioc->chain_dma_pool);
5877		kfree(ioc->chain_lookup);
5878		ioc->chain_lookup = NULL;
5879	}
5880
5881	kfree(ioc->io_queue_num);
5882	ioc->io_queue_num = NULL;
5883}
5884
5885/**
5886 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5887 *	having same upper 32bits in their base memory address.
5888 * @start_address: Base address of a reply queue set
5889 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5890 *
5891 * Return: 1 if reply queues in a set have a same upper 32bits in their base
5892 * memory address, else 0.
5893 */
5894static int
5895mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz)
5896{
5897	dma_addr_t end_address;
5898
5899	end_address = start_address + pool_sz - 1;
5900
5901	if (upper_32_bits(start_address) == upper_32_bits(end_address))
5902		return 1;
5903	else
5904		return 0;
5905}
5906
5907/**
5908 * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5909 * @ioc: Adapter object
5910 *
5911 * Return: 0 for success, non-zero for failure.
5912 **/
5913static inline int
5914_base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5915{
5916	int reduce_sz = 64;
5917
5918	if ((ioc->hba_queue_depth - reduce_sz) >
5919	    (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5920		ioc->hba_queue_depth -= reduce_sz;
5921		return 0;
5922	} else
5923		return -ENOMEM;
5924}
5925
5926/**
5927 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5928 *			for pcie sgl pools.
5929 * @ioc: Adapter object
5930 * @sz: DMA Pool size
5931 *
5932 * Return: 0 for success, non-zero for failure.
5933 */
5934
5935static int
5936_base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5937{
5938	int i = 0, j = 0;
5939	struct chain_tracker *ct;
5940
5941	ioc->pcie_sgl_dma_pool =
5942	    dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5943	    ioc->page_size, 0);
5944	if (!ioc->pcie_sgl_dma_pool) {
5945		ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5946		return -ENOMEM;
5947	}
5948
5949	ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5950	ioc->chains_per_prp_buffer =
5951	    min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5952	for (i = 0; i < ioc->scsiio_depth; i++) {
5953		ioc->pcie_sg_lookup[i].pcie_sgl =
5954		    dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5955		    &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5956		if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5957			ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5958			return -EAGAIN;
5959		}
5960
5961		if (!mpt3sas_check_same_4gb_region(
5962		    ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) {
5963			ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5964			    ioc->pcie_sg_lookup[i].pcie_sgl,
5965			    (unsigned long long)
5966			    ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5967			ioc->use_32bit_dma = true;
5968			return -EAGAIN;
5969		}
5970
5971		for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5972			ct = &ioc->chain_lookup[i].chains_per_smid[j];
5973			ct->chain_buffer =
5974			    ioc->pcie_sg_lookup[i].pcie_sgl +
5975			    (j * ioc->chain_segment_sz);
5976			ct->chain_buffer_dma =
5977			    ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5978			    (j * ioc->chain_segment_sz);
5979		}
5980	}
5981	dinitprintk(ioc, ioc_info(ioc,
5982	    "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5983	    ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5984	dinitprintk(ioc, ioc_info(ioc,
5985	    "Number of chains can fit in a PRP page(%d)\n",
5986	    ioc->chains_per_prp_buffer));
5987	return 0;
5988}
5989
5990/**
5991 * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5992 *			for chain dma pool.
5993 * @ioc: Adapter object
5994 * @sz: DMA Pool size
5995 *
5996 * Return: 0 for success, non-zero for failure.
5997 */
5998static int
5999_base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6000{
6001	int i = 0, j = 0;
6002	struct chain_tracker *ctr;
6003
6004	ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
6005	    ioc->chain_segment_sz, 16, 0);
6006	if (!ioc->chain_dma_pool)
6007		return -ENOMEM;
6008
6009	for (i = 0; i < ioc->scsiio_depth; i++) {
6010		for (j = ioc->chains_per_prp_buffer;
6011		    j < ioc->chains_needed_per_io; j++) {
6012			ctr = &ioc->chain_lookup[i].chains_per_smid[j];
6013			ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
6014			    GFP_KERNEL, &ctr->chain_buffer_dma);
6015			if (!ctr->chain_buffer)
6016				return -EAGAIN;
6017			if (!mpt3sas_check_same_4gb_region(
6018			    ctr->chain_buffer_dma, ioc->chain_segment_sz)) {
6019				ioc_err(ioc,
6020				    "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
6021				    ctr->chain_buffer,
6022				    (unsigned long long)ctr->chain_buffer_dma);
6023				ioc->use_32bit_dma = true;
6024				return -EAGAIN;
6025			}
6026		}
6027	}
6028	dinitprintk(ioc, ioc_info(ioc,
6029	    "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
6030	    ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
6031	    (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
6032	    ioc->chain_segment_sz))/1024));
6033	return 0;
6034}
6035
6036/**
6037 * _base_allocate_sense_dma_pool - Allocating DMA'able memory
6038 *			for sense dma pool.
6039 * @ioc: Adapter object
6040 * @sz: DMA Pool size
6041 * Return: 0 for success, non-zero for failure.
6042 */
6043static int
6044_base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6045{
6046	ioc->sense_dma_pool =
6047	    dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
6048	if (!ioc->sense_dma_pool)
6049		return -ENOMEM;
6050	ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
6051	    GFP_KERNEL, &ioc->sense_dma);
6052	if (!ioc->sense)
6053		return -EAGAIN;
6054	if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) {
6055		dinitprintk(ioc, pr_err(
6056		    "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
6057		    ioc->sense, (unsigned long long) ioc->sense_dma));
6058		ioc->use_32bit_dma = true;
6059		return -EAGAIN;
6060	}
6061	ioc_info(ioc,
6062	    "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
6063	    ioc->sense, (unsigned long long)ioc->sense_dma,
6064	    ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
6065	return 0;
6066}
6067
6068/**
6069 * _base_allocate_reply_pool - Allocating DMA'able memory
6070 *			for reply pool.
6071 * @ioc: Adapter object
6072 * @sz: DMA Pool size
6073 * Return: 0 for success, non-zero for failure.
6074 */
6075static int
6076_base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6077{
6078	/* reply pool, 4 byte align */
6079	ioc->reply_dma_pool = dma_pool_create("reply pool",
6080	    &ioc->pdev->dev, sz, 4, 0);
6081	if (!ioc->reply_dma_pool)
6082		return -ENOMEM;
6083	ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
6084	    &ioc->reply_dma);
6085	if (!ioc->reply)
6086		return -EAGAIN;
6087	if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) {
6088		dinitprintk(ioc, pr_err(
6089		    "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
6090		    ioc->reply, (unsigned long long) ioc->reply_dma));
6091		ioc->use_32bit_dma = true;
6092		return -EAGAIN;
6093	}
6094	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
6095	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
6096	ioc_info(ioc,
6097	    "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
6098	    ioc->reply, (unsigned long long)ioc->reply_dma,
6099	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
6100	return 0;
6101}
6102
6103/**
6104 * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
6105 *			for reply free dma pool.
6106 * @ioc: Adapter object
6107 * @sz: DMA Pool size
6108 * Return: 0 for success, non-zero for failure.
6109 */
6110static int
6111_base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6112{
6113	/* reply free queue, 16 byte align */
6114	ioc->reply_free_dma_pool = dma_pool_create(
6115	    "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
6116	if (!ioc->reply_free_dma_pool)
6117		return -ENOMEM;
6118	ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
6119	    GFP_KERNEL, &ioc->reply_free_dma);
6120	if (!ioc->reply_free)
6121		return -EAGAIN;
6122	if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) {
6123		dinitprintk(ioc,
6124		    pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6125		    ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
6126		ioc->use_32bit_dma = true;
6127		return -EAGAIN;
6128	}
6129	memset(ioc->reply_free, 0, sz);
6130	dinitprintk(ioc, ioc_info(ioc,
6131	    "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
6132	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
6133	dinitprintk(ioc, ioc_info(ioc,
6134	    "reply_free_dma (0x%llx)\n",
6135	    (unsigned long long)ioc->reply_free_dma));
6136	return 0;
6137}
6138
6139/**
6140 * _base_allocate_reply_post_free_array - Allocating DMA'able memory
6141 *			for reply post free array.
6142 * @ioc: Adapter object
6143 * @reply_post_free_array_sz: DMA Pool size
6144 * Return: 0 for success, non-zero for failure.
6145 */
6146
6147static int
6148_base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
6149	u32 reply_post_free_array_sz)
6150{
6151	ioc->reply_post_free_array_dma_pool =
6152	    dma_pool_create("reply_post_free_array pool",
6153	    &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
6154	if (!ioc->reply_post_free_array_dma_pool)
6155		return -ENOMEM;
6156	ioc->reply_post_free_array =
6157	    dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
6158	    GFP_KERNEL, &ioc->reply_post_free_array_dma);
6159	if (!ioc->reply_post_free_array)
6160		return -EAGAIN;
6161	if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma,
6162	    reply_post_free_array_sz)) {
6163		dinitprintk(ioc, pr_err(
6164		    "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6165		    ioc->reply_free,
6166		    (unsigned long long) ioc->reply_free_dma));
6167		ioc->use_32bit_dma = true;
6168		return -EAGAIN;
6169	}
6170	return 0;
6171}
6172/**
6173 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6174 *                     for reply queues.
6175 * @ioc: per adapter object
6176 * @sz: DMA Pool size
6177 * Return: 0 for success, non-zero for failure.
6178 */
6179static int
6180base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6181{
6182	int i = 0;
6183	u32 dma_alloc_count = 0;
6184	int reply_post_free_sz = ioc->reply_post_queue_depth *
6185		sizeof(Mpi2DefaultReplyDescriptor_t);
6186	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6187
6188	ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6189			GFP_KERNEL);
6190	if (!ioc->reply_post)
6191		return -ENOMEM;
6192	/*
6193	 *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6194	 *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6195	 *  be within 4GB boundary i.e reply queues in a set must have same
6196	 *  upper 32-bits in their memory address. so here driver is allocating
6197	 *  the DMA'able memory for reply queues according.
6198	 *  Driver uses limitation of
6199	 *  VENTURA_SERIES to manage INVADER_SERIES as well.
6200	 */
6201	dma_alloc_count = DIV_ROUND_UP(count,
6202				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6203	ioc->reply_post_free_dma_pool =
6204		dma_pool_create("reply_post_free pool",
6205		    &ioc->pdev->dev, sz, 16, 0);
6206	if (!ioc->reply_post_free_dma_pool)
6207		return -ENOMEM;
6208	for (i = 0; i < count; i++) {
6209		if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6210			ioc->reply_post[i].reply_post_free =
6211			    dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6212				GFP_KERNEL,
6213				&ioc->reply_post[i].reply_post_free_dma);
6214			if (!ioc->reply_post[i].reply_post_free)
6215				return -ENOMEM;
6216			/*
6217			 * Each set of RDPQ pool must satisfy 4gb boundary
6218			 * restriction.
6219			 * 1) Check if allocated resources for RDPQ pool are in
6220			 *	the same 4GB range.
6221			 * 2) If #1 is true, continue with 64 bit DMA.
6222			 * 3) If #1 is false, return 1. which means free all the
6223			 * resources and set DMA mask to 32 and allocate.
6224			 */
6225			if (!mpt3sas_check_same_4gb_region(
6226				ioc->reply_post[i].reply_post_free_dma, sz)) {
6227				dinitprintk(ioc,
6228				    ioc_err(ioc, "bad Replypost free pool(0x%p)"
6229				    "reply_post_free_dma = (0x%llx)\n",
6230				    ioc->reply_post[i].reply_post_free,
6231				    (unsigned long long)
6232				    ioc->reply_post[i].reply_post_free_dma));
6233				return -EAGAIN;
6234			}
6235			dma_alloc_count--;
6236
6237		} else {
6238			ioc->reply_post[i].reply_post_free =
6239			    (Mpi2ReplyDescriptorsUnion_t *)
6240			    ((long)ioc->reply_post[i-1].reply_post_free
6241			    + reply_post_free_sz);
6242			ioc->reply_post[i].reply_post_free_dma =
6243			    (dma_addr_t)
6244			    (ioc->reply_post[i-1].reply_post_free_dma +
6245			    reply_post_free_sz);
6246		}
6247	}
6248	return 0;
6249}
6250
6251/**
6252 * _base_allocate_memory_pools - allocate start of day memory pools
6253 * @ioc: per adapter object
6254 *
6255 * Return: 0 success, anything else error.
6256 */
6257static int
6258_base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6259{
6260	struct mpt3sas_facts *facts;
6261	u16 max_sge_elements;
6262	u16 chains_needed_per_io;
6263	u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6264	u32 retry_sz;
6265	u32 rdpq_sz = 0, sense_sz = 0;
6266	u16 max_request_credit, nvme_blocks_needed;
6267	unsigned short sg_tablesize;
6268	u16 sge_size;
6269	int i;
6270	int ret = 0, rc = 0;
6271
6272	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6273
6274
6275	retry_sz = 0;
6276	facts = &ioc->facts;
6277
6278	/* command line tunables for max sgl entries */
6279	if (max_sgl_entries != -1)
6280		sg_tablesize = max_sgl_entries;
6281	else {
6282		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6283			sg_tablesize = MPT2SAS_SG_DEPTH;
6284		else
6285			sg_tablesize = MPT3SAS_SG_DEPTH;
6286	}
6287
6288	/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6289	if (reset_devices)
6290		sg_tablesize = min_t(unsigned short, sg_tablesize,
6291		   MPT_KDUMP_MIN_PHYS_SEGMENTS);
6292
6293	if (ioc->is_mcpu_endpoint)
6294		ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6295	else {
6296		if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6297			sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6298		else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6299			sg_tablesize = min_t(unsigned short, sg_tablesize,
6300					SG_MAX_SEGMENTS);
6301			ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6302				 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6303		}
6304		ioc->shost->sg_tablesize = sg_tablesize;
6305	}
6306
6307	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6308		(facts->RequestCredit / 4));
6309	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6310		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6311				INTERNAL_SCSIIO_CMDS_COUNT)) {
6312			ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6313				facts->RequestCredit);
6314			return -ENOMEM;
6315		}
6316		ioc->internal_depth = 10;
6317	}
6318
6319	ioc->hi_priority_depth = ioc->internal_depth - (5);
6320	/* command line tunables  for max controller queue depth */
6321	if (max_queue_depth != -1 && max_queue_depth != 0) {
6322		max_request_credit = min_t(u16, max_queue_depth +
6323			ioc->internal_depth, facts->RequestCredit);
6324		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6325			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
6326	} else if (reset_devices)
6327		max_request_credit = min_t(u16, facts->RequestCredit,
6328		    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6329	else
6330		max_request_credit = min_t(u16, facts->RequestCredit,
6331		    MAX_HBA_QUEUE_DEPTH);
6332
6333	/* Firmware maintains additional facts->HighPriorityCredit number of
6334	 * credits for HiPriprity Request messages, so hba queue depth will be
6335	 * sum of max_request_credit and high priority queue depth.
6336	 */
6337	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6338
6339	/* request frame size */
6340	ioc->request_sz = facts->IOCRequestFrameSize * 4;
6341
6342	/* reply frame size */
6343	ioc->reply_sz = facts->ReplyFrameSize * 4;
6344
6345	/* chain segment size */
6346	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6347		if (facts->IOCMaxChainSegmentSize)
6348			ioc->chain_segment_sz =
6349					facts->IOCMaxChainSegmentSize *
6350					MAX_CHAIN_ELEMT_SZ;
6351		else
6352		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6353			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6354						    MAX_CHAIN_ELEMT_SZ;
6355	} else
6356		ioc->chain_segment_sz = ioc->request_sz;
6357
6358	/* calculate the max scatter element size */
6359	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6360
6361 retry_allocation:
6362	total_sz = 0;
6363	/* calculate number of sg elements left over in the 1st frame */
6364	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6365	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6366	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6367
6368	/* now do the same for a chain buffer */
6369	max_sge_elements = ioc->chain_segment_sz - sge_size;
6370	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6371
6372	/*
6373	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6374	 */
6375	chains_needed_per_io = ((ioc->shost->sg_tablesize -
6376	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6377	    + 1;
6378	if (chains_needed_per_io > facts->MaxChainDepth) {
6379		chains_needed_per_io = facts->MaxChainDepth;
6380		ioc->shost->sg_tablesize = min_t(u16,
6381		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6382		* chains_needed_per_io), ioc->shost->sg_tablesize);
6383	}
6384	ioc->chains_needed_per_io = chains_needed_per_io;
6385
6386	/* reply free queue sizing - taking into account for 64 FW events */
6387	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6388
6389	/* mCPU manage single counters for simplicity */
6390	if (ioc->is_mcpu_endpoint)
6391		ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6392	else {
6393		/* calculate reply descriptor post queue depth */
6394		ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6395			ioc->reply_free_queue_depth +  1;
6396		/* align the reply post queue on the next 16 count boundary */
6397		if (ioc->reply_post_queue_depth % 16)
6398			ioc->reply_post_queue_depth += 16 -
6399				(ioc->reply_post_queue_depth % 16);
6400	}
6401
6402	if (ioc->reply_post_queue_depth >
6403	    facts->MaxReplyDescriptorPostQueueDepth) {
6404		ioc->reply_post_queue_depth =
6405				facts->MaxReplyDescriptorPostQueueDepth -
6406		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
6407		ioc->hba_queue_depth =
6408				((ioc->reply_post_queue_depth - 64) / 2) - 1;
6409		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6410	}
6411
6412	ioc_info(ioc,
6413	    "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6414	    "sge_per_io(%d), chains_per_io(%d)\n",
6415	    ioc->max_sges_in_main_message,
6416	    ioc->max_sges_in_chain_message,
6417	    ioc->shost->sg_tablesize,
6418	    ioc->chains_needed_per_io);
6419
6420	/* reply post queue, 16 byte align */
6421	reply_post_free_sz = ioc->reply_post_queue_depth *
6422	    sizeof(Mpi2DefaultReplyDescriptor_t);
6423	rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6424	if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6425	    || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6426		rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6427	ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6428	if (ret == -EAGAIN) {
6429		/*
6430		 * Free allocated bad RDPQ memory pools.
6431		 * Change dma coherent mask to 32 bit and reallocate RDPQ
6432		 */
6433		_base_release_memory_pools(ioc);
6434		ioc->use_32bit_dma = true;
6435		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6436			ioc_err(ioc,
6437			    "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6438			return -ENODEV;
6439		}
6440		if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6441			return -ENOMEM;
6442	} else if (ret == -ENOMEM)
6443		return -ENOMEM;
6444	total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6445	    DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6446	ioc->scsiio_depth = ioc->hba_queue_depth -
6447	    ioc->hi_priority_depth - ioc->internal_depth;
6448
6449	/* set the scsi host can_queue depth
6450	 * with some internal commands that could be outstanding
6451	 */
6452	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6453	dinitprintk(ioc,
6454		    ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6455			     ioc->shost->can_queue));
6456
6457	/* contiguous pool for request and chains, 16 byte align, one extra "
6458	 * "frame for smid=0
6459	 */
6460	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6461	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6462
6463	/* hi-priority queue */
6464	sz += (ioc->hi_priority_depth * ioc->request_sz);
6465
6466	/* internal queue */
6467	sz += (ioc->internal_depth * ioc->request_sz);
6468
6469	ioc->request_dma_sz = sz;
6470	ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6471			&ioc->request_dma, GFP_KERNEL);
6472	if (!ioc->request) {
6473		ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6474			ioc->hba_queue_depth, ioc->chains_needed_per_io,
6475			ioc->request_sz, sz / 1024);
6476		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6477			goto out;
6478		retry_sz = 64;
6479		ioc->hba_queue_depth -= retry_sz;
6480		_base_release_memory_pools(ioc);
6481		goto retry_allocation;
6482	}
6483
6484	if (retry_sz)
6485		ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6486			ioc->hba_queue_depth, ioc->chains_needed_per_io,
6487			ioc->request_sz, sz / 1024);
6488
6489	/* hi-priority queue */
6490	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6491	    ioc->request_sz);
6492	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6493	    ioc->request_sz);
6494
6495	/* internal queue */
6496	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6497	    ioc->request_sz);
6498	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6499	    ioc->request_sz);
6500
6501	ioc_info(ioc,
6502	    "request pool(0x%p) - dma(0x%llx): "
6503	    "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6504	    ioc->request, (unsigned long long) ioc->request_dma,
6505	    ioc->hba_queue_depth, ioc->request_sz,
6506	    (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6507
6508	total_sz += sz;
6509
6510	dinitprintk(ioc,
6511		    ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6512			     ioc->request, ioc->scsiio_depth));
6513
6514	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6515	sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6516	ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6517	if (!ioc->chain_lookup) {
6518		ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6519		goto out;
6520	}
6521
6522	sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6523	for (i = 0; i < ioc->scsiio_depth; i++) {
6524		ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6525		if (!ioc->chain_lookup[i].chains_per_smid) {
6526			ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6527			goto out;
6528		}
6529	}
6530
6531	/* initialize hi-priority queue smid's */
6532	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6533	    sizeof(struct request_tracker), GFP_KERNEL);
6534	if (!ioc->hpr_lookup) {
6535		ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6536		goto out;
6537	}
6538	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6539	dinitprintk(ioc,
6540		    ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6541			     ioc->hi_priority,
6542			     ioc->hi_priority_depth, ioc->hi_priority_smid));
6543
6544	/* initialize internal queue smid's */
6545	ioc->internal_lookup = kcalloc(ioc->internal_depth,
6546	    sizeof(struct request_tracker), GFP_KERNEL);
6547	if (!ioc->internal_lookup) {
6548		ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6549		goto out;
6550	}
6551	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6552	dinitprintk(ioc,
6553		    ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6554			     ioc->internal,
6555			     ioc->internal_depth, ioc->internal_smid));
6556
6557	ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6558	    sizeof(u16), GFP_KERNEL);
6559	if (!ioc->io_queue_num)
6560		goto out;
6561	/*
6562	 * The number of NVMe page sized blocks needed is:
6563	 *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6564	 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6565	 * that is placed in the main message frame.  8 is the size of each PRP
6566	 * entry or PRP list pointer entry.  8 is subtracted from page_size
6567	 * because of the PRP list pointer entry at the end of a page, so this
6568	 * is not counted as a PRP entry.  The 1 added page is a round up.
6569	 *
6570	 * To avoid allocation failures due to the amount of memory that could
6571	 * be required for NVMe PRP's, only each set of NVMe blocks will be
6572	 * contiguous, so a new set is allocated for each possible I/O.
6573	 */
6574
6575	ioc->chains_per_prp_buffer = 0;
6576	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6577		nvme_blocks_needed =
6578			(ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6579		nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6580		nvme_blocks_needed++;
6581
6582		sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6583		ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6584		if (!ioc->pcie_sg_lookup) {
6585			ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6586			goto out;
6587		}
6588		sz = nvme_blocks_needed * ioc->page_size;
6589		rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6590		if (rc == -ENOMEM)
6591			return -ENOMEM;
6592		else if (rc == -EAGAIN)
6593			goto try_32bit_dma;
6594		total_sz += sz * ioc->scsiio_depth;
6595	}
6596
6597	rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6598	if (rc == -ENOMEM)
6599		return -ENOMEM;
6600	else if (rc == -EAGAIN)
6601		goto try_32bit_dma;
6602	total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6603		ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6604	dinitprintk(ioc,
6605	    ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6606	    ioc->chain_depth, ioc->chain_segment_sz,
6607	    (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6608	/* sense buffers, 4 byte align */
6609	sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6610	rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6611	if (rc  == -ENOMEM)
6612		return -ENOMEM;
6613	else if (rc == -EAGAIN)
6614		goto try_32bit_dma;
6615	total_sz += sense_sz;
6616	/* reply pool, 4 byte align */
6617	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6618	rc = _base_allocate_reply_pool(ioc, sz);
6619	if (rc == -ENOMEM)
6620		return -ENOMEM;
6621	else if (rc == -EAGAIN)
6622		goto try_32bit_dma;
6623	total_sz += sz;
6624
6625	/* reply free queue, 16 byte align */
6626	sz = ioc->reply_free_queue_depth * 4;
6627	rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6628	if (rc  == -ENOMEM)
6629		return -ENOMEM;
6630	else if (rc == -EAGAIN)
6631		goto try_32bit_dma;
6632	dinitprintk(ioc,
6633		    ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6634			     (unsigned long long)ioc->reply_free_dma));
6635	total_sz += sz;
6636	if (ioc->rdpq_array_enable) {
6637		reply_post_free_array_sz = ioc->reply_queue_count *
6638		    sizeof(Mpi2IOCInitRDPQArrayEntry);
6639		rc = _base_allocate_reply_post_free_array(ioc,
6640		    reply_post_free_array_sz);
6641		if (rc == -ENOMEM)
6642			return -ENOMEM;
6643		else if (rc == -EAGAIN)
6644			goto try_32bit_dma;
6645	}
6646	ioc->config_page_sz = 512;
6647	ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6648			ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6649	if (!ioc->config_page) {
6650		ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6651		goto out;
6652	}
6653
6654	ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6655	    ioc->config_page, (unsigned long long)ioc->config_page_dma,
6656	    ioc->config_page_sz);
6657	total_sz += ioc->config_page_sz;
6658
6659	ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6660		 total_sz / 1024);
6661	ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6662		 ioc->shost->can_queue, facts->RequestCredit);
6663	ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6664		 ioc->shost->sg_tablesize);
6665	return 0;
6666
6667try_32bit_dma:
6668	_base_release_memory_pools(ioc);
6669	if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6670		/* Change dma coherent mask to 32 bit and reallocate */
6671		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6672			pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6673			    pci_name(ioc->pdev));
6674			return -ENODEV;
6675		}
6676	} else if (_base_reduce_hba_queue_depth(ioc) != 0)
6677		return -ENOMEM;
6678	goto retry_allocation;
6679
6680 out:
6681	return -ENOMEM;
6682}
6683
6684/**
6685 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6686 * @ioc: Pointer to MPT_ADAPTER structure
6687 * @cooked: Request raw or cooked IOC state
6688 *
6689 * Return: all IOC Doorbell register bits if cooked==0, else just the
6690 * Doorbell bits in MPI_IOC_STATE_MASK.
6691 */
6692u32
6693mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6694{
6695	u32 s, sc;
6696
6697	s = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6698	sc = s & MPI2_IOC_STATE_MASK;
6699	return cooked ? sc : s;
6700}
6701
6702/**
6703 * _base_wait_on_iocstate - waiting on a particular ioc state
6704 * @ioc: ?
6705 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6706 * @timeout: timeout in second
6707 *
6708 * Return: 0 for success, non-zero for failure.
6709 */
6710static int
6711_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6712{
6713	u32 count, cntdn;
6714	u32 current_state;
6715
6716	count = 0;
6717	cntdn = 1000 * timeout;
6718	do {
6719		current_state = mpt3sas_base_get_iocstate(ioc, 1);
6720		if (current_state == ioc_state)
6721			return 0;
6722		if (count && current_state == MPI2_IOC_STATE_FAULT)
6723			break;
6724		if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6725			break;
6726
6727		usleep_range(1000, 1500);
6728		count++;
6729	} while (--cntdn);
6730
6731	return current_state;
6732}
6733
6734/**
6735 * _base_dump_reg_set -	This function will print hexdump of register set.
6736 * @ioc: per adapter object
6737 *
6738 * Return: nothing.
6739 */
6740static inline void
6741_base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6742{
6743	unsigned int i, sz = 256;
6744	u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6745
6746	ioc_info(ioc, "System Register set:\n");
6747	for (i = 0; i < (sz / sizeof(u32)); i++)
6748		pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6749}
6750
6751/**
6752 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6753 * a write to the doorbell)
6754 * @ioc: per adapter object
6755 * @timeout: timeout in seconds
6756 *
6757 * Return: 0 for success, non-zero for failure.
6758 *
6759 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6760 */
6761
6762static int
6763_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6764{
6765	u32 cntdn, count;
6766	u32 int_status;
6767
6768	count = 0;
6769	cntdn = 1000 * timeout;
6770	do {
6771		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6772		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6773			dhsprintk(ioc,
6774				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6775					   __func__, count, timeout));
6776			return 0;
6777		}
6778
6779		usleep_range(1000, 1500);
6780		count++;
6781	} while (--cntdn);
6782
6783	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6784		__func__, count, int_status);
6785	return -EFAULT;
6786}
6787
6788static int
6789_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6790{
6791	u32 cntdn, count;
6792	u32 int_status;
6793
6794	count = 0;
6795	cntdn = 2000 * timeout;
6796	do {
6797		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6798		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6799			dhsprintk(ioc,
6800				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6801					   __func__, count, timeout));
6802			return 0;
6803		}
6804
6805		udelay(500);
6806		count++;
6807	} while (--cntdn);
6808
6809	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6810		__func__, count, int_status);
6811	return -EFAULT;
6812
6813}
6814
6815/**
6816 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6817 * @ioc: per adapter object
6818 * @timeout: timeout in second
6819 *
6820 * Return: 0 for success, non-zero for failure.
6821 *
6822 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6823 * doorbell.
6824 */
6825static int
6826_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6827{
6828	u32 cntdn, count;
6829	u32 int_status;
6830	u32 doorbell;
6831
6832	count = 0;
6833	cntdn = 1000 * timeout;
6834	do {
6835		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6836		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6837			dhsprintk(ioc,
6838				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6839					   __func__, count, timeout));
6840			return 0;
6841		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6842			doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6843			if ((doorbell & MPI2_IOC_STATE_MASK) ==
6844			    MPI2_IOC_STATE_FAULT) {
6845				mpt3sas_print_fault_code(ioc, doorbell);
6846				return -EFAULT;
6847			}
6848			if ((doorbell & MPI2_IOC_STATE_MASK) ==
6849			    MPI2_IOC_STATE_COREDUMP) {
6850				mpt3sas_print_coredump_info(ioc, doorbell);
6851				return -EFAULT;
6852			}
6853		} else if (int_status == 0xFFFFFFFF)
6854			goto out;
6855
6856		usleep_range(1000, 1500);
6857		count++;
6858	} while (--cntdn);
6859
6860 out:
6861	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6862		__func__, count, int_status);
6863	return -EFAULT;
6864}
6865
6866/**
6867 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6868 * @ioc: per adapter object
6869 * @timeout: timeout in second
6870 *
6871 * Return: 0 for success, non-zero for failure.
6872 */
6873static int
6874_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6875{
6876	u32 cntdn, count;
6877	u32 doorbell_reg;
6878
6879	count = 0;
6880	cntdn = 1000 * timeout;
6881	do {
6882		doorbell_reg = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6883		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6884			dhsprintk(ioc,
6885				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6886					   __func__, count, timeout));
6887			return 0;
6888		}
6889
6890		usleep_range(1000, 1500);
6891		count++;
6892	} while (--cntdn);
6893
6894	ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6895		__func__, count, doorbell_reg);
6896	return -EFAULT;
6897}
6898
6899/**
6900 * _base_send_ioc_reset - send doorbell reset
6901 * @ioc: per adapter object
6902 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6903 * @timeout: timeout in second
6904 *
6905 * Return: 0 for success, non-zero for failure.
6906 */
6907static int
6908_base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6909{
6910	u32 ioc_state;
6911	int r = 0;
6912	unsigned long flags;
6913
6914	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6915		ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6916		return -EFAULT;
6917	}
6918
6919	if (!(ioc->facts.IOCCapabilities &
6920	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6921		return -EFAULT;
6922
6923	ioc_info(ioc, "sending message unit reset !!\n");
6924
6925	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6926	    &ioc->chip->Doorbell);
6927	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6928		r = -EFAULT;
6929		goto out;
6930	}
6931
6932	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6933	if (ioc_state) {
6934		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6935			__func__, ioc_state);
6936		r = -EFAULT;
6937		goto out;
6938	}
6939 out:
6940	if (r != 0) {
6941		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6942		spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6943		/*
6944		 * Wait for IOC state CoreDump to clear only during
6945		 * HBA initialization & release time.
6946		 */
6947		if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6948		    MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6949		    ioc->fault_reset_work_q == NULL)) {
6950			spin_unlock_irqrestore(
6951			    &ioc->ioc_reset_in_progress_lock, flags);
6952			mpt3sas_print_coredump_info(ioc, ioc_state);
6953			mpt3sas_base_wait_for_coredump_completion(ioc,
6954			    __func__);
6955			spin_lock_irqsave(
6956			    &ioc->ioc_reset_in_progress_lock, flags);
6957		}
6958		spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6959	}
6960	ioc_info(ioc, "message unit reset: %s\n",
6961		 r == 0 ? "SUCCESS" : "FAILED");
6962	return r;
6963}
6964
6965/**
6966 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6967 * @ioc: per adapter object
6968 * @timeout: timeout in seconds
6969 *
6970 * Return: Waits up to timeout seconds for the IOC to
6971 * become operational. Returns 0 if IOC is present
6972 * and operational; otherwise returns %-EFAULT.
6973 */
6974
6975int
6976mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6977{
6978	int wait_state_count = 0;
6979	u32 ioc_state;
6980
6981	do {
6982		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6983		if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6984			break;
6985
6986		/*
6987		 * Watchdog thread will be started after IOC Initialization, so
6988		 * no need to wait here for IOC state to become operational
6989		 * when IOC Initialization is on. Instead the driver will
6990		 * return ETIME status, so that calling function can issue
6991		 * diag reset operation and retry the command.
6992		 */
6993		if (ioc->is_driver_loading)
6994			return -ETIME;
6995
6996		ssleep(1);
6997		ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6998				__func__, ++wait_state_count);
6999	} while (--timeout);
7000	if (!timeout) {
7001		ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
7002		return -EFAULT;
7003	}
7004	if (wait_state_count)
7005		ioc_info(ioc, "ioc is operational\n");
7006	return 0;
7007}
7008
7009/**
7010 * _base_handshake_req_reply_wait - send request thru doorbell interface
7011 * @ioc: per adapter object
7012 * @request_bytes: request length
7013 * @request: pointer having request payload
7014 * @reply_bytes: reply length
7015 * @reply: pointer to reply payload
7016 * @timeout: timeout in second
7017 *
7018 * Return: 0 for success, non-zero for failure.
7019 */
7020static int
7021_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
7022	u32 *request, int reply_bytes, u16 *reply, int timeout)
7023{
7024	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
7025	int i;
7026	u8 failed;
7027	__le32 *mfp;
7028
7029	/* make sure doorbell is not in use */
7030	if ((ioc->base_readl_ext_retry(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
7031		ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
7032		return -EFAULT;
7033	}
7034
7035	/* clear pending doorbell interrupts from previous state changes */
7036	if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
7037	    MPI2_HIS_IOC2SYS_DB_STATUS)
7038		writel(0, &ioc->chip->HostInterruptStatus);
7039
7040	/* send message to ioc */
7041	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
7042	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
7043	    &ioc->chip->Doorbell);
7044
7045	if ((_base_spin_on_doorbell_int(ioc, 5))) {
7046		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7047			__LINE__);
7048		return -EFAULT;
7049	}
7050	writel(0, &ioc->chip->HostInterruptStatus);
7051
7052	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
7053		ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
7054			__LINE__);
7055		return -EFAULT;
7056	}
7057
7058	/* send message 32-bits at a time */
7059	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
7060		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
7061		if ((_base_wait_for_doorbell_ack(ioc, 5)))
7062			failed = 1;
7063	}
7064
7065	if (failed) {
7066		ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
7067			__LINE__);
7068		return -EFAULT;
7069	}
7070
7071	/* now wait for the reply */
7072	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
7073		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7074			__LINE__);
7075		return -EFAULT;
7076	}
7077
7078	/* read the first two 16-bits, it gives the total length of the reply */
7079	reply[0] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7080	    & MPI2_DOORBELL_DATA_MASK);
7081	writel(0, &ioc->chip->HostInterruptStatus);
7082	if ((_base_wait_for_doorbell_int(ioc, 5))) {
7083		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7084			__LINE__);
7085		return -EFAULT;
7086	}
7087	reply[1] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7088	    & MPI2_DOORBELL_DATA_MASK);
7089	writel(0, &ioc->chip->HostInterruptStatus);
7090
7091	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
7092		if ((_base_wait_for_doorbell_int(ioc, 5))) {
7093			ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7094				__LINE__);
7095			return -EFAULT;
7096		}
7097		if (i >=  reply_bytes/2) /* overflow case */
7098			ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
7099		else
7100			reply[i] = le16_to_cpu(
7101			    ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7102			    & MPI2_DOORBELL_DATA_MASK);
7103		writel(0, &ioc->chip->HostInterruptStatus);
7104	}
7105
7106	_base_wait_for_doorbell_int(ioc, 5);
7107	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
7108		dhsprintk(ioc,
7109			  ioc_info(ioc, "doorbell is in use (line=%d)\n",
7110				   __LINE__));
7111	}
7112	writel(0, &ioc->chip->HostInterruptStatus);
7113
7114	if (ioc->logging_level & MPT_DEBUG_INIT) {
7115		mfp = (__le32 *)reply;
7116		pr_info("\toffset:data\n");
7117		for (i = 0; i < reply_bytes/4; i++)
7118			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7119			    le32_to_cpu(mfp[i]));
7120	}
7121	return 0;
7122}
7123
7124/**
7125 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
7126 * @ioc: per adapter object
7127 * @mpi_reply: the reply payload from FW
7128 * @mpi_request: the request payload sent to FW
7129 *
7130 * The SAS IO Unit Control Request message allows the host to perform low-level
7131 * operations, such as resets on the PHYs of the IO Unit, also allows the host
7132 * to obtain the IOC assigned device handles for a device if it has other
7133 * identifying information about the device, in addition allows the host to
7134 * remove IOC resources associated with the device.
7135 *
7136 * Return: 0 for success, non-zero for failure.
7137 */
7138int
7139mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
7140	Mpi2SasIoUnitControlReply_t *mpi_reply,
7141	Mpi2SasIoUnitControlRequest_t *mpi_request)
7142{
7143	u16 smid;
7144	u8 issue_reset = 0;
7145	int rc;
7146	void *request;
7147
7148	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7149
7150	mutex_lock(&ioc->base_cmds.mutex);
7151
7152	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7153		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7154		rc = -EAGAIN;
7155		goto out;
7156	}
7157
7158	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7159	if (rc)
7160		goto out;
7161
7162	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7163	if (!smid) {
7164		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7165		rc = -EAGAIN;
7166		goto out;
7167	}
7168
7169	rc = 0;
7170	ioc->base_cmds.status = MPT3_CMD_PENDING;
7171	request = mpt3sas_base_get_msg_frame(ioc, smid);
7172	ioc->base_cmds.smid = smid;
7173	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7174	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7175	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7176		ioc->ioc_link_reset_in_progress = 1;
7177	init_completion(&ioc->base_cmds.done);
7178	ioc->put_smid_default(ioc, smid);
7179	wait_for_completion_timeout(&ioc->base_cmds.done,
7180	    msecs_to_jiffies(10000));
7181	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7182	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7183	    ioc->ioc_link_reset_in_progress)
7184		ioc->ioc_link_reset_in_progress = 0;
7185	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7186		mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7187		    mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7188		    issue_reset);
7189		goto issue_host_reset;
7190	}
7191	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7192		memcpy(mpi_reply, ioc->base_cmds.reply,
7193		    sizeof(Mpi2SasIoUnitControlReply_t));
7194	else
7195		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7196	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7197	goto out;
7198
7199 issue_host_reset:
7200	if (issue_reset)
7201		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7202	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7203	rc = -EFAULT;
7204 out:
7205	mutex_unlock(&ioc->base_cmds.mutex);
7206	return rc;
7207}
7208
7209/**
7210 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7211 * @ioc: per adapter object
7212 * @mpi_reply: the reply payload from FW
7213 * @mpi_request: the request payload sent to FW
7214 *
7215 * The SCSI Enclosure Processor request message causes the IOC to
7216 * communicate with SES devices to control LED status signals.
7217 *
7218 * Return: 0 for success, non-zero for failure.
7219 */
7220int
7221mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7222	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7223{
7224	u16 smid;
7225	u8 issue_reset = 0;
7226	int rc;
7227	void *request;
7228
7229	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7230
7231	mutex_lock(&ioc->base_cmds.mutex);
7232
7233	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7234		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7235		rc = -EAGAIN;
7236		goto out;
7237	}
7238
7239	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7240	if (rc)
7241		goto out;
7242
7243	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7244	if (!smid) {
7245		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7246		rc = -EAGAIN;
7247		goto out;
7248	}
7249
7250	rc = 0;
7251	ioc->base_cmds.status = MPT3_CMD_PENDING;
7252	request = mpt3sas_base_get_msg_frame(ioc, smid);
7253	ioc->base_cmds.smid = smid;
7254	memset(request, 0, ioc->request_sz);
7255	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7256	init_completion(&ioc->base_cmds.done);
7257	ioc->put_smid_default(ioc, smid);
7258	wait_for_completion_timeout(&ioc->base_cmds.done,
7259	    msecs_to_jiffies(10000));
7260	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7261		mpt3sas_check_cmd_timeout(ioc,
7262		    ioc->base_cmds.status, mpi_request,
7263		    sizeof(Mpi2SepRequest_t)/4, issue_reset);
7264		goto issue_host_reset;
7265	}
7266	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7267		memcpy(mpi_reply, ioc->base_cmds.reply,
7268		    sizeof(Mpi2SepReply_t));
7269	else
7270		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7271	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7272	goto out;
7273
7274 issue_host_reset:
7275	if (issue_reset)
7276		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7277	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7278	rc = -EFAULT;
7279 out:
7280	mutex_unlock(&ioc->base_cmds.mutex);
7281	return rc;
7282}
7283
7284/**
7285 * _base_get_port_facts - obtain port facts reply and save in ioc
7286 * @ioc: per adapter object
7287 * @port: ?
7288 *
7289 * Return: 0 for success, non-zero for failure.
7290 */
7291static int
7292_base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7293{
7294	Mpi2PortFactsRequest_t mpi_request;
7295	Mpi2PortFactsReply_t mpi_reply;
7296	struct mpt3sas_port_facts *pfacts;
7297	int mpi_reply_sz, mpi_request_sz, r;
7298
7299	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7300
7301	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7302	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7303	memset(&mpi_request, 0, mpi_request_sz);
7304	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7305	mpi_request.PortNumber = port;
7306	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7307	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7308
7309	if (r != 0) {
7310		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7311		return r;
7312	}
7313
7314	pfacts = &ioc->pfacts[port];
7315	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7316	pfacts->PortNumber = mpi_reply.PortNumber;
7317	pfacts->VP_ID = mpi_reply.VP_ID;
7318	pfacts->VF_ID = mpi_reply.VF_ID;
7319	pfacts->MaxPostedCmdBuffers =
7320	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7321
7322	return 0;
7323}
7324
7325/**
7326 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7327 * @ioc: per adapter object
7328 * @timeout:
7329 *
7330 * Return: 0 for success, non-zero for failure.
7331 */
7332static int
7333_base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7334{
7335	u32 ioc_state;
7336	int rc;
7337
7338	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7339
7340	if (ioc->pci_error_recovery) {
7341		dfailprintk(ioc,
7342			    ioc_info(ioc, "%s: host in pci error recovery\n",
7343				     __func__));
7344		return -EFAULT;
7345	}
7346
7347	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7348	dhsprintk(ioc,
7349		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7350			   __func__, ioc_state));
7351
7352	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7353	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7354		return 0;
7355
7356	if (ioc_state & MPI2_DOORBELL_USED) {
7357		dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7358		goto issue_diag_reset;
7359	}
7360
7361	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7362		mpt3sas_print_fault_code(ioc, ioc_state &
7363		    MPI2_DOORBELL_DATA_MASK);
7364		goto issue_diag_reset;
7365	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7366	    MPI2_IOC_STATE_COREDUMP) {
7367		ioc_info(ioc,
7368		    "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7369		    __func__, ioc_state);
7370		return -EFAULT;
7371	}
7372
7373	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7374	if (ioc_state) {
7375		dfailprintk(ioc,
7376			    ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7377				     __func__, ioc_state));
7378		return -EFAULT;
7379	}
7380
7381	return 0;
7382
7383issue_diag_reset:
7384	rc = _base_diag_reset(ioc);
7385	return rc;
7386}
7387
7388/**
7389 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7390 * @ioc: per adapter object
7391 *
7392 * Return: 0 for success, non-zero for failure.
7393 */
7394static int
7395_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7396{
7397	Mpi2IOCFactsRequest_t mpi_request;
7398	Mpi2IOCFactsReply_t mpi_reply;
7399	struct mpt3sas_facts *facts;
7400	int mpi_reply_sz, mpi_request_sz, r;
7401
7402	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7403
7404	r = _base_wait_for_iocstate(ioc, 10);
7405	if (r) {
7406		dfailprintk(ioc,
7407			    ioc_info(ioc, "%s: failed getting to correct state\n",
7408				     __func__));
7409		return r;
7410	}
7411	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7412	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7413	memset(&mpi_request, 0, mpi_request_sz);
7414	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7415	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7416	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7417
7418	if (r != 0) {
7419		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7420		return r;
7421	}
7422
7423	facts = &ioc->facts;
7424	memset(facts, 0, sizeof(struct mpt3sas_facts));
7425	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7426	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7427	facts->VP_ID = mpi_reply.VP_ID;
7428	facts->VF_ID = mpi_reply.VF_ID;
7429	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7430	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7431	facts->WhoInit = mpi_reply.WhoInit;
7432	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7433	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7434	if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7435	    MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7436		ioc->combined_reply_queue = 0;
7437	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7438	facts->MaxReplyDescriptorPostQueueDepth =
7439	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7440	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7441	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7442	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7443		ioc->ir_firmware = 1;
7444	if ((facts->IOCCapabilities &
7445	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7446		ioc->rdpq_array_capable = 1;
7447	if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7448	    && ioc->is_aero_ioc)
7449		ioc->atomic_desc_capable = 1;
7450	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7451	facts->IOCRequestFrameSize =
7452	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7453	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7454		facts->IOCMaxChainSegmentSize =
7455			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7456	}
7457	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7458	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7459	ioc->shost->max_id = -1;
7460	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7461	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7462	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7463	facts->HighPriorityCredit =
7464	    le16_to_cpu(mpi_reply.HighPriorityCredit);
7465	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7466	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7467	facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7468
7469	/*
7470	 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7471	 */
7472	ioc->page_size = 1 << facts->CurrentHostPageSize;
7473	if (ioc->page_size == 1) {
7474		ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7475		ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7476	}
7477	dinitprintk(ioc,
7478		    ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7479			     facts->CurrentHostPageSize));
7480
7481	dinitprintk(ioc,
7482		    ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7483			     facts->RequestCredit, facts->MaxChainDepth));
7484	dinitprintk(ioc,
7485		    ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7486			     facts->IOCRequestFrameSize * 4,
7487			     facts->ReplyFrameSize * 4));
7488	return 0;
7489}
7490
7491/**
7492 * _base_send_ioc_init - send ioc_init to firmware
7493 * @ioc: per adapter object
7494 *
7495 * Return: 0 for success, non-zero for failure.
7496 */
7497static int
7498_base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7499{
7500	Mpi2IOCInitRequest_t mpi_request;
7501	Mpi2IOCInitReply_t mpi_reply;
7502	int i, r = 0;
7503	ktime_t current_time;
7504	u16 ioc_status;
7505	u32 reply_post_free_array_sz = 0;
7506
7507	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7508
7509	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7510	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7511	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7512	mpi_request.VF_ID = 0; /* TODO */
7513	mpi_request.VP_ID = 0;
7514	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7515	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7516	mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7517
7518	if (_base_is_controller_msix_enabled(ioc))
7519		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7520	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7521	mpi_request.ReplyDescriptorPostQueueDepth =
7522	    cpu_to_le16(ioc->reply_post_queue_depth);
7523	mpi_request.ReplyFreeQueueDepth =
7524	    cpu_to_le16(ioc->reply_free_queue_depth);
7525
7526	mpi_request.SenseBufferAddressHigh =
7527	    cpu_to_le32((u64)ioc->sense_dma >> 32);
7528	mpi_request.SystemReplyAddressHigh =
7529	    cpu_to_le32((u64)ioc->reply_dma >> 32);
7530	mpi_request.SystemRequestFrameBaseAddress =
7531	    cpu_to_le64((u64)ioc->request_dma);
7532	mpi_request.ReplyFreeQueueAddress =
7533	    cpu_to_le64((u64)ioc->reply_free_dma);
7534
7535	if (ioc->rdpq_array_enable) {
7536		reply_post_free_array_sz = ioc->reply_queue_count *
7537		    sizeof(Mpi2IOCInitRDPQArrayEntry);
7538		memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7539		for (i = 0; i < ioc->reply_queue_count; i++)
7540			ioc->reply_post_free_array[i].RDPQBaseAddress =
7541			    cpu_to_le64(
7542				(u64)ioc->reply_post[i].reply_post_free_dma);
7543		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7544		mpi_request.ReplyDescriptorPostQueueAddress =
7545		    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7546	} else {
7547		mpi_request.ReplyDescriptorPostQueueAddress =
7548		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7549	}
7550
7551	/*
7552	 * Set the flag to enable CoreDump state feature in IOC firmware.
7553	 */
7554	mpi_request.ConfigurationFlags |=
7555	    cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7556
7557	/* This time stamp specifies number of milliseconds
7558	 * since epoch ~ midnight January 1, 1970.
7559	 */
7560	current_time = ktime_get_real();
7561	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7562
7563	if (ioc->logging_level & MPT_DEBUG_INIT) {
7564		__le32 *mfp;
7565		int i;
7566
7567		mfp = (__le32 *)&mpi_request;
7568		ioc_info(ioc, "\toffset:data\n");
7569		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7570			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7571			    le32_to_cpu(mfp[i]));
7572	}
7573
7574	r = _base_handshake_req_reply_wait(ioc,
7575	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7576	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7577
7578	if (r != 0) {
7579		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7580		return r;
7581	}
7582
7583	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7584	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7585	    mpi_reply.IOCLogInfo) {
7586		ioc_err(ioc, "%s: failed\n", __func__);
7587		r = -EIO;
7588	}
7589
7590	/* Reset TimeSync Counter*/
7591	ioc->timestamp_update_count = 0;
7592	return r;
7593}
7594
7595/**
7596 * mpt3sas_port_enable_done - command completion routine for port enable
7597 * @ioc: per adapter object
7598 * @smid: system request message index
7599 * @msix_index: MSIX table index supplied by the OS
7600 * @reply: reply message frame(lower 32bit addr)
7601 *
7602 * Return: 1 meaning mf should be freed from _base_interrupt
7603 *          0 means the mf is freed from this function.
7604 */
7605u8
7606mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7607	u32 reply)
7608{
7609	MPI2DefaultReply_t *mpi_reply;
7610	u16 ioc_status;
7611
7612	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7613		return 1;
7614
7615	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7616	if (!mpi_reply)
7617		return 1;
7618
7619	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7620		return 1;
7621
7622	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7623	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7624	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7625	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7626	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7627	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7628		ioc->port_enable_failed = 1;
7629
7630	if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7631		ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7632		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7633			mpt3sas_port_enable_complete(ioc);
7634			return 1;
7635		} else {
7636			ioc->start_scan_failed = ioc_status;
7637			ioc->start_scan = 0;
7638			return 1;
7639		}
7640	}
7641	complete(&ioc->port_enable_cmds.done);
7642	return 1;
7643}
7644
7645/**
7646 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7647 * @ioc: per adapter object
7648 *
7649 * Return: 0 for success, non-zero for failure.
7650 */
7651static int
7652_base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7653{
7654	Mpi2PortEnableRequest_t *mpi_request;
7655	Mpi2PortEnableReply_t *mpi_reply;
7656	int r = 0;
7657	u16 smid;
7658	u16 ioc_status;
7659
7660	ioc_info(ioc, "sending port enable !!\n");
7661
7662	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7663		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7664		return -EAGAIN;
7665	}
7666
7667	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7668	if (!smid) {
7669		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7670		return -EAGAIN;
7671	}
7672
7673	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7674	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7675	ioc->port_enable_cmds.smid = smid;
7676	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7677	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7678
7679	init_completion(&ioc->port_enable_cmds.done);
7680	ioc->put_smid_default(ioc, smid);
7681	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7682	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7683		ioc_err(ioc, "%s: timeout\n", __func__);
7684		_debug_dump_mf(mpi_request,
7685		    sizeof(Mpi2PortEnableRequest_t)/4);
7686		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7687			r = -EFAULT;
7688		else
7689			r = -ETIME;
7690		goto out;
7691	}
7692
7693	mpi_reply = ioc->port_enable_cmds.reply;
7694	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7695	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7696		ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7697			__func__, ioc_status);
7698		r = -EFAULT;
7699		goto out;
7700	}
7701
7702 out:
7703	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7704	ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7705	return r;
7706}
7707
7708/**
7709 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7710 * @ioc: per adapter object
7711 *
7712 * Return: 0 for success, non-zero for failure.
7713 */
7714int
7715mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7716{
7717	Mpi2PortEnableRequest_t *mpi_request;
7718	u16 smid;
7719
7720	ioc_info(ioc, "sending port enable !!\n");
7721
7722	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7723		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7724		return -EAGAIN;
7725	}
7726
7727	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7728	if (!smid) {
7729		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7730		return -EAGAIN;
7731	}
7732	ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7733	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7734	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7735	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7736	ioc->port_enable_cmds.smid = smid;
7737	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7738	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7739
7740	ioc->put_smid_default(ioc, smid);
7741	return 0;
7742}
7743
7744/**
7745 * _base_determine_wait_on_discovery - desposition
7746 * @ioc: per adapter object
7747 *
7748 * Decide whether to wait on discovery to complete. Used to either
7749 * locate boot device, or report volumes ahead of physical devices.
7750 *
7751 * Return: 1 for wait, 0 for don't wait.
7752 */
7753static int
7754_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7755{
7756	/* We wait for discovery to complete if IR firmware is loaded.
7757	 * The sas topology events arrive before PD events, so we need time to
7758	 * turn on the bit in ioc->pd_handles to indicate PD
7759	 * Also, it maybe required to report Volumes ahead of physical
7760	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7761	 */
7762	if (ioc->ir_firmware)
7763		return 1;
7764
7765	/* if no Bios, then we don't need to wait */
7766	if (!ioc->bios_pg3.BiosVersion)
7767		return 0;
7768
7769	/* Bios is present, then we drop down here.
7770	 *
7771	 * If there any entries in the Bios Page 2, then we wait
7772	 * for discovery to complete.
7773	 */
7774
7775	/* Current Boot Device */
7776	if ((ioc->bios_pg2.CurrentBootDeviceForm &
7777	    MPI2_BIOSPAGE2_FORM_MASK) ==
7778	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7779	/* Request Boot Device */
7780	   (ioc->bios_pg2.ReqBootDeviceForm &
7781	    MPI2_BIOSPAGE2_FORM_MASK) ==
7782	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7783	/* Alternate Request Boot Device */
7784	   (ioc->bios_pg2.ReqAltBootDeviceForm &
7785	    MPI2_BIOSPAGE2_FORM_MASK) ==
7786	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7787		return 0;
7788
7789	return 1;
7790}
7791
7792/**
7793 * _base_unmask_events - turn on notification for this event
7794 * @ioc: per adapter object
7795 * @event: firmware event
7796 *
7797 * The mask is stored in ioc->event_masks.
7798 */
7799static void
7800_base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7801{
7802	u32 desired_event;
7803
7804	if (event >= 128)
7805		return;
7806
7807	desired_event = (1 << (event % 32));
7808
7809	if (event < 32)
7810		ioc->event_masks[0] &= ~desired_event;
7811	else if (event < 64)
7812		ioc->event_masks[1] &= ~desired_event;
7813	else if (event < 96)
7814		ioc->event_masks[2] &= ~desired_event;
7815	else if (event < 128)
7816		ioc->event_masks[3] &= ~desired_event;
7817}
7818
7819/**
7820 * _base_event_notification - send event notification
7821 * @ioc: per adapter object
7822 *
7823 * Return: 0 for success, non-zero for failure.
7824 */
7825static int
7826_base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7827{
7828	Mpi2EventNotificationRequest_t *mpi_request;
7829	u16 smid;
7830	int r = 0;
7831	int i, issue_diag_reset = 0;
7832
7833	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7834
7835	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7836		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7837		return -EAGAIN;
7838	}
7839
7840	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7841	if (!smid) {
7842		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7843		return -EAGAIN;
7844	}
7845	ioc->base_cmds.status = MPT3_CMD_PENDING;
7846	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7847	ioc->base_cmds.smid = smid;
7848	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7849	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7850	mpi_request->VF_ID = 0; /* TODO */
7851	mpi_request->VP_ID = 0;
7852	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7853		mpi_request->EventMasks[i] =
7854		    cpu_to_le32(ioc->event_masks[i]);
7855	init_completion(&ioc->base_cmds.done);
7856	ioc->put_smid_default(ioc, smid);
7857	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7858	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7859		ioc_err(ioc, "%s: timeout\n", __func__);
7860		_debug_dump_mf(mpi_request,
7861		    sizeof(Mpi2EventNotificationRequest_t)/4);
7862		if (ioc->base_cmds.status & MPT3_CMD_RESET)
7863			r = -EFAULT;
7864		else
7865			issue_diag_reset = 1;
7866
7867	} else
7868		dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7869	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7870
7871	if (issue_diag_reset) {
7872		if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7873			return -EFAULT;
7874		if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7875			return -EFAULT;
7876		r = -EAGAIN;
7877	}
7878	return r;
7879}
7880
7881/**
7882 * mpt3sas_base_validate_event_type - validating event types
7883 * @ioc: per adapter object
7884 * @event_type: firmware event
7885 *
7886 * This will turn on firmware event notification when application
7887 * ask for that event. We don't mask events that are already enabled.
7888 */
7889void
7890mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7891{
7892	int i, j;
7893	u32 event_mask, desired_event;
7894	u8 send_update_to_fw;
7895
7896	for (i = 0, send_update_to_fw = 0; i <
7897	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7898		event_mask = ~event_type[i];
7899		desired_event = 1;
7900		for (j = 0; j < 32; j++) {
7901			if (!(event_mask & desired_event) &&
7902			    (ioc->event_masks[i] & desired_event)) {
7903				ioc->event_masks[i] &= ~desired_event;
7904				send_update_to_fw = 1;
7905			}
7906			desired_event = (desired_event << 1);
7907		}
7908	}
7909
7910	if (!send_update_to_fw)
7911		return;
7912
7913	mutex_lock(&ioc->base_cmds.mutex);
7914	_base_event_notification(ioc);
7915	mutex_unlock(&ioc->base_cmds.mutex);
7916}
7917
7918/**
7919* mpt3sas_base_unlock_and_get_host_diagnostic- enable Host Diagnostic Register writes
7920* @ioc: per adapter object
7921* @host_diagnostic: host diagnostic register content
7922*
7923* Return: 0 for success, non-zero for failure.
7924*/
7925
7926int
7927mpt3sas_base_unlock_and_get_host_diagnostic(struct MPT3SAS_ADAPTER *ioc,
7928	u32 *host_diagnostic)
7929{
7930
7931	u32 count;
7932	*host_diagnostic = 0;
7933	count = 0;
7934
7935	do {
7936		/* Write magic sequence to WriteSequence register
7937		 * Loop until in diagnostic mode
7938		 */
7939		drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7940		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7941		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7942		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7943		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7944		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7945		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7946		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7947
7948		/* wait 100 msec */
7949		msleep(100);
7950
7951		if (count++ > 20) {
7952			ioc_info(ioc,
7953				    "Stop writing magic sequence after 20 retries\n");
7954			_base_dump_reg_set(ioc);
7955			return -EFAULT;
7956		}
7957
7958		*host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
7959		drsprintk(ioc,
7960			     ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7961				     count, *host_diagnostic));
7962
7963	} while ((*host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7964	return 0;
7965}
7966
7967/**
7968 * mpt3sas_base_lock_host_diagnostic: Disable Host Diagnostic Register writes
7969 * @ioc: per adapter object
7970 */
7971
7972void
7973mpt3sas_base_lock_host_diagnostic(struct MPT3SAS_ADAPTER *ioc)
7974{
7975	drsprintk(ioc, ioc_info(ioc, "disable writes to the diagnostic register\n"));
7976	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7977}
7978
7979/**
7980 * _base_diag_reset - the "big hammer" start of day reset
7981 * @ioc: per adapter object
7982 *
7983 * Return: 0 for success, non-zero for failure.
7984 */
7985static int
7986_base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7987{
7988	u32 host_diagnostic;
7989	u32 ioc_state;
7990	u32 count;
7991	u32 hcb_size;
7992
7993	ioc_info(ioc, "sending diag reset !!\n");
7994
7995	pci_cfg_access_lock(ioc->pdev);
7996
7997	drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7998
7999	mutex_lock(&ioc->hostdiag_unlock_mutex);
8000	if (mpt3sas_base_unlock_and_get_host_diagnostic(ioc, &host_diagnostic))
8001		goto out;
8002
8003	hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
8004	drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
8005	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
8006	     &ioc->chip->HostDiagnostic);
8007
8008	/* This delay allows the chip PCIe hardware time to finish reset tasks */
8009	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
8010
8011	/* Approximately 300 second max wait */
8012	for (count = 0; count < (300000000 /
8013	    MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
8014
8015		host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
8016
8017		if (host_diagnostic == 0xFFFFFFFF) {
8018			ioc_info(ioc,
8019			    "Invalid host diagnostic register value\n");
8020			_base_dump_reg_set(ioc);
8021			goto out;
8022		}
8023		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
8024			break;
8025
8026		/* Wait to pass the second read delay window */
8027		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC/1000);
8028	}
8029
8030	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
8031
8032		drsprintk(ioc,
8033			ioc_info(ioc, "restart the adapter assuming the\n"
8034					"HCB Address points to good F/W\n"));
8035		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
8036		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
8037		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
8038
8039		drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
8040		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
8041		    &ioc->chip->HCBSize);
8042	}
8043
8044	drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
8045	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
8046	    &ioc->chip->HostDiagnostic);
8047
8048	mpt3sas_base_lock_host_diagnostic(ioc);
8049	mutex_unlock(&ioc->hostdiag_unlock_mutex);
8050
8051	drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
8052	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
8053	if (ioc_state) {
8054		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8055			__func__, ioc_state);
8056		_base_dump_reg_set(ioc);
8057		goto out;
8058	}
8059
8060	pci_cfg_access_unlock(ioc->pdev);
8061	ioc_info(ioc, "diag reset: SUCCESS\n");
8062	return 0;
8063
8064 out:
8065	pci_cfg_access_unlock(ioc->pdev);
8066	ioc_err(ioc, "diag reset: FAILED\n");
8067	mutex_unlock(&ioc->hostdiag_unlock_mutex);
8068	return -EFAULT;
8069}
8070
8071/**
8072 * mpt3sas_base_make_ioc_ready - put controller in READY state
8073 * @ioc: per adapter object
8074 * @type: FORCE_BIG_HAMMER or SOFT_RESET
8075 *
8076 * Return: 0 for success, non-zero for failure.
8077 */
8078int
8079mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
8080{
8081	u32 ioc_state;
8082	int rc;
8083	int count;
8084
8085	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8086
8087	if (ioc->pci_error_recovery)
8088		return 0;
8089
8090	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8091	dhsprintk(ioc,
8092		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
8093			   __func__, ioc_state));
8094
8095	/* if in RESET state, it should move to READY state shortly */
8096	count = 0;
8097	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
8098		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
8099		    MPI2_IOC_STATE_READY) {
8100			if (count++ == 10) {
8101				ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8102					__func__, ioc_state);
8103				return -EFAULT;
8104			}
8105			ssleep(1);
8106			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8107		}
8108	}
8109
8110	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
8111		return 0;
8112
8113	if (ioc_state & MPI2_DOORBELL_USED) {
8114		ioc_info(ioc, "unexpected doorbell active!\n");
8115		goto issue_diag_reset;
8116	}
8117
8118	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
8119		mpt3sas_print_fault_code(ioc, ioc_state &
8120		    MPI2_DOORBELL_DATA_MASK);
8121		goto issue_diag_reset;
8122	}
8123
8124	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
8125		/*
8126		 * if host reset is invoked while watch dog thread is waiting
8127		 * for IOC state to be changed to Fault state then driver has
8128		 * to wait here for CoreDump state to clear otherwise reset
8129		 * will be issued to the FW and FW move the IOC state to
8130		 * reset state without copying the FW logs to coredump region.
8131		 */
8132		if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
8133			mpt3sas_print_coredump_info(ioc, ioc_state &
8134			    MPI2_DOORBELL_DATA_MASK);
8135			mpt3sas_base_wait_for_coredump_completion(ioc,
8136			    __func__);
8137		}
8138		goto issue_diag_reset;
8139	}
8140
8141	if (type == FORCE_BIG_HAMMER)
8142		goto issue_diag_reset;
8143
8144	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
8145		if (!(_base_send_ioc_reset(ioc,
8146		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
8147			return 0;
8148	}
8149
8150 issue_diag_reset:
8151	rc = _base_diag_reset(ioc);
8152	return rc;
8153}
8154
8155/**
8156 * _base_make_ioc_operational - put controller in OPERATIONAL state
8157 * @ioc: per adapter object
8158 *
8159 * Return: 0 for success, non-zero for failure.
8160 */
8161static int
8162_base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
8163{
8164	int r, i, index, rc;
8165	unsigned long	flags;
8166	u32 reply_address;
8167	u16 smid;
8168	struct _tr_list *delayed_tr, *delayed_tr_next;
8169	struct _sc_list *delayed_sc, *delayed_sc_next;
8170	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
8171	u8 hide_flag;
8172	struct adapter_reply_queue *reply_q;
8173	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
8174
8175	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8176
8177	/* clean the delayed target reset list */
8178	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8179	    &ioc->delayed_tr_list, list) {
8180		list_del(&delayed_tr->list);
8181		kfree(delayed_tr);
8182	}
8183
8184
8185	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8186	    &ioc->delayed_tr_volume_list, list) {
8187		list_del(&delayed_tr->list);
8188		kfree(delayed_tr);
8189	}
8190
8191	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8192	    &ioc->delayed_sc_list, list) {
8193		list_del(&delayed_sc->list);
8194		kfree(delayed_sc);
8195	}
8196
8197	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8198	    &ioc->delayed_event_ack_list, list) {
8199		list_del(&delayed_event_ack->list);
8200		kfree(delayed_event_ack);
8201	}
8202
8203	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8204
8205	/* hi-priority queue */
8206	INIT_LIST_HEAD(&ioc->hpr_free_list);
8207	smid = ioc->hi_priority_smid;
8208	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8209		ioc->hpr_lookup[i].cb_idx = 0xFF;
8210		ioc->hpr_lookup[i].smid = smid;
8211		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8212		    &ioc->hpr_free_list);
8213	}
8214
8215	/* internal queue */
8216	INIT_LIST_HEAD(&ioc->internal_free_list);
8217	smid = ioc->internal_smid;
8218	for (i = 0; i < ioc->internal_depth; i++, smid++) {
8219		ioc->internal_lookup[i].cb_idx = 0xFF;
8220		ioc->internal_lookup[i].smid = smid;
8221		list_add_tail(&ioc->internal_lookup[i].tracker_list,
8222		    &ioc->internal_free_list);
8223	}
8224
8225	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8226
8227	/* initialize Reply Free Queue */
8228	for (i = 0, reply_address = (u32)ioc->reply_dma ;
8229	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
8230	    ioc->reply_sz) {
8231		ioc->reply_free[i] = cpu_to_le32(reply_address);
8232		if (ioc->is_mcpu_endpoint)
8233			_base_clone_reply_to_sys_mem(ioc,
8234					reply_address, i);
8235	}
8236
8237	/* initialize reply queues */
8238	if (ioc->is_driver_loading)
8239		_base_assign_reply_queues(ioc);
8240
8241	/* initialize Reply Post Free Queue */
8242	index = 0;
8243	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8244	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8245		/*
8246		 * If RDPQ is enabled, switch to the next allocation.
8247		 * Otherwise advance within the contiguous region.
8248		 */
8249		if (ioc->rdpq_array_enable) {
8250			reply_q->reply_post_free =
8251				ioc->reply_post[index++].reply_post_free;
8252		} else {
8253			reply_q->reply_post_free = reply_post_free_contig;
8254			reply_post_free_contig += ioc->reply_post_queue_depth;
8255		}
8256
8257		reply_q->reply_post_host_index = 0;
8258		for (i = 0; i < ioc->reply_post_queue_depth; i++)
8259			reply_q->reply_post_free[i].Words =
8260			    cpu_to_le64(ULLONG_MAX);
8261		if (!_base_is_controller_msix_enabled(ioc))
8262			goto skip_init_reply_post_free_queue;
8263	}
8264 skip_init_reply_post_free_queue:
8265
8266	r = _base_send_ioc_init(ioc);
8267	if (r) {
8268		/*
8269		 * No need to check IOC state for fault state & issue
8270		 * diag reset during host reset. This check is need
8271		 * only during driver load time.
8272		 */
8273		if (!ioc->is_driver_loading)
8274			return r;
8275
8276		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8277		if (rc || (_base_send_ioc_init(ioc)))
8278			return r;
8279	}
8280
8281	/* initialize reply free host index */
8282	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8283	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8284
8285	/* initialize reply post host index */
8286	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8287		if (ioc->combined_reply_queue)
8288			writel((reply_q->msix_index & 7)<<
8289			   MPI2_RPHI_MSIX_INDEX_SHIFT,
8290			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8291		else
8292			writel(reply_q->msix_index <<
8293				MPI2_RPHI_MSIX_INDEX_SHIFT,
8294				&ioc->chip->ReplyPostHostIndex);
8295
8296		if (!_base_is_controller_msix_enabled(ioc))
8297			goto skip_init_reply_post_host_index;
8298	}
8299
8300 skip_init_reply_post_host_index:
8301
8302	mpt3sas_base_unmask_interrupts(ioc);
8303
8304	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8305		r = _base_display_fwpkg_version(ioc);
8306		if (r)
8307			return r;
8308	}
8309
8310	r = _base_static_config_pages(ioc);
8311	if (r)
8312		return r;
8313
8314	r = _base_event_notification(ioc);
8315	if (r)
8316		return r;
8317
8318	if (!ioc->shost_recovery) {
8319
8320		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8321		    == 0x80) {
8322			hide_flag = (u8) (
8323			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8324			    MFG_PAGE10_HIDE_SSDS_MASK);
8325			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8326				ioc->mfg_pg10_hide_flag = hide_flag;
8327		}
8328
8329		ioc->wait_for_discovery_to_complete =
8330		    _base_determine_wait_on_discovery(ioc);
8331
8332		return r; /* scan_start and scan_finished support */
8333	}
8334
8335	r = _base_send_port_enable(ioc);
8336	if (r)
8337		return r;
8338
8339	return r;
8340}
8341
8342/**
8343 * mpt3sas_base_free_resources - free resources controller resources
8344 * @ioc: per adapter object
8345 */
8346void
8347mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8348{
8349	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8350
8351	/* synchronizing freeing resource with pci_access_mutex lock */
8352	mutex_lock(&ioc->pci_access_mutex);
8353	if (ioc->chip_phys && ioc->chip) {
8354		mpt3sas_base_mask_interrupts(ioc);
8355		ioc->shost_recovery = 1;
8356		mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8357		ioc->shost_recovery = 0;
8358	}
8359
8360	mpt3sas_base_unmap_resources(ioc);
8361	mutex_unlock(&ioc->pci_access_mutex);
8362	return;
8363}
8364
8365/**
8366 * mpt3sas_base_attach - attach controller instance
8367 * @ioc: per adapter object
8368 *
8369 * Return: 0 for success, non-zero for failure.
8370 */
8371int
8372mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8373{
8374	int r, i, rc;
8375	int cpu_id, last_cpu_id = 0;
8376
8377	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8378
8379	/* setup cpu_msix_table */
8380	ioc->cpu_count = num_online_cpus();
8381	for_each_online_cpu(cpu_id)
8382		last_cpu_id = cpu_id;
8383	ioc->cpu_msix_table_sz = last_cpu_id + 1;
8384	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8385	ioc->reply_queue_count = 1;
8386	if (!ioc->cpu_msix_table) {
8387		ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8388		r = -ENOMEM;
8389		goto out_free_resources;
8390	}
8391
8392	if (ioc->is_warpdrive) {
8393		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8394		    sizeof(resource_size_t *), GFP_KERNEL);
8395		if (!ioc->reply_post_host_index) {
8396			ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8397			r = -ENOMEM;
8398			goto out_free_resources;
8399		}
8400	}
8401
8402	ioc->smp_affinity_enable = smp_affinity_enable;
8403
8404	ioc->rdpq_array_enable_assigned = 0;
8405	ioc->use_32bit_dma = false;
8406	ioc->dma_mask = 64;
8407	if (ioc->is_aero_ioc) {
8408		ioc->base_readl = &_base_readl_aero;
8409		ioc->base_readl_ext_retry = &_base_readl_ext_retry;
8410	} else {
8411		ioc->base_readl = &_base_readl;
8412		ioc->base_readl_ext_retry = &_base_readl;
8413	}
8414	r = mpt3sas_base_map_resources(ioc);
8415	if (r)
8416		goto out_free_resources;
8417
8418	pci_set_drvdata(ioc->pdev, ioc->shost);
8419	r = _base_get_ioc_facts(ioc);
8420	if (r) {
8421		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8422		if (rc || (_base_get_ioc_facts(ioc)))
8423			goto out_free_resources;
8424	}
8425
8426	switch (ioc->hba_mpi_version_belonged) {
8427	case MPI2_VERSION:
8428		ioc->build_sg_scmd = &_base_build_sg_scmd;
8429		ioc->build_sg = &_base_build_sg;
8430		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8431		ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8432		break;
8433	case MPI25_VERSION:
8434	case MPI26_VERSION:
8435		/*
8436		 * In SAS3.0,
8437		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8438		 * Target Status - all require the IEEE formatted scatter gather
8439		 * elements.
8440		 */
8441		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8442		ioc->build_sg = &_base_build_sg_ieee;
8443		ioc->build_nvme_prp = &_base_build_nvme_prp;
8444		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8445		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8446		if (ioc->high_iops_queues)
8447			ioc->get_msix_index_for_smlio =
8448					&_base_get_high_iops_msix_index;
8449		else
8450			ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8451		break;
8452	}
8453	if (ioc->atomic_desc_capable) {
8454		ioc->put_smid_default = &_base_put_smid_default_atomic;
8455		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8456		ioc->put_smid_fast_path =
8457				&_base_put_smid_fast_path_atomic;
8458		ioc->put_smid_hi_priority =
8459				&_base_put_smid_hi_priority_atomic;
8460	} else {
8461		ioc->put_smid_default = &_base_put_smid_default;
8462		ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8463		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8464		if (ioc->is_mcpu_endpoint)
8465			ioc->put_smid_scsi_io =
8466				&_base_put_smid_mpi_ep_scsi_io;
8467		else
8468			ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8469	}
8470	/*
8471	 * These function pointers for other requests that don't
8472	 * the require IEEE scatter gather elements.
8473	 *
8474	 * For example Configuration Pages and SAS IOUNIT Control don't.
8475	 */
8476	ioc->build_sg_mpi = &_base_build_sg;
8477	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8478
8479	r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8480	if (r)
8481		goto out_free_resources;
8482
8483	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8484	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8485	if (!ioc->pfacts) {
8486		r = -ENOMEM;
8487		goto out_free_resources;
8488	}
8489
8490	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8491		r = _base_get_port_facts(ioc, i);
8492		if (r) {
8493			rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8494			if (rc || (_base_get_port_facts(ioc, i)))
8495				goto out_free_resources;
8496		}
8497	}
8498
8499	r = _base_allocate_memory_pools(ioc);
8500	if (r)
8501		goto out_free_resources;
8502
8503	if (irqpoll_weight > 0)
8504		ioc->thresh_hold = irqpoll_weight;
8505	else
8506		ioc->thresh_hold = ioc->hba_queue_depth/4;
8507
8508	_base_init_irqpolls(ioc);
8509	init_waitqueue_head(&ioc->reset_wq);
8510
8511	/* allocate memory pd handle bitmask list */
8512	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8513	if (ioc->facts.MaxDevHandle % 8)
8514		ioc->pd_handles_sz++;
8515	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8516	    GFP_KERNEL);
8517	if (!ioc->pd_handles) {
8518		r = -ENOMEM;
8519		goto out_free_resources;
8520	}
8521	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8522	    GFP_KERNEL);
8523	if (!ioc->blocking_handles) {
8524		r = -ENOMEM;
8525		goto out_free_resources;
8526	}
8527
8528	/* allocate memory for pending OS device add list */
8529	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8530	if (ioc->facts.MaxDevHandle % 8)
8531		ioc->pend_os_device_add_sz++;
8532	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8533	    GFP_KERNEL);
8534	if (!ioc->pend_os_device_add) {
8535		r = -ENOMEM;
8536		goto out_free_resources;
8537	}
8538
8539	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8540	ioc->device_remove_in_progress =
8541		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8542	if (!ioc->device_remove_in_progress) {
8543		r = -ENOMEM;
8544		goto out_free_resources;
8545	}
8546
8547	ioc->fwfault_debug = mpt3sas_fwfault_debug;
8548
8549	/* base internal command bits */
8550	mutex_init(&ioc->base_cmds.mutex);
8551	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8552	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8553
8554	/* port_enable command bits */
8555	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8556	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8557
8558	/* transport internal command bits */
8559	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8560	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8561	mutex_init(&ioc->transport_cmds.mutex);
8562
8563	/* scsih internal command bits */
8564	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8565	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8566	mutex_init(&ioc->scsih_cmds.mutex);
8567
8568	/* task management internal command bits */
8569	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8570	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8571	mutex_init(&ioc->tm_cmds.mutex);
8572
8573	/* config page internal command bits */
8574	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8575	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8576	mutex_init(&ioc->config_cmds.mutex);
8577
8578	/* ctl module internal command bits */
8579	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8580	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8581	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8582	mutex_init(&ioc->ctl_cmds.mutex);
8583
8584	if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8585	    !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8586	    !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8587	    !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8588		r = -ENOMEM;
8589		goto out_free_resources;
8590	}
8591
8592	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8593		ioc->event_masks[i] = -1;
8594
8595	/* here we enable the events we care about */
8596	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8597	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8598	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8599	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8600	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8601	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8602	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8603	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8604	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8605	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8606	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8607	_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8608	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8609	if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8610		if (ioc->is_gen35_ioc) {
8611			_base_unmask_events(ioc,
8612				MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8613			_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8614			_base_unmask_events(ioc,
8615				MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8616		}
8617	}
8618	r = _base_make_ioc_operational(ioc);
8619	if (r == -EAGAIN) {
8620		r = _base_make_ioc_operational(ioc);
8621		if (r)
8622			goto out_free_resources;
8623	}
8624
8625	/*
8626	 * Copy current copy of IOCFacts in prev_fw_facts
8627	 * and it will be used during online firmware upgrade.
8628	 */
8629	memcpy(&ioc->prev_fw_facts, &ioc->facts,
8630	    sizeof(struct mpt3sas_facts));
8631
8632	ioc->non_operational_loop = 0;
8633	ioc->ioc_coredump_loop = 0;
8634	ioc->got_task_abort_from_ioctl = 0;
8635	return 0;
8636
8637 out_free_resources:
8638
8639	ioc->remove_host = 1;
8640
8641	mpt3sas_base_free_resources(ioc);
8642	_base_release_memory_pools(ioc);
8643	pci_set_drvdata(ioc->pdev, NULL);
8644	kfree(ioc->cpu_msix_table);
8645	if (ioc->is_warpdrive)
8646		kfree(ioc->reply_post_host_index);
8647	kfree(ioc->pd_handles);
8648	kfree(ioc->blocking_handles);
8649	kfree(ioc->device_remove_in_progress);
8650	kfree(ioc->pend_os_device_add);
8651	kfree(ioc->tm_cmds.reply);
8652	kfree(ioc->transport_cmds.reply);
8653	kfree(ioc->scsih_cmds.reply);
8654	kfree(ioc->config_cmds.reply);
8655	kfree(ioc->base_cmds.reply);
8656	kfree(ioc->port_enable_cmds.reply);
8657	kfree(ioc->ctl_cmds.reply);
8658	kfree(ioc->ctl_cmds.sense);
8659	kfree(ioc->pfacts);
8660	ioc->ctl_cmds.reply = NULL;
8661	ioc->base_cmds.reply = NULL;
8662	ioc->tm_cmds.reply = NULL;
8663	ioc->scsih_cmds.reply = NULL;
8664	ioc->transport_cmds.reply = NULL;
8665	ioc->config_cmds.reply = NULL;
8666	ioc->pfacts = NULL;
8667	return r;
8668}
8669
8670
8671/**
8672 * mpt3sas_base_detach - remove controller instance
8673 * @ioc: per adapter object
8674 */
8675void
8676mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8677{
8678	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8679
8680	mpt3sas_base_stop_watchdog(ioc);
8681	mpt3sas_base_free_resources(ioc);
8682	_base_release_memory_pools(ioc);
8683	mpt3sas_free_enclosure_list(ioc);
8684	pci_set_drvdata(ioc->pdev, NULL);
8685	kfree(ioc->cpu_msix_table);
8686	if (ioc->is_warpdrive)
8687		kfree(ioc->reply_post_host_index);
8688	kfree(ioc->pd_handles);
8689	kfree(ioc->blocking_handles);
8690	kfree(ioc->device_remove_in_progress);
8691	kfree(ioc->pend_os_device_add);
8692	kfree(ioc->pfacts);
8693	kfree(ioc->ctl_cmds.reply);
8694	kfree(ioc->ctl_cmds.sense);
8695	kfree(ioc->base_cmds.reply);
8696	kfree(ioc->port_enable_cmds.reply);
8697	kfree(ioc->tm_cmds.reply);
8698	kfree(ioc->transport_cmds.reply);
8699	kfree(ioc->scsih_cmds.reply);
8700	kfree(ioc->config_cmds.reply);
8701}
8702
8703/**
8704 * _base_pre_reset_handler - pre reset handler
8705 * @ioc: per adapter object
8706 */
8707static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8708{
8709	mpt3sas_scsih_pre_reset_handler(ioc);
8710	mpt3sas_ctl_pre_reset_handler(ioc);
8711	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8712}
8713
8714/**
8715 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8716 * @ioc: per adapter object
8717 */
8718static void
8719_base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8720{
8721	dtmprintk(ioc,
8722	    ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8723	if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8724		ioc->transport_cmds.status |= MPT3_CMD_RESET;
8725		mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8726		complete(&ioc->transport_cmds.done);
8727	}
8728	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8729		ioc->base_cmds.status |= MPT3_CMD_RESET;
8730		mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8731		complete(&ioc->base_cmds.done);
8732	}
8733	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8734		ioc->port_enable_failed = 1;
8735		ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8736		mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8737		if (ioc->is_driver_loading) {
8738			ioc->start_scan_failed =
8739				MPI2_IOCSTATUS_INTERNAL_ERROR;
8740			ioc->start_scan = 0;
8741		} else {
8742			complete(&ioc->port_enable_cmds.done);
8743		}
8744	}
8745	if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8746		ioc->config_cmds.status |= MPT3_CMD_RESET;
8747		mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8748		ioc->config_cmds.smid = USHRT_MAX;
8749		complete(&ioc->config_cmds.done);
8750	}
8751}
8752
8753/**
8754 * _base_clear_outstanding_commands - clear all outstanding commands
8755 * @ioc: per adapter object
8756 */
8757static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8758{
8759	mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8760	mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8761	_base_clear_outstanding_mpt_commands(ioc);
8762}
8763
8764/**
8765 * _base_reset_done_handler - reset done handler
8766 * @ioc: per adapter object
8767 */
8768static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8769{
8770	mpt3sas_scsih_reset_done_handler(ioc);
8771	mpt3sas_ctl_reset_done_handler(ioc);
8772	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8773}
8774
8775/**
8776 * mpt3sas_wait_for_commands_to_complete - reset controller
8777 * @ioc: Pointer to MPT_ADAPTER structure
8778 *
8779 * This function is waiting 10s for all pending commands to complete
8780 * prior to putting controller in reset.
8781 */
8782void
8783mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8784{
8785	u32 ioc_state;
8786
8787	ioc->pending_io_count = 0;
8788
8789	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8790	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8791		return;
8792
8793	/* pending command count */
8794	ioc->pending_io_count = scsi_host_busy(ioc->shost);
8795
8796	if (!ioc->pending_io_count)
8797		return;
8798
8799	/* wait for pending commands to complete */
8800	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8801}
8802
8803/**
8804 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8805 *     attributes during online firmware upgrade and update the corresponding
8806 *     IOC variables accordingly.
8807 *
8808 * @ioc: Pointer to MPT_ADAPTER structure
8809 */
8810static int
8811_base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8812{
8813	u16 pd_handles_sz;
8814	void *pd_handles = NULL, *blocking_handles = NULL;
8815	void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8816	struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8817
8818	if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8819		pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8820		if (ioc->facts.MaxDevHandle % 8)
8821			pd_handles_sz++;
8822
8823		pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8824		    GFP_KERNEL);
8825		if (!pd_handles) {
8826			ioc_info(ioc,
8827			    "Unable to allocate the memory for pd_handles of sz: %d\n",
8828			    pd_handles_sz);
8829			return -ENOMEM;
8830		}
8831		memset(pd_handles + ioc->pd_handles_sz, 0,
8832		    (pd_handles_sz - ioc->pd_handles_sz));
8833		ioc->pd_handles = pd_handles;
8834
8835		blocking_handles = krealloc(ioc->blocking_handles,
8836		    pd_handles_sz, GFP_KERNEL);
8837		if (!blocking_handles) {
8838			ioc_info(ioc,
8839			    "Unable to allocate the memory for "
8840			    "blocking_handles of sz: %d\n",
8841			    pd_handles_sz);
8842			return -ENOMEM;
8843		}
8844		memset(blocking_handles + ioc->pd_handles_sz, 0,
8845		    (pd_handles_sz - ioc->pd_handles_sz));
8846		ioc->blocking_handles = blocking_handles;
8847		ioc->pd_handles_sz = pd_handles_sz;
8848
8849		pend_os_device_add = krealloc(ioc->pend_os_device_add,
8850		    pd_handles_sz, GFP_KERNEL);
8851		if (!pend_os_device_add) {
8852			ioc_info(ioc,
8853			    "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8854			    pd_handles_sz);
8855			return -ENOMEM;
8856		}
8857		memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8858		    (pd_handles_sz - ioc->pend_os_device_add_sz));
8859		ioc->pend_os_device_add = pend_os_device_add;
8860		ioc->pend_os_device_add_sz = pd_handles_sz;
8861
8862		device_remove_in_progress = krealloc(
8863		    ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8864		if (!device_remove_in_progress) {
8865			ioc_info(ioc,
8866			    "Unable to allocate the memory for "
8867			    "device_remove_in_progress of sz: %d\n "
8868			    , pd_handles_sz);
8869			return -ENOMEM;
8870		}
8871		memset(device_remove_in_progress +
8872		    ioc->device_remove_in_progress_sz, 0,
8873		    (pd_handles_sz - ioc->device_remove_in_progress_sz));
8874		ioc->device_remove_in_progress = device_remove_in_progress;
8875		ioc->device_remove_in_progress_sz = pd_handles_sz;
8876	}
8877
8878	memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8879	return 0;
8880}
8881
8882/**
8883 * mpt3sas_base_hard_reset_handler - reset controller
8884 * @ioc: Pointer to MPT_ADAPTER structure
8885 * @type: FORCE_BIG_HAMMER or SOFT_RESET
8886 *
8887 * Return: 0 for success, non-zero for failure.
8888 */
8889int
8890mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8891	enum reset_type type)
8892{
8893	int r;
8894	unsigned long flags;
8895	u32 ioc_state;
8896	u8 is_fault = 0, is_trigger = 0;
8897
8898	dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8899
8900	if (ioc->pci_error_recovery) {
8901		ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8902		r = 0;
8903		goto out_unlocked;
8904	}
8905
8906	if (mpt3sas_fwfault_debug)
8907		mpt3sas_halt_firmware(ioc);
8908
8909	/* wait for an active reset in progress to complete */
8910	mutex_lock(&ioc->reset_in_progress_mutex);
8911
8912	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8913	ioc->shost_recovery = 1;
8914	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8915
8916	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8917	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8918	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8919	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
8920		is_trigger = 1;
8921		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8922		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8923		    (ioc_state & MPI2_IOC_STATE_MASK) ==
8924		    MPI2_IOC_STATE_COREDUMP) {
8925			is_fault = 1;
8926			ioc->htb_rel.trigger_info_dwords[1] =
8927			    (ioc_state & MPI2_DOORBELL_DATA_MASK);
8928		}
8929	}
8930	_base_pre_reset_handler(ioc);
8931	mpt3sas_wait_for_commands_to_complete(ioc);
8932	mpt3sas_base_mask_interrupts(ioc);
8933	mpt3sas_base_pause_mq_polling(ioc);
8934	r = mpt3sas_base_make_ioc_ready(ioc, type);
8935	if (r)
8936		goto out;
8937	_base_clear_outstanding_commands(ioc);
8938
8939	/* If this hard reset is called while port enable is active, then
8940	 * there is no reason to call make_ioc_operational
8941	 */
8942	if (ioc->is_driver_loading && ioc->port_enable_failed) {
8943		ioc->remove_host = 1;
8944		r = -EFAULT;
8945		goto out;
8946	}
8947	r = _base_get_ioc_facts(ioc);
8948	if (r)
8949		goto out;
8950
8951	r = _base_check_ioc_facts_changes(ioc);
8952	if (r) {
8953		ioc_info(ioc,
8954		    "Some of the parameters got changed in this new firmware"
8955		    " image and it requires system reboot\n");
8956		goto out;
8957	}
8958	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8959		panic("%s: Issue occurred with flashing controller firmware."
8960		      "Please reboot the system and ensure that the correct"
8961		      " firmware version is running\n", ioc->name);
8962
8963	r = _base_make_ioc_operational(ioc);
8964	if (!r)
8965		_base_reset_done_handler(ioc);
8966
8967 out:
8968	ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8969
8970	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8971	ioc->shost_recovery = 0;
8972	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8973	ioc->ioc_reset_count++;
8974	mutex_unlock(&ioc->reset_in_progress_mutex);
8975	mpt3sas_base_resume_mq_polling(ioc);
8976
8977 out_unlocked:
8978	if ((r == 0) && is_trigger) {
8979		if (is_fault)
8980			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8981		else
8982			mpt3sas_trigger_master(ioc,
8983			    MASTER_TRIGGER_ADAPTER_RESET);
8984	}
8985	dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8986	return r;
8987}
8988