1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for Broadcom MPI3 Storage Controllers
4 *
5 * Copyright (C) 2017-2023 Broadcom Inc.
6 *  (mailto: mpi3mr-linuxdrv.pdl@broadcom.com)
7 *
8 */
9
10#include "mpi3mr.h"
11#include <linux/bsg-lib.h>
12#include <uapi/scsi/scsi_bsg_mpi3mr.h>
13
14/**
15 * mpi3mr_bsg_pel_abort - sends PEL abort request
16 * @mrioc: Adapter instance reference
17 *
18 * This function sends PEL abort request to the firmware through
19 * admin request queue.
20 *
21 * Return: 0 on success, -1 on failure
22 */
23static int mpi3mr_bsg_pel_abort(struct mpi3mr_ioc *mrioc)
24{
25	struct mpi3_pel_req_action_abort pel_abort_req;
26	struct mpi3_pel_reply *pel_reply;
27	int retval = 0;
28	u16 pe_log_status;
29
30	if (mrioc->reset_in_progress) {
31		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
32		return -1;
33	}
34	if (mrioc->stop_bsgs) {
35		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
36		return -1;
37	}
38
39	memset(&pel_abort_req, 0, sizeof(pel_abort_req));
40	mutex_lock(&mrioc->pel_abort_cmd.mutex);
41	if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_PENDING) {
42		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
43		mutex_unlock(&mrioc->pel_abort_cmd.mutex);
44		return -1;
45	}
46	mrioc->pel_abort_cmd.state = MPI3MR_CMD_PENDING;
47	mrioc->pel_abort_cmd.is_waiting = 1;
48	mrioc->pel_abort_cmd.callback = NULL;
49	pel_abort_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_ABORT);
50	pel_abort_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG;
51	pel_abort_req.action = MPI3_PEL_ACTION_ABORT;
52	pel_abort_req.abort_host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT);
53
54	mrioc->pel_abort_requested = 1;
55	init_completion(&mrioc->pel_abort_cmd.done);
56	retval = mpi3mr_admin_request_post(mrioc, &pel_abort_req,
57	    sizeof(pel_abort_req), 0);
58	if (retval) {
59		retval = -1;
60		dprint_bsg_err(mrioc, "%s: admin request post failed\n",
61		    __func__);
62		mrioc->pel_abort_requested = 0;
63		goto out_unlock;
64	}
65
66	wait_for_completion_timeout(&mrioc->pel_abort_cmd.done,
67	    (MPI3MR_INTADMCMD_TIMEOUT * HZ));
68	if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_COMPLETE)) {
69		mrioc->pel_abort_cmd.is_waiting = 0;
70		dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
71		if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_RESET))
72			mpi3mr_soft_reset_handler(mrioc,
73			    MPI3MR_RESET_FROM_PELABORT_TIMEOUT, 1);
74		retval = -1;
75		goto out_unlock;
76	}
77	if ((mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
78	     != MPI3_IOCSTATUS_SUCCESS) {
79		dprint_bsg_err(mrioc,
80		    "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
81		    __func__, (mrioc->pel_abort_cmd.ioc_status &
82		    MPI3_IOCSTATUS_STATUS_MASK),
83		    mrioc->pel_abort_cmd.ioc_loginfo);
84		retval = -1;
85		goto out_unlock;
86	}
87	if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_REPLY_VALID) {
88		pel_reply = (struct mpi3_pel_reply *)mrioc->pel_abort_cmd.reply;
89		pe_log_status = le16_to_cpu(pel_reply->pe_log_status);
90		if (pe_log_status != MPI3_PEL_STATUS_SUCCESS) {
91			dprint_bsg_err(mrioc,
92			    "%s: command failed, pel_status(0x%04x)\n",
93			    __func__, pe_log_status);
94			retval = -1;
95		}
96	}
97
98out_unlock:
99	mrioc->pel_abort_cmd.state = MPI3MR_CMD_NOTUSED;
100	mutex_unlock(&mrioc->pel_abort_cmd.mutex);
101	return retval;
102}
103/**
104 * mpi3mr_bsg_verify_adapter - verify adapter number is valid
105 * @ioc_number: Adapter number
106 *
107 * This function returns the adapter instance pointer of given
108 * adapter number. If adapter number does not match with the
109 * driver's adapter list, driver returns NULL.
110 *
111 * Return: adapter instance reference
112 */
113static struct mpi3mr_ioc *mpi3mr_bsg_verify_adapter(int ioc_number)
114{
115	struct mpi3mr_ioc *mrioc = NULL;
116
117	spin_lock(&mrioc_list_lock);
118	list_for_each_entry(mrioc, &mrioc_list, list) {
119		if (mrioc->id == ioc_number) {
120			spin_unlock(&mrioc_list_lock);
121			return mrioc;
122		}
123	}
124	spin_unlock(&mrioc_list_lock);
125	return NULL;
126}
127
128/**
129 * mpi3mr_enable_logdata - Handler for log data enable
130 * @mrioc: Adapter instance reference
131 * @job: BSG job reference
132 *
133 * This function enables log data caching in the driver if not
134 * already enabled and return the maximum number of log data
135 * entries that can be cached in the driver.
136 *
137 * Return: 0 on success and proper error codes on failure
138 */
139static long mpi3mr_enable_logdata(struct mpi3mr_ioc *mrioc,
140	struct bsg_job *job)
141{
142	struct mpi3mr_logdata_enable logdata_enable;
143
144	if (!mrioc->logdata_buf) {
145		mrioc->logdata_entry_sz =
146		    (mrioc->reply_sz - (sizeof(struct mpi3_event_notification_reply) - 4))
147		    + MPI3MR_BSG_LOGDATA_ENTRY_HEADER_SZ;
148		mrioc->logdata_buf_idx = 0;
149		mrioc->logdata_buf = kcalloc(MPI3MR_BSG_LOGDATA_MAX_ENTRIES,
150		    mrioc->logdata_entry_sz, GFP_KERNEL);
151
152		if (!mrioc->logdata_buf)
153			return -ENOMEM;
154	}
155
156	memset(&logdata_enable, 0, sizeof(logdata_enable));
157	logdata_enable.max_entries =
158	    MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
159	if (job->request_payload.payload_len >= sizeof(logdata_enable)) {
160		sg_copy_from_buffer(job->request_payload.sg_list,
161				    job->request_payload.sg_cnt,
162				    &logdata_enable, sizeof(logdata_enable));
163		return 0;
164	}
165
166	return -EINVAL;
167}
168/**
169 * mpi3mr_get_logdata - Handler for get log data
170 * @mrioc: Adapter instance reference
171 * @job: BSG job pointer
172 * This function copies the log data entries to the user buffer
173 * when log caching is enabled in the driver.
174 *
175 * Return: 0 on success and proper error codes on failure
176 */
177static long mpi3mr_get_logdata(struct mpi3mr_ioc *mrioc,
178	struct bsg_job *job)
179{
180	u16 num_entries, sz, entry_sz = mrioc->logdata_entry_sz;
181
182	if ((!mrioc->logdata_buf) || (job->request_payload.payload_len < entry_sz))
183		return -EINVAL;
184
185	num_entries = job->request_payload.payload_len / entry_sz;
186	if (num_entries > MPI3MR_BSG_LOGDATA_MAX_ENTRIES)
187		num_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
188	sz = num_entries * entry_sz;
189
190	if (job->request_payload.payload_len >= sz) {
191		sg_copy_from_buffer(job->request_payload.sg_list,
192				    job->request_payload.sg_cnt,
193				    mrioc->logdata_buf, sz);
194		return 0;
195	}
196	return -EINVAL;
197}
198
199/**
200 * mpi3mr_bsg_pel_enable - Handler for PEL enable driver
201 * @mrioc: Adapter instance reference
202 * @job: BSG job pointer
203 *
204 * This function is the handler for PEL enable driver.
205 * Validates the application given class and locale and if
206 * requires aborts the existing PEL wait request and/or issues
207 * new PEL wait request to the firmware and returns.
208 *
209 * Return: 0 on success and proper error codes on failure.
210 */
211static long mpi3mr_bsg_pel_enable(struct mpi3mr_ioc *mrioc,
212				  struct bsg_job *job)
213{
214	long rval = -EINVAL;
215	struct mpi3mr_bsg_out_pel_enable pel_enable;
216	u8 issue_pel_wait;
217	u8 tmp_class;
218	u16 tmp_locale;
219
220	if (job->request_payload.payload_len != sizeof(pel_enable)) {
221		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
222		    __func__);
223		return rval;
224	}
225
226	if (mrioc->unrecoverable) {
227		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
228			       __func__);
229		return -EFAULT;
230	}
231
232	if (mrioc->reset_in_progress) {
233		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
234		return -EAGAIN;
235	}
236
237	if (mrioc->stop_bsgs) {
238		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
239		return -EAGAIN;
240	}
241
242	sg_copy_to_buffer(job->request_payload.sg_list,
243			  job->request_payload.sg_cnt,
244			  &pel_enable, sizeof(pel_enable));
245
246	if (pel_enable.pel_class > MPI3_PEL_CLASS_FAULT) {
247		dprint_bsg_err(mrioc, "%s: out of range class %d sent\n",
248			__func__, pel_enable.pel_class);
249		rval = 0;
250		goto out;
251	}
252	if (!mrioc->pel_enabled)
253		issue_pel_wait = 1;
254	else {
255		if ((mrioc->pel_class <= pel_enable.pel_class) &&
256		    !((mrioc->pel_locale & pel_enable.pel_locale) ^
257		      pel_enable.pel_locale)) {
258			issue_pel_wait = 0;
259			rval = 0;
260		} else {
261			pel_enable.pel_locale |= mrioc->pel_locale;
262
263			if (mrioc->pel_class < pel_enable.pel_class)
264				pel_enable.pel_class = mrioc->pel_class;
265
266			rval = mpi3mr_bsg_pel_abort(mrioc);
267			if (rval) {
268				dprint_bsg_err(mrioc,
269				    "%s: pel_abort failed, status(%ld)\n",
270				    __func__, rval);
271				goto out;
272			}
273			issue_pel_wait = 1;
274		}
275	}
276	if (issue_pel_wait) {
277		tmp_class = mrioc->pel_class;
278		tmp_locale = mrioc->pel_locale;
279		mrioc->pel_class = pel_enable.pel_class;
280		mrioc->pel_locale = pel_enable.pel_locale;
281		mrioc->pel_enabled = 1;
282		rval = mpi3mr_pel_get_seqnum_post(mrioc, NULL);
283		if (rval) {
284			mrioc->pel_class = tmp_class;
285			mrioc->pel_locale = tmp_locale;
286			mrioc->pel_enabled = 0;
287			dprint_bsg_err(mrioc,
288			    "%s: pel get sequence number failed, status(%ld)\n",
289			    __func__, rval);
290		}
291	}
292
293out:
294	return rval;
295}
296/**
297 * mpi3mr_get_all_tgt_info - Get all target information
298 * @mrioc: Adapter instance reference
299 * @job: BSG job reference
300 *
301 * This function copies the driver managed target devices device
302 * handle, persistent ID, bus ID and taret ID to the user
303 * provided buffer for the specific controller. This function
304 * also provides the number of devices managed by the driver for
305 * the specific controller.
306 *
307 * Return: 0 on success and proper error codes on failure
308 */
309static long mpi3mr_get_all_tgt_info(struct mpi3mr_ioc *mrioc,
310	struct bsg_job *job)
311{
312	u16 num_devices = 0, i = 0, size;
313	unsigned long flags;
314	struct mpi3mr_tgt_dev *tgtdev;
315	struct mpi3mr_device_map_info *devmap_info = NULL;
316	struct mpi3mr_all_tgt_info *alltgt_info = NULL;
317	uint32_t min_entrylen = 0, kern_entrylen = 0, usr_entrylen = 0;
318
319	if (job->request_payload.payload_len < sizeof(u32)) {
320		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
321		    __func__);
322		return -EINVAL;
323	}
324
325	spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
326	list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list)
327		num_devices++;
328	spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
329
330	if ((job->request_payload.payload_len <= sizeof(u64)) ||
331		list_empty(&mrioc->tgtdev_list)) {
332		sg_copy_from_buffer(job->request_payload.sg_list,
333				    job->request_payload.sg_cnt,
334				    &num_devices, sizeof(num_devices));
335		return 0;
336	}
337
338	kern_entrylen = num_devices * sizeof(*devmap_info);
339	size = sizeof(u64) + kern_entrylen;
340	alltgt_info = kzalloc(size, GFP_KERNEL);
341	if (!alltgt_info)
342		return -ENOMEM;
343
344	devmap_info = alltgt_info->dmi;
345	memset((u8 *)devmap_info, 0xFF, kern_entrylen);
346	spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
347	list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) {
348		if (i < num_devices) {
349			devmap_info[i].handle = tgtdev->dev_handle;
350			devmap_info[i].perst_id = tgtdev->perst_id;
351			if (tgtdev->host_exposed && tgtdev->starget) {
352				devmap_info[i].target_id = tgtdev->starget->id;
353				devmap_info[i].bus_id =
354				    tgtdev->starget->channel;
355			}
356			i++;
357		}
358	}
359	num_devices = i;
360	spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
361
362	alltgt_info->num_devices = num_devices;
363
364	usr_entrylen = (job->request_payload.payload_len - sizeof(u64)) /
365		sizeof(*devmap_info);
366	usr_entrylen *= sizeof(*devmap_info);
367	min_entrylen = min(usr_entrylen, kern_entrylen);
368
369	sg_copy_from_buffer(job->request_payload.sg_list,
370			    job->request_payload.sg_cnt,
371			    alltgt_info, (min_entrylen + sizeof(u64)));
372	kfree(alltgt_info);
373	return 0;
374}
375/**
376 * mpi3mr_get_change_count - Get topology change count
377 * @mrioc: Adapter instance reference
378 * @job: BSG job reference
379 *
380 * This function copies the toplogy change count provided by the
381 * driver in events and cached in the driver to the user
382 * provided buffer for the specific controller.
383 *
384 * Return: 0 on success and proper error codes on failure
385 */
386static long mpi3mr_get_change_count(struct mpi3mr_ioc *mrioc,
387	struct bsg_job *job)
388{
389	struct mpi3mr_change_count chgcnt;
390
391	memset(&chgcnt, 0, sizeof(chgcnt));
392	chgcnt.change_count = mrioc->change_count;
393	if (job->request_payload.payload_len >= sizeof(chgcnt)) {
394		sg_copy_from_buffer(job->request_payload.sg_list,
395				    job->request_payload.sg_cnt,
396				    &chgcnt, sizeof(chgcnt));
397		return 0;
398	}
399	return -EINVAL;
400}
401
402/**
403 * mpi3mr_bsg_adp_reset - Issue controller reset
404 * @mrioc: Adapter instance reference
405 * @job: BSG job reference
406 *
407 * This function identifies the user provided reset type and
408 * issues approporiate reset to the controller and wait for that
409 * to complete and reinitialize the controller and then returns
410 *
411 * Return: 0 on success and proper error codes on failure
412 */
413static long mpi3mr_bsg_adp_reset(struct mpi3mr_ioc *mrioc,
414	struct bsg_job *job)
415{
416	long rval = -EINVAL;
417	u8 save_snapdump;
418	struct mpi3mr_bsg_adp_reset adpreset;
419
420	if (job->request_payload.payload_len !=
421			sizeof(adpreset)) {
422		dprint_bsg_err(mrioc, "%s: invalid size argument\n",
423		    __func__);
424		goto out;
425	}
426
427	sg_copy_to_buffer(job->request_payload.sg_list,
428			  job->request_payload.sg_cnt,
429			  &adpreset, sizeof(adpreset));
430
431	switch (adpreset.reset_type) {
432	case MPI3MR_BSG_ADPRESET_SOFT:
433		save_snapdump = 0;
434		break;
435	case MPI3MR_BSG_ADPRESET_DIAG_FAULT:
436		save_snapdump = 1;
437		break;
438	default:
439		dprint_bsg_err(mrioc, "%s: unknown reset_type(%d)\n",
440		    __func__, adpreset.reset_type);
441		goto out;
442	}
443
444	rval = mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP,
445	    save_snapdump);
446
447	if (rval)
448		dprint_bsg_err(mrioc,
449		    "%s: reset handler returned error(%ld) for reset type %d\n",
450		    __func__, rval, adpreset.reset_type);
451out:
452	return rval;
453}
454
455/**
456 * mpi3mr_bsg_populate_adpinfo - Get adapter info command handler
457 * @mrioc: Adapter instance reference
458 * @job: BSG job reference
459 *
460 * This function provides adapter information for the given
461 * controller
462 *
463 * Return: 0 on success and proper error codes on failure
464 */
465static long mpi3mr_bsg_populate_adpinfo(struct mpi3mr_ioc *mrioc,
466	struct bsg_job *job)
467{
468	enum mpi3mr_iocstate ioc_state;
469	struct mpi3mr_bsg_in_adpinfo adpinfo;
470
471	memset(&adpinfo, 0, sizeof(adpinfo));
472	adpinfo.adp_type = MPI3MR_BSG_ADPTYPE_AVGFAMILY;
473	adpinfo.pci_dev_id = mrioc->pdev->device;
474	adpinfo.pci_dev_hw_rev = mrioc->pdev->revision;
475	adpinfo.pci_subsys_dev_id = mrioc->pdev->subsystem_device;
476	adpinfo.pci_subsys_ven_id = mrioc->pdev->subsystem_vendor;
477	adpinfo.pci_bus = mrioc->pdev->bus->number;
478	adpinfo.pci_dev = PCI_SLOT(mrioc->pdev->devfn);
479	adpinfo.pci_func = PCI_FUNC(mrioc->pdev->devfn);
480	adpinfo.pci_seg_id = pci_domain_nr(mrioc->pdev->bus);
481	adpinfo.app_intfc_ver = MPI3MR_IOCTL_VERSION;
482
483	ioc_state = mpi3mr_get_iocstate(mrioc);
484	if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
485		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
486	else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
487		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
488	else if (ioc_state == MRIOC_STATE_FAULT)
489		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
490	else
491		adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
492
493	memcpy((u8 *)&adpinfo.driver_info, (u8 *)&mrioc->driver_info,
494	    sizeof(adpinfo.driver_info));
495
496	if (job->request_payload.payload_len >= sizeof(adpinfo)) {
497		sg_copy_from_buffer(job->request_payload.sg_list,
498				    job->request_payload.sg_cnt,
499				    &adpinfo, sizeof(adpinfo));
500		return 0;
501	}
502	return -EINVAL;
503}
504
505/**
506 * mpi3mr_bsg_process_drv_cmds - Driver Command handler
507 * @job: BSG job reference
508 *
509 * This function is the top level handler for driver commands,
510 * this does basic validation of the buffer and identifies the
511 * opcode and switches to correct sub handler.
512 *
513 * Return: 0 on success and proper error codes on failure
514 */
515static long mpi3mr_bsg_process_drv_cmds(struct bsg_job *job)
516{
517	long rval = -EINVAL;
518	struct mpi3mr_ioc *mrioc = NULL;
519	struct mpi3mr_bsg_packet *bsg_req = NULL;
520	struct mpi3mr_bsg_drv_cmd *drvrcmd = NULL;
521
522	bsg_req = job->request;
523	drvrcmd = &bsg_req->cmd.drvrcmd;
524
525	mrioc = mpi3mr_bsg_verify_adapter(drvrcmd->mrioc_id);
526	if (!mrioc)
527		return -ENODEV;
528
529	if (drvrcmd->opcode == MPI3MR_DRVBSG_OPCODE_ADPINFO) {
530		rval = mpi3mr_bsg_populate_adpinfo(mrioc, job);
531		return rval;
532	}
533
534	if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex))
535		return -ERESTARTSYS;
536
537	switch (drvrcmd->opcode) {
538	case MPI3MR_DRVBSG_OPCODE_ADPRESET:
539		rval = mpi3mr_bsg_adp_reset(mrioc, job);
540		break;
541	case MPI3MR_DRVBSG_OPCODE_ALLTGTDEVINFO:
542		rval = mpi3mr_get_all_tgt_info(mrioc, job);
543		break;
544	case MPI3MR_DRVBSG_OPCODE_GETCHGCNT:
545		rval = mpi3mr_get_change_count(mrioc, job);
546		break;
547	case MPI3MR_DRVBSG_OPCODE_LOGDATAENABLE:
548		rval = mpi3mr_enable_logdata(mrioc, job);
549		break;
550	case MPI3MR_DRVBSG_OPCODE_GETLOGDATA:
551		rval = mpi3mr_get_logdata(mrioc, job);
552		break;
553	case MPI3MR_DRVBSG_OPCODE_PELENABLE:
554		rval = mpi3mr_bsg_pel_enable(mrioc, job);
555		break;
556	case MPI3MR_DRVBSG_OPCODE_UNKNOWN:
557	default:
558		pr_err("%s: unsupported driver command opcode %d\n",
559		    MPI3MR_DRIVER_NAME, drvrcmd->opcode);
560		break;
561	}
562	mutex_unlock(&mrioc->bsg_cmds.mutex);
563	return rval;
564}
565
566/**
567 * mpi3mr_total_num_ioctl_sges - Count number of SGEs required
568 * @drv_bufs: DMA address of the buffers to be placed in sgl
569 * @bufcnt: Number of DMA buffers
570 *
571 * This function returns total number of data SGEs required
572 * including zero length SGEs and excluding management request
573 * and response buffer for the given list of data buffer
574 * descriptors
575 *
576 * Return: Number of SGE elements needed
577 */
578static inline u16 mpi3mr_total_num_ioctl_sges(struct mpi3mr_buf_map *drv_bufs,
579					      u8 bufcnt)
580{
581	u16 i, sge_count = 0;
582
583	for (i = 0; i < bufcnt; i++, drv_bufs++) {
584		if (drv_bufs->data_dir == DMA_NONE ||
585		    drv_bufs->kern_buf)
586			continue;
587		sge_count += drv_bufs->num_dma_desc;
588		if (!drv_bufs->num_dma_desc)
589			sge_count++;
590	}
591	return sge_count;
592}
593
594/**
595 * mpi3mr_bsg_build_sgl - SGL construction for MPI commands
596 * @mrioc: Adapter instance reference
597 * @mpi_req: MPI request
598 * @sgl_offset: offset to start sgl in the MPI request
599 * @drv_bufs: DMA address of the buffers to be placed in sgl
600 * @bufcnt: Number of DMA buffers
601 * @is_rmc: Does the buffer list has management command buffer
602 * @is_rmr: Does the buffer list has management response buffer
603 * @num_datasges: Number of data buffers in the list
604 *
605 * This function places the DMA address of the given buffers in
606 * proper format as SGEs in the given MPI request.
607 *
608 * Return: 0 on success,-1 on failure
609 */
610static int mpi3mr_bsg_build_sgl(struct mpi3mr_ioc *mrioc, u8 *mpi_req,
611				u32 sgl_offset, struct mpi3mr_buf_map *drv_bufs,
612				u8 bufcnt, u8 is_rmc, u8 is_rmr, u8 num_datasges)
613{
614	struct mpi3_request_header *mpi_header =
615		(struct mpi3_request_header *)mpi_req;
616	u8 *sgl = (mpi_req + sgl_offset), count = 0;
617	struct mpi3_mgmt_passthrough_request *rmgmt_req =
618	    (struct mpi3_mgmt_passthrough_request *)mpi_req;
619	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
620	u8 flag, sgl_flags, sgl_flag_eob, sgl_flags_last, last_chain_sgl_flag;
621	u16 available_sges, i, sges_needed;
622	u32 sge_element_size = sizeof(struct mpi3_sge_common);
623	bool chain_used = false;
624
625	sgl_flags = MPI3_SGE_FLAGS_ELEMENT_TYPE_SIMPLE |
626		MPI3_SGE_FLAGS_DLAS_SYSTEM;
627	sgl_flag_eob = sgl_flags | MPI3_SGE_FLAGS_END_OF_BUFFER;
628	sgl_flags_last = sgl_flag_eob | MPI3_SGE_FLAGS_END_OF_LIST;
629	last_chain_sgl_flag = MPI3_SGE_FLAGS_ELEMENT_TYPE_LAST_CHAIN |
630	    MPI3_SGE_FLAGS_DLAS_SYSTEM;
631
632	sges_needed = mpi3mr_total_num_ioctl_sges(drv_bufs, bufcnt);
633
634	if (is_rmc) {
635		mpi3mr_add_sg_single(&rmgmt_req->command_sgl,
636		    sgl_flags_last, drv_buf_iter->kern_buf_len,
637		    drv_buf_iter->kern_buf_dma);
638		sgl = (u8 *)drv_buf_iter->kern_buf +
639			drv_buf_iter->bsg_buf_len;
640		available_sges = (drv_buf_iter->kern_buf_len -
641		    drv_buf_iter->bsg_buf_len) / sge_element_size;
642
643		if (sges_needed > available_sges)
644			return -1;
645
646		chain_used = true;
647		drv_buf_iter++;
648		count++;
649		if (is_rmr) {
650			mpi3mr_add_sg_single(&rmgmt_req->response_sgl,
651			    sgl_flags_last, drv_buf_iter->kern_buf_len,
652			    drv_buf_iter->kern_buf_dma);
653			drv_buf_iter++;
654			count++;
655		} else
656			mpi3mr_build_zero_len_sge(
657			    &rmgmt_req->response_sgl);
658		if (num_datasges) {
659			i = 0;
660			goto build_sges;
661		}
662	} else {
663		if (sgl_offset >= MPI3MR_ADMIN_REQ_FRAME_SZ)
664			return -1;
665		available_sges = (MPI3MR_ADMIN_REQ_FRAME_SZ - sgl_offset) /
666		sge_element_size;
667		if (!available_sges)
668			return -1;
669	}
670	if (!num_datasges) {
671		mpi3mr_build_zero_len_sge(sgl);
672		return 0;
673	}
674	if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
675		if ((sges_needed > 2) || (sges_needed > available_sges))
676			return -1;
677		for (; count < bufcnt; count++, drv_buf_iter++) {
678			if (drv_buf_iter->data_dir == DMA_NONE ||
679			    !drv_buf_iter->num_dma_desc)
680				continue;
681			mpi3mr_add_sg_single(sgl, sgl_flags_last,
682					     drv_buf_iter->dma_desc[0].size,
683					     drv_buf_iter->dma_desc[0].dma_addr);
684			sgl += sge_element_size;
685		}
686		return 0;
687	}
688	i = 0;
689
690build_sges:
691	for (; count < bufcnt; count++, drv_buf_iter++) {
692		if (drv_buf_iter->data_dir == DMA_NONE)
693			continue;
694		if (!drv_buf_iter->num_dma_desc) {
695			if (chain_used && !available_sges)
696				return -1;
697			if (!chain_used && (available_sges == 1) &&
698			    (sges_needed > 1))
699				goto setup_chain;
700			flag = sgl_flag_eob;
701			if (num_datasges == 1)
702				flag = sgl_flags_last;
703			mpi3mr_add_sg_single(sgl, flag, 0, 0);
704			sgl += sge_element_size;
705			sges_needed--;
706			available_sges--;
707			num_datasges--;
708			continue;
709		}
710		for (; i < drv_buf_iter->num_dma_desc; i++) {
711			if (chain_used && !available_sges)
712				return -1;
713			if (!chain_used && (available_sges == 1) &&
714			    (sges_needed > 1))
715				goto setup_chain;
716			flag = sgl_flags;
717			if (i == (drv_buf_iter->num_dma_desc - 1)) {
718				if (num_datasges == 1)
719					flag = sgl_flags_last;
720				else
721					flag = sgl_flag_eob;
722			}
723
724			mpi3mr_add_sg_single(sgl, flag,
725					     drv_buf_iter->dma_desc[i].size,
726					     drv_buf_iter->dma_desc[i].dma_addr);
727			sgl += sge_element_size;
728			available_sges--;
729			sges_needed--;
730		}
731		num_datasges--;
732		i = 0;
733	}
734	return 0;
735
736setup_chain:
737	available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
738	if (sges_needed > available_sges)
739		return -1;
740	mpi3mr_add_sg_single(sgl, last_chain_sgl_flag,
741			     (sges_needed * sge_element_size),
742			     mrioc->ioctl_chain_sge.dma_addr);
743	memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
744	sgl = (u8 *)mrioc->ioctl_chain_sge.addr;
745	chain_used = true;
746	goto build_sges;
747}
748
749/**
750 * mpi3mr_get_nvme_data_fmt - returns the NVMe data format
751 * @nvme_encap_request: NVMe encapsulated MPI request
752 *
753 * This function returns the type of the data format specified
754 * in user provided NVMe command in NVMe encapsulated request.
755 *
756 * Return: Data format of the NVMe command (PRP/SGL etc)
757 */
758static unsigned int mpi3mr_get_nvme_data_fmt(
759	struct mpi3_nvme_encapsulated_request *nvme_encap_request)
760{
761	u8 format = 0;
762
763	format = ((nvme_encap_request->command[0] & 0xc000) >> 14);
764	return format;
765
766}
767
768/**
769 * mpi3mr_build_nvme_sgl - SGL constructor for NVME
770 *				   encapsulated request
771 * @mrioc: Adapter instance reference
772 * @nvme_encap_request: NVMe encapsulated MPI request
773 * @drv_bufs: DMA address of the buffers to be placed in sgl
774 * @bufcnt: Number of DMA buffers
775 *
776 * This function places the DMA address of the given buffers in
777 * proper format as SGEs in the given NVMe encapsulated request.
778 *
779 * Return: 0 on success, -1 on failure
780 */
781static int mpi3mr_build_nvme_sgl(struct mpi3mr_ioc *mrioc,
782	struct mpi3_nvme_encapsulated_request *nvme_encap_request,
783	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
784{
785	struct mpi3mr_nvme_pt_sge *nvme_sgl;
786	__le64 sgl_dma;
787	u8 count;
788	size_t length = 0;
789	u16 available_sges = 0, i;
790	u32 sge_element_size = sizeof(struct mpi3mr_nvme_pt_sge);
791	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
792	u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
793			    mrioc->facts.sge_mod_shift) << 32);
794	u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
795			  mrioc->facts.sge_mod_shift) << 32;
796	u32 size;
797
798	nvme_sgl = (struct mpi3mr_nvme_pt_sge *)
799	    ((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_SGL_OFFSET);
800
801	/*
802	 * Not all commands require a data transfer. If no data, just return
803	 * without constructing any sgl.
804	 */
805	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
806		if (drv_buf_iter->data_dir == DMA_NONE)
807			continue;
808		length = drv_buf_iter->kern_buf_len;
809		break;
810	}
811	if (!length || !drv_buf_iter->num_dma_desc)
812		return 0;
813
814	if (drv_buf_iter->num_dma_desc == 1) {
815		available_sges = 1;
816		goto build_sges;
817	}
818
819	sgl_dma = cpu_to_le64(mrioc->ioctl_chain_sge.dma_addr);
820	if (sgl_dma & sgemod_mask) {
821		dprint_bsg_err(mrioc,
822		    "%s: SGL chain address collides with SGE modifier\n",
823		    __func__);
824		return -1;
825	}
826
827	sgl_dma &= ~sgemod_mask;
828	sgl_dma |= sgemod_val;
829
830	memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
831	available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
832	if (available_sges < drv_buf_iter->num_dma_desc)
833		return -1;
834	memset(nvme_sgl, 0, sizeof(struct mpi3mr_nvme_pt_sge));
835	nvme_sgl->base_addr = sgl_dma;
836	size = drv_buf_iter->num_dma_desc * sizeof(struct mpi3mr_nvme_pt_sge);
837	nvme_sgl->length = cpu_to_le32(size);
838	nvme_sgl->type = MPI3MR_NVMESGL_LAST_SEGMENT;
839	nvme_sgl = (struct mpi3mr_nvme_pt_sge *)mrioc->ioctl_chain_sge.addr;
840
841build_sges:
842	for (i = 0; i < drv_buf_iter->num_dma_desc; i++) {
843		sgl_dma = cpu_to_le64(drv_buf_iter->dma_desc[i].dma_addr);
844		if (sgl_dma & sgemod_mask) {
845			dprint_bsg_err(mrioc,
846				       "%s: SGL address collides with SGE modifier\n",
847				       __func__);
848		return -1;
849		}
850
851		sgl_dma &= ~sgemod_mask;
852		sgl_dma |= sgemod_val;
853
854		nvme_sgl->base_addr = sgl_dma;
855		nvme_sgl->length = cpu_to_le32(drv_buf_iter->dma_desc[i].size);
856		nvme_sgl->type = MPI3MR_NVMESGL_DATA_SEGMENT;
857		nvme_sgl++;
858		available_sges--;
859	}
860
861	return 0;
862}
863
864/**
865 * mpi3mr_build_nvme_prp - PRP constructor for NVME
866 *			       encapsulated request
867 * @mrioc: Adapter instance reference
868 * @nvme_encap_request: NVMe encapsulated MPI request
869 * @drv_bufs: DMA address of the buffers to be placed in SGL
870 * @bufcnt: Number of DMA buffers
871 *
872 * This function places the DMA address of the given buffers in
873 * proper format as PRP entries in the given NVMe encapsulated
874 * request.
875 *
876 * Return: 0 on success, -1 on failure
877 */
878static int mpi3mr_build_nvme_prp(struct mpi3mr_ioc *mrioc,
879	struct mpi3_nvme_encapsulated_request *nvme_encap_request,
880	struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
881{
882	int prp_size = MPI3MR_NVME_PRP_SIZE;
883	__le64 *prp_entry, *prp1_entry, *prp2_entry;
884	__le64 *prp_page;
885	dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
886	u32 offset, entry_len, dev_pgsz;
887	u32 page_mask_result, page_mask;
888	size_t length = 0, desc_len;
889	u8 count;
890	struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
891	u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
892			    mrioc->facts.sge_mod_shift) << 32);
893	u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
894			  mrioc->facts.sge_mod_shift) << 32;
895	u16 dev_handle = nvme_encap_request->dev_handle;
896	struct mpi3mr_tgt_dev *tgtdev;
897	u16 desc_count = 0;
898
899	tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
900	if (!tgtdev) {
901		dprint_bsg_err(mrioc, "%s: invalid device handle 0x%04x\n",
902			__func__, dev_handle);
903		return -1;
904	}
905
906	if (tgtdev->dev_spec.pcie_inf.pgsz == 0) {
907		dprint_bsg_err(mrioc,
908		    "%s: NVMe device page size is zero for handle 0x%04x\n",
909		    __func__, dev_handle);
910		mpi3mr_tgtdev_put(tgtdev);
911		return -1;
912	}
913
914	dev_pgsz = 1 << (tgtdev->dev_spec.pcie_inf.pgsz);
915	mpi3mr_tgtdev_put(tgtdev);
916	page_mask = dev_pgsz - 1;
917
918	if (dev_pgsz > MPI3MR_IOCTL_SGE_SIZE) {
919		dprint_bsg_err(mrioc,
920			       "%s: NVMe device page size(%d) is greater than ioctl data sge size(%d) for handle 0x%04x\n",
921			       __func__, dev_pgsz,  MPI3MR_IOCTL_SGE_SIZE, dev_handle);
922		return -1;
923	}
924
925	if (MPI3MR_IOCTL_SGE_SIZE % dev_pgsz) {
926		dprint_bsg_err(mrioc,
927			       "%s: ioctl data sge size(%d) is not a multiple of NVMe device page size(%d) for handle 0x%04x\n",
928			       __func__, MPI3MR_IOCTL_SGE_SIZE, dev_pgsz, dev_handle);
929		return -1;
930	}
931
932	/*
933	 * Not all commands require a data transfer. If no data, just return
934	 * without constructing any PRP.
935	 */
936	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
937		if (drv_buf_iter->data_dir == DMA_NONE)
938			continue;
939		length = drv_buf_iter->kern_buf_len;
940		break;
941	}
942
943	if (!length || !drv_buf_iter->num_dma_desc)
944		return 0;
945
946	for (count = 0; count < drv_buf_iter->num_dma_desc; count++) {
947		dma_addr = drv_buf_iter->dma_desc[count].dma_addr;
948		if (dma_addr & page_mask) {
949			dprint_bsg_err(mrioc,
950				       "%s:dma_addr %pad is not aligned with page size 0x%x\n",
951				       __func__,  &dma_addr, dev_pgsz);
952			return -1;
953		}
954	}
955
956	dma_addr = drv_buf_iter->dma_desc[0].dma_addr;
957	desc_len = drv_buf_iter->dma_desc[0].size;
958
959	mrioc->prp_sz = 0;
960	mrioc->prp_list_virt = dma_alloc_coherent(&mrioc->pdev->dev,
961	    dev_pgsz, &mrioc->prp_list_dma, GFP_KERNEL);
962
963	if (!mrioc->prp_list_virt)
964		return -1;
965	mrioc->prp_sz = dev_pgsz;
966
967	/*
968	 * Set pointers to PRP1 and PRP2, which are in the NVMe command.
969	 * PRP1 is located at a 24 byte offset from the start of the NVMe
970	 * command.  Then set the current PRP entry pointer to PRP1.
971	 */
972	prp1_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
973	    MPI3MR_NVME_CMD_PRP1_OFFSET);
974	prp2_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
975	    MPI3MR_NVME_CMD_PRP2_OFFSET);
976	prp_entry = prp1_entry;
977	/*
978	 * For the PRP entries, use the specially allocated buffer of
979	 * contiguous memory.
980	 */
981	prp_page = (__le64 *)mrioc->prp_list_virt;
982	prp_page_dma = mrioc->prp_list_dma;
983
984	/*
985	 * Check if we are within 1 entry of a page boundary we don't
986	 * want our first entry to be a PRP List entry.
987	 */
988	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
989	if (!page_mask_result) {
990		dprint_bsg_err(mrioc, "%s: PRP page is not page aligned\n",
991		    __func__);
992		goto err_out;
993	}
994
995	/*
996	 * Set PRP physical pointer, which initially points to the current PRP
997	 * DMA memory page.
998	 */
999	prp_entry_dma = prp_page_dma;
1000
1001
1002	/* Loop while the length is not zero. */
1003	while (length) {
1004		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
1005		if (!page_mask_result && (length >  dev_pgsz)) {
1006			dprint_bsg_err(mrioc,
1007			    "%s: single PRP page is not sufficient\n",
1008			    __func__);
1009			goto err_out;
1010		}
1011
1012		/* Need to handle if entry will be part of a page. */
1013		offset = dma_addr & page_mask;
1014		entry_len = dev_pgsz - offset;
1015
1016		if (prp_entry == prp1_entry) {
1017			/*
1018			 * Must fill in the first PRP pointer (PRP1) before
1019			 * moving on.
1020			 */
1021			*prp1_entry = cpu_to_le64(dma_addr);
1022			if (*prp1_entry & sgemod_mask) {
1023				dprint_bsg_err(mrioc,
1024				    "%s: PRP1 address collides with SGE modifier\n",
1025				    __func__);
1026				goto err_out;
1027			}
1028			*prp1_entry &= ~sgemod_mask;
1029			*prp1_entry |= sgemod_val;
1030
1031			/*
1032			 * Now point to the second PRP entry within the
1033			 * command (PRP2).
1034			 */
1035			prp_entry = prp2_entry;
1036		} else if (prp_entry == prp2_entry) {
1037			/*
1038			 * Should the PRP2 entry be a PRP List pointer or just
1039			 * a regular PRP pointer?  If there is more than one
1040			 * more page of data, must use a PRP List pointer.
1041			 */
1042			if (length > dev_pgsz) {
1043				/*
1044				 * PRP2 will contain a PRP List pointer because
1045				 * more PRP's are needed with this command. The
1046				 * list will start at the beginning of the
1047				 * contiguous buffer.
1048				 */
1049				*prp2_entry = cpu_to_le64(prp_entry_dma);
1050				if (*prp2_entry & sgemod_mask) {
1051					dprint_bsg_err(mrioc,
1052					    "%s: PRP list address collides with SGE modifier\n",
1053					    __func__);
1054					goto err_out;
1055				}
1056				*prp2_entry &= ~sgemod_mask;
1057				*prp2_entry |= sgemod_val;
1058
1059				/*
1060				 * The next PRP Entry will be the start of the
1061				 * first PRP List.
1062				 */
1063				prp_entry = prp_page;
1064				continue;
1065			} else {
1066				/*
1067				 * After this, the PRP Entries are complete.
1068				 * This command uses 2 PRP's and no PRP list.
1069				 */
1070				*prp2_entry = cpu_to_le64(dma_addr);
1071				if (*prp2_entry & sgemod_mask) {
1072					dprint_bsg_err(mrioc,
1073					    "%s: PRP2 collides with SGE modifier\n",
1074					    __func__);
1075					goto err_out;
1076				}
1077				*prp2_entry &= ~sgemod_mask;
1078				*prp2_entry |= sgemod_val;
1079			}
1080		} else {
1081			/*
1082			 * Put entry in list and bump the addresses.
1083			 *
1084			 * After PRP1 and PRP2 are filled in, this will fill in
1085			 * all remaining PRP entries in a PRP List, one per
1086			 * each time through the loop.
1087			 */
1088			*prp_entry = cpu_to_le64(dma_addr);
1089			if (*prp_entry & sgemod_mask) {
1090				dprint_bsg_err(mrioc,
1091				    "%s: PRP address collides with SGE modifier\n",
1092				    __func__);
1093				goto err_out;
1094			}
1095			*prp_entry &= ~sgemod_mask;
1096			*prp_entry |= sgemod_val;
1097			prp_entry++;
1098			prp_entry_dma += prp_size;
1099		}
1100
1101		/* decrement length accounting for last partial page. */
1102		if (entry_len >= length) {
1103			length = 0;
1104		} else {
1105			if (entry_len <= desc_len) {
1106				dma_addr += entry_len;
1107				desc_len -= entry_len;
1108			}
1109			if (!desc_len) {
1110				if ((++desc_count) >=
1111				   drv_buf_iter->num_dma_desc) {
1112					dprint_bsg_err(mrioc,
1113						       "%s: Invalid len %zd while building PRP\n",
1114						       __func__, length);
1115					goto err_out;
1116				}
1117				dma_addr =
1118				    drv_buf_iter->dma_desc[desc_count].dma_addr;
1119				desc_len =
1120				    drv_buf_iter->dma_desc[desc_count].size;
1121			}
1122			length -= entry_len;
1123		}
1124	}
1125
1126	return 0;
1127err_out:
1128	if (mrioc->prp_list_virt) {
1129		dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
1130		    mrioc->prp_list_virt, mrioc->prp_list_dma);
1131		mrioc->prp_list_virt = NULL;
1132	}
1133	return -1;
1134}
1135
1136/**
1137 * mpi3mr_map_data_buffer_dma - build dma descriptors for data
1138 *                              buffers
1139 * @mrioc: Adapter instance reference
1140 * @drv_buf: buffer map descriptor
1141 * @desc_count: Number of already consumed dma descriptors
1142 *
1143 * This function computes how many pre-allocated DMA descriptors
1144 * are required for the given data buffer and if those number of
1145 * descriptors are free, then setup the mapping of the scattered
1146 * DMA address to the given data buffer, if the data direction
1147 * of the buffer is DMA_TO_DEVICE then the actual data is copied to
1148 * the DMA buffers
1149 *
1150 * Return: 0 on success, -1 on failure
1151 */
1152static int mpi3mr_map_data_buffer_dma(struct mpi3mr_ioc *mrioc,
1153				      struct mpi3mr_buf_map *drv_buf,
1154				      u16 desc_count)
1155{
1156	u16 i, needed_desc = drv_buf->kern_buf_len / MPI3MR_IOCTL_SGE_SIZE;
1157	u32 buf_len = drv_buf->kern_buf_len, copied_len = 0;
1158
1159	if (drv_buf->kern_buf_len % MPI3MR_IOCTL_SGE_SIZE)
1160		needed_desc++;
1161	if ((needed_desc + desc_count) > MPI3MR_NUM_IOCTL_SGE) {
1162		dprint_bsg_err(mrioc, "%s: DMA descriptor mapping error %d:%d:%d\n",
1163			       __func__, needed_desc, desc_count, MPI3MR_NUM_IOCTL_SGE);
1164		return -1;
1165	}
1166	drv_buf->dma_desc = kzalloc(sizeof(*drv_buf->dma_desc) * needed_desc,
1167				    GFP_KERNEL);
1168	if (!drv_buf->dma_desc)
1169		return -1;
1170	for (i = 0; i < needed_desc; i++, desc_count++) {
1171		drv_buf->dma_desc[i].addr = mrioc->ioctl_sge[desc_count].addr;
1172		drv_buf->dma_desc[i].dma_addr =
1173		    mrioc->ioctl_sge[desc_count].dma_addr;
1174		if (buf_len < mrioc->ioctl_sge[desc_count].size)
1175			drv_buf->dma_desc[i].size = buf_len;
1176		else
1177			drv_buf->dma_desc[i].size =
1178			    mrioc->ioctl_sge[desc_count].size;
1179		buf_len -= drv_buf->dma_desc[i].size;
1180		memset(drv_buf->dma_desc[i].addr, 0,
1181		       mrioc->ioctl_sge[desc_count].size);
1182		if (drv_buf->data_dir == DMA_TO_DEVICE) {
1183			memcpy(drv_buf->dma_desc[i].addr,
1184			       drv_buf->bsg_buf + copied_len,
1185			       drv_buf->dma_desc[i].size);
1186			copied_len += drv_buf->dma_desc[i].size;
1187		}
1188	}
1189	drv_buf->num_dma_desc = needed_desc;
1190	return 0;
1191}
1192/**
1193 * mpi3mr_bsg_process_mpt_cmds - MPI Pass through BSG handler
1194 * @job: BSG job reference
1195 *
1196 * This function is the top level handler for MPI Pass through
1197 * command, this does basic validation of the input data buffers,
1198 * identifies the given buffer types and MPI command, allocates
1199 * DMAable memory for user given buffers, construstcs SGL
1200 * properly and passes the command to the firmware.
1201 *
1202 * Once the MPI command is completed the driver copies the data
1203 * if any and reply, sense information to user provided buffers.
1204 * If the command is timed out then issues controller reset
1205 * prior to returning.
1206 *
1207 * Return: 0 on success and proper error codes on failure
1208 */
1209
1210static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job)
1211{
1212	long rval = -EINVAL;
1213	struct mpi3mr_ioc *mrioc = NULL;
1214	u8 *mpi_req = NULL, *sense_buff_k = NULL;
1215	u8 mpi_msg_size = 0;
1216	struct mpi3mr_bsg_packet *bsg_req = NULL;
1217	struct mpi3mr_bsg_mptcmd *karg;
1218	struct mpi3mr_buf_entry *buf_entries = NULL;
1219	struct mpi3mr_buf_map *drv_bufs = NULL, *drv_buf_iter = NULL;
1220	u8 count, bufcnt = 0, is_rmcb = 0, is_rmrb = 0;
1221	u8 din_cnt = 0, dout_cnt = 0;
1222	u8 invalid_be = 0, erb_offset = 0xFF, mpirep_offset = 0xFF;
1223	u8 block_io = 0, nvme_fmt = 0, resp_code = 0;
1224	struct mpi3_request_header *mpi_header = NULL;
1225	struct mpi3_status_reply_descriptor *status_desc;
1226	struct mpi3_scsi_task_mgmt_request *tm_req;
1227	u32 erbsz = MPI3MR_SENSE_BUF_SZ, tmplen;
1228	u16 dev_handle;
1229	struct mpi3mr_tgt_dev *tgtdev;
1230	struct mpi3mr_stgt_priv_data *stgt_priv = NULL;
1231	struct mpi3mr_bsg_in_reply_buf *bsg_reply_buf = NULL;
1232	u32 din_size = 0, dout_size = 0;
1233	u8 *din_buf = NULL, *dout_buf = NULL;
1234	u8 *sgl_iter = NULL, *sgl_din_iter = NULL, *sgl_dout_iter = NULL;
1235	u16 rmc_size  = 0, desc_count = 0;
1236
1237	bsg_req = job->request;
1238	karg = (struct mpi3mr_bsg_mptcmd *)&bsg_req->cmd.mptcmd;
1239
1240	mrioc = mpi3mr_bsg_verify_adapter(karg->mrioc_id);
1241	if (!mrioc)
1242		return -ENODEV;
1243
1244	if (!mrioc->ioctl_sges_allocated) {
1245		dprint_bsg_err(mrioc, "%s: DMA memory was not allocated\n",
1246			       __func__);
1247		return -ENOMEM;
1248	}
1249
1250	if (karg->timeout < MPI3MR_APP_DEFAULT_TIMEOUT)
1251		karg->timeout = MPI3MR_APP_DEFAULT_TIMEOUT;
1252
1253	mpi_req = kzalloc(MPI3MR_ADMIN_REQ_FRAME_SZ, GFP_KERNEL);
1254	if (!mpi_req)
1255		return -ENOMEM;
1256	mpi_header = (struct mpi3_request_header *)mpi_req;
1257
1258	bufcnt = karg->buf_entry_list.num_of_entries;
1259	drv_bufs = kzalloc((sizeof(*drv_bufs) * bufcnt), GFP_KERNEL);
1260	if (!drv_bufs) {
1261		rval = -ENOMEM;
1262		goto out;
1263	}
1264
1265	dout_buf = kzalloc(job->request_payload.payload_len,
1266				      GFP_KERNEL);
1267	if (!dout_buf) {
1268		rval = -ENOMEM;
1269		goto out;
1270	}
1271
1272	din_buf = kzalloc(job->reply_payload.payload_len,
1273				     GFP_KERNEL);
1274	if (!din_buf) {
1275		rval = -ENOMEM;
1276		goto out;
1277	}
1278
1279	sg_copy_to_buffer(job->request_payload.sg_list,
1280			  job->request_payload.sg_cnt,
1281			  dout_buf, job->request_payload.payload_len);
1282
1283	buf_entries = karg->buf_entry_list.buf_entry;
1284	sgl_din_iter = din_buf;
1285	sgl_dout_iter = dout_buf;
1286	drv_buf_iter = drv_bufs;
1287
1288	for (count = 0; count < bufcnt; count++, buf_entries++, drv_buf_iter++) {
1289
1290		switch (buf_entries->buf_type) {
1291		case MPI3MR_BSG_BUFTYPE_RAIDMGMT_CMD:
1292			sgl_iter = sgl_dout_iter;
1293			sgl_dout_iter += buf_entries->buf_len;
1294			drv_buf_iter->data_dir = DMA_TO_DEVICE;
1295			is_rmcb = 1;
1296			if ((count != 0) || !buf_entries->buf_len)
1297				invalid_be = 1;
1298			break;
1299		case MPI3MR_BSG_BUFTYPE_RAIDMGMT_RESP:
1300			sgl_iter = sgl_din_iter;
1301			sgl_din_iter += buf_entries->buf_len;
1302			drv_buf_iter->data_dir = DMA_FROM_DEVICE;
1303			is_rmrb = 1;
1304			if (count != 1 || !is_rmcb || !buf_entries->buf_len)
1305				invalid_be = 1;
1306			break;
1307		case MPI3MR_BSG_BUFTYPE_DATA_IN:
1308			sgl_iter = sgl_din_iter;
1309			sgl_din_iter += buf_entries->buf_len;
1310			drv_buf_iter->data_dir = DMA_FROM_DEVICE;
1311			din_cnt++;
1312			din_size += buf_entries->buf_len;
1313			if ((din_cnt > 1) && !is_rmcb)
1314				invalid_be = 1;
1315			break;
1316		case MPI3MR_BSG_BUFTYPE_DATA_OUT:
1317			sgl_iter = sgl_dout_iter;
1318			sgl_dout_iter += buf_entries->buf_len;
1319			drv_buf_iter->data_dir = DMA_TO_DEVICE;
1320			dout_cnt++;
1321			dout_size += buf_entries->buf_len;
1322			if ((dout_cnt > 1) && !is_rmcb)
1323				invalid_be = 1;
1324			break;
1325		case MPI3MR_BSG_BUFTYPE_MPI_REPLY:
1326			sgl_iter = sgl_din_iter;
1327			sgl_din_iter += buf_entries->buf_len;
1328			drv_buf_iter->data_dir = DMA_NONE;
1329			mpirep_offset = count;
1330			if (!buf_entries->buf_len)
1331				invalid_be = 1;
1332			break;
1333		case MPI3MR_BSG_BUFTYPE_ERR_RESPONSE:
1334			sgl_iter = sgl_din_iter;
1335			sgl_din_iter += buf_entries->buf_len;
1336			drv_buf_iter->data_dir = DMA_NONE;
1337			erb_offset = count;
1338			if (!buf_entries->buf_len)
1339				invalid_be = 1;
1340			break;
1341		case MPI3MR_BSG_BUFTYPE_MPI_REQUEST:
1342			sgl_iter = sgl_dout_iter;
1343			sgl_dout_iter += buf_entries->buf_len;
1344			drv_buf_iter->data_dir = DMA_NONE;
1345			mpi_msg_size = buf_entries->buf_len;
1346			if ((!mpi_msg_size || (mpi_msg_size % 4)) ||
1347					(mpi_msg_size > MPI3MR_ADMIN_REQ_FRAME_SZ)) {
1348				dprint_bsg_err(mrioc, "%s: invalid MPI message size\n",
1349					__func__);
1350				rval = -EINVAL;
1351				goto out;
1352			}
1353			memcpy(mpi_req, sgl_iter, buf_entries->buf_len);
1354			break;
1355		default:
1356			invalid_be = 1;
1357			break;
1358		}
1359		if (invalid_be) {
1360			dprint_bsg_err(mrioc, "%s: invalid buffer entries passed\n",
1361				__func__);
1362			rval = -EINVAL;
1363			goto out;
1364		}
1365
1366		if (sgl_dout_iter > (dout_buf + job->request_payload.payload_len)) {
1367			dprint_bsg_err(mrioc, "%s: data_out buffer length mismatch\n",
1368				       __func__);
1369			rval = -EINVAL;
1370			goto out;
1371		}
1372		if (sgl_din_iter > (din_buf + job->reply_payload.payload_len)) {
1373			dprint_bsg_err(mrioc, "%s: data_in buffer length mismatch\n",
1374				       __func__);
1375			rval = -EINVAL;
1376			goto out;
1377		}
1378
1379		drv_buf_iter->bsg_buf = sgl_iter;
1380		drv_buf_iter->bsg_buf_len = buf_entries->buf_len;
1381	}
1382
1383	if (is_rmcb && ((din_size + dout_size) > MPI3MR_MAX_APP_XFER_SIZE)) {
1384		dprint_bsg_err(mrioc, "%s:%d: invalid data transfer size passed for function 0x%x din_size = %d, dout_size = %d\n",
1385			       __func__, __LINE__, mpi_header->function, din_size,
1386			       dout_size);
1387		rval = -EINVAL;
1388		goto out;
1389	}
1390
1391	if (din_size > MPI3MR_MAX_APP_XFER_SIZE) {
1392		dprint_bsg_err(mrioc,
1393		    "%s:%d: invalid data transfer size passed for function 0x%x din_size=%d\n",
1394		    __func__, __LINE__, mpi_header->function, din_size);
1395		rval = -EINVAL;
1396		goto out;
1397	}
1398	if (dout_size > MPI3MR_MAX_APP_XFER_SIZE) {
1399		dprint_bsg_err(mrioc,
1400		    "%s:%d: invalid data transfer size passed for function 0x%x dout_size = %d\n",
1401		    __func__, __LINE__, mpi_header->function, dout_size);
1402		rval = -EINVAL;
1403		goto out;
1404	}
1405
1406	if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
1407		if (din_size > MPI3MR_IOCTL_SGE_SIZE ||
1408		    dout_size > MPI3MR_IOCTL_SGE_SIZE) {
1409			dprint_bsg_err(mrioc, "%s:%d: invalid message size passed:%d:%d:%d:%d\n",
1410				       __func__, __LINE__, din_cnt, dout_cnt, din_size,
1411			    dout_size);
1412			rval = -EINVAL;
1413			goto out;
1414		}
1415	}
1416
1417	drv_buf_iter = drv_bufs;
1418	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1419		if (drv_buf_iter->data_dir == DMA_NONE)
1420			continue;
1421
1422		drv_buf_iter->kern_buf_len = drv_buf_iter->bsg_buf_len;
1423		if (is_rmcb && !count) {
1424			drv_buf_iter->kern_buf_len =
1425			    mrioc->ioctl_chain_sge.size;
1426			drv_buf_iter->kern_buf =
1427			    mrioc->ioctl_chain_sge.addr;
1428			drv_buf_iter->kern_buf_dma =
1429			    mrioc->ioctl_chain_sge.dma_addr;
1430			drv_buf_iter->dma_desc = NULL;
1431			drv_buf_iter->num_dma_desc = 0;
1432			memset(drv_buf_iter->kern_buf, 0,
1433			       drv_buf_iter->kern_buf_len);
1434			tmplen = min(drv_buf_iter->kern_buf_len,
1435				     drv_buf_iter->bsg_buf_len);
1436			rmc_size = tmplen;
1437			memcpy(drv_buf_iter->kern_buf, drv_buf_iter->bsg_buf, tmplen);
1438		} else if (is_rmrb && (count == 1)) {
1439			drv_buf_iter->kern_buf_len =
1440			    mrioc->ioctl_resp_sge.size;
1441			drv_buf_iter->kern_buf =
1442			    mrioc->ioctl_resp_sge.addr;
1443			drv_buf_iter->kern_buf_dma =
1444			    mrioc->ioctl_resp_sge.dma_addr;
1445			drv_buf_iter->dma_desc = NULL;
1446			drv_buf_iter->num_dma_desc = 0;
1447			memset(drv_buf_iter->kern_buf, 0,
1448			       drv_buf_iter->kern_buf_len);
1449			tmplen = min(drv_buf_iter->kern_buf_len,
1450				     drv_buf_iter->bsg_buf_len);
1451			drv_buf_iter->kern_buf_len = tmplen;
1452			memset(drv_buf_iter->bsg_buf, 0,
1453			       drv_buf_iter->bsg_buf_len);
1454		} else {
1455			if (!drv_buf_iter->kern_buf_len)
1456				continue;
1457			if (mpi3mr_map_data_buffer_dma(mrioc, drv_buf_iter, desc_count)) {
1458				rval = -ENOMEM;
1459				dprint_bsg_err(mrioc, "%s:%d: mapping data buffers failed\n",
1460					       __func__, __LINE__);
1461			goto out;
1462		}
1463			desc_count += drv_buf_iter->num_dma_desc;
1464		}
1465	}
1466
1467	if (erb_offset != 0xFF) {
1468		sense_buff_k = kzalloc(erbsz, GFP_KERNEL);
1469		if (!sense_buff_k) {
1470			rval = -ENOMEM;
1471			goto out;
1472		}
1473	}
1474
1475	if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) {
1476		rval = -ERESTARTSYS;
1477		goto out;
1478	}
1479	if (mrioc->bsg_cmds.state & MPI3MR_CMD_PENDING) {
1480		rval = -EAGAIN;
1481		dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
1482		mutex_unlock(&mrioc->bsg_cmds.mutex);
1483		goto out;
1484	}
1485	if (mrioc->unrecoverable) {
1486		dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
1487		    __func__);
1488		rval = -EFAULT;
1489		mutex_unlock(&mrioc->bsg_cmds.mutex);
1490		goto out;
1491	}
1492	if (mrioc->reset_in_progress) {
1493		dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
1494		rval = -EAGAIN;
1495		mutex_unlock(&mrioc->bsg_cmds.mutex);
1496		goto out;
1497	}
1498	if (mrioc->stop_bsgs) {
1499		dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
1500		rval = -EAGAIN;
1501		mutex_unlock(&mrioc->bsg_cmds.mutex);
1502		goto out;
1503	}
1504
1505	if (mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) {
1506		nvme_fmt = mpi3mr_get_nvme_data_fmt(
1507			(struct mpi3_nvme_encapsulated_request *)mpi_req);
1508		if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_PRP) {
1509			if (mpi3mr_build_nvme_prp(mrioc,
1510			    (struct mpi3_nvme_encapsulated_request *)mpi_req,
1511			    drv_bufs, bufcnt)) {
1512				rval = -ENOMEM;
1513				mutex_unlock(&mrioc->bsg_cmds.mutex);
1514				goto out;
1515			}
1516		} else if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL1 ||
1517			nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL2) {
1518			if (mpi3mr_build_nvme_sgl(mrioc,
1519			    (struct mpi3_nvme_encapsulated_request *)mpi_req,
1520			    drv_bufs, bufcnt)) {
1521				rval = -EINVAL;
1522				mutex_unlock(&mrioc->bsg_cmds.mutex);
1523				goto out;
1524			}
1525		} else {
1526			dprint_bsg_err(mrioc,
1527			    "%s:invalid NVMe command format\n", __func__);
1528			rval = -EINVAL;
1529			mutex_unlock(&mrioc->bsg_cmds.mutex);
1530			goto out;
1531		}
1532	} else {
1533		if (mpi3mr_bsg_build_sgl(mrioc, mpi_req, mpi_msg_size,
1534					 drv_bufs, bufcnt, is_rmcb, is_rmrb,
1535					 (dout_cnt + din_cnt))) {
1536			dprint_bsg_err(mrioc, "%s: sgl build failed\n", __func__);
1537			rval = -EAGAIN;
1538			mutex_unlock(&mrioc->bsg_cmds.mutex);
1539			goto out;
1540		}
1541	}
1542
1543	if (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_TASK_MGMT) {
1544		tm_req = (struct mpi3_scsi_task_mgmt_request *)mpi_req;
1545		if (tm_req->task_type !=
1546		    MPI3_SCSITASKMGMT_TASKTYPE_ABORT_TASK) {
1547			dev_handle = tm_req->dev_handle;
1548			block_io = 1;
1549		}
1550	}
1551	if (block_io) {
1552		tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
1553		if (tgtdev && tgtdev->starget && tgtdev->starget->hostdata) {
1554			stgt_priv = (struct mpi3mr_stgt_priv_data *)
1555			    tgtdev->starget->hostdata;
1556			atomic_inc(&stgt_priv->block_io);
1557			mpi3mr_tgtdev_put(tgtdev);
1558		}
1559	}
1560
1561	mrioc->bsg_cmds.state = MPI3MR_CMD_PENDING;
1562	mrioc->bsg_cmds.is_waiting = 1;
1563	mrioc->bsg_cmds.callback = NULL;
1564	mrioc->bsg_cmds.is_sense = 0;
1565	mrioc->bsg_cmds.sensebuf = sense_buff_k;
1566	memset(mrioc->bsg_cmds.reply, 0, mrioc->reply_sz);
1567	mpi_header->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_BSG_CMDS);
1568	if (mrioc->logging_level & MPI3_DEBUG_BSG_INFO) {
1569		dprint_bsg_info(mrioc,
1570		    "%s: posting bsg request to the controller\n", __func__);
1571		dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
1572		    "bsg_mpi3_req");
1573		if (mpi_header->function == MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
1574			drv_buf_iter = &drv_bufs[0];
1575			dprint_dump(drv_buf_iter->kern_buf,
1576			    rmc_size, "mpi3_mgmt_req");
1577		}
1578	}
1579
1580	init_completion(&mrioc->bsg_cmds.done);
1581	rval = mpi3mr_admin_request_post(mrioc, mpi_req,
1582	    MPI3MR_ADMIN_REQ_FRAME_SZ, 0);
1583
1584
1585	if (rval) {
1586		mrioc->bsg_cmds.is_waiting = 0;
1587		dprint_bsg_err(mrioc,
1588		    "%s: posting bsg request is failed\n", __func__);
1589		rval = -EAGAIN;
1590		goto out_unlock;
1591	}
1592	wait_for_completion_timeout(&mrioc->bsg_cmds.done,
1593	    (karg->timeout * HZ));
1594	if (block_io && stgt_priv)
1595		atomic_dec(&stgt_priv->block_io);
1596	if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE)) {
1597		mrioc->bsg_cmds.is_waiting = 0;
1598		rval = -EAGAIN;
1599		if (mrioc->bsg_cmds.state & MPI3MR_CMD_RESET)
1600			goto out_unlock;
1601		dprint_bsg_err(mrioc,
1602		    "%s: bsg request timedout after %d seconds\n", __func__,
1603		    karg->timeout);
1604		if (mrioc->logging_level & MPI3_DEBUG_BSG_ERROR) {
1605			dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
1606			    "bsg_mpi3_req");
1607			if (mpi_header->function ==
1608			    MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
1609				drv_buf_iter = &drv_bufs[0];
1610				dprint_dump(drv_buf_iter->kern_buf,
1611				    rmc_size, "mpi3_mgmt_req");
1612			}
1613		}
1614		if ((mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) ||
1615		    (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO))
1616			mpi3mr_issue_tm(mrioc,
1617			    MPI3_SCSITASKMGMT_TASKTYPE_TARGET_RESET,
1618			    mpi_header->function_dependent, 0,
1619			    MPI3MR_HOSTTAG_BLK_TMS, MPI3MR_RESETTM_TIMEOUT,
1620			    &mrioc->host_tm_cmds, &resp_code, NULL);
1621		if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE) &&
1622		    !(mrioc->bsg_cmds.state & MPI3MR_CMD_RESET))
1623			mpi3mr_soft_reset_handler(mrioc,
1624			    MPI3MR_RESET_FROM_APP_TIMEOUT, 1);
1625		goto out_unlock;
1626	}
1627	dprint_bsg_info(mrioc, "%s: bsg request is completed\n", __func__);
1628
1629	if (mrioc->prp_list_virt) {
1630		dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
1631		    mrioc->prp_list_virt, mrioc->prp_list_dma);
1632		mrioc->prp_list_virt = NULL;
1633	}
1634
1635	if ((mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
1636	     != MPI3_IOCSTATUS_SUCCESS) {
1637		dprint_bsg_info(mrioc,
1638		    "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
1639		    __func__,
1640		    (mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
1641		    mrioc->bsg_cmds.ioc_loginfo);
1642	}
1643
1644	if ((mpirep_offset != 0xFF) &&
1645	    drv_bufs[mpirep_offset].bsg_buf_len) {
1646		drv_buf_iter = &drv_bufs[mpirep_offset];
1647		drv_buf_iter->kern_buf_len = (sizeof(*bsg_reply_buf) +
1648					   mrioc->reply_sz);
1649		bsg_reply_buf = kzalloc(drv_buf_iter->kern_buf_len, GFP_KERNEL);
1650
1651		if (!bsg_reply_buf) {
1652			rval = -ENOMEM;
1653			goto out_unlock;
1654		}
1655		if (mrioc->bsg_cmds.state & MPI3MR_CMD_REPLY_VALID) {
1656			bsg_reply_buf->mpi_reply_type =
1657				MPI3MR_BSG_MPI_REPLY_BUFTYPE_ADDRESS;
1658			memcpy(bsg_reply_buf->reply_buf,
1659			    mrioc->bsg_cmds.reply, mrioc->reply_sz);
1660		} else {
1661			bsg_reply_buf->mpi_reply_type =
1662				MPI3MR_BSG_MPI_REPLY_BUFTYPE_STATUS;
1663			status_desc = (struct mpi3_status_reply_descriptor *)
1664			    bsg_reply_buf->reply_buf;
1665			status_desc->ioc_status = mrioc->bsg_cmds.ioc_status;
1666			status_desc->ioc_log_info = mrioc->bsg_cmds.ioc_loginfo;
1667		}
1668		tmplen = min(drv_buf_iter->kern_buf_len,
1669			drv_buf_iter->bsg_buf_len);
1670		memcpy(drv_buf_iter->bsg_buf, bsg_reply_buf, tmplen);
1671	}
1672
1673	if (erb_offset != 0xFF && mrioc->bsg_cmds.sensebuf &&
1674	    mrioc->bsg_cmds.is_sense) {
1675		drv_buf_iter = &drv_bufs[erb_offset];
1676		tmplen = min(erbsz, drv_buf_iter->bsg_buf_len);
1677		memcpy(drv_buf_iter->bsg_buf, sense_buff_k, tmplen);
1678	}
1679
1680	drv_buf_iter = drv_bufs;
1681	for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1682		if (drv_buf_iter->data_dir == DMA_NONE)
1683			continue;
1684		if ((count == 1) && is_rmrb) {
1685			memcpy(drv_buf_iter->bsg_buf,
1686			    drv_buf_iter->kern_buf,
1687			    drv_buf_iter->kern_buf_len);
1688		} else if (drv_buf_iter->data_dir == DMA_FROM_DEVICE) {
1689			tmplen = 0;
1690			for (desc_count = 0;
1691			    desc_count < drv_buf_iter->num_dma_desc;
1692			    desc_count++) {
1693				memcpy(((u8 *)drv_buf_iter->bsg_buf + tmplen),
1694				       drv_buf_iter->dma_desc[desc_count].addr,
1695				       drv_buf_iter->dma_desc[desc_count].size);
1696				tmplen +=
1697				    drv_buf_iter->dma_desc[desc_count].size;
1698		}
1699	}
1700	}
1701
1702out_unlock:
1703	if (din_buf) {
1704		job->reply_payload_rcv_len =
1705			sg_copy_from_buffer(job->reply_payload.sg_list,
1706					    job->reply_payload.sg_cnt,
1707					    din_buf, job->reply_payload.payload_len);
1708	}
1709	mrioc->bsg_cmds.is_sense = 0;
1710	mrioc->bsg_cmds.sensebuf = NULL;
1711	mrioc->bsg_cmds.state = MPI3MR_CMD_NOTUSED;
1712	mutex_unlock(&mrioc->bsg_cmds.mutex);
1713out:
1714	kfree(sense_buff_k);
1715	kfree(dout_buf);
1716	kfree(din_buf);
1717	kfree(mpi_req);
1718	if (drv_bufs) {
1719		drv_buf_iter = drv_bufs;
1720		for (count = 0; count < bufcnt; count++, drv_buf_iter++)
1721			kfree(drv_buf_iter->dma_desc);
1722		kfree(drv_bufs);
1723	}
1724	kfree(bsg_reply_buf);
1725	return rval;
1726}
1727
1728/**
1729 * mpi3mr_app_save_logdata - Save Log Data events
1730 * @mrioc: Adapter instance reference
1731 * @event_data: event data associated with log data event
1732 * @event_data_size: event data size to copy
1733 *
1734 * If log data event caching is enabled by the applicatiobns,
1735 * then this function saves the log data in the circular queue
1736 * and Sends async signal SIGIO to indicate there is an async
1737 * event from the firmware to the event monitoring applications.
1738 *
1739 * Return:Nothing
1740 */
1741void mpi3mr_app_save_logdata(struct mpi3mr_ioc *mrioc, char *event_data,
1742	u16 event_data_size)
1743{
1744	u32 index = mrioc->logdata_buf_idx, sz;
1745	struct mpi3mr_logdata_entry *entry;
1746
1747	if (!(mrioc->logdata_buf))
1748		return;
1749
1750	entry = (struct mpi3mr_logdata_entry *)
1751		(mrioc->logdata_buf + (index * mrioc->logdata_entry_sz));
1752	entry->valid_entry = 1;
1753	sz = min(mrioc->logdata_entry_sz, event_data_size);
1754	memcpy(entry->data, event_data, sz);
1755	mrioc->logdata_buf_idx =
1756		((++index) % MPI3MR_BSG_LOGDATA_MAX_ENTRIES);
1757	atomic64_inc(&event_counter);
1758}
1759
1760/**
1761 * mpi3mr_bsg_request - bsg request entry point
1762 * @job: BSG job reference
1763 *
1764 * This is driver's entry point for bsg requests
1765 *
1766 * Return: 0 on success and proper error codes on failure
1767 */
1768static int mpi3mr_bsg_request(struct bsg_job *job)
1769{
1770	long rval = -EINVAL;
1771	unsigned int reply_payload_rcv_len = 0;
1772
1773	struct mpi3mr_bsg_packet *bsg_req = job->request;
1774
1775	switch (bsg_req->cmd_type) {
1776	case MPI3MR_DRV_CMD:
1777		rval = mpi3mr_bsg_process_drv_cmds(job);
1778		break;
1779	case MPI3MR_MPT_CMD:
1780		rval = mpi3mr_bsg_process_mpt_cmds(job);
1781		break;
1782	default:
1783		pr_err("%s: unsupported BSG command(0x%08x)\n",
1784		    MPI3MR_DRIVER_NAME, bsg_req->cmd_type);
1785		break;
1786	}
1787
1788	bsg_job_done(job, rval, reply_payload_rcv_len);
1789
1790	return 0;
1791}
1792
1793/**
1794 * mpi3mr_bsg_exit - de-registration from bsg layer
1795 * @mrioc: Adapter instance reference
1796 *
1797 * This will be called during driver unload and all
1798 * bsg resources allocated during load will be freed.
1799 *
1800 * Return:Nothing
1801 */
1802void mpi3mr_bsg_exit(struct mpi3mr_ioc *mrioc)
1803{
1804	struct device *bsg_dev = &mrioc->bsg_dev;
1805	if (!mrioc->bsg_queue)
1806		return;
1807
1808	bsg_remove_queue(mrioc->bsg_queue);
1809	mrioc->bsg_queue = NULL;
1810
1811	device_del(bsg_dev);
1812	put_device(bsg_dev);
1813}
1814
1815/**
1816 * mpi3mr_bsg_node_release -release bsg device node
1817 * @dev: bsg device node
1818 *
1819 * decrements bsg dev parent reference count
1820 *
1821 * Return:Nothing
1822 */
1823static void mpi3mr_bsg_node_release(struct device *dev)
1824{
1825	put_device(dev->parent);
1826}
1827
1828/**
1829 * mpi3mr_bsg_init -  registration with bsg layer
1830 * @mrioc: Adapter instance reference
1831 *
1832 * This will be called during driver load and it will
1833 * register driver with bsg layer
1834 *
1835 * Return:Nothing
1836 */
1837void mpi3mr_bsg_init(struct mpi3mr_ioc *mrioc)
1838{
1839	struct device *bsg_dev = &mrioc->bsg_dev;
1840	struct device *parent = &mrioc->shost->shost_gendev;
1841
1842	device_initialize(bsg_dev);
1843
1844	bsg_dev->parent = get_device(parent);
1845	bsg_dev->release = mpi3mr_bsg_node_release;
1846
1847	dev_set_name(bsg_dev, "mpi3mrctl%u", mrioc->id);
1848
1849	if (device_add(bsg_dev)) {
1850		ioc_err(mrioc, "%s: bsg device add failed\n",
1851		    dev_name(bsg_dev));
1852		put_device(bsg_dev);
1853		return;
1854	}
1855
1856	mrioc->bsg_queue = bsg_setup_queue(bsg_dev, dev_name(bsg_dev),
1857			mpi3mr_bsg_request, NULL, 0);
1858	if (IS_ERR(mrioc->bsg_queue)) {
1859		ioc_err(mrioc, "%s: bsg registration failed\n",
1860		    dev_name(bsg_dev));
1861		device_del(bsg_dev);
1862		put_device(bsg_dev);
1863		return;
1864	}
1865
1866	blk_queue_max_segments(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SEGMENTS);
1867	blk_queue_max_hw_sectors(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SECTORS);
1868
1869	return;
1870}
1871
1872/**
1873 * version_fw_show - SysFS callback for firmware version read
1874 * @dev: class device
1875 * @attr: Device attributes
1876 * @buf: Buffer to copy
1877 *
1878 * Return: sysfs_emit() return after copying firmware version
1879 */
1880static ssize_t
1881version_fw_show(struct device *dev, struct device_attribute *attr,
1882	char *buf)
1883{
1884	struct Scsi_Host *shost = class_to_shost(dev);
1885	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1886	struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver;
1887
1888	return sysfs_emit(buf, "%d.%d.%d.%d.%05d-%05d\n",
1889	    fwver->gen_major, fwver->gen_minor, fwver->ph_major,
1890	    fwver->ph_minor, fwver->cust_id, fwver->build_num);
1891}
1892static DEVICE_ATTR_RO(version_fw);
1893
1894/**
1895 * fw_queue_depth_show - SysFS callback for firmware max cmds
1896 * @dev: class device
1897 * @attr: Device attributes
1898 * @buf: Buffer to copy
1899 *
1900 * Return: sysfs_emit() return after copying firmware max commands
1901 */
1902static ssize_t
1903fw_queue_depth_show(struct device *dev, struct device_attribute *attr,
1904			char *buf)
1905{
1906	struct Scsi_Host *shost = class_to_shost(dev);
1907	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1908
1909	return sysfs_emit(buf, "%d\n", mrioc->facts.max_reqs);
1910}
1911static DEVICE_ATTR_RO(fw_queue_depth);
1912
1913/**
1914 * op_req_q_count_show - SysFS callback for request queue count
1915 * @dev: class device
1916 * @attr: Device attributes
1917 * @buf: Buffer to copy
1918 *
1919 * Return: sysfs_emit() return after copying request queue count
1920 */
1921static ssize_t
1922op_req_q_count_show(struct device *dev, struct device_attribute *attr,
1923			char *buf)
1924{
1925	struct Scsi_Host *shost = class_to_shost(dev);
1926	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1927
1928	return sysfs_emit(buf, "%d\n", mrioc->num_op_req_q);
1929}
1930static DEVICE_ATTR_RO(op_req_q_count);
1931
1932/**
1933 * reply_queue_count_show - SysFS callback for reply queue count
1934 * @dev: class device
1935 * @attr: Device attributes
1936 * @buf: Buffer to copy
1937 *
1938 * Return: sysfs_emit() return after copying reply queue count
1939 */
1940static ssize_t
1941reply_queue_count_show(struct device *dev, struct device_attribute *attr,
1942			char *buf)
1943{
1944	struct Scsi_Host *shost = class_to_shost(dev);
1945	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1946
1947	return sysfs_emit(buf, "%d\n", mrioc->num_op_reply_q);
1948}
1949
1950static DEVICE_ATTR_RO(reply_queue_count);
1951
1952/**
1953 * logging_level_show - Show controller debug level
1954 * @dev: class device
1955 * @attr: Device attributes
1956 * @buf: Buffer to copy
1957 *
1958 * A sysfs 'read/write' shost attribute, to show the current
1959 * debug log level used by the driver for the specific
1960 * controller.
1961 *
1962 * Return: sysfs_emit() return
1963 */
1964static ssize_t
1965logging_level_show(struct device *dev,
1966	struct device_attribute *attr, char *buf)
1967
1968{
1969	struct Scsi_Host *shost = class_to_shost(dev);
1970	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1971
1972	return sysfs_emit(buf, "%08xh\n", mrioc->logging_level);
1973}
1974
1975/**
1976 * logging_level_store- Change controller debug level
1977 * @dev: class device
1978 * @attr: Device attributes
1979 * @buf: Buffer to copy
1980 * @count: size of the buffer
1981 *
1982 * A sysfs 'read/write' shost attribute, to change the current
1983 * debug log level used by the driver for the specific
1984 * controller.
1985 *
1986 * Return: strlen() return
1987 */
1988static ssize_t
1989logging_level_store(struct device *dev,
1990	struct device_attribute *attr,
1991	const char *buf, size_t count)
1992{
1993	struct Scsi_Host *shost = class_to_shost(dev);
1994	struct mpi3mr_ioc *mrioc = shost_priv(shost);
1995	int val = 0;
1996
1997	if (kstrtoint(buf, 0, &val) != 0)
1998		return -EINVAL;
1999
2000	mrioc->logging_level = val;
2001	ioc_info(mrioc, "logging_level=%08xh\n", mrioc->logging_level);
2002	return strlen(buf);
2003}
2004static DEVICE_ATTR_RW(logging_level);
2005
2006/**
2007 * adp_state_show() - SysFS callback for adapter state show
2008 * @dev: class device
2009 * @attr: Device attributes
2010 * @buf: Buffer to copy
2011 *
2012 * Return: sysfs_emit() return after copying adapter state
2013 */
2014static ssize_t
2015adp_state_show(struct device *dev, struct device_attribute *attr,
2016	char *buf)
2017{
2018	struct Scsi_Host *shost = class_to_shost(dev);
2019	struct mpi3mr_ioc *mrioc = shost_priv(shost);
2020	enum mpi3mr_iocstate ioc_state;
2021	uint8_t adp_state;
2022
2023	ioc_state = mpi3mr_get_iocstate(mrioc);
2024	if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
2025		adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
2026	else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
2027		adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
2028	else if (ioc_state == MRIOC_STATE_FAULT)
2029		adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
2030	else
2031		adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
2032
2033	return sysfs_emit(buf, "%u\n", adp_state);
2034}
2035
2036static DEVICE_ATTR_RO(adp_state);
2037
2038static struct attribute *mpi3mr_host_attrs[] = {
2039	&dev_attr_version_fw.attr,
2040	&dev_attr_fw_queue_depth.attr,
2041	&dev_attr_op_req_q_count.attr,
2042	&dev_attr_reply_queue_count.attr,
2043	&dev_attr_logging_level.attr,
2044	&dev_attr_adp_state.attr,
2045	NULL,
2046};
2047
2048static const struct attribute_group mpi3mr_host_attr_group = {
2049	.attrs = mpi3mr_host_attrs
2050};
2051
2052const struct attribute_group *mpi3mr_host_groups[] = {
2053	&mpi3mr_host_attr_group,
2054	NULL,
2055};
2056
2057
2058/*
2059 * SCSI Device attributes under sysfs
2060 */
2061
2062/**
2063 * sas_address_show - SysFS callback for dev SASaddress display
2064 * @dev: class device
2065 * @attr: Device attributes
2066 * @buf: Buffer to copy
2067 *
2068 * Return: sysfs_emit() return after copying SAS address of the
2069 * specific SAS/SATA end device.
2070 */
2071static ssize_t
2072sas_address_show(struct device *dev, struct device_attribute *attr,
2073			char *buf)
2074{
2075	struct scsi_device *sdev = to_scsi_device(dev);
2076	struct mpi3mr_sdev_priv_data *sdev_priv_data;
2077	struct mpi3mr_stgt_priv_data *tgt_priv_data;
2078	struct mpi3mr_tgt_dev *tgtdev;
2079
2080	sdev_priv_data = sdev->hostdata;
2081	if (!sdev_priv_data)
2082		return 0;
2083
2084	tgt_priv_data = sdev_priv_data->tgt_priv_data;
2085	if (!tgt_priv_data)
2086		return 0;
2087	tgtdev = tgt_priv_data->tgt_dev;
2088	if (!tgtdev || tgtdev->dev_type != MPI3_DEVICE_DEVFORM_SAS_SATA)
2089		return 0;
2090	return sysfs_emit(buf, "0x%016llx\n",
2091	    (unsigned long long)tgtdev->dev_spec.sas_sata_inf.sas_address);
2092}
2093
2094static DEVICE_ATTR_RO(sas_address);
2095
2096/**
2097 * device_handle_show - SysFS callback for device handle display
2098 * @dev: class device
2099 * @attr: Device attributes
2100 * @buf: Buffer to copy
2101 *
2102 * Return: sysfs_emit() return after copying firmware internal
2103 * device handle of the specific device.
2104 */
2105static ssize_t
2106device_handle_show(struct device *dev, struct device_attribute *attr,
2107			char *buf)
2108{
2109	struct scsi_device *sdev = to_scsi_device(dev);
2110	struct mpi3mr_sdev_priv_data *sdev_priv_data;
2111	struct mpi3mr_stgt_priv_data *tgt_priv_data;
2112	struct mpi3mr_tgt_dev *tgtdev;
2113
2114	sdev_priv_data = sdev->hostdata;
2115	if (!sdev_priv_data)
2116		return 0;
2117
2118	tgt_priv_data = sdev_priv_data->tgt_priv_data;
2119	if (!tgt_priv_data)
2120		return 0;
2121	tgtdev = tgt_priv_data->tgt_dev;
2122	if (!tgtdev)
2123		return 0;
2124	return sysfs_emit(buf, "0x%04x\n", tgtdev->dev_handle);
2125}
2126
2127static DEVICE_ATTR_RO(device_handle);
2128
2129/**
2130 * persistent_id_show - SysFS callback for persisten ID display
2131 * @dev: class device
2132 * @attr: Device attributes
2133 * @buf: Buffer to copy
2134 *
2135 * Return: sysfs_emit() return after copying persistent ID of the
2136 * of the specific device.
2137 */
2138static ssize_t
2139persistent_id_show(struct device *dev, struct device_attribute *attr,
2140			char *buf)
2141{
2142	struct scsi_device *sdev = to_scsi_device(dev);
2143	struct mpi3mr_sdev_priv_data *sdev_priv_data;
2144	struct mpi3mr_stgt_priv_data *tgt_priv_data;
2145	struct mpi3mr_tgt_dev *tgtdev;
2146
2147	sdev_priv_data = sdev->hostdata;
2148	if (!sdev_priv_data)
2149		return 0;
2150
2151	tgt_priv_data = sdev_priv_data->tgt_priv_data;
2152	if (!tgt_priv_data)
2153		return 0;
2154	tgtdev = tgt_priv_data->tgt_dev;
2155	if (!tgtdev)
2156		return 0;
2157	return sysfs_emit(buf, "%d\n", tgtdev->perst_id);
2158}
2159static DEVICE_ATTR_RO(persistent_id);
2160
2161static struct attribute *mpi3mr_dev_attrs[] = {
2162	&dev_attr_sas_address.attr,
2163	&dev_attr_device_handle.attr,
2164	&dev_attr_persistent_id.attr,
2165	NULL,
2166};
2167
2168static const struct attribute_group mpi3mr_dev_attr_group = {
2169	.attrs = mpi3mr_dev_attrs
2170};
2171
2172const struct attribute_group *mpi3mr_dev_groups[] = {
2173	&mpi3mr_dev_attr_group,
2174	NULL,
2175};
2176