1/*
2 *    Disk Array driver for HP Smart Array SAS controllers
3 *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4 *    Copyright 2016 Microsemi Corporation
5 *    Copyright 2014-2015 PMC-Sierra, Inc.
6 *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 *
8 *    This program is free software; you can redistribute it and/or modify
9 *    it under the terms of the GNU General Public License as published by
10 *    the Free Software Foundation; version 2 of the License.
11 *
12 *    This program is distributed in the hope that it will be useful,
13 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
16 *
17 *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
18 *
19 */
20
21#include <linux/module.h>
22#include <linux/interrupt.h>
23#include <linux/types.h>
24#include <linux/pci.h>
25#include <linux/kernel.h>
26#include <linux/slab.h>
27#include <linux/delay.h>
28#include <linux/fs.h>
29#include <linux/timer.h>
30#include <linux/init.h>
31#include <linux/spinlock.h>
32#include <linux/compat.h>
33#include <linux/blktrace_api.h>
34#include <linux/uaccess.h>
35#include <linux/io.h>
36#include <linux/dma-mapping.h>
37#include <linux/completion.h>
38#include <linux/moduleparam.h>
39#include <scsi/scsi.h>
40#include <scsi/scsi_cmnd.h>
41#include <scsi/scsi_device.h>
42#include <scsi/scsi_host.h>
43#include <scsi/scsi_tcq.h>
44#include <scsi/scsi_eh.h>
45#include <scsi/scsi_transport_sas.h>
46#include <scsi/scsi_dbg.h>
47#include <linux/cciss_ioctl.h>
48#include <linux/string.h>
49#include <linux/bitmap.h>
50#include <linux/atomic.h>
51#include <linux/jiffies.h>
52#include <linux/percpu-defs.h>
53#include <linux/percpu.h>
54#include <asm/unaligned.h>
55#include <asm/div64.h>
56#include "hpsa_cmd.h"
57#include "hpsa.h"
58
59/*
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
62 */
63#define HPSA_DRIVER_VERSION "3.4.20-200"
64#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65#define HPSA "hpsa"
66
67/* How long to wait for CISS doorbell communication */
68#define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69#define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70#define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71#define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72#define MAX_IOCTL_CONFIG_WAIT 1000
73
74/*define how many times we will try a command because of bus resets */
75#define MAX_CMD_RETRIES 3
76/* How long to wait before giving up on a command */
77#define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78
79/* Embedded module documentation macros - see modules.h */
80MODULE_AUTHOR("Hewlett-Packard Company");
81MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82	HPSA_DRIVER_VERSION);
83MODULE_VERSION(HPSA_DRIVER_VERSION);
84MODULE_LICENSE("GPL");
85MODULE_ALIAS("cciss");
86
87static int hpsa_simple_mode;
88module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
89MODULE_PARM_DESC(hpsa_simple_mode,
90	"Use 'simple mode' rather than 'performant mode'");
91
92/* define the PCI info for the cards we can control */
93static const struct pci_device_id hpsa_pci_device_id[] = {
94	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
95	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
96	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
97	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
98	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
99	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
110	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
115	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
148		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
150		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151	{0,}
152};
153
154MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155
156/*  board_id = Subsystem Device ID & Vendor ID
157 *  product = Marketing Name for the board
158 *  access = Address of the struct of function pointers
159 */
160static struct board_type products[] = {
161	{0x40700E11, "Smart Array 5300", &SA5A_access},
162	{0x40800E11, "Smart Array 5i", &SA5B_access},
163	{0x40820E11, "Smart Array 532", &SA5B_access},
164	{0x40830E11, "Smart Array 5312", &SA5B_access},
165	{0x409A0E11, "Smart Array 641", &SA5A_access},
166	{0x409B0E11, "Smart Array 642", &SA5A_access},
167	{0x409C0E11, "Smart Array 6400", &SA5A_access},
168	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
169	{0x40910E11, "Smart Array 6i", &SA5A_access},
170	{0x3225103C, "Smart Array P600", &SA5A_access},
171	{0x3223103C, "Smart Array P800", &SA5A_access},
172	{0x3234103C, "Smart Array P400", &SA5A_access},
173	{0x3235103C, "Smart Array P400i", &SA5A_access},
174	{0x3211103C, "Smart Array E200i", &SA5A_access},
175	{0x3212103C, "Smart Array E200", &SA5A_access},
176	{0x3213103C, "Smart Array E200i", &SA5A_access},
177	{0x3214103C, "Smart Array E200i", &SA5A_access},
178	{0x3215103C, "Smart Array E200i", &SA5A_access},
179	{0x3237103C, "Smart Array E500", &SA5A_access},
180	{0x323D103C, "Smart Array P700m", &SA5A_access},
181	{0x3241103C, "Smart Array P212", &SA5_access},
182	{0x3243103C, "Smart Array P410", &SA5_access},
183	{0x3245103C, "Smart Array P410i", &SA5_access},
184	{0x3247103C, "Smart Array P411", &SA5_access},
185	{0x3249103C, "Smart Array P812", &SA5_access},
186	{0x324A103C, "Smart Array P712m", &SA5_access},
187	{0x324B103C, "Smart Array P711m", &SA5_access},
188	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
189	{0x3350103C, "Smart Array P222", &SA5_access},
190	{0x3351103C, "Smart Array P420", &SA5_access},
191	{0x3352103C, "Smart Array P421", &SA5_access},
192	{0x3353103C, "Smart Array P822", &SA5_access},
193	{0x3354103C, "Smart Array P420i", &SA5_access},
194	{0x3355103C, "Smart Array P220i", &SA5_access},
195	{0x3356103C, "Smart Array P721m", &SA5_access},
196	{0x1920103C, "Smart Array P430i", &SA5_access},
197	{0x1921103C, "Smart Array P830i", &SA5_access},
198	{0x1922103C, "Smart Array P430", &SA5_access},
199	{0x1923103C, "Smart Array P431", &SA5_access},
200	{0x1924103C, "Smart Array P830", &SA5_access},
201	{0x1925103C, "Smart Array P831", &SA5_access},
202	{0x1926103C, "Smart Array P731m", &SA5_access},
203	{0x1928103C, "Smart Array P230i", &SA5_access},
204	{0x1929103C, "Smart Array P530", &SA5_access},
205	{0x21BD103C, "Smart Array P244br", &SA5_access},
206	{0x21BE103C, "Smart Array P741m", &SA5_access},
207	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
208	{0x21C0103C, "Smart Array P440ar", &SA5_access},
209	{0x21C1103C, "Smart Array P840ar", &SA5_access},
210	{0x21C2103C, "Smart Array P440", &SA5_access},
211	{0x21C3103C, "Smart Array P441", &SA5_access},
212	{0x21C4103C, "Smart Array", &SA5_access},
213	{0x21C5103C, "Smart Array P841", &SA5_access},
214	{0x21C6103C, "Smart HBA H244br", &SA5_access},
215	{0x21C7103C, "Smart HBA H240", &SA5_access},
216	{0x21C8103C, "Smart HBA H241", &SA5_access},
217	{0x21C9103C, "Smart Array", &SA5_access},
218	{0x21CA103C, "Smart Array P246br", &SA5_access},
219	{0x21CB103C, "Smart Array P840", &SA5_access},
220	{0x21CC103C, "Smart Array", &SA5_access},
221	{0x21CD103C, "Smart Array", &SA5_access},
222	{0x21CE103C, "Smart HBA", &SA5_access},
223	{0x05809005, "SmartHBA-SA", &SA5_access},
224	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
225	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
226	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
227	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
228	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
229	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
230	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
231	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
232	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
233	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
234	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
235};
236
237static struct scsi_transport_template *hpsa_sas_transport_template;
238static int hpsa_add_sas_host(struct ctlr_info *h);
239static void hpsa_delete_sas_host(struct ctlr_info *h);
240static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
241			struct hpsa_scsi_dev_t *device);
242static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
243static struct hpsa_scsi_dev_t
244	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
245		struct sas_rphy *rphy);
246
247#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248static const struct scsi_cmnd hpsa_cmd_busy;
249#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250static const struct scsi_cmnd hpsa_cmd_idle;
251static int number_of_controllers;
252
253static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
254static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
255static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
256		      void __user *arg);
257static int hpsa_passthru_ioctl(struct ctlr_info *h,
258			       IOCTL_Command_struct *iocommand);
259static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
260				   BIG_IOCTL_Command_struct *ioc);
261
262#ifdef CONFIG_COMPAT
263static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
264	void __user *arg);
265#endif
266
267static void cmd_free(struct ctlr_info *h, struct CommandList *c);
268static struct CommandList *cmd_alloc(struct ctlr_info *h);
269static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
270static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
271					    struct scsi_cmnd *scmd);
272static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
273	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
274	int cmd_type);
275static void hpsa_free_cmd_pool(struct ctlr_info *h);
276#define VPD_PAGE (1 << 8)
277#define HPSA_SIMPLE_ERROR_BITS 0x03
278
279static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
280static void hpsa_scan_start(struct Scsi_Host *);
281static int hpsa_scan_finished(struct Scsi_Host *sh,
282	unsigned long elapsed_time);
283static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
284
285static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
286static int hpsa_slave_alloc(struct scsi_device *sdev);
287static int hpsa_slave_configure(struct scsi_device *sdev);
288static void hpsa_slave_destroy(struct scsi_device *sdev);
289
290static void hpsa_update_scsi_devices(struct ctlr_info *h);
291static int check_for_unit_attention(struct ctlr_info *h,
292	struct CommandList *c);
293static void check_ioctl_unit_attention(struct ctlr_info *h,
294	struct CommandList *c);
295/* performant mode helper functions */
296static void calc_bucket_map(int *bucket, int num_buckets,
297	int nsgs, int min_blocks, u32 *bucket_map);
298static void hpsa_free_performant_mode(struct ctlr_info *h);
299static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
300static inline u32 next_command(struct ctlr_info *h, u8 q);
301static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
302			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
303			       u64 *cfg_offset);
304static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
305				    unsigned long *memory_bar);
306static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
307				bool *legacy_board);
308static int wait_for_device_to_become_ready(struct ctlr_info *h,
309					   unsigned char lunaddr[],
310					   int reply_queue);
311static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
312				     int wait_for_ready);
313static inline void finish_cmd(struct CommandList *c);
314static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
315#define BOARD_NOT_READY 0
316#define BOARD_READY 1
317static void hpsa_drain_accel_commands(struct ctlr_info *h);
318static void hpsa_flush_cache(struct ctlr_info *h);
319static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
320	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
321	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
322static void hpsa_command_resubmit_worker(struct work_struct *work);
323static u32 lockup_detected(struct ctlr_info *h);
324static int detect_controller_lockup(struct ctlr_info *h);
325static void hpsa_disable_rld_caching(struct ctlr_info *h);
326static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
327	struct ReportExtendedLUNdata *buf, int bufsize);
328static bool hpsa_vpd_page_supported(struct ctlr_info *h,
329	unsigned char scsi3addr[], u8 page);
330static int hpsa_luns_changed(struct ctlr_info *h);
331static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
332			       struct hpsa_scsi_dev_t *dev,
333			       unsigned char *scsi3addr);
334
335static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
336{
337	unsigned long *priv = shost_priv(sdev->host);
338	return (struct ctlr_info *) *priv;
339}
340
341static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
342{
343	unsigned long *priv = shost_priv(sh);
344	return (struct ctlr_info *) *priv;
345}
346
347static inline bool hpsa_is_cmd_idle(struct CommandList *c)
348{
349	return c->scsi_cmd == SCSI_CMD_IDLE;
350}
351
352/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
353static void decode_sense_data(const u8 *sense_data, int sense_data_len,
354			u8 *sense_key, u8 *asc, u8 *ascq)
355{
356	struct scsi_sense_hdr sshdr;
357	bool rc;
358
359	*sense_key = -1;
360	*asc = -1;
361	*ascq = -1;
362
363	if (sense_data_len < 1)
364		return;
365
366	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
367	if (rc) {
368		*sense_key = sshdr.sense_key;
369		*asc = sshdr.asc;
370		*ascq = sshdr.ascq;
371	}
372}
373
374static int check_for_unit_attention(struct ctlr_info *h,
375	struct CommandList *c)
376{
377	u8 sense_key, asc, ascq;
378	int sense_len;
379
380	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
381		sense_len = sizeof(c->err_info->SenseInfo);
382	else
383		sense_len = c->err_info->SenseLen;
384
385	decode_sense_data(c->err_info->SenseInfo, sense_len,
386				&sense_key, &asc, &ascq);
387	if (sense_key != UNIT_ATTENTION || asc == 0xff)
388		return 0;
389
390	switch (asc) {
391	case STATE_CHANGED:
392		dev_warn(&h->pdev->dev,
393			"%s: a state change detected, command retried\n",
394			h->devname);
395		break;
396	case LUN_FAILED:
397		dev_warn(&h->pdev->dev,
398			"%s: LUN failure detected\n", h->devname);
399		break;
400	case REPORT_LUNS_CHANGED:
401		dev_warn(&h->pdev->dev,
402			"%s: report LUN data changed\n", h->devname);
403	/*
404	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405	 * target (array) devices.
406	 */
407		break;
408	case POWER_OR_RESET:
409		dev_warn(&h->pdev->dev,
410			"%s: a power on or device reset detected\n",
411			h->devname);
412		break;
413	case UNIT_ATTENTION_CLEARED:
414		dev_warn(&h->pdev->dev,
415			"%s: unit attention cleared by another initiator\n",
416			h->devname);
417		break;
418	default:
419		dev_warn(&h->pdev->dev,
420			"%s: unknown unit attention detected\n",
421			h->devname);
422		break;
423	}
424	return 1;
425}
426
427static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
428{
429	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
430		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
431		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
432		return 0;
433	dev_warn(&h->pdev->dev, HPSA "device busy");
434	return 1;
435}
436
437static u32 lockup_detected(struct ctlr_info *h);
438static ssize_t host_show_lockup_detected(struct device *dev,
439		struct device_attribute *attr, char *buf)
440{
441	int ld;
442	struct ctlr_info *h;
443	struct Scsi_Host *shost = class_to_shost(dev);
444
445	h = shost_to_hba(shost);
446	ld = lockup_detected(h);
447
448	return sprintf(buf, "ld=%d\n", ld);
449}
450
451static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
452					 struct device_attribute *attr,
453					 const char *buf, size_t count)
454{
455	int status, len;
456	struct ctlr_info *h;
457	struct Scsi_Host *shost = class_to_shost(dev);
458	char tmpbuf[10];
459
460	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
461		return -EACCES;
462	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
463	strncpy(tmpbuf, buf, len);
464	tmpbuf[len] = '\0';
465	if (sscanf(tmpbuf, "%d", &status) != 1)
466		return -EINVAL;
467	h = shost_to_hba(shost);
468	h->acciopath_status = !!status;
469	dev_warn(&h->pdev->dev,
470		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
471		h->acciopath_status ? "enabled" : "disabled");
472	return count;
473}
474
475static ssize_t host_store_raid_offload_debug(struct device *dev,
476					 struct device_attribute *attr,
477					 const char *buf, size_t count)
478{
479	int debug_level, len;
480	struct ctlr_info *h;
481	struct Scsi_Host *shost = class_to_shost(dev);
482	char tmpbuf[10];
483
484	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
485		return -EACCES;
486	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
487	strncpy(tmpbuf, buf, len);
488	tmpbuf[len] = '\0';
489	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490		return -EINVAL;
491	if (debug_level < 0)
492		debug_level = 0;
493	h = shost_to_hba(shost);
494	h->raid_offload_debug = debug_level;
495	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
496		h->raid_offload_debug);
497	return count;
498}
499
500static ssize_t host_store_rescan(struct device *dev,
501				 struct device_attribute *attr,
502				 const char *buf, size_t count)
503{
504	struct ctlr_info *h;
505	struct Scsi_Host *shost = class_to_shost(dev);
506	h = shost_to_hba(shost);
507	hpsa_scan_start(h->scsi_host);
508	return count;
509}
510
511static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
512{
513	device->offload_enabled = 0;
514	device->offload_to_be_enabled = 0;
515}
516
517static ssize_t host_show_firmware_revision(struct device *dev,
518	     struct device_attribute *attr, char *buf)
519{
520	struct ctlr_info *h;
521	struct Scsi_Host *shost = class_to_shost(dev);
522	unsigned char *fwrev;
523
524	h = shost_to_hba(shost);
525	if (!h->hba_inquiry_data)
526		return 0;
527	fwrev = &h->hba_inquiry_data[32];
528	return snprintf(buf, 20, "%c%c%c%c\n",
529		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
530}
531
532static ssize_t host_show_commands_outstanding(struct device *dev,
533	     struct device_attribute *attr, char *buf)
534{
535	struct Scsi_Host *shost = class_to_shost(dev);
536	struct ctlr_info *h = shost_to_hba(shost);
537
538	return snprintf(buf, 20, "%d\n",
539			atomic_read(&h->commands_outstanding));
540}
541
542static ssize_t host_show_transport_mode(struct device *dev,
543	struct device_attribute *attr, char *buf)
544{
545	struct ctlr_info *h;
546	struct Scsi_Host *shost = class_to_shost(dev);
547
548	h = shost_to_hba(shost);
549	return snprintf(buf, 20, "%s\n",
550		h->transMethod & CFGTBL_Trans_Performant ?
551			"performant" : "simple");
552}
553
554static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
555	struct device_attribute *attr, char *buf)
556{
557	struct ctlr_info *h;
558	struct Scsi_Host *shost = class_to_shost(dev);
559
560	h = shost_to_hba(shost);
561	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
562		(h->acciopath_status == 1) ?  "enabled" : "disabled");
563}
564
565/* List of controllers which cannot be hard reset on kexec with reset_devices */
566static u32 unresettable_controller[] = {
567	0x324a103C, /* Smart Array P712m */
568	0x324b103C, /* Smart Array P711m */
569	0x3223103C, /* Smart Array P800 */
570	0x3234103C, /* Smart Array P400 */
571	0x3235103C, /* Smart Array P400i */
572	0x3211103C, /* Smart Array E200i */
573	0x3212103C, /* Smart Array E200 */
574	0x3213103C, /* Smart Array E200i */
575	0x3214103C, /* Smart Array E200i */
576	0x3215103C, /* Smart Array E200i */
577	0x3237103C, /* Smart Array E500 */
578	0x323D103C, /* Smart Array P700m */
579	0x40800E11, /* Smart Array 5i */
580	0x409C0E11, /* Smart Array 6400 */
581	0x409D0E11, /* Smart Array 6400 EM */
582	0x40700E11, /* Smart Array 5300 */
583	0x40820E11, /* Smart Array 532 */
584	0x40830E11, /* Smart Array 5312 */
585	0x409A0E11, /* Smart Array 641 */
586	0x409B0E11, /* Smart Array 642 */
587	0x40910E11, /* Smart Array 6i */
588};
589
590/* List of controllers which cannot even be soft reset */
591static u32 soft_unresettable_controller[] = {
592	0x40800E11, /* Smart Array 5i */
593	0x40700E11, /* Smart Array 5300 */
594	0x40820E11, /* Smart Array 532 */
595	0x40830E11, /* Smart Array 5312 */
596	0x409A0E11, /* Smart Array 641 */
597	0x409B0E11, /* Smart Array 642 */
598	0x40910E11, /* Smart Array 6i */
599	/* Exclude 640x boards.  These are two pci devices in one slot
600	 * which share a battery backed cache module.  One controls the
601	 * cache, the other accesses the cache through the one that controls
602	 * it.  If we reset the one controlling the cache, the other will
603	 * likely not be happy.  Just forbid resetting this conjoined mess.
604	 * The 640x isn't really supported by hpsa anyway.
605	 */
606	0x409C0E11, /* Smart Array 6400 */
607	0x409D0E11, /* Smart Array 6400 EM */
608};
609
610static int board_id_in_array(u32 a[], int nelems, u32 board_id)
611{
612	int i;
613
614	for (i = 0; i < nelems; i++)
615		if (a[i] == board_id)
616			return 1;
617	return 0;
618}
619
620static int ctlr_is_hard_resettable(u32 board_id)
621{
622	return !board_id_in_array(unresettable_controller,
623			ARRAY_SIZE(unresettable_controller), board_id);
624}
625
626static int ctlr_is_soft_resettable(u32 board_id)
627{
628	return !board_id_in_array(soft_unresettable_controller,
629			ARRAY_SIZE(soft_unresettable_controller), board_id);
630}
631
632static int ctlr_is_resettable(u32 board_id)
633{
634	return ctlr_is_hard_resettable(board_id) ||
635		ctlr_is_soft_resettable(board_id);
636}
637
638static ssize_t host_show_resettable(struct device *dev,
639	struct device_attribute *attr, char *buf)
640{
641	struct ctlr_info *h;
642	struct Scsi_Host *shost = class_to_shost(dev);
643
644	h = shost_to_hba(shost);
645	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
646}
647
648static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
649{
650	return (scsi3addr[3] & 0xC0) == 0x40;
651}
652
653static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
654	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
655};
656#define HPSA_RAID_0	0
657#define HPSA_RAID_4	1
658#define HPSA_RAID_1	2	/* also used for RAID 10 */
659#define HPSA_RAID_5	3	/* also used for RAID 50 */
660#define HPSA_RAID_51	4
661#define HPSA_RAID_6	5	/* also used for RAID 60 */
662#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
663#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
664#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
665
666static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
667{
668	return !device->physical_device;
669}
670
671static ssize_t raid_level_show(struct device *dev,
672	     struct device_attribute *attr, char *buf)
673{
674	ssize_t l = 0;
675	unsigned char rlevel;
676	struct ctlr_info *h;
677	struct scsi_device *sdev;
678	struct hpsa_scsi_dev_t *hdev;
679	unsigned long flags;
680
681	sdev = to_scsi_device(dev);
682	h = sdev_to_hba(sdev);
683	spin_lock_irqsave(&h->lock, flags);
684	hdev = sdev->hostdata;
685	if (!hdev) {
686		spin_unlock_irqrestore(&h->lock, flags);
687		return -ENODEV;
688	}
689
690	/* Is this even a logical drive? */
691	if (!is_logical_device(hdev)) {
692		spin_unlock_irqrestore(&h->lock, flags);
693		l = snprintf(buf, PAGE_SIZE, "N/A\n");
694		return l;
695	}
696
697	rlevel = hdev->raid_level;
698	spin_unlock_irqrestore(&h->lock, flags);
699	if (rlevel > RAID_UNKNOWN)
700		rlevel = RAID_UNKNOWN;
701	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
702	return l;
703}
704
705static ssize_t lunid_show(struct device *dev,
706	     struct device_attribute *attr, char *buf)
707{
708	struct ctlr_info *h;
709	struct scsi_device *sdev;
710	struct hpsa_scsi_dev_t *hdev;
711	unsigned long flags;
712	unsigned char lunid[8];
713
714	sdev = to_scsi_device(dev);
715	h = sdev_to_hba(sdev);
716	spin_lock_irqsave(&h->lock, flags);
717	hdev = sdev->hostdata;
718	if (!hdev) {
719		spin_unlock_irqrestore(&h->lock, flags);
720		return -ENODEV;
721	}
722	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
723	spin_unlock_irqrestore(&h->lock, flags);
724	return snprintf(buf, 20, "0x%8phN\n", lunid);
725}
726
727static ssize_t unique_id_show(struct device *dev,
728	     struct device_attribute *attr, char *buf)
729{
730	struct ctlr_info *h;
731	struct scsi_device *sdev;
732	struct hpsa_scsi_dev_t *hdev;
733	unsigned long flags;
734	unsigned char sn[16];
735
736	sdev = to_scsi_device(dev);
737	h = sdev_to_hba(sdev);
738	spin_lock_irqsave(&h->lock, flags);
739	hdev = sdev->hostdata;
740	if (!hdev) {
741		spin_unlock_irqrestore(&h->lock, flags);
742		return -ENODEV;
743	}
744	memcpy(sn, hdev->device_id, sizeof(sn));
745	spin_unlock_irqrestore(&h->lock, flags);
746	return snprintf(buf, 16 * 2 + 2,
747			"%02X%02X%02X%02X%02X%02X%02X%02X"
748			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
749			sn[0], sn[1], sn[2], sn[3],
750			sn[4], sn[5], sn[6], sn[7],
751			sn[8], sn[9], sn[10], sn[11],
752			sn[12], sn[13], sn[14], sn[15]);
753}
754
755static ssize_t sas_address_show(struct device *dev,
756	      struct device_attribute *attr, char *buf)
757{
758	struct ctlr_info *h;
759	struct scsi_device *sdev;
760	struct hpsa_scsi_dev_t *hdev;
761	unsigned long flags;
762	u64 sas_address;
763
764	sdev = to_scsi_device(dev);
765	h = sdev_to_hba(sdev);
766	spin_lock_irqsave(&h->lock, flags);
767	hdev = sdev->hostdata;
768	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
769		spin_unlock_irqrestore(&h->lock, flags);
770		return -ENODEV;
771	}
772	sas_address = hdev->sas_address;
773	spin_unlock_irqrestore(&h->lock, flags);
774
775	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
776}
777
778static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
779	     struct device_attribute *attr, char *buf)
780{
781	struct ctlr_info *h;
782	struct scsi_device *sdev;
783	struct hpsa_scsi_dev_t *hdev;
784	unsigned long flags;
785	int offload_enabled;
786
787	sdev = to_scsi_device(dev);
788	h = sdev_to_hba(sdev);
789	spin_lock_irqsave(&h->lock, flags);
790	hdev = sdev->hostdata;
791	if (!hdev) {
792		spin_unlock_irqrestore(&h->lock, flags);
793		return -ENODEV;
794	}
795	offload_enabled = hdev->offload_enabled;
796	spin_unlock_irqrestore(&h->lock, flags);
797
798	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
799		return snprintf(buf, 20, "%d\n", offload_enabled);
800	else
801		return snprintf(buf, 40, "%s\n",
802				"Not applicable for a controller");
803}
804
805#define MAX_PATHS 8
806static ssize_t path_info_show(struct device *dev,
807	     struct device_attribute *attr, char *buf)
808{
809	struct ctlr_info *h;
810	struct scsi_device *sdev;
811	struct hpsa_scsi_dev_t *hdev;
812	unsigned long flags;
813	int i;
814	int output_len = 0;
815	u8 box;
816	u8 bay;
817	u8 path_map_index = 0;
818	char *active;
819	unsigned char phys_connector[2];
820
821	sdev = to_scsi_device(dev);
822	h = sdev_to_hba(sdev);
823	spin_lock_irqsave(&h->devlock, flags);
824	hdev = sdev->hostdata;
825	if (!hdev) {
826		spin_unlock_irqrestore(&h->devlock, flags);
827		return -ENODEV;
828	}
829
830	bay = hdev->bay;
831	for (i = 0; i < MAX_PATHS; i++) {
832		path_map_index = 1<<i;
833		if (i == hdev->active_path_index)
834			active = "Active";
835		else if (hdev->path_map & path_map_index)
836			active = "Inactive";
837		else
838			continue;
839
840		output_len += scnprintf(buf + output_len,
841				PAGE_SIZE - output_len,
842				"[%d:%d:%d:%d] %20.20s ",
843				h->scsi_host->host_no,
844				hdev->bus, hdev->target, hdev->lun,
845				scsi_device_type(hdev->devtype));
846
847		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
848			output_len += scnprintf(buf + output_len,
849						PAGE_SIZE - output_len,
850						"%s\n", active);
851			continue;
852		}
853
854		box = hdev->box[i];
855		memcpy(&phys_connector, &hdev->phys_connector[i],
856			sizeof(phys_connector));
857		if (phys_connector[0] < '0')
858			phys_connector[0] = '0';
859		if (phys_connector[1] < '0')
860			phys_connector[1] = '0';
861		output_len += scnprintf(buf + output_len,
862				PAGE_SIZE - output_len,
863				"PORT: %.2s ",
864				phys_connector);
865		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
866			hdev->expose_device) {
867			if (box == 0 || box == 0xFF) {
868				output_len += scnprintf(buf + output_len,
869					PAGE_SIZE - output_len,
870					"BAY: %hhu %s\n",
871					bay, active);
872			} else {
873				output_len += scnprintf(buf + output_len,
874					PAGE_SIZE - output_len,
875					"BOX: %hhu BAY: %hhu %s\n",
876					box, bay, active);
877			}
878		} else if (box != 0 && box != 0xFF) {
879			output_len += scnprintf(buf + output_len,
880				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
881				box, active);
882		} else
883			output_len += scnprintf(buf + output_len,
884				PAGE_SIZE - output_len, "%s\n", active);
885	}
886
887	spin_unlock_irqrestore(&h->devlock, flags);
888	return output_len;
889}
890
891static ssize_t host_show_ctlr_num(struct device *dev,
892	struct device_attribute *attr, char *buf)
893{
894	struct ctlr_info *h;
895	struct Scsi_Host *shost = class_to_shost(dev);
896
897	h = shost_to_hba(shost);
898	return snprintf(buf, 20, "%d\n", h->ctlr);
899}
900
901static ssize_t host_show_legacy_board(struct device *dev,
902	struct device_attribute *attr, char *buf)
903{
904	struct ctlr_info *h;
905	struct Scsi_Host *shost = class_to_shost(dev);
906
907	h = shost_to_hba(shost);
908	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
909}
910
911static DEVICE_ATTR_RO(raid_level);
912static DEVICE_ATTR_RO(lunid);
913static DEVICE_ATTR_RO(unique_id);
914static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
915static DEVICE_ATTR_RO(sas_address);
916static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
917			host_show_hp_ssd_smart_path_enabled, NULL);
918static DEVICE_ATTR_RO(path_info);
919static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
920		host_show_hp_ssd_smart_path_status,
921		host_store_hp_ssd_smart_path_status);
922static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
923			host_store_raid_offload_debug);
924static DEVICE_ATTR(firmware_revision, S_IRUGO,
925	host_show_firmware_revision, NULL);
926static DEVICE_ATTR(commands_outstanding, S_IRUGO,
927	host_show_commands_outstanding, NULL);
928static DEVICE_ATTR(transport_mode, S_IRUGO,
929	host_show_transport_mode, NULL);
930static DEVICE_ATTR(resettable, S_IRUGO,
931	host_show_resettable, NULL);
932static DEVICE_ATTR(lockup_detected, S_IRUGO,
933	host_show_lockup_detected, NULL);
934static DEVICE_ATTR(ctlr_num, S_IRUGO,
935	host_show_ctlr_num, NULL);
936static DEVICE_ATTR(legacy_board, S_IRUGO,
937	host_show_legacy_board, NULL);
938
939static struct attribute *hpsa_sdev_attrs[] = {
940	&dev_attr_raid_level.attr,
941	&dev_attr_lunid.attr,
942	&dev_attr_unique_id.attr,
943	&dev_attr_hp_ssd_smart_path_enabled.attr,
944	&dev_attr_path_info.attr,
945	&dev_attr_sas_address.attr,
946	NULL,
947};
948
949ATTRIBUTE_GROUPS(hpsa_sdev);
950
951static struct attribute *hpsa_shost_attrs[] = {
952	&dev_attr_rescan.attr,
953	&dev_attr_firmware_revision.attr,
954	&dev_attr_commands_outstanding.attr,
955	&dev_attr_transport_mode.attr,
956	&dev_attr_resettable.attr,
957	&dev_attr_hp_ssd_smart_path_status.attr,
958	&dev_attr_raid_offload_debug.attr,
959	&dev_attr_lockup_detected.attr,
960	&dev_attr_ctlr_num.attr,
961	&dev_attr_legacy_board.attr,
962	NULL,
963};
964
965ATTRIBUTE_GROUPS(hpsa_shost);
966
967#define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
968				 HPSA_MAX_CONCURRENT_PASSTHRUS)
969
970static const struct scsi_host_template hpsa_driver_template = {
971	.module			= THIS_MODULE,
972	.name			= HPSA,
973	.proc_name		= HPSA,
974	.queuecommand		= hpsa_scsi_queue_command,
975	.scan_start		= hpsa_scan_start,
976	.scan_finished		= hpsa_scan_finished,
977	.change_queue_depth	= hpsa_change_queue_depth,
978	.this_id		= -1,
979	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
980	.ioctl			= hpsa_ioctl,
981	.slave_alloc		= hpsa_slave_alloc,
982	.slave_configure	= hpsa_slave_configure,
983	.slave_destroy		= hpsa_slave_destroy,
984#ifdef CONFIG_COMPAT
985	.compat_ioctl		= hpsa_compat_ioctl,
986#endif
987	.sdev_groups = hpsa_sdev_groups,
988	.shost_groups = hpsa_shost_groups,
989	.max_sectors = 2048,
990	.no_write_same = 1,
991};
992
993static inline u32 next_command(struct ctlr_info *h, u8 q)
994{
995	u32 a;
996	struct reply_queue_buffer *rq = &h->reply_queue[q];
997
998	if (h->transMethod & CFGTBL_Trans_io_accel1)
999		return h->access.command_completed(h, q);
1000
1001	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
1002		return h->access.command_completed(h, q);
1003
1004	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1005		a = rq->head[rq->current_entry];
1006		rq->current_entry++;
1007		atomic_dec(&h->commands_outstanding);
1008	} else {
1009		a = FIFO_EMPTY;
1010	}
1011	/* Check for wraparound */
1012	if (rq->current_entry == h->max_commands) {
1013		rq->current_entry = 0;
1014		rq->wraparound ^= 1;
1015	}
1016	return a;
1017}
1018
1019/*
1020 * There are some special bits in the bus address of the
1021 * command that we have to set for the controller to know
1022 * how to process the command:
1023 *
1024 * Normal performant mode:
1025 * bit 0: 1 means performant mode, 0 means simple mode.
1026 * bits 1-3 = block fetch table entry
1027 * bits 4-6 = command type (== 0)
1028 *
1029 * ioaccel1 mode:
1030 * bit 0 = "performant mode" bit.
1031 * bits 1-3 = block fetch table entry
1032 * bits 4-6 = command type (== 110)
1033 * (command type is needed because ioaccel1 mode
1034 * commands are submitted through the same register as normal
1035 * mode commands, so this is how the controller knows whether
1036 * the command is normal mode or ioaccel1 mode.)
1037 *
1038 * ioaccel2 mode:
1039 * bit 0 = "performant mode" bit.
1040 * bits 1-4 = block fetch table entry (note extra bit)
1041 * bits 4-6 = not needed, because ioaccel2 mode has
1042 * a separate special register for submitting commands.
1043 */
1044
1045/*
1046 * set_performant_mode: Modify the tag for cciss performant
1047 * set bit 0 for pull model, bits 3-1 for block fetch
1048 * register number
1049 */
1050#define DEFAULT_REPLY_QUEUE (-1)
1051static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1052					int reply_queue)
1053{
1054	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1055		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1056		if (unlikely(!h->msix_vectors))
1057			return;
1058		c->Header.ReplyQueue = reply_queue;
1059	}
1060}
1061
1062static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1063						struct CommandList *c,
1064						int reply_queue)
1065{
1066	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1067
1068	/*
1069	 * Tell the controller to post the reply to the queue for this
1070	 * processor.  This seems to give the best I/O throughput.
1071	 */
1072	cp->ReplyQueue = reply_queue;
1073	/*
1074	 * Set the bits in the address sent down to include:
1075	 *  - performant mode bit (bit 0)
1076	 *  - pull count (bits 1-3)
1077	 *  - command type (bits 4-6)
1078	 */
1079	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1080					IOACCEL1_BUSADDR_CMDTYPE;
1081}
1082
1083static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1084						struct CommandList *c,
1085						int reply_queue)
1086{
1087	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1088		&h->ioaccel2_cmd_pool[c->cmdindex];
1089
1090	/* Tell the controller to post the reply to the queue for this
1091	 * processor.  This seems to give the best I/O throughput.
1092	 */
1093	cp->reply_queue = reply_queue;
1094	/* Set the bits in the address sent down to include:
1095	 *  - performant mode bit not used in ioaccel mode 2
1096	 *  - pull count (bits 0-3)
1097	 *  - command type isn't needed for ioaccel2
1098	 */
1099	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1100}
1101
1102static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1103						struct CommandList *c,
1104						int reply_queue)
1105{
1106	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1107
1108	/*
1109	 * Tell the controller to post the reply to the queue for this
1110	 * processor.  This seems to give the best I/O throughput.
1111	 */
1112	cp->reply_queue = reply_queue;
1113	/*
1114	 * Set the bits in the address sent down to include:
1115	 *  - performant mode bit not used in ioaccel mode 2
1116	 *  - pull count (bits 0-3)
1117	 *  - command type isn't needed for ioaccel2
1118	 */
1119	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1120}
1121
1122static int is_firmware_flash_cmd(u8 *cdb)
1123{
1124	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1125}
1126
1127/*
1128 * During firmware flash, the heartbeat register may not update as frequently
1129 * as it should.  So we dial down lockup detection during firmware flash. and
1130 * dial it back up when firmware flash completes.
1131 */
1132#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1133#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1134#define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1135static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1136		struct CommandList *c)
1137{
1138	if (!is_firmware_flash_cmd(c->Request.CDB))
1139		return;
1140	atomic_inc(&h->firmware_flash_in_progress);
1141	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1142}
1143
1144static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1145		struct CommandList *c)
1146{
1147	if (is_firmware_flash_cmd(c->Request.CDB) &&
1148		atomic_dec_and_test(&h->firmware_flash_in_progress))
1149		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1150}
1151
1152static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1153	struct CommandList *c, int reply_queue)
1154{
1155	dial_down_lockup_detection_during_fw_flash(h, c);
1156	atomic_inc(&h->commands_outstanding);
1157	/*
1158	 * Check to see if the command is being retried.
1159	 */
1160	if (c->device && !c->retry_pending)
1161		atomic_inc(&c->device->commands_outstanding);
1162
1163	reply_queue = h->reply_map[raw_smp_processor_id()];
1164	switch (c->cmd_type) {
1165	case CMD_IOACCEL1:
1166		set_ioaccel1_performant_mode(h, c, reply_queue);
1167		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1168		break;
1169	case CMD_IOACCEL2:
1170		set_ioaccel2_performant_mode(h, c, reply_queue);
1171		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1172		break;
1173	case IOACCEL2_TMF:
1174		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1175		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1176		break;
1177	default:
1178		set_performant_mode(h, c, reply_queue);
1179		h->access.submit_command(h, c);
1180	}
1181}
1182
1183static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1184{
1185	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1186}
1187
1188static inline int is_hba_lunid(unsigned char scsi3addr[])
1189{
1190	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1191}
1192
1193static inline int is_scsi_rev_5(struct ctlr_info *h)
1194{
1195	if (!h->hba_inquiry_data)
1196		return 0;
1197	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1198		return 1;
1199	return 0;
1200}
1201
1202static int hpsa_find_target_lun(struct ctlr_info *h,
1203	unsigned char scsi3addr[], int bus, int *target, int *lun)
1204{
1205	/* finds an unused bus, target, lun for a new physical device
1206	 * assumes h->devlock is held
1207	 */
1208	int i, found = 0;
1209	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1210
1211	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1212
1213	for (i = 0; i < h->ndevices; i++) {
1214		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1215			__set_bit(h->dev[i]->target, lun_taken);
1216	}
1217
1218	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1219	if (i < HPSA_MAX_DEVICES) {
1220		/* *bus = 1; */
1221		*target = i;
1222		*lun = 0;
1223		found = 1;
1224	}
1225	return !found;
1226}
1227
1228static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1229	struct hpsa_scsi_dev_t *dev, char *description)
1230{
1231#define LABEL_SIZE 25
1232	char label[LABEL_SIZE];
1233
1234	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1235		return;
1236
1237	switch (dev->devtype) {
1238	case TYPE_RAID:
1239		snprintf(label, LABEL_SIZE, "controller");
1240		break;
1241	case TYPE_ENCLOSURE:
1242		snprintf(label, LABEL_SIZE, "enclosure");
1243		break;
1244	case TYPE_DISK:
1245	case TYPE_ZBC:
1246		if (dev->external)
1247			snprintf(label, LABEL_SIZE, "external");
1248		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1249			snprintf(label, LABEL_SIZE, "%s",
1250				raid_label[PHYSICAL_DRIVE]);
1251		else
1252			snprintf(label, LABEL_SIZE, "RAID-%s",
1253				dev->raid_level > RAID_UNKNOWN ? "?" :
1254				raid_label[dev->raid_level]);
1255		break;
1256	case TYPE_ROM:
1257		snprintf(label, LABEL_SIZE, "rom");
1258		break;
1259	case TYPE_TAPE:
1260		snprintf(label, LABEL_SIZE, "tape");
1261		break;
1262	case TYPE_MEDIUM_CHANGER:
1263		snprintf(label, LABEL_SIZE, "changer");
1264		break;
1265	default:
1266		snprintf(label, LABEL_SIZE, "UNKNOWN");
1267		break;
1268	}
1269
1270	dev_printk(level, &h->pdev->dev,
1271			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1272			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1273			description,
1274			scsi_device_type(dev->devtype),
1275			dev->vendor,
1276			dev->model,
1277			label,
1278			dev->offload_config ? '+' : '-',
1279			dev->offload_to_be_enabled ? '+' : '-',
1280			dev->expose_device);
1281}
1282
1283/* Add an entry into h->dev[] array. */
1284static int hpsa_scsi_add_entry(struct ctlr_info *h,
1285		struct hpsa_scsi_dev_t *device,
1286		struct hpsa_scsi_dev_t *added[], int *nadded)
1287{
1288	/* assumes h->devlock is held */
1289	int n = h->ndevices;
1290	int i;
1291	unsigned char addr1[8], addr2[8];
1292	struct hpsa_scsi_dev_t *sd;
1293
1294	if (n >= HPSA_MAX_DEVICES) {
1295		dev_err(&h->pdev->dev, "too many devices, some will be "
1296			"inaccessible.\n");
1297		return -1;
1298	}
1299
1300	/* physical devices do not have lun or target assigned until now. */
1301	if (device->lun != -1)
1302		/* Logical device, lun is already assigned. */
1303		goto lun_assigned;
1304
1305	/* If this device a non-zero lun of a multi-lun device
1306	 * byte 4 of the 8-byte LUN addr will contain the logical
1307	 * unit no, zero otherwise.
1308	 */
1309	if (device->scsi3addr[4] == 0) {
1310		/* This is not a non-zero lun of a multi-lun device */
1311		if (hpsa_find_target_lun(h, device->scsi3addr,
1312			device->bus, &device->target, &device->lun) != 0)
1313			return -1;
1314		goto lun_assigned;
1315	}
1316
1317	/* This is a non-zero lun of a multi-lun device.
1318	 * Search through our list and find the device which
1319	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1320	 * Assign the same bus and target for this new LUN.
1321	 * Use the logical unit number from the firmware.
1322	 */
1323	memcpy(addr1, device->scsi3addr, 8);
1324	addr1[4] = 0;
1325	addr1[5] = 0;
1326	for (i = 0; i < n; i++) {
1327		sd = h->dev[i];
1328		memcpy(addr2, sd->scsi3addr, 8);
1329		addr2[4] = 0;
1330		addr2[5] = 0;
1331		/* differ only in byte 4 and 5? */
1332		if (memcmp(addr1, addr2, 8) == 0) {
1333			device->bus = sd->bus;
1334			device->target = sd->target;
1335			device->lun = device->scsi3addr[4];
1336			break;
1337		}
1338	}
1339	if (device->lun == -1) {
1340		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1341			" suspect firmware bug or unsupported hardware "
1342			"configuration.\n");
1343		return -1;
1344	}
1345
1346lun_assigned:
1347
1348	h->dev[n] = device;
1349	h->ndevices++;
1350	added[*nadded] = device;
1351	(*nadded)++;
1352	hpsa_show_dev_msg(KERN_INFO, h, device,
1353		device->expose_device ? "added" : "masked");
1354	return 0;
1355}
1356
1357/*
1358 * Called during a scan operation.
1359 *
1360 * Update an entry in h->dev[] array.
1361 */
1362static void hpsa_scsi_update_entry(struct ctlr_info *h,
1363	int entry, struct hpsa_scsi_dev_t *new_entry)
1364{
1365	/* assumes h->devlock is held */
1366	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1367
1368	/* Raid level changed. */
1369	h->dev[entry]->raid_level = new_entry->raid_level;
1370
1371	/*
1372	 * ioacccel_handle may have changed for a dual domain disk
1373	 */
1374	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1375
1376	/* Raid offload parameters changed.  Careful about the ordering. */
1377	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1378		/*
1379		 * if drive is newly offload_enabled, we want to copy the
1380		 * raid map data first.  If previously offload_enabled and
1381		 * offload_config were set, raid map data had better be
1382		 * the same as it was before. If raid map data has changed
1383		 * then it had better be the case that
1384		 * h->dev[entry]->offload_enabled is currently 0.
1385		 */
1386		h->dev[entry]->raid_map = new_entry->raid_map;
1387		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1388	}
1389	if (new_entry->offload_to_be_enabled) {
1390		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1391		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1392	}
1393	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1394	h->dev[entry]->offload_config = new_entry->offload_config;
1395	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1396	h->dev[entry]->queue_depth = new_entry->queue_depth;
1397
1398	/*
1399	 * We can turn off ioaccel offload now, but need to delay turning
1400	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1401	 * can't do that until all the devices are updated.
1402	 */
1403	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1404
1405	/*
1406	 * turn ioaccel off immediately if told to do so.
1407	 */
1408	if (!new_entry->offload_to_be_enabled)
1409		h->dev[entry]->offload_enabled = 0;
1410
1411	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1412}
1413
1414/* Replace an entry from h->dev[] array. */
1415static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1416	int entry, struct hpsa_scsi_dev_t *new_entry,
1417	struct hpsa_scsi_dev_t *added[], int *nadded,
1418	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1419{
1420	/* assumes h->devlock is held */
1421	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1422	removed[*nremoved] = h->dev[entry];
1423	(*nremoved)++;
1424
1425	/*
1426	 * New physical devices won't have target/lun assigned yet
1427	 * so we need to preserve the values in the slot we are replacing.
1428	 */
1429	if (new_entry->target == -1) {
1430		new_entry->target = h->dev[entry]->target;
1431		new_entry->lun = h->dev[entry]->lun;
1432	}
1433
1434	h->dev[entry] = new_entry;
1435	added[*nadded] = new_entry;
1436	(*nadded)++;
1437
1438	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1439}
1440
1441/* Remove an entry from h->dev[] array. */
1442static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1443	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1444{
1445	/* assumes h->devlock is held */
1446	int i;
1447	struct hpsa_scsi_dev_t *sd;
1448
1449	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1450
1451	sd = h->dev[entry];
1452	removed[*nremoved] = h->dev[entry];
1453	(*nremoved)++;
1454
1455	for (i = entry; i < h->ndevices-1; i++)
1456		h->dev[i] = h->dev[i+1];
1457	h->ndevices--;
1458	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1459}
1460
1461#define SCSI3ADDR_EQ(a, b) ( \
1462	(a)[7] == (b)[7] && \
1463	(a)[6] == (b)[6] && \
1464	(a)[5] == (b)[5] && \
1465	(a)[4] == (b)[4] && \
1466	(a)[3] == (b)[3] && \
1467	(a)[2] == (b)[2] && \
1468	(a)[1] == (b)[1] && \
1469	(a)[0] == (b)[0])
1470
1471static void fixup_botched_add(struct ctlr_info *h,
1472	struct hpsa_scsi_dev_t *added)
1473{
1474	/* called when scsi_add_device fails in order to re-adjust
1475	 * h->dev[] to match the mid layer's view.
1476	 */
1477	unsigned long flags;
1478	int i, j;
1479
1480	spin_lock_irqsave(&h->lock, flags);
1481	for (i = 0; i < h->ndevices; i++) {
1482		if (h->dev[i] == added) {
1483			for (j = i; j < h->ndevices-1; j++)
1484				h->dev[j] = h->dev[j+1];
1485			h->ndevices--;
1486			break;
1487		}
1488	}
1489	spin_unlock_irqrestore(&h->lock, flags);
1490	kfree(added);
1491}
1492
1493static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1494	struct hpsa_scsi_dev_t *dev2)
1495{
1496	/* we compare everything except lun and target as these
1497	 * are not yet assigned.  Compare parts likely
1498	 * to differ first
1499	 */
1500	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1501		sizeof(dev1->scsi3addr)) != 0)
1502		return 0;
1503	if (memcmp(dev1->device_id, dev2->device_id,
1504		sizeof(dev1->device_id)) != 0)
1505		return 0;
1506	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1507		return 0;
1508	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1509		return 0;
1510	if (dev1->devtype != dev2->devtype)
1511		return 0;
1512	if (dev1->bus != dev2->bus)
1513		return 0;
1514	return 1;
1515}
1516
1517static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1518	struct hpsa_scsi_dev_t *dev2)
1519{
1520	/* Device attributes that can change, but don't mean
1521	 * that the device is a different device, nor that the OS
1522	 * needs to be told anything about the change.
1523	 */
1524	if (dev1->raid_level != dev2->raid_level)
1525		return 1;
1526	if (dev1->offload_config != dev2->offload_config)
1527		return 1;
1528	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1529		return 1;
1530	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1531		if (dev1->queue_depth != dev2->queue_depth)
1532			return 1;
1533	/*
1534	 * This can happen for dual domain devices. An active
1535	 * path change causes the ioaccel handle to change
1536	 *
1537	 * for example note the handle differences between p0 and p1
1538	 * Device                    WWN               ,WWN hash,Handle
1539	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1540	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1541	 */
1542	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1543		return 1;
1544	return 0;
1545}
1546
1547/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1548 * and return needle location in *index.  If scsi3addr matches, but not
1549 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1550 * location in *index.
1551 * In the case of a minor device attribute change, such as RAID level, just
1552 * return DEVICE_UPDATED, along with the updated device's location in index.
1553 * If needle not found, return DEVICE_NOT_FOUND.
1554 */
1555static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1556	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1557	int *index)
1558{
1559	int i;
1560#define DEVICE_NOT_FOUND 0
1561#define DEVICE_CHANGED 1
1562#define DEVICE_SAME 2
1563#define DEVICE_UPDATED 3
1564	if (needle == NULL)
1565		return DEVICE_NOT_FOUND;
1566
1567	for (i = 0; i < haystack_size; i++) {
1568		if (haystack[i] == NULL) /* previously removed. */
1569			continue;
1570		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1571			*index = i;
1572			if (device_is_the_same(needle, haystack[i])) {
1573				if (device_updated(needle, haystack[i]))
1574					return DEVICE_UPDATED;
1575				return DEVICE_SAME;
1576			} else {
1577				/* Keep offline devices offline */
1578				if (needle->volume_offline)
1579					return DEVICE_NOT_FOUND;
1580				return DEVICE_CHANGED;
1581			}
1582		}
1583	}
1584	*index = -1;
1585	return DEVICE_NOT_FOUND;
1586}
1587
1588static void hpsa_monitor_offline_device(struct ctlr_info *h,
1589					unsigned char scsi3addr[])
1590{
1591	struct offline_device_entry *device;
1592	unsigned long flags;
1593
1594	/* Check to see if device is already on the list */
1595	spin_lock_irqsave(&h->offline_device_lock, flags);
1596	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1597		if (memcmp(device->scsi3addr, scsi3addr,
1598			sizeof(device->scsi3addr)) == 0) {
1599			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1600			return;
1601		}
1602	}
1603	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1604
1605	/* Device is not on the list, add it. */
1606	device = kmalloc(sizeof(*device), GFP_KERNEL);
1607	if (!device)
1608		return;
1609
1610	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1611	spin_lock_irqsave(&h->offline_device_lock, flags);
1612	list_add_tail(&device->offline_list, &h->offline_device_list);
1613	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1614}
1615
1616/* Print a message explaining various offline volume states */
1617static void hpsa_show_volume_status(struct ctlr_info *h,
1618	struct hpsa_scsi_dev_t *sd)
1619{
1620	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1621		dev_info(&h->pdev->dev,
1622			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1623			h->scsi_host->host_no,
1624			sd->bus, sd->target, sd->lun);
1625	switch (sd->volume_offline) {
1626	case HPSA_LV_OK:
1627		break;
1628	case HPSA_LV_UNDERGOING_ERASE:
1629		dev_info(&h->pdev->dev,
1630			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1631			h->scsi_host->host_no,
1632			sd->bus, sd->target, sd->lun);
1633		break;
1634	case HPSA_LV_NOT_AVAILABLE:
1635		dev_info(&h->pdev->dev,
1636			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1637			h->scsi_host->host_no,
1638			sd->bus, sd->target, sd->lun);
1639		break;
1640	case HPSA_LV_UNDERGOING_RPI:
1641		dev_info(&h->pdev->dev,
1642			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1643			h->scsi_host->host_no,
1644			sd->bus, sd->target, sd->lun);
1645		break;
1646	case HPSA_LV_PENDING_RPI:
1647		dev_info(&h->pdev->dev,
1648			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1649			h->scsi_host->host_no,
1650			sd->bus, sd->target, sd->lun);
1651		break;
1652	case HPSA_LV_ENCRYPTED_NO_KEY:
1653		dev_info(&h->pdev->dev,
1654			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1655			h->scsi_host->host_no,
1656			sd->bus, sd->target, sd->lun);
1657		break;
1658	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1659		dev_info(&h->pdev->dev,
1660			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1661			h->scsi_host->host_no,
1662			sd->bus, sd->target, sd->lun);
1663		break;
1664	case HPSA_LV_UNDERGOING_ENCRYPTION:
1665		dev_info(&h->pdev->dev,
1666			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1667			h->scsi_host->host_no,
1668			sd->bus, sd->target, sd->lun);
1669		break;
1670	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1671		dev_info(&h->pdev->dev,
1672			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1673			h->scsi_host->host_no,
1674			sd->bus, sd->target, sd->lun);
1675		break;
1676	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1677		dev_info(&h->pdev->dev,
1678			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1679			h->scsi_host->host_no,
1680			sd->bus, sd->target, sd->lun);
1681		break;
1682	case HPSA_LV_PENDING_ENCRYPTION:
1683		dev_info(&h->pdev->dev,
1684			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1685			h->scsi_host->host_no,
1686			sd->bus, sd->target, sd->lun);
1687		break;
1688	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1689		dev_info(&h->pdev->dev,
1690			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1691			h->scsi_host->host_no,
1692			sd->bus, sd->target, sd->lun);
1693		break;
1694	}
1695}
1696
1697/*
1698 * Figure the list of physical drive pointers for a logical drive with
1699 * raid offload configured.
1700 */
1701static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1702				struct hpsa_scsi_dev_t *dev[], int ndevices,
1703				struct hpsa_scsi_dev_t *logical_drive)
1704{
1705	struct raid_map_data *map = &logical_drive->raid_map;
1706	struct raid_map_disk_data *dd = &map->data[0];
1707	int i, j;
1708	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1709				le16_to_cpu(map->metadata_disks_per_row);
1710	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1711				le16_to_cpu(map->layout_map_count) *
1712				total_disks_per_row;
1713	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1714				total_disks_per_row;
1715	int qdepth;
1716
1717	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1718		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1719
1720	logical_drive->nphysical_disks = nraid_map_entries;
1721
1722	qdepth = 0;
1723	for (i = 0; i < nraid_map_entries; i++) {
1724		logical_drive->phys_disk[i] = NULL;
1725		if (!logical_drive->offload_config)
1726			continue;
1727		for (j = 0; j < ndevices; j++) {
1728			if (dev[j] == NULL)
1729				continue;
1730			if (dev[j]->devtype != TYPE_DISK &&
1731			    dev[j]->devtype != TYPE_ZBC)
1732				continue;
1733			if (is_logical_device(dev[j]))
1734				continue;
1735			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1736				continue;
1737
1738			logical_drive->phys_disk[i] = dev[j];
1739			if (i < nphys_disk)
1740				qdepth = min(h->nr_cmds, qdepth +
1741				    logical_drive->phys_disk[i]->queue_depth);
1742			break;
1743		}
1744
1745		/*
1746		 * This can happen if a physical drive is removed and
1747		 * the logical drive is degraded.  In that case, the RAID
1748		 * map data will refer to a physical disk which isn't actually
1749		 * present.  And in that case offload_enabled should already
1750		 * be 0, but we'll turn it off here just in case
1751		 */
1752		if (!logical_drive->phys_disk[i]) {
1753			dev_warn(&h->pdev->dev,
1754				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1755				__func__,
1756				h->scsi_host->host_no, logical_drive->bus,
1757				logical_drive->target, logical_drive->lun);
1758			hpsa_turn_off_ioaccel_for_device(logical_drive);
1759			logical_drive->queue_depth = 8;
1760		}
1761	}
1762	if (nraid_map_entries)
1763		/*
1764		 * This is correct for reads, too high for full stripe writes,
1765		 * way too high for partial stripe writes
1766		 */
1767		logical_drive->queue_depth = qdepth;
1768	else {
1769		if (logical_drive->external)
1770			logical_drive->queue_depth = EXTERNAL_QD;
1771		else
1772			logical_drive->queue_depth = h->nr_cmds;
1773	}
1774}
1775
1776static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1777				struct hpsa_scsi_dev_t *dev[], int ndevices)
1778{
1779	int i;
1780
1781	for (i = 0; i < ndevices; i++) {
1782		if (dev[i] == NULL)
1783			continue;
1784		if (dev[i]->devtype != TYPE_DISK &&
1785		    dev[i]->devtype != TYPE_ZBC)
1786			continue;
1787		if (!is_logical_device(dev[i]))
1788			continue;
1789
1790		/*
1791		 * If offload is currently enabled, the RAID map and
1792		 * phys_disk[] assignment *better* not be changing
1793		 * because we would be changing ioaccel phsy_disk[] pointers
1794		 * on a ioaccel volume processing I/O requests.
1795		 *
1796		 * If an ioaccel volume status changed, initially because it was
1797		 * re-configured and thus underwent a transformation, or
1798		 * a drive failed, we would have received a state change
1799		 * request and ioaccel should have been turned off. When the
1800		 * transformation completes, we get another state change
1801		 * request to turn ioaccel back on. In this case, we need
1802		 * to update the ioaccel information.
1803		 *
1804		 * Thus: If it is not currently enabled, but will be after
1805		 * the scan completes, make sure the ioaccel pointers
1806		 * are up to date.
1807		 */
1808
1809		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1810			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1811	}
1812}
1813
1814static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1815{
1816	int rc = 0;
1817
1818	if (!h->scsi_host)
1819		return 1;
1820
1821	if (is_logical_device(device)) /* RAID */
1822		rc = scsi_add_device(h->scsi_host, device->bus,
1823					device->target, device->lun);
1824	else /* HBA */
1825		rc = hpsa_add_sas_device(h->sas_host, device);
1826
1827	return rc;
1828}
1829
1830static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1831						struct hpsa_scsi_dev_t *dev)
1832{
1833	int i;
1834	int count = 0;
1835
1836	for (i = 0; i < h->nr_cmds; i++) {
1837		struct CommandList *c = h->cmd_pool + i;
1838		int refcount = atomic_inc_return(&c->refcount);
1839
1840		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1841				dev->scsi3addr)) {
1842			unsigned long flags;
1843
1844			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1845			if (!hpsa_is_cmd_idle(c))
1846				++count;
1847			spin_unlock_irqrestore(&h->lock, flags);
1848		}
1849
1850		cmd_free(h, c);
1851	}
1852
1853	return count;
1854}
1855
1856#define NUM_WAIT 20
1857static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1858						struct hpsa_scsi_dev_t *device)
1859{
1860	int cmds = 0;
1861	int waits = 0;
1862	int num_wait = NUM_WAIT;
1863
1864	if (device->external)
1865		num_wait = HPSA_EH_PTRAID_TIMEOUT;
1866
1867	while (1) {
1868		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1869		if (cmds == 0)
1870			break;
1871		if (++waits > num_wait)
1872			break;
1873		msleep(1000);
1874	}
1875
1876	if (waits > num_wait) {
1877		dev_warn(&h->pdev->dev,
1878			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1879			__func__,
1880			h->scsi_host->host_no,
1881			device->bus, device->target, device->lun, cmds);
1882	}
1883}
1884
1885static void hpsa_remove_device(struct ctlr_info *h,
1886			struct hpsa_scsi_dev_t *device)
1887{
1888	struct scsi_device *sdev = NULL;
1889
1890	if (!h->scsi_host)
1891		return;
1892
1893	/*
1894	 * Allow for commands to drain
1895	 */
1896	device->removed = 1;
1897	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1898
1899	if (is_logical_device(device)) { /* RAID */
1900		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1901						device->target, device->lun);
1902		if (sdev) {
1903			scsi_remove_device(sdev);
1904			scsi_device_put(sdev);
1905		} else {
1906			/*
1907			 * We don't expect to get here.  Future commands
1908			 * to this device will get a selection timeout as
1909			 * if the device were gone.
1910			 */
1911			hpsa_show_dev_msg(KERN_WARNING, h, device,
1912					"didn't find device for removal.");
1913		}
1914	} else { /* HBA */
1915
1916		hpsa_remove_sas_device(device);
1917	}
1918}
1919
1920static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1921	struct hpsa_scsi_dev_t *sd[], int nsds)
1922{
1923	/* sd contains scsi3 addresses and devtypes, and inquiry
1924	 * data.  This function takes what's in sd to be the current
1925	 * reality and updates h->dev[] to reflect that reality.
1926	 */
1927	int i, entry, device_change, changes = 0;
1928	struct hpsa_scsi_dev_t *csd;
1929	unsigned long flags;
1930	struct hpsa_scsi_dev_t **added, **removed;
1931	int nadded, nremoved;
1932
1933	/*
1934	 * A reset can cause a device status to change
1935	 * re-schedule the scan to see what happened.
1936	 */
1937	spin_lock_irqsave(&h->reset_lock, flags);
1938	if (h->reset_in_progress) {
1939		h->drv_req_rescan = 1;
1940		spin_unlock_irqrestore(&h->reset_lock, flags);
1941		return;
1942	}
1943	spin_unlock_irqrestore(&h->reset_lock, flags);
1944
1945	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1946	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1947
1948	if (!added || !removed) {
1949		dev_warn(&h->pdev->dev, "out of memory in "
1950			"adjust_hpsa_scsi_table\n");
1951		goto free_and_out;
1952	}
1953
1954	spin_lock_irqsave(&h->devlock, flags);
1955
1956	/* find any devices in h->dev[] that are not in
1957	 * sd[] and remove them from h->dev[], and for any
1958	 * devices which have changed, remove the old device
1959	 * info and add the new device info.
1960	 * If minor device attributes change, just update
1961	 * the existing device structure.
1962	 */
1963	i = 0;
1964	nremoved = 0;
1965	nadded = 0;
1966	while (i < h->ndevices) {
1967		csd = h->dev[i];
1968		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1969		if (device_change == DEVICE_NOT_FOUND) {
1970			changes++;
1971			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1972			continue; /* remove ^^^, hence i not incremented */
1973		} else if (device_change == DEVICE_CHANGED) {
1974			changes++;
1975			hpsa_scsi_replace_entry(h, i, sd[entry],
1976				added, &nadded, removed, &nremoved);
1977			/* Set it to NULL to prevent it from being freed
1978			 * at the bottom of hpsa_update_scsi_devices()
1979			 */
1980			sd[entry] = NULL;
1981		} else if (device_change == DEVICE_UPDATED) {
1982			hpsa_scsi_update_entry(h, i, sd[entry]);
1983		}
1984		i++;
1985	}
1986
1987	/* Now, make sure every device listed in sd[] is also
1988	 * listed in h->dev[], adding them if they aren't found
1989	 */
1990
1991	for (i = 0; i < nsds; i++) {
1992		if (!sd[i]) /* if already added above. */
1993			continue;
1994
1995		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1996		 * as the SCSI mid-layer does not handle such devices well.
1997		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1998		 * at 160Hz, and prevents the system from coming up.
1999		 */
2000		if (sd[i]->volume_offline) {
2001			hpsa_show_volume_status(h, sd[i]);
2002			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
2003			continue;
2004		}
2005
2006		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2007					h->ndevices, &entry);
2008		if (device_change == DEVICE_NOT_FOUND) {
2009			changes++;
2010			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2011				break;
2012			sd[i] = NULL; /* prevent from being freed later. */
2013		} else if (device_change == DEVICE_CHANGED) {
2014			/* should never happen... */
2015			changes++;
2016			dev_warn(&h->pdev->dev,
2017				"device unexpectedly changed.\n");
2018			/* but if it does happen, we just ignore that device */
2019		}
2020	}
2021	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2022
2023	/*
2024	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2025	 * any logical drives that need it enabled.
2026	 *
2027	 * The raid map should be current by now.
2028	 *
2029	 * We are updating the device list used for I/O requests.
2030	 */
2031	for (i = 0; i < h->ndevices; i++) {
2032		if (h->dev[i] == NULL)
2033			continue;
2034		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2035	}
2036
2037	spin_unlock_irqrestore(&h->devlock, flags);
2038
2039	/* Monitor devices which are in one of several NOT READY states to be
2040	 * brought online later. This must be done without holding h->devlock,
2041	 * so don't touch h->dev[]
2042	 */
2043	for (i = 0; i < nsds; i++) {
2044		if (!sd[i]) /* if already added above. */
2045			continue;
2046		if (sd[i]->volume_offline)
2047			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2048	}
2049
2050	/* Don't notify scsi mid layer of any changes the first time through
2051	 * (or if there are no changes) scsi_scan_host will do it later the
2052	 * first time through.
2053	 */
2054	if (!changes)
2055		goto free_and_out;
2056
2057	/* Notify scsi mid layer of any removed devices */
2058	for (i = 0; i < nremoved; i++) {
2059		if (removed[i] == NULL)
2060			continue;
2061		if (removed[i]->expose_device)
2062			hpsa_remove_device(h, removed[i]);
2063		kfree(removed[i]);
2064		removed[i] = NULL;
2065	}
2066
2067	/* Notify scsi mid layer of any added devices */
2068	for (i = 0; i < nadded; i++) {
2069		int rc = 0;
2070
2071		if (added[i] == NULL)
2072			continue;
2073		if (!(added[i]->expose_device))
2074			continue;
2075		rc = hpsa_add_device(h, added[i]);
2076		if (!rc)
2077			continue;
2078		dev_warn(&h->pdev->dev,
2079			"addition failed %d, device not added.", rc);
2080		/* now we have to remove it from h->dev,
2081		 * since it didn't get added to scsi mid layer
2082		 */
2083		fixup_botched_add(h, added[i]);
2084		h->drv_req_rescan = 1;
2085	}
2086
2087free_and_out:
2088	kfree(added);
2089	kfree(removed);
2090}
2091
2092/*
2093 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2094 * Assume's h->devlock is held.
2095 */
2096static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2097	int bus, int target, int lun)
2098{
2099	int i;
2100	struct hpsa_scsi_dev_t *sd;
2101
2102	for (i = 0; i < h->ndevices; i++) {
2103		sd = h->dev[i];
2104		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2105			return sd;
2106	}
2107	return NULL;
2108}
2109
2110static int hpsa_slave_alloc(struct scsi_device *sdev)
2111{
2112	struct hpsa_scsi_dev_t *sd = NULL;
2113	unsigned long flags;
2114	struct ctlr_info *h;
2115
2116	h = sdev_to_hba(sdev);
2117	spin_lock_irqsave(&h->devlock, flags);
2118	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2119		struct scsi_target *starget;
2120		struct sas_rphy *rphy;
2121
2122		starget = scsi_target(sdev);
2123		rphy = target_to_rphy(starget);
2124		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2125		if (sd) {
2126			sd->target = sdev_id(sdev);
2127			sd->lun = sdev->lun;
2128		}
2129	}
2130	if (!sd)
2131		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2132					sdev_id(sdev), sdev->lun);
2133
2134	if (sd && sd->expose_device) {
2135		atomic_set(&sd->ioaccel_cmds_out, 0);
2136		sdev->hostdata = sd;
2137	} else
2138		sdev->hostdata = NULL;
2139	spin_unlock_irqrestore(&h->devlock, flags);
2140	return 0;
2141}
2142
2143/* configure scsi device based on internal per-device structure */
2144#define CTLR_TIMEOUT (120 * HZ)
2145static int hpsa_slave_configure(struct scsi_device *sdev)
2146{
2147	struct hpsa_scsi_dev_t *sd;
2148	int queue_depth;
2149
2150	sd = sdev->hostdata;
2151	sdev->no_uld_attach = !sd || !sd->expose_device;
2152
2153	if (sd) {
2154		sd->was_removed = 0;
2155		queue_depth = sd->queue_depth != 0 ?
2156				sd->queue_depth : sdev->host->can_queue;
2157		if (sd->external) {
2158			queue_depth = EXTERNAL_QD;
2159			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2160			blk_queue_rq_timeout(sdev->request_queue,
2161						HPSA_EH_PTRAID_TIMEOUT);
2162		}
2163		if (is_hba_lunid(sd->scsi3addr)) {
2164			sdev->eh_timeout = CTLR_TIMEOUT;
2165			blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2166		}
2167	} else {
2168		queue_depth = sdev->host->can_queue;
2169	}
2170
2171	scsi_change_queue_depth(sdev, queue_depth);
2172
2173	return 0;
2174}
2175
2176static void hpsa_slave_destroy(struct scsi_device *sdev)
2177{
2178	struct hpsa_scsi_dev_t *hdev = NULL;
2179
2180	hdev = sdev->hostdata;
2181
2182	if (hdev)
2183		hdev->was_removed = 1;
2184}
2185
2186static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2187{
2188	int i;
2189
2190	if (!h->ioaccel2_cmd_sg_list)
2191		return;
2192	for (i = 0; i < h->nr_cmds; i++) {
2193		kfree(h->ioaccel2_cmd_sg_list[i]);
2194		h->ioaccel2_cmd_sg_list[i] = NULL;
2195	}
2196	kfree(h->ioaccel2_cmd_sg_list);
2197	h->ioaccel2_cmd_sg_list = NULL;
2198}
2199
2200static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2201{
2202	int i;
2203
2204	if (h->chainsize <= 0)
2205		return 0;
2206
2207	h->ioaccel2_cmd_sg_list =
2208		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2209					GFP_KERNEL);
2210	if (!h->ioaccel2_cmd_sg_list)
2211		return -ENOMEM;
2212	for (i = 0; i < h->nr_cmds; i++) {
2213		h->ioaccel2_cmd_sg_list[i] =
2214			kmalloc_array(h->maxsgentries,
2215				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2216				      GFP_KERNEL);
2217		if (!h->ioaccel2_cmd_sg_list[i])
2218			goto clean;
2219	}
2220	return 0;
2221
2222clean:
2223	hpsa_free_ioaccel2_sg_chain_blocks(h);
2224	return -ENOMEM;
2225}
2226
2227static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2228{
2229	int i;
2230
2231	if (!h->cmd_sg_list)
2232		return;
2233	for (i = 0; i < h->nr_cmds; i++) {
2234		kfree(h->cmd_sg_list[i]);
2235		h->cmd_sg_list[i] = NULL;
2236	}
2237	kfree(h->cmd_sg_list);
2238	h->cmd_sg_list = NULL;
2239}
2240
2241static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2242{
2243	int i;
2244
2245	if (h->chainsize <= 0)
2246		return 0;
2247
2248	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2249				 GFP_KERNEL);
2250	if (!h->cmd_sg_list)
2251		return -ENOMEM;
2252
2253	for (i = 0; i < h->nr_cmds; i++) {
2254		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2255						  sizeof(*h->cmd_sg_list[i]),
2256						  GFP_KERNEL);
2257		if (!h->cmd_sg_list[i])
2258			goto clean;
2259
2260	}
2261	return 0;
2262
2263clean:
2264	hpsa_free_sg_chain_blocks(h);
2265	return -ENOMEM;
2266}
2267
2268static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2269	struct io_accel2_cmd *cp, struct CommandList *c)
2270{
2271	struct ioaccel2_sg_element *chain_block;
2272	u64 temp64;
2273	u32 chain_size;
2274
2275	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2276	chain_size = le32_to_cpu(cp->sg[0].length);
2277	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2278				DMA_TO_DEVICE);
2279	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2280		/* prevent subsequent unmapping */
2281		cp->sg->address = 0;
2282		return -1;
2283	}
2284	cp->sg->address = cpu_to_le64(temp64);
2285	return 0;
2286}
2287
2288static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2289	struct io_accel2_cmd *cp)
2290{
2291	struct ioaccel2_sg_element *chain_sg;
2292	u64 temp64;
2293	u32 chain_size;
2294
2295	chain_sg = cp->sg;
2296	temp64 = le64_to_cpu(chain_sg->address);
2297	chain_size = le32_to_cpu(cp->sg[0].length);
2298	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2299}
2300
2301static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2302	struct CommandList *c)
2303{
2304	struct SGDescriptor *chain_sg, *chain_block;
2305	u64 temp64;
2306	u32 chain_len;
2307
2308	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2309	chain_block = h->cmd_sg_list[c->cmdindex];
2310	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2311	chain_len = sizeof(*chain_sg) *
2312		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2313	chain_sg->Len = cpu_to_le32(chain_len);
2314	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2315				DMA_TO_DEVICE);
2316	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2317		/* prevent subsequent unmapping */
2318		chain_sg->Addr = cpu_to_le64(0);
2319		return -1;
2320	}
2321	chain_sg->Addr = cpu_to_le64(temp64);
2322	return 0;
2323}
2324
2325static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2326	struct CommandList *c)
2327{
2328	struct SGDescriptor *chain_sg;
2329
2330	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2331		return;
2332
2333	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2334	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2335			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2336}
2337
2338
2339/* Decode the various types of errors on ioaccel2 path.
2340 * Return 1 for any error that should generate a RAID path retry.
2341 * Return 0 for errors that don't require a RAID path retry.
2342 */
2343static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2344					struct CommandList *c,
2345					struct scsi_cmnd *cmd,
2346					struct io_accel2_cmd *c2,
2347					struct hpsa_scsi_dev_t *dev)
2348{
2349	int data_len;
2350	int retry = 0;
2351	u32 ioaccel2_resid = 0;
2352
2353	switch (c2->error_data.serv_response) {
2354	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2355		switch (c2->error_data.status) {
2356		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2357			if (cmd)
2358				cmd->result = 0;
2359			break;
2360		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2361			cmd->result |= SAM_STAT_CHECK_CONDITION;
2362			if (c2->error_data.data_present !=
2363					IOACCEL2_SENSE_DATA_PRESENT) {
2364				memset(cmd->sense_buffer, 0,
2365					SCSI_SENSE_BUFFERSIZE);
2366				break;
2367			}
2368			/* copy the sense data */
2369			data_len = c2->error_data.sense_data_len;
2370			if (data_len > SCSI_SENSE_BUFFERSIZE)
2371				data_len = SCSI_SENSE_BUFFERSIZE;
2372			if (data_len > sizeof(c2->error_data.sense_data_buff))
2373				data_len =
2374					sizeof(c2->error_data.sense_data_buff);
2375			memcpy(cmd->sense_buffer,
2376				c2->error_data.sense_data_buff, data_len);
2377			retry = 1;
2378			break;
2379		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2380			retry = 1;
2381			break;
2382		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2383			retry = 1;
2384			break;
2385		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2386			retry = 1;
2387			break;
2388		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2389			retry = 1;
2390			break;
2391		default:
2392			retry = 1;
2393			break;
2394		}
2395		break;
2396	case IOACCEL2_SERV_RESPONSE_FAILURE:
2397		switch (c2->error_data.status) {
2398		case IOACCEL2_STATUS_SR_IO_ERROR:
2399		case IOACCEL2_STATUS_SR_IO_ABORTED:
2400		case IOACCEL2_STATUS_SR_OVERRUN:
2401			retry = 1;
2402			break;
2403		case IOACCEL2_STATUS_SR_UNDERRUN:
2404			cmd->result = (DID_OK << 16);		/* host byte */
2405			ioaccel2_resid = get_unaligned_le32(
2406						&c2->error_data.resid_cnt[0]);
2407			scsi_set_resid(cmd, ioaccel2_resid);
2408			break;
2409		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2410		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2411		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2412			/*
2413			 * Did an HBA disk disappear? We will eventually
2414			 * get a state change event from the controller but
2415			 * in the meantime, we need to tell the OS that the
2416			 * HBA disk is no longer there and stop I/O
2417			 * from going down. This allows the potential re-insert
2418			 * of the disk to get the same device node.
2419			 */
2420			if (dev->physical_device && dev->expose_device) {
2421				cmd->result = DID_NO_CONNECT << 16;
2422				dev->removed = 1;
2423				h->drv_req_rescan = 1;
2424				dev_warn(&h->pdev->dev,
2425					"%s: device is gone!\n", __func__);
2426			} else
2427				/*
2428				 * Retry by sending down the RAID path.
2429				 * We will get an event from ctlr to
2430				 * trigger rescan regardless.
2431				 */
2432				retry = 1;
2433			break;
2434		default:
2435			retry = 1;
2436		}
2437		break;
2438	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2439		break;
2440	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2441		break;
2442	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2443		retry = 1;
2444		break;
2445	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2446		break;
2447	default:
2448		retry = 1;
2449		break;
2450	}
2451
2452	if (dev->in_reset)
2453		retry = 0;
2454
2455	return retry;	/* retry on raid path? */
2456}
2457
2458static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2459		struct CommandList *c)
2460{
2461	struct hpsa_scsi_dev_t *dev = c->device;
2462
2463	/*
2464	 * Reset c->scsi_cmd here so that the reset handler will know
2465	 * this command has completed.  Then, check to see if the handler is
2466	 * waiting for this command, and, if so, wake it.
2467	 */
2468	c->scsi_cmd = SCSI_CMD_IDLE;
2469	mb();	/* Declare command idle before checking for pending events. */
2470	if (dev) {
2471		atomic_dec(&dev->commands_outstanding);
2472		if (dev->in_reset &&
2473			atomic_read(&dev->commands_outstanding) <= 0)
2474			wake_up_all(&h->event_sync_wait_queue);
2475	}
2476}
2477
2478static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2479				      struct CommandList *c)
2480{
2481	hpsa_cmd_resolve_events(h, c);
2482	cmd_tagged_free(h, c);
2483}
2484
2485static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2486		struct CommandList *c, struct scsi_cmnd *cmd)
2487{
2488	hpsa_cmd_resolve_and_free(h, c);
2489	if (cmd)
2490		scsi_done(cmd);
2491}
2492
2493static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2494{
2495	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2496	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2497}
2498
2499static void process_ioaccel2_completion(struct ctlr_info *h,
2500		struct CommandList *c, struct scsi_cmnd *cmd,
2501		struct hpsa_scsi_dev_t *dev)
2502{
2503	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2504
2505	/* check for good status */
2506	if (likely(c2->error_data.serv_response == 0 &&
2507			c2->error_data.status == 0)) {
2508		cmd->result = 0;
2509		return hpsa_cmd_free_and_done(h, c, cmd);
2510	}
2511
2512	/*
2513	 * Any RAID offload error results in retry which will use
2514	 * the normal I/O path so the controller can handle whatever is
2515	 * wrong.
2516	 */
2517	if (is_logical_device(dev) &&
2518		c2->error_data.serv_response ==
2519			IOACCEL2_SERV_RESPONSE_FAILURE) {
2520		if (c2->error_data.status ==
2521			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2522			hpsa_turn_off_ioaccel_for_device(dev);
2523		}
2524
2525		if (dev->in_reset) {
2526			cmd->result = DID_RESET << 16;
2527			return hpsa_cmd_free_and_done(h, c, cmd);
2528		}
2529
2530		return hpsa_retry_cmd(h, c);
2531	}
2532
2533	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2534		return hpsa_retry_cmd(h, c);
2535
2536	return hpsa_cmd_free_and_done(h, c, cmd);
2537}
2538
2539/* Returns 0 on success, < 0 otherwise. */
2540static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2541					struct CommandList *cp)
2542{
2543	u8 tmf_status = cp->err_info->ScsiStatus;
2544
2545	switch (tmf_status) {
2546	case CISS_TMF_COMPLETE:
2547		/*
2548		 * CISS_TMF_COMPLETE never happens, instead,
2549		 * ei->CommandStatus == 0 for this case.
2550		 */
2551	case CISS_TMF_SUCCESS:
2552		return 0;
2553	case CISS_TMF_INVALID_FRAME:
2554	case CISS_TMF_NOT_SUPPORTED:
2555	case CISS_TMF_FAILED:
2556	case CISS_TMF_WRONG_LUN:
2557	case CISS_TMF_OVERLAPPED_TAG:
2558		break;
2559	default:
2560		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2561				tmf_status);
2562		break;
2563	}
2564	return -tmf_status;
2565}
2566
2567static void complete_scsi_command(struct CommandList *cp)
2568{
2569	struct scsi_cmnd *cmd;
2570	struct ctlr_info *h;
2571	struct ErrorInfo *ei;
2572	struct hpsa_scsi_dev_t *dev;
2573	struct io_accel2_cmd *c2;
2574
2575	u8 sense_key;
2576	u8 asc;      /* additional sense code */
2577	u8 ascq;     /* additional sense code qualifier */
2578	unsigned long sense_data_size;
2579
2580	ei = cp->err_info;
2581	cmd = cp->scsi_cmd;
2582	h = cp->h;
2583
2584	if (!cmd->device) {
2585		cmd->result = DID_NO_CONNECT << 16;
2586		return hpsa_cmd_free_and_done(h, cp, cmd);
2587	}
2588
2589	dev = cmd->device->hostdata;
2590	if (!dev) {
2591		cmd->result = DID_NO_CONNECT << 16;
2592		return hpsa_cmd_free_and_done(h, cp, cmd);
2593	}
2594	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2595
2596	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2597	if ((cp->cmd_type == CMD_SCSI) &&
2598		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2599		hpsa_unmap_sg_chain_block(h, cp);
2600
2601	if ((cp->cmd_type == CMD_IOACCEL2) &&
2602		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2603		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2604
2605	cmd->result = (DID_OK << 16);		/* host byte */
2606
2607	/* SCSI command has already been cleaned up in SML */
2608	if (dev->was_removed) {
2609		hpsa_cmd_resolve_and_free(h, cp);
2610		return;
2611	}
2612
2613	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2614		if (dev->physical_device && dev->expose_device &&
2615			dev->removed) {
2616			cmd->result = DID_NO_CONNECT << 16;
2617			return hpsa_cmd_free_and_done(h, cp, cmd);
2618		}
2619		if (likely(cp->phys_disk != NULL))
2620			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2621	}
2622
2623	/*
2624	 * We check for lockup status here as it may be set for
2625	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2626	 * fail_all_oustanding_cmds()
2627	 */
2628	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2629		/* DID_NO_CONNECT will prevent a retry */
2630		cmd->result = DID_NO_CONNECT << 16;
2631		return hpsa_cmd_free_and_done(h, cp, cmd);
2632	}
2633
2634	if (cp->cmd_type == CMD_IOACCEL2)
2635		return process_ioaccel2_completion(h, cp, cmd, dev);
2636
2637	scsi_set_resid(cmd, ei->ResidualCnt);
2638	if (ei->CommandStatus == 0)
2639		return hpsa_cmd_free_and_done(h, cp, cmd);
2640
2641	/* For I/O accelerator commands, copy over some fields to the normal
2642	 * CISS header used below for error handling.
2643	 */
2644	if (cp->cmd_type == CMD_IOACCEL1) {
2645		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2646		cp->Header.SGList = scsi_sg_count(cmd);
2647		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2648		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2649			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2650		cp->Header.tag = c->tag;
2651		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2652		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2653
2654		/* Any RAID offload error results in retry which will use
2655		 * the normal I/O path so the controller can handle whatever's
2656		 * wrong.
2657		 */
2658		if (is_logical_device(dev)) {
2659			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2660				dev->offload_enabled = 0;
2661			return hpsa_retry_cmd(h, cp);
2662		}
2663	}
2664
2665	/* an error has occurred */
2666	switch (ei->CommandStatus) {
2667
2668	case CMD_TARGET_STATUS:
2669		cmd->result |= ei->ScsiStatus;
2670		/* copy the sense data */
2671		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2672			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2673		else
2674			sense_data_size = sizeof(ei->SenseInfo);
2675		if (ei->SenseLen < sense_data_size)
2676			sense_data_size = ei->SenseLen;
2677		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2678		if (ei->ScsiStatus)
2679			decode_sense_data(ei->SenseInfo, sense_data_size,
2680				&sense_key, &asc, &ascq);
2681		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2682			switch (sense_key) {
2683			case ABORTED_COMMAND:
2684				cmd->result |= DID_SOFT_ERROR << 16;
2685				break;
2686			case UNIT_ATTENTION:
2687				if (asc == 0x3F && ascq == 0x0E)
2688					h->drv_req_rescan = 1;
2689				break;
2690			case ILLEGAL_REQUEST:
2691				if (asc == 0x25 && ascq == 0x00) {
2692					dev->removed = 1;
2693					cmd->result = DID_NO_CONNECT << 16;
2694				}
2695				break;
2696			}
2697			break;
2698		}
2699		/* Problem was not a check condition
2700		 * Pass it up to the upper layers...
2701		 */
2702		if (ei->ScsiStatus) {
2703			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2704				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2705				"Returning result: 0x%x\n",
2706				cp, ei->ScsiStatus,
2707				sense_key, asc, ascq,
2708				cmd->result);
2709		} else {  /* scsi status is zero??? How??? */
2710			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2711				"Returning no connection.\n", cp),
2712
2713			/* Ordinarily, this case should never happen,
2714			 * but there is a bug in some released firmware
2715			 * revisions that allows it to happen if, for
2716			 * example, a 4100 backplane loses power and
2717			 * the tape drive is in it.  We assume that
2718			 * it's a fatal error of some kind because we
2719			 * can't show that it wasn't. We will make it
2720			 * look like selection timeout since that is
2721			 * the most common reason for this to occur,
2722			 * and it's severe enough.
2723			 */
2724
2725			cmd->result = DID_NO_CONNECT << 16;
2726		}
2727		break;
2728
2729	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2730		break;
2731	case CMD_DATA_OVERRUN:
2732		dev_warn(&h->pdev->dev,
2733			"CDB %16phN data overrun\n", cp->Request.CDB);
2734		break;
2735	case CMD_INVALID: {
2736		/* print_bytes(cp, sizeof(*cp), 1, 0);
2737		print_cmd(cp); */
2738		/* We get CMD_INVALID if you address a non-existent device
2739		 * instead of a selection timeout (no response).  You will
2740		 * see this if you yank out a drive, then try to access it.
2741		 * This is kind of a shame because it means that any other
2742		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2743		 * missing target. */
2744		cmd->result = DID_NO_CONNECT << 16;
2745	}
2746		break;
2747	case CMD_PROTOCOL_ERR:
2748		cmd->result = DID_ERROR << 16;
2749		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2750				cp->Request.CDB);
2751		break;
2752	case CMD_HARDWARE_ERR:
2753		cmd->result = DID_ERROR << 16;
2754		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2755			cp->Request.CDB);
2756		break;
2757	case CMD_CONNECTION_LOST:
2758		cmd->result = DID_ERROR << 16;
2759		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2760			cp->Request.CDB);
2761		break;
2762	case CMD_ABORTED:
2763		cmd->result = DID_ABORT << 16;
2764		break;
2765	case CMD_ABORT_FAILED:
2766		cmd->result = DID_ERROR << 16;
2767		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2768			cp->Request.CDB);
2769		break;
2770	case CMD_UNSOLICITED_ABORT:
2771		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2772		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2773			cp->Request.CDB);
2774		break;
2775	case CMD_TIMEOUT:
2776		cmd->result = DID_TIME_OUT << 16;
2777		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2778			cp->Request.CDB);
2779		break;
2780	case CMD_UNABORTABLE:
2781		cmd->result = DID_ERROR << 16;
2782		dev_warn(&h->pdev->dev, "Command unabortable\n");
2783		break;
2784	case CMD_TMF_STATUS:
2785		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2786			cmd->result = DID_ERROR << 16;
2787		break;
2788	case CMD_IOACCEL_DISABLED:
2789		/* This only handles the direct pass-through case since RAID
2790		 * offload is handled above.  Just attempt a retry.
2791		 */
2792		cmd->result = DID_SOFT_ERROR << 16;
2793		dev_warn(&h->pdev->dev,
2794				"cp %p had HP SSD Smart Path error\n", cp);
2795		break;
2796	default:
2797		cmd->result = DID_ERROR << 16;
2798		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2799				cp, ei->CommandStatus);
2800	}
2801
2802	return hpsa_cmd_free_and_done(h, cp, cmd);
2803}
2804
2805static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2806		int sg_used, enum dma_data_direction data_direction)
2807{
2808	int i;
2809
2810	for (i = 0; i < sg_used; i++)
2811		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2812				le32_to_cpu(c->SG[i].Len),
2813				data_direction);
2814}
2815
2816static int hpsa_map_one(struct pci_dev *pdev,
2817		struct CommandList *cp,
2818		unsigned char *buf,
2819		size_t buflen,
2820		enum dma_data_direction data_direction)
2821{
2822	u64 addr64;
2823
2824	if (buflen == 0 || data_direction == DMA_NONE) {
2825		cp->Header.SGList = 0;
2826		cp->Header.SGTotal = cpu_to_le16(0);
2827		return 0;
2828	}
2829
2830	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2831	if (dma_mapping_error(&pdev->dev, addr64)) {
2832		/* Prevent subsequent unmap of something never mapped */
2833		cp->Header.SGList = 0;
2834		cp->Header.SGTotal = cpu_to_le16(0);
2835		return -1;
2836	}
2837	cp->SG[0].Addr = cpu_to_le64(addr64);
2838	cp->SG[0].Len = cpu_to_le32(buflen);
2839	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2840	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2841	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2842	return 0;
2843}
2844
2845#define NO_TIMEOUT ((unsigned long) -1)
2846#define DEFAULT_TIMEOUT 30000 /* milliseconds */
2847static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2848	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2849{
2850	DECLARE_COMPLETION_ONSTACK(wait);
2851
2852	c->waiting = &wait;
2853	__enqueue_cmd_and_start_io(h, c, reply_queue);
2854	if (timeout_msecs == NO_TIMEOUT) {
2855		/* TODO: get rid of this no-timeout thing */
2856		wait_for_completion_io(&wait);
2857		return IO_OK;
2858	}
2859	if (!wait_for_completion_io_timeout(&wait,
2860					msecs_to_jiffies(timeout_msecs))) {
2861		dev_warn(&h->pdev->dev, "Command timed out.\n");
2862		return -ETIMEDOUT;
2863	}
2864	return IO_OK;
2865}
2866
2867static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2868				   int reply_queue, unsigned long timeout_msecs)
2869{
2870	if (unlikely(lockup_detected(h))) {
2871		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2872		return IO_OK;
2873	}
2874	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2875}
2876
2877static u32 lockup_detected(struct ctlr_info *h)
2878{
2879	int cpu;
2880	u32 rc, *lockup_detected;
2881
2882	cpu = get_cpu();
2883	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2884	rc = *lockup_detected;
2885	put_cpu();
2886	return rc;
2887}
2888
2889#define MAX_DRIVER_CMD_RETRIES 25
2890static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2891		struct CommandList *c, enum dma_data_direction data_direction,
2892		unsigned long timeout_msecs)
2893{
2894	int backoff_time = 10, retry_count = 0;
2895	int rc;
2896
2897	do {
2898		memset(c->err_info, 0, sizeof(*c->err_info));
2899		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2900						  timeout_msecs);
2901		if (rc)
2902			break;
2903		retry_count++;
2904		if (retry_count > 3) {
2905			msleep(backoff_time);
2906			if (backoff_time < 1000)
2907				backoff_time *= 2;
2908		}
2909	} while ((check_for_unit_attention(h, c) ||
2910			check_for_busy(h, c)) &&
2911			retry_count <= MAX_DRIVER_CMD_RETRIES);
2912	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2913	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2914		rc = -EIO;
2915	return rc;
2916}
2917
2918static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2919				struct CommandList *c)
2920{
2921	const u8 *cdb = c->Request.CDB;
2922	const u8 *lun = c->Header.LUN.LunAddrBytes;
2923
2924	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2925		 txt, lun, cdb);
2926}
2927
2928static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2929			struct CommandList *cp)
2930{
2931	const struct ErrorInfo *ei = cp->err_info;
2932	struct device *d = &cp->h->pdev->dev;
2933	u8 sense_key, asc, ascq;
2934	int sense_len;
2935
2936	switch (ei->CommandStatus) {
2937	case CMD_TARGET_STATUS:
2938		if (ei->SenseLen > sizeof(ei->SenseInfo))
2939			sense_len = sizeof(ei->SenseInfo);
2940		else
2941			sense_len = ei->SenseLen;
2942		decode_sense_data(ei->SenseInfo, sense_len,
2943					&sense_key, &asc, &ascq);
2944		hpsa_print_cmd(h, "SCSI status", cp);
2945		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2946			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2947				sense_key, asc, ascq);
2948		else
2949			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2950		if (ei->ScsiStatus == 0)
2951			dev_warn(d, "SCSI status is abnormally zero.  "
2952			"(probably indicates selection timeout "
2953			"reported incorrectly due to a known "
2954			"firmware bug, circa July, 2001.)\n");
2955		break;
2956	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2957		break;
2958	case CMD_DATA_OVERRUN:
2959		hpsa_print_cmd(h, "overrun condition", cp);
2960		break;
2961	case CMD_INVALID: {
2962		/* controller unfortunately reports SCSI passthru's
2963		 * to non-existent targets as invalid commands.
2964		 */
2965		hpsa_print_cmd(h, "invalid command", cp);
2966		dev_warn(d, "probably means device no longer present\n");
2967		}
2968		break;
2969	case CMD_PROTOCOL_ERR:
2970		hpsa_print_cmd(h, "protocol error", cp);
2971		break;
2972	case CMD_HARDWARE_ERR:
2973		hpsa_print_cmd(h, "hardware error", cp);
2974		break;
2975	case CMD_CONNECTION_LOST:
2976		hpsa_print_cmd(h, "connection lost", cp);
2977		break;
2978	case CMD_ABORTED:
2979		hpsa_print_cmd(h, "aborted", cp);
2980		break;
2981	case CMD_ABORT_FAILED:
2982		hpsa_print_cmd(h, "abort failed", cp);
2983		break;
2984	case CMD_UNSOLICITED_ABORT:
2985		hpsa_print_cmd(h, "unsolicited abort", cp);
2986		break;
2987	case CMD_TIMEOUT:
2988		hpsa_print_cmd(h, "timed out", cp);
2989		break;
2990	case CMD_UNABORTABLE:
2991		hpsa_print_cmd(h, "unabortable", cp);
2992		break;
2993	case CMD_CTLR_LOCKUP:
2994		hpsa_print_cmd(h, "controller lockup detected", cp);
2995		break;
2996	default:
2997		hpsa_print_cmd(h, "unknown status", cp);
2998		dev_warn(d, "Unknown command status %x\n",
2999				ei->CommandStatus);
3000	}
3001}
3002
3003static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3004					u8 page, u8 *buf, size_t bufsize)
3005{
3006	int rc = IO_OK;
3007	struct CommandList *c;
3008	struct ErrorInfo *ei;
3009
3010	c = cmd_alloc(h);
3011	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3012			page, scsi3addr, TYPE_CMD)) {
3013		rc = -1;
3014		goto out;
3015	}
3016	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3017			NO_TIMEOUT);
3018	if (rc)
3019		goto out;
3020	ei = c->err_info;
3021	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3022		hpsa_scsi_interpret_error(h, c);
3023		rc = -1;
3024	}
3025out:
3026	cmd_free(h, c);
3027	return rc;
3028}
3029
3030static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3031						u8 *scsi3addr)
3032{
3033	u8 *buf;
3034	u64 sa = 0;
3035	int rc = 0;
3036
3037	buf = kzalloc(1024, GFP_KERNEL);
3038	if (!buf)
3039		return 0;
3040
3041	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3042					buf, 1024);
3043
3044	if (rc)
3045		goto out;
3046
3047	sa = get_unaligned_be64(buf+12);
3048
3049out:
3050	kfree(buf);
3051	return sa;
3052}
3053
3054static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3055			u16 page, unsigned char *buf,
3056			unsigned char bufsize)
3057{
3058	int rc = IO_OK;
3059	struct CommandList *c;
3060	struct ErrorInfo *ei;
3061
3062	c = cmd_alloc(h);
3063
3064	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3065			page, scsi3addr, TYPE_CMD)) {
3066		rc = -1;
3067		goto out;
3068	}
3069	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3070			NO_TIMEOUT);
3071	if (rc)
3072		goto out;
3073	ei = c->err_info;
3074	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3075		hpsa_scsi_interpret_error(h, c);
3076		rc = -1;
3077	}
3078out:
3079	cmd_free(h, c);
3080	return rc;
3081}
3082
3083static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3084	u8 reset_type, int reply_queue)
3085{
3086	int rc = IO_OK;
3087	struct CommandList *c;
3088	struct ErrorInfo *ei;
3089
3090	c = cmd_alloc(h);
3091	c->device = dev;
3092
3093	/* fill_cmd can't fail here, no data buffer to map. */
3094	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3095	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3096	if (rc) {
3097		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3098		goto out;
3099	}
3100	/* no unmap needed here because no data xfer. */
3101
3102	ei = c->err_info;
3103	if (ei->CommandStatus != 0) {
3104		hpsa_scsi_interpret_error(h, c);
3105		rc = -1;
3106	}
3107out:
3108	cmd_free(h, c);
3109	return rc;
3110}
3111
3112static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3113			       struct hpsa_scsi_dev_t *dev,
3114			       unsigned char *scsi3addr)
3115{
3116	int i;
3117	bool match = false;
3118	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3119	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3120
3121	if (hpsa_is_cmd_idle(c))
3122		return false;
3123
3124	switch (c->cmd_type) {
3125	case CMD_SCSI:
3126	case CMD_IOCTL_PEND:
3127		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3128				sizeof(c->Header.LUN.LunAddrBytes));
3129		break;
3130
3131	case CMD_IOACCEL1:
3132	case CMD_IOACCEL2:
3133		if (c->phys_disk == dev) {
3134			/* HBA mode match */
3135			match = true;
3136		} else {
3137			/* Possible RAID mode -- check each phys dev. */
3138			/* FIXME:  Do we need to take out a lock here?  If
3139			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3140			 * instead. */
3141			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3142				/* FIXME: an alternate test might be
3143				 *
3144				 * match = dev->phys_disk[i]->ioaccel_handle
3145				 *              == c2->scsi_nexus;      */
3146				match = dev->phys_disk[i] == c->phys_disk;
3147			}
3148		}
3149		break;
3150
3151	case IOACCEL2_TMF:
3152		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3153			match = dev->phys_disk[i]->ioaccel_handle ==
3154					le32_to_cpu(ac->it_nexus);
3155		}
3156		break;
3157
3158	case 0:		/* The command is in the middle of being initialized. */
3159		match = false;
3160		break;
3161
3162	default:
3163		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3164			c->cmd_type);
3165		BUG();
3166	}
3167
3168	return match;
3169}
3170
3171static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3172	u8 reset_type, int reply_queue)
3173{
3174	int rc = 0;
3175
3176	/* We can really only handle one reset at a time */
3177	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3178		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3179		return -EINTR;
3180	}
3181
3182	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3183	if (!rc) {
3184		/* incremented by sending the reset request */
3185		atomic_dec(&dev->commands_outstanding);
3186		wait_event(h->event_sync_wait_queue,
3187			atomic_read(&dev->commands_outstanding) <= 0 ||
3188			lockup_detected(h));
3189	}
3190
3191	if (unlikely(lockup_detected(h))) {
3192		dev_warn(&h->pdev->dev,
3193			 "Controller lockup detected during reset wait\n");
3194		rc = -ENODEV;
3195	}
3196
3197	if (!rc)
3198		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3199
3200	mutex_unlock(&h->reset_mutex);
3201	return rc;
3202}
3203
3204static void hpsa_get_raid_level(struct ctlr_info *h,
3205	unsigned char *scsi3addr, unsigned char *raid_level)
3206{
3207	int rc;
3208	unsigned char *buf;
3209
3210	*raid_level = RAID_UNKNOWN;
3211	buf = kzalloc(64, GFP_KERNEL);
3212	if (!buf)
3213		return;
3214
3215	if (!hpsa_vpd_page_supported(h, scsi3addr,
3216		HPSA_VPD_LV_DEVICE_GEOMETRY))
3217		goto exit;
3218
3219	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3220		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3221
3222	if (rc == 0)
3223		*raid_level = buf[8];
3224	if (*raid_level > RAID_UNKNOWN)
3225		*raid_level = RAID_UNKNOWN;
3226exit:
3227	kfree(buf);
3228	return;
3229}
3230
3231#define HPSA_MAP_DEBUG
3232#ifdef HPSA_MAP_DEBUG
3233static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3234				struct raid_map_data *map_buff)
3235{
3236	struct raid_map_disk_data *dd = &map_buff->data[0];
3237	int map, row, col;
3238	u16 map_cnt, row_cnt, disks_per_row;
3239
3240	if (rc != 0)
3241		return;
3242
3243	/* Show details only if debugging has been activated. */
3244	if (h->raid_offload_debug < 2)
3245		return;
3246
3247	dev_info(&h->pdev->dev, "structure_size = %u\n",
3248				le32_to_cpu(map_buff->structure_size));
3249	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3250			le32_to_cpu(map_buff->volume_blk_size));
3251	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3252			le64_to_cpu(map_buff->volume_blk_cnt));
3253	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3254			map_buff->phys_blk_shift);
3255	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3256			map_buff->parity_rotation_shift);
3257	dev_info(&h->pdev->dev, "strip_size = %u\n",
3258			le16_to_cpu(map_buff->strip_size));
3259	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3260			le64_to_cpu(map_buff->disk_starting_blk));
3261	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3262			le64_to_cpu(map_buff->disk_blk_cnt));
3263	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3264			le16_to_cpu(map_buff->data_disks_per_row));
3265	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3266			le16_to_cpu(map_buff->metadata_disks_per_row));
3267	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3268			le16_to_cpu(map_buff->row_cnt));
3269	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3270			le16_to_cpu(map_buff->layout_map_count));
3271	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3272			le16_to_cpu(map_buff->flags));
3273	dev_info(&h->pdev->dev, "encryption = %s\n",
3274			le16_to_cpu(map_buff->flags) &
3275			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3276	dev_info(&h->pdev->dev, "dekindex = %u\n",
3277			le16_to_cpu(map_buff->dekindex));
3278	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3279	for (map = 0; map < map_cnt; map++) {
3280		dev_info(&h->pdev->dev, "Map%u:\n", map);
3281		row_cnt = le16_to_cpu(map_buff->row_cnt);
3282		for (row = 0; row < row_cnt; row++) {
3283			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3284			disks_per_row =
3285				le16_to_cpu(map_buff->data_disks_per_row);
3286			for (col = 0; col < disks_per_row; col++, dd++)
3287				dev_info(&h->pdev->dev,
3288					"    D%02u: h=0x%04x xor=%u,%u\n",
3289					col, dd->ioaccel_handle,
3290					dd->xor_mult[0], dd->xor_mult[1]);
3291			disks_per_row =
3292				le16_to_cpu(map_buff->metadata_disks_per_row);
3293			for (col = 0; col < disks_per_row; col++, dd++)
3294				dev_info(&h->pdev->dev,
3295					"    M%02u: h=0x%04x xor=%u,%u\n",
3296					col, dd->ioaccel_handle,
3297					dd->xor_mult[0], dd->xor_mult[1]);
3298		}
3299	}
3300}
3301#else
3302static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3303			__attribute__((unused)) int rc,
3304			__attribute__((unused)) struct raid_map_data *map_buff)
3305{
3306}
3307#endif
3308
3309static int hpsa_get_raid_map(struct ctlr_info *h,
3310	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3311{
3312	int rc = 0;
3313	struct CommandList *c;
3314	struct ErrorInfo *ei;
3315
3316	c = cmd_alloc(h);
3317
3318	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3319			sizeof(this_device->raid_map), 0,
3320			scsi3addr, TYPE_CMD)) {
3321		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3322		cmd_free(h, c);
3323		return -1;
3324	}
3325	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3326			NO_TIMEOUT);
3327	if (rc)
3328		goto out;
3329	ei = c->err_info;
3330	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3331		hpsa_scsi_interpret_error(h, c);
3332		rc = -1;
3333		goto out;
3334	}
3335	cmd_free(h, c);
3336
3337	/* @todo in the future, dynamically allocate RAID map memory */
3338	if (le32_to_cpu(this_device->raid_map.structure_size) >
3339				sizeof(this_device->raid_map)) {
3340		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3341		rc = -1;
3342	}
3343	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3344	return rc;
3345out:
3346	cmd_free(h, c);
3347	return rc;
3348}
3349
3350static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3351		unsigned char scsi3addr[], u16 bmic_device_index,
3352		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3353{
3354	int rc = IO_OK;
3355	struct CommandList *c;
3356	struct ErrorInfo *ei;
3357
3358	c = cmd_alloc(h);
3359
3360	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3361		0, RAID_CTLR_LUNID, TYPE_CMD);
3362	if (rc)
3363		goto out;
3364
3365	c->Request.CDB[2] = bmic_device_index & 0xff;
3366	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3367
3368	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3369			NO_TIMEOUT);
3370	if (rc)
3371		goto out;
3372	ei = c->err_info;
3373	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3374		hpsa_scsi_interpret_error(h, c);
3375		rc = -1;
3376	}
3377out:
3378	cmd_free(h, c);
3379	return rc;
3380}
3381
3382static int hpsa_bmic_id_controller(struct ctlr_info *h,
3383	struct bmic_identify_controller *buf, size_t bufsize)
3384{
3385	int rc = IO_OK;
3386	struct CommandList *c;
3387	struct ErrorInfo *ei;
3388
3389	c = cmd_alloc(h);
3390
3391	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3392		0, RAID_CTLR_LUNID, TYPE_CMD);
3393	if (rc)
3394		goto out;
3395
3396	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3397			NO_TIMEOUT);
3398	if (rc)
3399		goto out;
3400	ei = c->err_info;
3401	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3402		hpsa_scsi_interpret_error(h, c);
3403		rc = -1;
3404	}
3405out:
3406	cmd_free(h, c);
3407	return rc;
3408}
3409
3410static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3411		unsigned char scsi3addr[], u16 bmic_device_index,
3412		struct bmic_identify_physical_device *buf, size_t bufsize)
3413{
3414	int rc = IO_OK;
3415	struct CommandList *c;
3416	struct ErrorInfo *ei;
3417
3418	c = cmd_alloc(h);
3419	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3420		0, RAID_CTLR_LUNID, TYPE_CMD);
3421	if (rc)
3422		goto out;
3423
3424	c->Request.CDB[2] = bmic_device_index & 0xff;
3425	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3426
3427	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3428						NO_TIMEOUT);
3429	ei = c->err_info;
3430	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3431		hpsa_scsi_interpret_error(h, c);
3432		rc = -1;
3433	}
3434out:
3435	cmd_free(h, c);
3436
3437	return rc;
3438}
3439
3440/*
3441 * get enclosure information
3442 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3443 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3444 * Uses id_physical_device to determine the box_index.
3445 */
3446static void hpsa_get_enclosure_info(struct ctlr_info *h,
3447			unsigned char *scsi3addr,
3448			struct ReportExtendedLUNdata *rlep, int rle_index,
3449			struct hpsa_scsi_dev_t *encl_dev)
3450{
3451	int rc = -1;
3452	struct CommandList *c = NULL;
3453	struct ErrorInfo *ei = NULL;
3454	struct bmic_sense_storage_box_params *bssbp = NULL;
3455	struct bmic_identify_physical_device *id_phys = NULL;
3456	struct ext_report_lun_entry *rle;
3457	u16 bmic_device_index = 0;
3458
3459	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3460		return;
3461
3462	rle = &rlep->LUN[rle_index];
3463
3464	encl_dev->eli =
3465		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3466
3467	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3468
3469	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3470		rc = IO_OK;
3471		goto out;
3472	}
3473
3474	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3475		rc = IO_OK;
3476		goto out;
3477	}
3478
3479	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3480	if (!bssbp)
3481		goto out;
3482
3483	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3484	if (!id_phys)
3485		goto out;
3486
3487	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3488						id_phys, sizeof(*id_phys));
3489	if (rc) {
3490		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3491			__func__, encl_dev->external, bmic_device_index);
3492		goto out;
3493	}
3494
3495	c = cmd_alloc(h);
3496
3497	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3498			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3499
3500	if (rc)
3501		goto out;
3502
3503	if (id_phys->phys_connector[1] == 'E')
3504		c->Request.CDB[5] = id_phys->box_index;
3505	else
3506		c->Request.CDB[5] = 0;
3507
3508	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3509						NO_TIMEOUT);
3510	if (rc)
3511		goto out;
3512
3513	ei = c->err_info;
3514	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3515		rc = -1;
3516		goto out;
3517	}
3518
3519	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3520	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3521		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3522
3523	rc = IO_OK;
3524out:
3525	kfree(bssbp);
3526	kfree(id_phys);
3527
3528	if (c)
3529		cmd_free(h, c);
3530
3531	if (rc != IO_OK)
3532		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3533			"Error, could not get enclosure information");
3534}
3535
3536static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3537						unsigned char *scsi3addr)
3538{
3539	struct ReportExtendedLUNdata *physdev;
3540	u32 nphysicals;
3541	u64 sa = 0;
3542	int i;
3543
3544	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3545	if (!physdev)
3546		return 0;
3547
3548	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3549		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3550		kfree(physdev);
3551		return 0;
3552	}
3553	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3554
3555	for (i = 0; i < nphysicals; i++)
3556		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3557			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3558			break;
3559		}
3560
3561	kfree(physdev);
3562
3563	return sa;
3564}
3565
3566static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3567					struct hpsa_scsi_dev_t *dev)
3568{
3569	int rc;
3570	u64 sa = 0;
3571
3572	if (is_hba_lunid(scsi3addr)) {
3573		struct bmic_sense_subsystem_info *ssi;
3574
3575		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3576		if (!ssi)
3577			return;
3578
3579		rc = hpsa_bmic_sense_subsystem_information(h,
3580					scsi3addr, 0, ssi, sizeof(*ssi));
3581		if (rc == 0) {
3582			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3583			h->sas_address = sa;
3584		}
3585
3586		kfree(ssi);
3587	} else
3588		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3589
3590	dev->sas_address = sa;
3591}
3592
3593static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3594	struct ReportExtendedLUNdata *physdev)
3595{
3596	u32 nphysicals;
3597	int i;
3598
3599	if (h->discovery_polling)
3600		return;
3601
3602	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3603
3604	for (i = 0; i < nphysicals; i++) {
3605		if (physdev->LUN[i].device_type ==
3606			BMIC_DEVICE_TYPE_CONTROLLER
3607			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3608			dev_info(&h->pdev->dev,
3609				"External controller present, activate discovery polling and disable rld caching\n");
3610			hpsa_disable_rld_caching(h);
3611			h->discovery_polling = 1;
3612			break;
3613		}
3614	}
3615}
3616
3617/* Get a device id from inquiry page 0x83 */
3618static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3619	unsigned char scsi3addr[], u8 page)
3620{
3621	int rc;
3622	int i;
3623	int pages;
3624	unsigned char *buf, bufsize;
3625
3626	buf = kzalloc(256, GFP_KERNEL);
3627	if (!buf)
3628		return false;
3629
3630	/* Get the size of the page list first */
3631	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3632				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3633				buf, HPSA_VPD_HEADER_SZ);
3634	if (rc != 0)
3635		goto exit_unsupported;
3636	pages = buf[3];
3637	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3638		bufsize = pages + HPSA_VPD_HEADER_SZ;
3639	else
3640		bufsize = 255;
3641
3642	/* Get the whole VPD page list */
3643	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3644				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3645				buf, bufsize);
3646	if (rc != 0)
3647		goto exit_unsupported;
3648
3649	pages = buf[3];
3650	for (i = 1; i <= pages; i++)
3651		if (buf[3 + i] == page)
3652			goto exit_supported;
3653exit_unsupported:
3654	kfree(buf);
3655	return false;
3656exit_supported:
3657	kfree(buf);
3658	return true;
3659}
3660
3661/*
3662 * Called during a scan operation.
3663 * Sets ioaccel status on the new device list, not the existing device list
3664 *
3665 * The device list used during I/O will be updated later in
3666 * adjust_hpsa_scsi_table.
3667 */
3668static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3669	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3670{
3671	int rc;
3672	unsigned char *buf;
3673	u8 ioaccel_status;
3674
3675	this_device->offload_config = 0;
3676	this_device->offload_enabled = 0;
3677	this_device->offload_to_be_enabled = 0;
3678
3679	buf = kzalloc(64, GFP_KERNEL);
3680	if (!buf)
3681		return;
3682	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3683		goto out;
3684	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3685			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3686	if (rc != 0)
3687		goto out;
3688
3689#define IOACCEL_STATUS_BYTE 4
3690#define OFFLOAD_CONFIGURED_BIT 0x01
3691#define OFFLOAD_ENABLED_BIT 0x02
3692	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3693	this_device->offload_config =
3694		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3695	if (this_device->offload_config) {
3696		bool offload_enabled =
3697			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3698		/*
3699		 * Check to see if offload can be enabled.
3700		 */
3701		if (offload_enabled) {
3702			rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3703			if (rc) /* could not load raid_map */
3704				goto out;
3705			this_device->offload_to_be_enabled = 1;
3706		}
3707	}
3708
3709out:
3710	kfree(buf);
3711	return;
3712}
3713
3714/* Get the device id from inquiry page 0x83 */
3715static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3716	unsigned char *device_id, int index, int buflen)
3717{
3718	int rc;
3719	unsigned char *buf;
3720
3721	/* Does controller have VPD for device id? */
3722	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3723		return 1; /* not supported */
3724
3725	buf = kzalloc(64, GFP_KERNEL);
3726	if (!buf)
3727		return -ENOMEM;
3728
3729	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3730					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3731	if (rc == 0) {
3732		if (buflen > 16)
3733			buflen = 16;
3734		memcpy(device_id, &buf[8], buflen);
3735	}
3736
3737	kfree(buf);
3738
3739	return rc; /*0 - got id,  otherwise, didn't */
3740}
3741
3742static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3743		void *buf, int bufsize,
3744		int extended_response)
3745{
3746	int rc = IO_OK;
3747	struct CommandList *c;
3748	unsigned char scsi3addr[8];
3749	struct ErrorInfo *ei;
3750
3751	c = cmd_alloc(h);
3752
3753	/* address the controller */
3754	memset(scsi3addr, 0, sizeof(scsi3addr));
3755	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3756		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3757		rc = -EAGAIN;
3758		goto out;
3759	}
3760	if (extended_response)
3761		c->Request.CDB[1] = extended_response;
3762	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3763			NO_TIMEOUT);
3764	if (rc)
3765		goto out;
3766	ei = c->err_info;
3767	if (ei->CommandStatus != 0 &&
3768	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3769		hpsa_scsi_interpret_error(h, c);
3770		rc = -EIO;
3771	} else {
3772		struct ReportLUNdata *rld = buf;
3773
3774		if (rld->extended_response_flag != extended_response) {
3775			if (!h->legacy_board) {
3776				dev_err(&h->pdev->dev,
3777					"report luns requested format %u, got %u\n",
3778					extended_response,
3779					rld->extended_response_flag);
3780				rc = -EINVAL;
3781			} else
3782				rc = -EOPNOTSUPP;
3783		}
3784	}
3785out:
3786	cmd_free(h, c);
3787	return rc;
3788}
3789
3790static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3791		struct ReportExtendedLUNdata *buf, int bufsize)
3792{
3793	int rc;
3794	struct ReportLUNdata *lbuf;
3795
3796	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3797				      HPSA_REPORT_PHYS_EXTENDED);
3798	if (!rc || rc != -EOPNOTSUPP)
3799		return rc;
3800
3801	/* REPORT PHYS EXTENDED is not supported */
3802	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3803	if (!lbuf)
3804		return -ENOMEM;
3805
3806	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3807	if (!rc) {
3808		int i;
3809		u32 nphys;
3810
3811		/* Copy ReportLUNdata header */
3812		memcpy(buf, lbuf, 8);
3813		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3814		for (i = 0; i < nphys; i++)
3815			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3816	}
3817	kfree(lbuf);
3818	return rc;
3819}
3820
3821static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3822		struct ReportLUNdata *buf, int bufsize)
3823{
3824	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3825}
3826
3827static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3828	int bus, int target, int lun)
3829{
3830	device->bus = bus;
3831	device->target = target;
3832	device->lun = lun;
3833}
3834
3835/* Use VPD inquiry to get details of volume status */
3836static int hpsa_get_volume_status(struct ctlr_info *h,
3837					unsigned char scsi3addr[])
3838{
3839	int rc;
3840	int status;
3841	int size;
3842	unsigned char *buf;
3843
3844	buf = kzalloc(64, GFP_KERNEL);
3845	if (!buf)
3846		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3847
3848	/* Does controller have VPD for logical volume status? */
3849	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3850		goto exit_failed;
3851
3852	/* Get the size of the VPD return buffer */
3853	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3854					buf, HPSA_VPD_HEADER_SZ);
3855	if (rc != 0)
3856		goto exit_failed;
3857	size = buf[3];
3858
3859	/* Now get the whole VPD buffer */
3860	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3861					buf, size + HPSA_VPD_HEADER_SZ);
3862	if (rc != 0)
3863		goto exit_failed;
3864	status = buf[4]; /* status byte */
3865
3866	kfree(buf);
3867	return status;
3868exit_failed:
3869	kfree(buf);
3870	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3871}
3872
3873/* Determine offline status of a volume.
3874 * Return either:
3875 *  0 (not offline)
3876 *  0xff (offline for unknown reasons)
3877 *  # (integer code indicating one of several NOT READY states
3878 *     describing why a volume is to be kept offline)
3879 */
3880static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3881					unsigned char scsi3addr[])
3882{
3883	struct CommandList *c;
3884	unsigned char *sense;
3885	u8 sense_key, asc, ascq;
3886	int sense_len;
3887	int rc, ldstat = 0;
3888#define ASC_LUN_NOT_READY 0x04
3889#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3890#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3891
3892	c = cmd_alloc(h);
3893
3894	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3895	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3896					NO_TIMEOUT);
3897	if (rc) {
3898		cmd_free(h, c);
3899		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3900	}
3901	sense = c->err_info->SenseInfo;
3902	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3903		sense_len = sizeof(c->err_info->SenseInfo);
3904	else
3905		sense_len = c->err_info->SenseLen;
3906	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3907	cmd_free(h, c);
3908
3909	/* Determine the reason for not ready state */
3910	ldstat = hpsa_get_volume_status(h, scsi3addr);
3911
3912	/* Keep volume offline in certain cases: */
3913	switch (ldstat) {
3914	case HPSA_LV_FAILED:
3915	case HPSA_LV_UNDERGOING_ERASE:
3916	case HPSA_LV_NOT_AVAILABLE:
3917	case HPSA_LV_UNDERGOING_RPI:
3918	case HPSA_LV_PENDING_RPI:
3919	case HPSA_LV_ENCRYPTED_NO_KEY:
3920	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3921	case HPSA_LV_UNDERGOING_ENCRYPTION:
3922	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3923	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3924		return ldstat;
3925	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3926		/* If VPD status page isn't available,
3927		 * use ASC/ASCQ to determine state
3928		 */
3929		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3930			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3931			return ldstat;
3932		break;
3933	default:
3934		break;
3935	}
3936	return HPSA_LV_OK;
3937}
3938
3939static int hpsa_update_device_info(struct ctlr_info *h,
3940	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3941	unsigned char *is_OBDR_device)
3942{
3943
3944#define OBDR_SIG_OFFSET 43
3945#define OBDR_TAPE_SIG "$DR-10"
3946#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3947#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3948
3949	unsigned char *inq_buff;
3950	unsigned char *obdr_sig;
3951	int rc = 0;
3952
3953	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3954	if (!inq_buff) {
3955		rc = -ENOMEM;
3956		goto bail_out;
3957	}
3958
3959	/* Do an inquiry to the device to see what it is. */
3960	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3961		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3962		dev_err(&h->pdev->dev,
3963			"%s: inquiry failed, device will be skipped.\n",
3964			__func__);
3965		rc = HPSA_INQUIRY_FAILED;
3966		goto bail_out;
3967	}
3968
3969	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3970	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3971
3972	this_device->devtype = (inq_buff[0] & 0x1f);
3973	memcpy(this_device->scsi3addr, scsi3addr, 8);
3974	memcpy(this_device->vendor, &inq_buff[8],
3975		sizeof(this_device->vendor));
3976	memcpy(this_device->model, &inq_buff[16],
3977		sizeof(this_device->model));
3978	this_device->rev = inq_buff[2];
3979	memset(this_device->device_id, 0,
3980		sizeof(this_device->device_id));
3981	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3982		sizeof(this_device->device_id)) < 0) {
3983		dev_err(&h->pdev->dev,
3984			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3985			h->ctlr, __func__,
3986			h->scsi_host->host_no,
3987			this_device->bus, this_device->target,
3988			this_device->lun,
3989			scsi_device_type(this_device->devtype),
3990			this_device->model);
3991		rc = HPSA_LV_FAILED;
3992		goto bail_out;
3993	}
3994
3995	if ((this_device->devtype == TYPE_DISK ||
3996		this_device->devtype == TYPE_ZBC) &&
3997		is_logical_dev_addr_mode(scsi3addr)) {
3998		unsigned char volume_offline;
3999
4000		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
4001		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
4002			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
4003		volume_offline = hpsa_volume_offline(h, scsi3addr);
4004		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4005		    h->legacy_board) {
4006			/*
4007			 * Legacy boards might not support volume status
4008			 */
4009			dev_info(&h->pdev->dev,
4010				 "C0:T%d:L%d Volume status not available, assuming online.\n",
4011				 this_device->target, this_device->lun);
4012			volume_offline = 0;
4013		}
4014		this_device->volume_offline = volume_offline;
4015		if (volume_offline == HPSA_LV_FAILED) {
4016			rc = HPSA_LV_FAILED;
4017			dev_err(&h->pdev->dev,
4018				"%s: LV failed, device will be skipped.\n",
4019				__func__);
4020			goto bail_out;
4021		}
4022	} else {
4023		this_device->raid_level = RAID_UNKNOWN;
4024		this_device->offload_config = 0;
4025		hpsa_turn_off_ioaccel_for_device(this_device);
4026		this_device->hba_ioaccel_enabled = 0;
4027		this_device->volume_offline = 0;
4028		this_device->queue_depth = h->nr_cmds;
4029	}
4030
4031	if (this_device->external)
4032		this_device->queue_depth = EXTERNAL_QD;
4033
4034	if (is_OBDR_device) {
4035		/* See if this is a One-Button-Disaster-Recovery device
4036		 * by looking for "$DR-10" at offset 43 in inquiry data.
4037		 */
4038		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4039		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4040					strncmp(obdr_sig, OBDR_TAPE_SIG,
4041						OBDR_SIG_LEN) == 0);
4042	}
4043	kfree(inq_buff);
4044	return 0;
4045
4046bail_out:
4047	kfree(inq_buff);
4048	return rc;
4049}
4050
4051/*
4052 * Helper function to assign bus, target, lun mapping of devices.
4053 * Logical drive target and lun are assigned at this time, but
4054 * physical device lun and target assignment are deferred (assigned
4055 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4056*/
4057static void figure_bus_target_lun(struct ctlr_info *h,
4058	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4059{
4060	u32 lunid = get_unaligned_le32(lunaddrbytes);
4061
4062	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4063		/* physical device, target and lun filled in later */
4064		if (is_hba_lunid(lunaddrbytes)) {
4065			int bus = HPSA_HBA_BUS;
4066
4067			if (!device->rev)
4068				bus = HPSA_LEGACY_HBA_BUS;
4069			hpsa_set_bus_target_lun(device,
4070					bus, 0, lunid & 0x3fff);
4071		} else
4072			/* defer target, lun assignment for physical devices */
4073			hpsa_set_bus_target_lun(device,
4074					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4075		return;
4076	}
4077	/* It's a logical device */
4078	if (device->external) {
4079		hpsa_set_bus_target_lun(device,
4080			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4081			lunid & 0x00ff);
4082		return;
4083	}
4084	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4085				0, lunid & 0x3fff);
4086}
4087
4088static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4089	int i, int nphysicals, int nlocal_logicals)
4090{
4091	/* In report logicals, local logicals are listed first,
4092	* then any externals.
4093	*/
4094	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4095
4096	if (i == raid_ctlr_position)
4097		return 0;
4098
4099	if (i < logicals_start)
4100		return 0;
4101
4102	/* i is in logicals range, but still within local logicals */
4103	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4104		return 0;
4105
4106	return 1; /* it's an external lun */
4107}
4108
4109/*
4110 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4111 * logdev.  The number of luns in physdev and logdev are returned in
4112 * *nphysicals and *nlogicals, respectively.
4113 * Returns 0 on success, -1 otherwise.
4114 */
4115static int hpsa_gather_lun_info(struct ctlr_info *h,
4116	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4117	struct ReportLUNdata *logdev, u32 *nlogicals)
4118{
4119	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4120		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4121		return -1;
4122	}
4123	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4124	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4125		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4126			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4127		*nphysicals = HPSA_MAX_PHYS_LUN;
4128	}
4129	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4130		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4131		return -1;
4132	}
4133	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4134	/* Reject Logicals in excess of our max capability. */
4135	if (*nlogicals > HPSA_MAX_LUN) {
4136		dev_warn(&h->pdev->dev,
4137			"maximum logical LUNs (%d) exceeded.  "
4138			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4139			*nlogicals - HPSA_MAX_LUN);
4140		*nlogicals = HPSA_MAX_LUN;
4141	}
4142	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4143		dev_warn(&h->pdev->dev,
4144			"maximum logical + physical LUNs (%d) exceeded. "
4145			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4146			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4147		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4148	}
4149	return 0;
4150}
4151
4152static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4153	int i, int nphysicals, int nlogicals,
4154	struct ReportExtendedLUNdata *physdev_list,
4155	struct ReportLUNdata *logdev_list)
4156{
4157	/* Helper function, figure out where the LUN ID info is coming from
4158	 * given index i, lists of physical and logical devices, where in
4159	 * the list the raid controller is supposed to appear (first or last)
4160	 */
4161
4162	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4163	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4164
4165	if (i == raid_ctlr_position)
4166		return RAID_CTLR_LUNID;
4167
4168	if (i < logicals_start)
4169		return &physdev_list->LUN[i -
4170				(raid_ctlr_position == 0)].lunid[0];
4171
4172	if (i < last_device)
4173		return &logdev_list->LUN[i - nphysicals -
4174			(raid_ctlr_position == 0)][0];
4175	BUG();
4176	return NULL;
4177}
4178
4179/* get physical drive ioaccel handle and queue depth */
4180static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4181		struct hpsa_scsi_dev_t *dev,
4182		struct ReportExtendedLUNdata *rlep, int rle_index,
4183		struct bmic_identify_physical_device *id_phys)
4184{
4185	int rc;
4186	struct ext_report_lun_entry *rle;
4187
4188	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4189		return;
4190
4191	rle = &rlep->LUN[rle_index];
4192
4193	dev->ioaccel_handle = rle->ioaccel_handle;
4194	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4195		dev->hba_ioaccel_enabled = 1;
4196	memset(id_phys, 0, sizeof(*id_phys));
4197	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4198			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4199			sizeof(*id_phys));
4200	if (!rc)
4201		/* Reserve space for FW operations */
4202#define DRIVE_CMDS_RESERVED_FOR_FW 2
4203#define DRIVE_QUEUE_DEPTH 7
4204		dev->queue_depth =
4205			le16_to_cpu(id_phys->current_queue_depth_limit) -
4206				DRIVE_CMDS_RESERVED_FOR_FW;
4207	else
4208		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4209}
4210
4211static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4212	struct ReportExtendedLUNdata *rlep, int rle_index,
4213	struct bmic_identify_physical_device *id_phys)
4214{
4215	struct ext_report_lun_entry *rle;
4216
4217	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4218		return;
4219
4220	rle = &rlep->LUN[rle_index];
4221
4222	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4223		this_device->hba_ioaccel_enabled = 1;
4224
4225	memcpy(&this_device->active_path_index,
4226		&id_phys->active_path_number,
4227		sizeof(this_device->active_path_index));
4228	memcpy(&this_device->path_map,
4229		&id_phys->redundant_path_present_map,
4230		sizeof(this_device->path_map));
4231	memcpy(&this_device->box,
4232		&id_phys->alternate_paths_phys_box_on_port,
4233		sizeof(this_device->box));
4234	memcpy(&this_device->phys_connector,
4235		&id_phys->alternate_paths_phys_connector,
4236		sizeof(this_device->phys_connector));
4237	memcpy(&this_device->bay,
4238		&id_phys->phys_bay_in_box,
4239		sizeof(this_device->bay));
4240}
4241
4242/* get number of local logical disks. */
4243static int hpsa_set_local_logical_count(struct ctlr_info *h,
4244	struct bmic_identify_controller *id_ctlr,
4245	u32 *nlocals)
4246{
4247	int rc;
4248
4249	if (!id_ctlr) {
4250		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4251			__func__);
4252		return -ENOMEM;
4253	}
4254	memset(id_ctlr, 0, sizeof(*id_ctlr));
4255	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4256	if (!rc)
4257		if (id_ctlr->configured_logical_drive_count < 255)
4258			*nlocals = id_ctlr->configured_logical_drive_count;
4259		else
4260			*nlocals = le16_to_cpu(
4261					id_ctlr->extended_logical_unit_count);
4262	else
4263		*nlocals = -1;
4264	return rc;
4265}
4266
4267static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4268{
4269	struct bmic_identify_physical_device *id_phys;
4270	bool is_spare = false;
4271	int rc;
4272
4273	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4274	if (!id_phys)
4275		return false;
4276
4277	rc = hpsa_bmic_id_physical_device(h,
4278					lunaddrbytes,
4279					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4280					id_phys, sizeof(*id_phys));
4281	if (rc == 0)
4282		is_spare = (id_phys->more_flags >> 6) & 0x01;
4283
4284	kfree(id_phys);
4285	return is_spare;
4286}
4287
4288#define RPL_DEV_FLAG_NON_DISK                           0x1
4289#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4290#define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4291
4292#define BMIC_DEVICE_TYPE_ENCLOSURE  6
4293
4294static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4295				struct ext_report_lun_entry *rle)
4296{
4297	u8 device_flags;
4298	u8 device_type;
4299
4300	if (!MASKED_DEVICE(lunaddrbytes))
4301		return false;
4302
4303	device_flags = rle->device_flags;
4304	device_type = rle->device_type;
4305
4306	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4307		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4308			return false;
4309		return true;
4310	}
4311
4312	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4313		return false;
4314
4315	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4316		return false;
4317
4318	/*
4319	 * Spares may be spun down, we do not want to
4320	 * do an Inquiry to a RAID set spare drive as
4321	 * that would have them spun up, that is a
4322	 * performance hit because I/O to the RAID device
4323	 * stops while the spin up occurs which can take
4324	 * over 50 seconds.
4325	 */
4326	if (hpsa_is_disk_spare(h, lunaddrbytes))
4327		return true;
4328
4329	return false;
4330}
4331
4332static void hpsa_update_scsi_devices(struct ctlr_info *h)
4333{
4334	/* the idea here is we could get notified
4335	 * that some devices have changed, so we do a report
4336	 * physical luns and report logical luns cmd, and adjust
4337	 * our list of devices accordingly.
4338	 *
4339	 * The scsi3addr's of devices won't change so long as the
4340	 * adapter is not reset.  That means we can rescan and
4341	 * tell which devices we already know about, vs. new
4342	 * devices, vs.  disappearing devices.
4343	 */
4344	struct ReportExtendedLUNdata *physdev_list = NULL;
4345	struct ReportLUNdata *logdev_list = NULL;
4346	struct bmic_identify_physical_device *id_phys = NULL;
4347	struct bmic_identify_controller *id_ctlr = NULL;
4348	u32 nphysicals = 0;
4349	u32 nlogicals = 0;
4350	u32 nlocal_logicals = 0;
4351	u32 ndev_allocated = 0;
4352	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4353	int ncurrent = 0;
4354	int i, ndevs_to_allocate;
4355	int raid_ctlr_position;
4356	bool physical_device;
4357
4358	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4359	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4360	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4361	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4362	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4363	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4364
4365	if (!currentsd || !physdev_list || !logdev_list ||
4366		!tmpdevice || !id_phys || !id_ctlr) {
4367		dev_err(&h->pdev->dev, "out of memory\n");
4368		goto out;
4369	}
4370
4371	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4372
4373	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4374			logdev_list, &nlogicals)) {
4375		h->drv_req_rescan = 1;
4376		goto out;
4377	}
4378
4379	/* Set number of local logicals (non PTRAID) */
4380	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4381		dev_warn(&h->pdev->dev,
4382			"%s: Can't determine number of local logical devices.\n",
4383			__func__);
4384	}
4385
4386	/* We might see up to the maximum number of logical and physical disks
4387	 * plus external target devices, and a device for the local RAID
4388	 * controller.
4389	 */
4390	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4391
4392	hpsa_ext_ctrl_present(h, physdev_list);
4393
4394	/* Allocate the per device structures */
4395	for (i = 0; i < ndevs_to_allocate; i++) {
4396		if (i >= HPSA_MAX_DEVICES) {
4397			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4398				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4399				ndevs_to_allocate - HPSA_MAX_DEVICES);
4400			break;
4401		}
4402
4403		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4404		if (!currentsd[i]) {
4405			h->drv_req_rescan = 1;
4406			goto out;
4407		}
4408		ndev_allocated++;
4409	}
4410
4411	if (is_scsi_rev_5(h))
4412		raid_ctlr_position = 0;
4413	else
4414		raid_ctlr_position = nphysicals + nlogicals;
4415
4416	/* adjust our table of devices */
4417	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4418		u8 *lunaddrbytes, is_OBDR = 0;
4419		int rc = 0;
4420		int phys_dev_index = i - (raid_ctlr_position == 0);
4421		bool skip_device = false;
4422
4423		memset(tmpdevice, 0, sizeof(*tmpdevice));
4424
4425		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4426
4427		/* Figure out where the LUN ID info is coming from */
4428		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4429			i, nphysicals, nlogicals, physdev_list, logdev_list);
4430
4431		/* Determine if this is a lun from an external target array */
4432		tmpdevice->external =
4433			figure_external_status(h, raid_ctlr_position, i,
4434						nphysicals, nlocal_logicals);
4435
4436		/*
4437		 * Skip over some devices such as a spare.
4438		 */
4439		if (phys_dev_index >= 0 && !tmpdevice->external &&
4440			physical_device) {
4441			skip_device = hpsa_skip_device(h, lunaddrbytes,
4442					&physdev_list->LUN[phys_dev_index]);
4443			if (skip_device)
4444				continue;
4445		}
4446
4447		/* Get device type, vendor, model, device id, raid_map */
4448		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4449							&is_OBDR);
4450		if (rc == -ENOMEM) {
4451			dev_warn(&h->pdev->dev,
4452				"Out of memory, rescan deferred.\n");
4453			h->drv_req_rescan = 1;
4454			goto out;
4455		}
4456		if (rc) {
4457			h->drv_req_rescan = 1;
4458			continue;
4459		}
4460
4461		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4462		this_device = currentsd[ncurrent];
4463
4464		*this_device = *tmpdevice;
4465		this_device->physical_device = physical_device;
4466
4467		/*
4468		 * Expose all devices except for physical devices that
4469		 * are masked.
4470		 */
4471		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4472			this_device->expose_device = 0;
4473		else
4474			this_device->expose_device = 1;
4475
4476
4477		/*
4478		 * Get the SAS address for physical devices that are exposed.
4479		 */
4480		if (this_device->physical_device && this_device->expose_device)
4481			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4482
4483		switch (this_device->devtype) {
4484		case TYPE_ROM:
4485			/* We don't *really* support actual CD-ROM devices,
4486			 * just "One Button Disaster Recovery" tape drive
4487			 * which temporarily pretends to be a CD-ROM drive.
4488			 * So we check that the device is really an OBDR tape
4489			 * device by checking for "$DR-10" in bytes 43-48 of
4490			 * the inquiry data.
4491			 */
4492			if (is_OBDR)
4493				ncurrent++;
4494			break;
4495		case TYPE_DISK:
4496		case TYPE_ZBC:
4497			if (this_device->physical_device) {
4498				/* The disk is in HBA mode. */
4499				/* Never use RAID mapper in HBA mode. */
4500				this_device->offload_enabled = 0;
4501				hpsa_get_ioaccel_drive_info(h, this_device,
4502					physdev_list, phys_dev_index, id_phys);
4503				hpsa_get_path_info(this_device,
4504					physdev_list, phys_dev_index, id_phys);
4505			}
4506			ncurrent++;
4507			break;
4508		case TYPE_TAPE:
4509		case TYPE_MEDIUM_CHANGER:
4510			ncurrent++;
4511			break;
4512		case TYPE_ENCLOSURE:
4513			if (!this_device->external)
4514				hpsa_get_enclosure_info(h, lunaddrbytes,
4515						physdev_list, phys_dev_index,
4516						this_device);
4517			ncurrent++;
4518			break;
4519		case TYPE_RAID:
4520			/* Only present the Smartarray HBA as a RAID controller.
4521			 * If it's a RAID controller other than the HBA itself
4522			 * (an external RAID controller, MSA500 or similar)
4523			 * don't present it.
4524			 */
4525			if (!is_hba_lunid(lunaddrbytes))
4526				break;
4527			ncurrent++;
4528			break;
4529		default:
4530			break;
4531		}
4532		if (ncurrent >= HPSA_MAX_DEVICES)
4533			break;
4534	}
4535
4536	if (h->sas_host == NULL) {
4537		int rc = 0;
4538
4539		rc = hpsa_add_sas_host(h);
4540		if (rc) {
4541			dev_warn(&h->pdev->dev,
4542				"Could not add sas host %d\n", rc);
4543			goto out;
4544		}
4545	}
4546
4547	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4548out:
4549	kfree(tmpdevice);
4550	for (i = 0; i < ndev_allocated; i++)
4551		kfree(currentsd[i]);
4552	kfree(currentsd);
4553	kfree(physdev_list);
4554	kfree(logdev_list);
4555	kfree(id_ctlr);
4556	kfree(id_phys);
4557}
4558
4559static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4560				   struct scatterlist *sg)
4561{
4562	u64 addr64 = (u64) sg_dma_address(sg);
4563	unsigned int len = sg_dma_len(sg);
4564
4565	desc->Addr = cpu_to_le64(addr64);
4566	desc->Len = cpu_to_le32(len);
4567	desc->Ext = 0;
4568}
4569
4570/*
4571 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4572 * dma mapping  and fills in the scatter gather entries of the
4573 * hpsa command, cp.
4574 */
4575static int hpsa_scatter_gather(struct ctlr_info *h,
4576		struct CommandList *cp,
4577		struct scsi_cmnd *cmd)
4578{
4579	struct scatterlist *sg;
4580	int use_sg, i, sg_limit, chained;
4581	struct SGDescriptor *curr_sg;
4582
4583	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4584
4585	use_sg = scsi_dma_map(cmd);
4586	if (use_sg < 0)
4587		return use_sg;
4588
4589	if (!use_sg)
4590		goto sglist_finished;
4591
4592	/*
4593	 * If the number of entries is greater than the max for a single list,
4594	 * then we have a chained list; we will set up all but one entry in the
4595	 * first list (the last entry is saved for link information);
4596	 * otherwise, we don't have a chained list and we'll set up at each of
4597	 * the entries in the one list.
4598	 */
4599	curr_sg = cp->SG;
4600	chained = use_sg > h->max_cmd_sg_entries;
4601	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4602	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4603		hpsa_set_sg_descriptor(curr_sg, sg);
4604		curr_sg++;
4605	}
4606
4607	if (chained) {
4608		/*
4609		 * Continue with the chained list.  Set curr_sg to the chained
4610		 * list.  Modify the limit to the total count less the entries
4611		 * we've already set up.  Resume the scan at the list entry
4612		 * where the previous loop left off.
4613		 */
4614		curr_sg = h->cmd_sg_list[cp->cmdindex];
4615		sg_limit = use_sg - sg_limit;
4616		for_each_sg(sg, sg, sg_limit, i) {
4617			hpsa_set_sg_descriptor(curr_sg, sg);
4618			curr_sg++;
4619		}
4620	}
4621
4622	/* Back the pointer up to the last entry and mark it as "last". */
4623	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4624
4625	if (use_sg + chained > h->maxSG)
4626		h->maxSG = use_sg + chained;
4627
4628	if (chained) {
4629		cp->Header.SGList = h->max_cmd_sg_entries;
4630		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4631		if (hpsa_map_sg_chain_block(h, cp)) {
4632			scsi_dma_unmap(cmd);
4633			return -1;
4634		}
4635		return 0;
4636	}
4637
4638sglist_finished:
4639
4640	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4641	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4642	return 0;
4643}
4644
4645static inline void warn_zero_length_transfer(struct ctlr_info *h,
4646						u8 *cdb, int cdb_len,
4647						const char *func)
4648{
4649	dev_warn(&h->pdev->dev,
4650		 "%s: Blocking zero-length request: CDB:%*phN\n",
4651		 func, cdb_len, cdb);
4652}
4653
4654#define IO_ACCEL_INELIGIBLE 1
4655/* zero-length transfers trigger hardware errors. */
4656static bool is_zero_length_transfer(u8 *cdb)
4657{
4658	u32 block_cnt;
4659
4660	/* Block zero-length transfer sizes on certain commands. */
4661	switch (cdb[0]) {
4662	case READ_10:
4663	case WRITE_10:
4664	case VERIFY:		/* 0x2F */
4665	case WRITE_VERIFY:	/* 0x2E */
4666		block_cnt = get_unaligned_be16(&cdb[7]);
4667		break;
4668	case READ_12:
4669	case WRITE_12:
4670	case VERIFY_12: /* 0xAF */
4671	case WRITE_VERIFY_12:	/* 0xAE */
4672		block_cnt = get_unaligned_be32(&cdb[6]);
4673		break;
4674	case READ_16:
4675	case WRITE_16:
4676	case VERIFY_16:		/* 0x8F */
4677		block_cnt = get_unaligned_be32(&cdb[10]);
4678		break;
4679	default:
4680		return false;
4681	}
4682
4683	return block_cnt == 0;
4684}
4685
4686static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4687{
4688	int is_write = 0;
4689	u32 block;
4690	u32 block_cnt;
4691
4692	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4693	switch (cdb[0]) {
4694	case WRITE_6:
4695	case WRITE_12:
4696		is_write = 1;
4697		fallthrough;
4698	case READ_6:
4699	case READ_12:
4700		if (*cdb_len == 6) {
4701			block = (((cdb[1] & 0x1F) << 16) |
4702				(cdb[2] << 8) |
4703				cdb[3]);
4704			block_cnt = cdb[4];
4705			if (block_cnt == 0)
4706				block_cnt = 256;
4707		} else {
4708			BUG_ON(*cdb_len != 12);
4709			block = get_unaligned_be32(&cdb[2]);
4710			block_cnt = get_unaligned_be32(&cdb[6]);
4711		}
4712		if (block_cnt > 0xffff)
4713			return IO_ACCEL_INELIGIBLE;
4714
4715		cdb[0] = is_write ? WRITE_10 : READ_10;
4716		cdb[1] = 0;
4717		cdb[2] = (u8) (block >> 24);
4718		cdb[3] = (u8) (block >> 16);
4719		cdb[4] = (u8) (block >> 8);
4720		cdb[5] = (u8) (block);
4721		cdb[6] = 0;
4722		cdb[7] = (u8) (block_cnt >> 8);
4723		cdb[8] = (u8) (block_cnt);
4724		cdb[9] = 0;
4725		*cdb_len = 10;
4726		break;
4727	}
4728	return 0;
4729}
4730
4731static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4732	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4733	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4734{
4735	struct scsi_cmnd *cmd = c->scsi_cmd;
4736	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4737	unsigned int len;
4738	unsigned int total_len = 0;
4739	struct scatterlist *sg;
4740	u64 addr64;
4741	int use_sg, i;
4742	struct SGDescriptor *curr_sg;
4743	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4744
4745	/* TODO: implement chaining support */
4746	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4747		atomic_dec(&phys_disk->ioaccel_cmds_out);
4748		return IO_ACCEL_INELIGIBLE;
4749	}
4750
4751	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4752
4753	if (is_zero_length_transfer(cdb)) {
4754		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4755		atomic_dec(&phys_disk->ioaccel_cmds_out);
4756		return IO_ACCEL_INELIGIBLE;
4757	}
4758
4759	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4760		atomic_dec(&phys_disk->ioaccel_cmds_out);
4761		return IO_ACCEL_INELIGIBLE;
4762	}
4763
4764	c->cmd_type = CMD_IOACCEL1;
4765
4766	/* Adjust the DMA address to point to the accelerated command buffer */
4767	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4768				(c->cmdindex * sizeof(*cp));
4769	BUG_ON(c->busaddr & 0x0000007F);
4770
4771	use_sg = scsi_dma_map(cmd);
4772	if (use_sg < 0) {
4773		atomic_dec(&phys_disk->ioaccel_cmds_out);
4774		return use_sg;
4775	}
4776
4777	if (use_sg) {
4778		curr_sg = cp->SG;
4779		scsi_for_each_sg(cmd, sg, use_sg, i) {
4780			addr64 = (u64) sg_dma_address(sg);
4781			len  = sg_dma_len(sg);
4782			total_len += len;
4783			curr_sg->Addr = cpu_to_le64(addr64);
4784			curr_sg->Len = cpu_to_le32(len);
4785			curr_sg->Ext = cpu_to_le32(0);
4786			curr_sg++;
4787		}
4788		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4789
4790		switch (cmd->sc_data_direction) {
4791		case DMA_TO_DEVICE:
4792			control |= IOACCEL1_CONTROL_DATA_OUT;
4793			break;
4794		case DMA_FROM_DEVICE:
4795			control |= IOACCEL1_CONTROL_DATA_IN;
4796			break;
4797		case DMA_NONE:
4798			control |= IOACCEL1_CONTROL_NODATAXFER;
4799			break;
4800		default:
4801			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4802			cmd->sc_data_direction);
4803			BUG();
4804			break;
4805		}
4806	} else {
4807		control |= IOACCEL1_CONTROL_NODATAXFER;
4808	}
4809
4810	c->Header.SGList = use_sg;
4811	/* Fill out the command structure to submit */
4812	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4813	cp->transfer_len = cpu_to_le32(total_len);
4814	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4815			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4816	cp->control = cpu_to_le32(control);
4817	memcpy(cp->CDB, cdb, cdb_len);
4818	memcpy(cp->CISS_LUN, scsi3addr, 8);
4819	/* Tag was already set at init time. */
4820	enqueue_cmd_and_start_io(h, c);
4821	return 0;
4822}
4823
4824/*
4825 * Queue a command directly to a device behind the controller using the
4826 * I/O accelerator path.
4827 */
4828static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4829	struct CommandList *c)
4830{
4831	struct scsi_cmnd *cmd = c->scsi_cmd;
4832	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4833
4834	if (!dev)
4835		return -1;
4836
4837	c->phys_disk = dev;
4838
4839	if (dev->in_reset)
4840		return -1;
4841
4842	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4843		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4844}
4845
4846/*
4847 * Set encryption parameters for the ioaccel2 request
4848 */
4849static void set_encrypt_ioaccel2(struct ctlr_info *h,
4850	struct CommandList *c, struct io_accel2_cmd *cp)
4851{
4852	struct scsi_cmnd *cmd = c->scsi_cmd;
4853	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4854	struct raid_map_data *map = &dev->raid_map;
4855	u64 first_block;
4856
4857	/* Are we doing encryption on this device */
4858	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4859		return;
4860	/* Set the data encryption key index. */
4861	cp->dekindex = map->dekindex;
4862
4863	/* Set the encryption enable flag, encoded into direction field. */
4864	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4865
4866	/* Set encryption tweak values based on logical block address
4867	 * If block size is 512, tweak value is LBA.
4868	 * For other block sizes, tweak is (LBA * block size)/ 512)
4869	 */
4870	switch (cmd->cmnd[0]) {
4871	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4872	case READ_6:
4873	case WRITE_6:
4874		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4875				(cmd->cmnd[2] << 8) |
4876				cmd->cmnd[3]);
4877		break;
4878	case WRITE_10:
4879	case READ_10:
4880	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4881	case WRITE_12:
4882	case READ_12:
4883		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4884		break;
4885	case WRITE_16:
4886	case READ_16:
4887		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4888		break;
4889	default:
4890		dev_err(&h->pdev->dev,
4891			"ERROR: %s: size (0x%x) not supported for encryption\n",
4892			__func__, cmd->cmnd[0]);
4893		BUG();
4894		break;
4895	}
4896
4897	if (le32_to_cpu(map->volume_blk_size) != 512)
4898		first_block = first_block *
4899				le32_to_cpu(map->volume_blk_size)/512;
4900
4901	cp->tweak_lower = cpu_to_le32(first_block);
4902	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4903}
4904
4905static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4906	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4907	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4908{
4909	struct scsi_cmnd *cmd = c->scsi_cmd;
4910	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4911	struct ioaccel2_sg_element *curr_sg;
4912	int use_sg, i;
4913	struct scatterlist *sg;
4914	u64 addr64;
4915	u32 len;
4916	u32 total_len = 0;
4917
4918	if (!cmd->device)
4919		return -1;
4920
4921	if (!cmd->device->hostdata)
4922		return -1;
4923
4924	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4925
4926	if (is_zero_length_transfer(cdb)) {
4927		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4928		atomic_dec(&phys_disk->ioaccel_cmds_out);
4929		return IO_ACCEL_INELIGIBLE;
4930	}
4931
4932	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4933		atomic_dec(&phys_disk->ioaccel_cmds_out);
4934		return IO_ACCEL_INELIGIBLE;
4935	}
4936
4937	c->cmd_type = CMD_IOACCEL2;
4938	/* Adjust the DMA address to point to the accelerated command buffer */
4939	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4940				(c->cmdindex * sizeof(*cp));
4941	BUG_ON(c->busaddr & 0x0000007F);
4942
4943	memset(cp, 0, sizeof(*cp));
4944	cp->IU_type = IOACCEL2_IU_TYPE;
4945
4946	use_sg = scsi_dma_map(cmd);
4947	if (use_sg < 0) {
4948		atomic_dec(&phys_disk->ioaccel_cmds_out);
4949		return use_sg;
4950	}
4951
4952	if (use_sg) {
4953		curr_sg = cp->sg;
4954		if (use_sg > h->ioaccel_maxsg) {
4955			addr64 = le64_to_cpu(
4956				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4957			curr_sg->address = cpu_to_le64(addr64);
4958			curr_sg->length = 0;
4959			curr_sg->reserved[0] = 0;
4960			curr_sg->reserved[1] = 0;
4961			curr_sg->reserved[2] = 0;
4962			curr_sg->chain_indicator = IOACCEL2_CHAIN;
4963
4964			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4965		}
4966		scsi_for_each_sg(cmd, sg, use_sg, i) {
4967			addr64 = (u64) sg_dma_address(sg);
4968			len  = sg_dma_len(sg);
4969			total_len += len;
4970			curr_sg->address = cpu_to_le64(addr64);
4971			curr_sg->length = cpu_to_le32(len);
4972			curr_sg->reserved[0] = 0;
4973			curr_sg->reserved[1] = 0;
4974			curr_sg->reserved[2] = 0;
4975			curr_sg->chain_indicator = 0;
4976			curr_sg++;
4977		}
4978
4979		/*
4980		 * Set the last s/g element bit
4981		 */
4982		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4983
4984		switch (cmd->sc_data_direction) {
4985		case DMA_TO_DEVICE:
4986			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4987			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4988			break;
4989		case DMA_FROM_DEVICE:
4990			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4991			cp->direction |= IOACCEL2_DIR_DATA_IN;
4992			break;
4993		case DMA_NONE:
4994			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4995			cp->direction |= IOACCEL2_DIR_NO_DATA;
4996			break;
4997		default:
4998			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4999				cmd->sc_data_direction);
5000			BUG();
5001			break;
5002		}
5003	} else {
5004		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5005		cp->direction |= IOACCEL2_DIR_NO_DATA;
5006	}
5007
5008	/* Set encryption parameters, if necessary */
5009	set_encrypt_ioaccel2(h, c, cp);
5010
5011	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5012	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5013	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5014
5015	cp->data_len = cpu_to_le32(total_len);
5016	cp->err_ptr = cpu_to_le64(c->busaddr +
5017			offsetof(struct io_accel2_cmd, error_data));
5018	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5019
5020	/* fill in sg elements */
5021	if (use_sg > h->ioaccel_maxsg) {
5022		cp->sg_count = 1;
5023		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5024		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5025			atomic_dec(&phys_disk->ioaccel_cmds_out);
5026			scsi_dma_unmap(cmd);
5027			return -1;
5028		}
5029	} else
5030		cp->sg_count = (u8) use_sg;
5031
5032	if (phys_disk->in_reset) {
5033		cmd->result = DID_RESET << 16;
5034		return -1;
5035	}
5036
5037	enqueue_cmd_and_start_io(h, c);
5038	return 0;
5039}
5040
5041/*
5042 * Queue a command to the correct I/O accelerator path.
5043 */
5044static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5045	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5046	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5047{
5048	if (!c->scsi_cmd->device)
5049		return -1;
5050
5051	if (!c->scsi_cmd->device->hostdata)
5052		return -1;
5053
5054	if (phys_disk->in_reset)
5055		return -1;
5056
5057	/* Try to honor the device's queue depth */
5058	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5059					phys_disk->queue_depth) {
5060		atomic_dec(&phys_disk->ioaccel_cmds_out);
5061		return IO_ACCEL_INELIGIBLE;
5062	}
5063	if (h->transMethod & CFGTBL_Trans_io_accel1)
5064		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5065						cdb, cdb_len, scsi3addr,
5066						phys_disk);
5067	else
5068		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5069						cdb, cdb_len, scsi3addr,
5070						phys_disk);
5071}
5072
5073static void raid_map_helper(struct raid_map_data *map,
5074		int offload_to_mirror, u32 *map_index, u32 *current_group)
5075{
5076	if (offload_to_mirror == 0)  {
5077		/* use physical disk in the first mirrored group. */
5078		*map_index %= le16_to_cpu(map->data_disks_per_row);
5079		return;
5080	}
5081	do {
5082		/* determine mirror group that *map_index indicates */
5083		*current_group = *map_index /
5084			le16_to_cpu(map->data_disks_per_row);
5085		if (offload_to_mirror == *current_group)
5086			continue;
5087		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5088			/* select map index from next group */
5089			*map_index += le16_to_cpu(map->data_disks_per_row);
5090			(*current_group)++;
5091		} else {
5092			/* select map index from first group */
5093			*map_index %= le16_to_cpu(map->data_disks_per_row);
5094			*current_group = 0;
5095		}
5096	} while (offload_to_mirror != *current_group);
5097}
5098
5099/*
5100 * Attempt to perform offload RAID mapping for a logical volume I/O.
5101 */
5102static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5103	struct CommandList *c)
5104{
5105	struct scsi_cmnd *cmd = c->scsi_cmd;
5106	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5107	struct raid_map_data *map = &dev->raid_map;
5108	struct raid_map_disk_data *dd = &map->data[0];
5109	int is_write = 0;
5110	u32 map_index;
5111	u64 first_block, last_block;
5112	u32 block_cnt;
5113	u32 blocks_per_row;
5114	u64 first_row, last_row;
5115	u32 first_row_offset, last_row_offset;
5116	u32 first_column, last_column;
5117	u64 r0_first_row, r0_last_row;
5118	u32 r5or6_blocks_per_row;
5119	u64 r5or6_first_row, r5or6_last_row;
5120	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5121	u32 r5or6_first_column, r5or6_last_column;
5122	u32 total_disks_per_row;
5123	u32 stripesize;
5124	u32 first_group, last_group, current_group;
5125	u32 map_row;
5126	u32 disk_handle;
5127	u64 disk_block;
5128	u32 disk_block_cnt;
5129	u8 cdb[16];
5130	u8 cdb_len;
5131	u16 strip_size;
5132#if BITS_PER_LONG == 32
5133	u64 tmpdiv;
5134#endif
5135	int offload_to_mirror;
5136
5137	if (!dev)
5138		return -1;
5139
5140	if (dev->in_reset)
5141		return -1;
5142
5143	/* check for valid opcode, get LBA and block count */
5144	switch (cmd->cmnd[0]) {
5145	case WRITE_6:
5146		is_write = 1;
5147		fallthrough;
5148	case READ_6:
5149		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5150				(cmd->cmnd[2] << 8) |
5151				cmd->cmnd[3]);
5152		block_cnt = cmd->cmnd[4];
5153		if (block_cnt == 0)
5154			block_cnt = 256;
5155		break;
5156	case WRITE_10:
5157		is_write = 1;
5158		fallthrough;
5159	case READ_10:
5160		first_block =
5161			(((u64) cmd->cmnd[2]) << 24) |
5162			(((u64) cmd->cmnd[3]) << 16) |
5163			(((u64) cmd->cmnd[4]) << 8) |
5164			cmd->cmnd[5];
5165		block_cnt =
5166			(((u32) cmd->cmnd[7]) << 8) |
5167			cmd->cmnd[8];
5168		break;
5169	case WRITE_12:
5170		is_write = 1;
5171		fallthrough;
5172	case READ_12:
5173		first_block =
5174			(((u64) cmd->cmnd[2]) << 24) |
5175			(((u64) cmd->cmnd[3]) << 16) |
5176			(((u64) cmd->cmnd[4]) << 8) |
5177			cmd->cmnd[5];
5178		block_cnt =
5179			(((u32) cmd->cmnd[6]) << 24) |
5180			(((u32) cmd->cmnd[7]) << 16) |
5181			(((u32) cmd->cmnd[8]) << 8) |
5182		cmd->cmnd[9];
5183		break;
5184	case WRITE_16:
5185		is_write = 1;
5186		fallthrough;
5187	case READ_16:
5188		first_block =
5189			(((u64) cmd->cmnd[2]) << 56) |
5190			(((u64) cmd->cmnd[3]) << 48) |
5191			(((u64) cmd->cmnd[4]) << 40) |
5192			(((u64) cmd->cmnd[5]) << 32) |
5193			(((u64) cmd->cmnd[6]) << 24) |
5194			(((u64) cmd->cmnd[7]) << 16) |
5195			(((u64) cmd->cmnd[8]) << 8) |
5196			cmd->cmnd[9];
5197		block_cnt =
5198			(((u32) cmd->cmnd[10]) << 24) |
5199			(((u32) cmd->cmnd[11]) << 16) |
5200			(((u32) cmd->cmnd[12]) << 8) |
5201			cmd->cmnd[13];
5202		break;
5203	default:
5204		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5205	}
5206	last_block = first_block + block_cnt - 1;
5207
5208	/* check for write to non-RAID-0 */
5209	if (is_write && dev->raid_level != 0)
5210		return IO_ACCEL_INELIGIBLE;
5211
5212	/* check for invalid block or wraparound */
5213	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5214		last_block < first_block)
5215		return IO_ACCEL_INELIGIBLE;
5216
5217	/* calculate stripe information for the request */
5218	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5219				le16_to_cpu(map->strip_size);
5220	strip_size = le16_to_cpu(map->strip_size);
5221#if BITS_PER_LONG == 32
5222	tmpdiv = first_block;
5223	(void) do_div(tmpdiv, blocks_per_row);
5224	first_row = tmpdiv;
5225	tmpdiv = last_block;
5226	(void) do_div(tmpdiv, blocks_per_row);
5227	last_row = tmpdiv;
5228	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5229	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5230	tmpdiv = first_row_offset;
5231	(void) do_div(tmpdiv, strip_size);
5232	first_column = tmpdiv;
5233	tmpdiv = last_row_offset;
5234	(void) do_div(tmpdiv, strip_size);
5235	last_column = tmpdiv;
5236#else
5237	first_row = first_block / blocks_per_row;
5238	last_row = last_block / blocks_per_row;
5239	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5240	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5241	first_column = first_row_offset / strip_size;
5242	last_column = last_row_offset / strip_size;
5243#endif
5244
5245	/* if this isn't a single row/column then give to the controller */
5246	if ((first_row != last_row) || (first_column != last_column))
5247		return IO_ACCEL_INELIGIBLE;
5248
5249	/* proceeding with driver mapping */
5250	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5251				le16_to_cpu(map->metadata_disks_per_row);
5252	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5253				le16_to_cpu(map->row_cnt);
5254	map_index = (map_row * total_disks_per_row) + first_column;
5255
5256	switch (dev->raid_level) {
5257	case HPSA_RAID_0:
5258		break; /* nothing special to do */
5259	case HPSA_RAID_1:
5260		/* Handles load balance across RAID 1 members.
5261		 * (2-drive R1 and R10 with even # of drives.)
5262		 * Appropriate for SSDs, not optimal for HDDs
5263		 * Ensure we have the correct raid_map.
5264		 */
5265		if (le16_to_cpu(map->layout_map_count) != 2) {
5266			hpsa_turn_off_ioaccel_for_device(dev);
5267			return IO_ACCEL_INELIGIBLE;
5268		}
5269		if (dev->offload_to_mirror)
5270			map_index += le16_to_cpu(map->data_disks_per_row);
5271		dev->offload_to_mirror = !dev->offload_to_mirror;
5272		break;
5273	case HPSA_RAID_ADM:
5274		/* Handles N-way mirrors  (R1-ADM)
5275		 * and R10 with # of drives divisible by 3.)
5276		 * Ensure we have the correct raid_map.
5277		 */
5278		if (le16_to_cpu(map->layout_map_count) != 3) {
5279			hpsa_turn_off_ioaccel_for_device(dev);
5280			return IO_ACCEL_INELIGIBLE;
5281		}
5282
5283		offload_to_mirror = dev->offload_to_mirror;
5284		raid_map_helper(map, offload_to_mirror,
5285				&map_index, &current_group);
5286		/* set mirror group to use next time */
5287		offload_to_mirror =
5288			(offload_to_mirror >=
5289			le16_to_cpu(map->layout_map_count) - 1)
5290			? 0 : offload_to_mirror + 1;
5291		dev->offload_to_mirror = offload_to_mirror;
5292		/* Avoid direct use of dev->offload_to_mirror within this
5293		 * function since multiple threads might simultaneously
5294		 * increment it beyond the range of dev->layout_map_count -1.
5295		 */
5296		break;
5297	case HPSA_RAID_5:
5298	case HPSA_RAID_6:
5299		if (le16_to_cpu(map->layout_map_count) <= 1)
5300			break;
5301
5302		/* Verify first and last block are in same RAID group */
5303		r5or6_blocks_per_row =
5304			le16_to_cpu(map->strip_size) *
5305			le16_to_cpu(map->data_disks_per_row);
5306		if (r5or6_blocks_per_row == 0) {
5307			hpsa_turn_off_ioaccel_for_device(dev);
5308			return IO_ACCEL_INELIGIBLE;
5309		}
5310		stripesize = r5or6_blocks_per_row *
5311			le16_to_cpu(map->layout_map_count);
5312#if BITS_PER_LONG == 32
5313		tmpdiv = first_block;
5314		first_group = do_div(tmpdiv, stripesize);
5315		tmpdiv = first_group;
5316		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5317		first_group = tmpdiv;
5318		tmpdiv = last_block;
5319		last_group = do_div(tmpdiv, stripesize);
5320		tmpdiv = last_group;
5321		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5322		last_group = tmpdiv;
5323#else
5324		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5325		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5326#endif
5327		if (first_group != last_group)
5328			return IO_ACCEL_INELIGIBLE;
5329
5330		/* Verify request is in a single row of RAID 5/6 */
5331#if BITS_PER_LONG == 32
5332		tmpdiv = first_block;
5333		(void) do_div(tmpdiv, stripesize);
5334		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5335		tmpdiv = last_block;
5336		(void) do_div(tmpdiv, stripesize);
5337		r5or6_last_row = r0_last_row = tmpdiv;
5338#else
5339		first_row = r5or6_first_row = r0_first_row =
5340						first_block / stripesize;
5341		r5or6_last_row = r0_last_row = last_block / stripesize;
5342#endif
5343		if (r5or6_first_row != r5or6_last_row)
5344			return IO_ACCEL_INELIGIBLE;
5345
5346
5347		/* Verify request is in a single column */
5348#if BITS_PER_LONG == 32
5349		tmpdiv = first_block;
5350		first_row_offset = do_div(tmpdiv, stripesize);
5351		tmpdiv = first_row_offset;
5352		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5353		r5or6_first_row_offset = first_row_offset;
5354		tmpdiv = last_block;
5355		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5356		tmpdiv = r5or6_last_row_offset;
5357		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5358		tmpdiv = r5or6_first_row_offset;
5359		(void) do_div(tmpdiv, map->strip_size);
5360		first_column = r5or6_first_column = tmpdiv;
5361		tmpdiv = r5or6_last_row_offset;
5362		(void) do_div(tmpdiv, map->strip_size);
5363		r5or6_last_column = tmpdiv;
5364#else
5365		first_row_offset = r5or6_first_row_offset =
5366			(u32)((first_block % stripesize) %
5367						r5or6_blocks_per_row);
5368
5369		r5or6_last_row_offset =
5370			(u32)((last_block % stripesize) %
5371						r5or6_blocks_per_row);
5372
5373		first_column = r5or6_first_column =
5374			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5375		r5or6_last_column =
5376			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5377#endif
5378		if (r5or6_first_column != r5or6_last_column)
5379			return IO_ACCEL_INELIGIBLE;
5380
5381		/* Request is eligible */
5382		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5383			le16_to_cpu(map->row_cnt);
5384
5385		map_index = (first_group *
5386			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5387			(map_row * total_disks_per_row) + first_column;
5388		break;
5389	default:
5390		return IO_ACCEL_INELIGIBLE;
5391	}
5392
5393	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5394		return IO_ACCEL_INELIGIBLE;
5395
5396	c->phys_disk = dev->phys_disk[map_index];
5397	if (!c->phys_disk)
5398		return IO_ACCEL_INELIGIBLE;
5399
5400	disk_handle = dd[map_index].ioaccel_handle;
5401	disk_block = le64_to_cpu(map->disk_starting_blk) +
5402			first_row * le16_to_cpu(map->strip_size) +
5403			(first_row_offset - first_column *
5404			le16_to_cpu(map->strip_size));
5405	disk_block_cnt = block_cnt;
5406
5407	/* handle differing logical/physical block sizes */
5408	if (map->phys_blk_shift) {
5409		disk_block <<= map->phys_blk_shift;
5410		disk_block_cnt <<= map->phys_blk_shift;
5411	}
5412	BUG_ON(disk_block_cnt > 0xffff);
5413
5414	/* build the new CDB for the physical disk I/O */
5415	if (disk_block > 0xffffffff) {
5416		cdb[0] = is_write ? WRITE_16 : READ_16;
5417		cdb[1] = 0;
5418		cdb[2] = (u8) (disk_block >> 56);
5419		cdb[3] = (u8) (disk_block >> 48);
5420		cdb[4] = (u8) (disk_block >> 40);
5421		cdb[5] = (u8) (disk_block >> 32);
5422		cdb[6] = (u8) (disk_block >> 24);
5423		cdb[7] = (u8) (disk_block >> 16);
5424		cdb[8] = (u8) (disk_block >> 8);
5425		cdb[9] = (u8) (disk_block);
5426		cdb[10] = (u8) (disk_block_cnt >> 24);
5427		cdb[11] = (u8) (disk_block_cnt >> 16);
5428		cdb[12] = (u8) (disk_block_cnt >> 8);
5429		cdb[13] = (u8) (disk_block_cnt);
5430		cdb[14] = 0;
5431		cdb[15] = 0;
5432		cdb_len = 16;
5433	} else {
5434		cdb[0] = is_write ? WRITE_10 : READ_10;
5435		cdb[1] = 0;
5436		cdb[2] = (u8) (disk_block >> 24);
5437		cdb[3] = (u8) (disk_block >> 16);
5438		cdb[4] = (u8) (disk_block >> 8);
5439		cdb[5] = (u8) (disk_block);
5440		cdb[6] = 0;
5441		cdb[7] = (u8) (disk_block_cnt >> 8);
5442		cdb[8] = (u8) (disk_block_cnt);
5443		cdb[9] = 0;
5444		cdb_len = 10;
5445	}
5446	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5447						dev->scsi3addr,
5448						dev->phys_disk[map_index]);
5449}
5450
5451/*
5452 * Submit commands down the "normal" RAID stack path
5453 * All callers to hpsa_ciss_submit must check lockup_detected
5454 * beforehand, before (opt.) and after calling cmd_alloc
5455 */
5456static int hpsa_ciss_submit(struct ctlr_info *h,
5457	struct CommandList *c, struct scsi_cmnd *cmd,
5458	struct hpsa_scsi_dev_t *dev)
5459{
5460	cmd->host_scribble = (unsigned char *) c;
5461	c->cmd_type = CMD_SCSI;
5462	c->scsi_cmd = cmd;
5463	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5464	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5465	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5466
5467	/* Fill in the request block... */
5468
5469	c->Request.Timeout = 0;
5470	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5471	c->Request.CDBLen = cmd->cmd_len;
5472	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5473	switch (cmd->sc_data_direction) {
5474	case DMA_TO_DEVICE:
5475		c->Request.type_attr_dir =
5476			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5477		break;
5478	case DMA_FROM_DEVICE:
5479		c->Request.type_attr_dir =
5480			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5481		break;
5482	case DMA_NONE:
5483		c->Request.type_attr_dir =
5484			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5485		break;
5486	case DMA_BIDIRECTIONAL:
5487		/* This can happen if a buggy application does a scsi passthru
5488		 * and sets both inlen and outlen to non-zero. ( see
5489		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5490		 */
5491
5492		c->Request.type_attr_dir =
5493			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5494		/* This is technically wrong, and hpsa controllers should
5495		 * reject it with CMD_INVALID, which is the most correct
5496		 * response, but non-fibre backends appear to let it
5497		 * slide by, and give the same results as if this field
5498		 * were set correctly.  Either way is acceptable for
5499		 * our purposes here.
5500		 */
5501
5502		break;
5503
5504	default:
5505		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5506			cmd->sc_data_direction);
5507		BUG();
5508		break;
5509	}
5510
5511	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5512		hpsa_cmd_resolve_and_free(h, c);
5513		return SCSI_MLQUEUE_HOST_BUSY;
5514	}
5515
5516	if (dev->in_reset) {
5517		hpsa_cmd_resolve_and_free(h, c);
5518		return SCSI_MLQUEUE_HOST_BUSY;
5519	}
5520
5521	c->device = dev;
5522
5523	enqueue_cmd_and_start_io(h, c);
5524	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5525	return 0;
5526}
5527
5528static void hpsa_cmd_init(struct ctlr_info *h, int index,
5529				struct CommandList *c)
5530{
5531	dma_addr_t cmd_dma_handle, err_dma_handle;
5532
5533	/* Zero out all of commandlist except the last field, refcount */
5534	memset(c, 0, offsetof(struct CommandList, refcount));
5535	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5536	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5537	c->err_info = h->errinfo_pool + index;
5538	memset(c->err_info, 0, sizeof(*c->err_info));
5539	err_dma_handle = h->errinfo_pool_dhandle
5540	    + index * sizeof(*c->err_info);
5541	c->cmdindex = index;
5542	c->busaddr = (u32) cmd_dma_handle;
5543	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5544	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5545	c->h = h;
5546	c->scsi_cmd = SCSI_CMD_IDLE;
5547}
5548
5549static void hpsa_preinitialize_commands(struct ctlr_info *h)
5550{
5551	int i;
5552
5553	for (i = 0; i < h->nr_cmds; i++) {
5554		struct CommandList *c = h->cmd_pool + i;
5555
5556		hpsa_cmd_init(h, i, c);
5557		atomic_set(&c->refcount, 0);
5558	}
5559}
5560
5561static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5562				struct CommandList *c)
5563{
5564	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5565
5566	BUG_ON(c->cmdindex != index);
5567
5568	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5569	memset(c->err_info, 0, sizeof(*c->err_info));
5570	c->busaddr = (u32) cmd_dma_handle;
5571}
5572
5573static int hpsa_ioaccel_submit(struct ctlr_info *h,
5574		struct CommandList *c, struct scsi_cmnd *cmd,
5575		bool retry)
5576{
5577	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5578	int rc = IO_ACCEL_INELIGIBLE;
5579
5580	if (!dev)
5581		return SCSI_MLQUEUE_HOST_BUSY;
5582
5583	if (dev->in_reset)
5584		return SCSI_MLQUEUE_HOST_BUSY;
5585
5586	if (hpsa_simple_mode)
5587		return IO_ACCEL_INELIGIBLE;
5588
5589	cmd->host_scribble = (unsigned char *) c;
5590
5591	if (dev->offload_enabled) {
5592		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5593		c->cmd_type = CMD_SCSI;
5594		c->scsi_cmd = cmd;
5595		c->device = dev;
5596		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5597			c->retry_pending = true;
5598		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5599		if (rc < 0)     /* scsi_dma_map failed. */
5600			rc = SCSI_MLQUEUE_HOST_BUSY;
5601	} else if (dev->hba_ioaccel_enabled) {
5602		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5603		c->cmd_type = CMD_SCSI;
5604		c->scsi_cmd = cmd;
5605		c->device = dev;
5606		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5607			c->retry_pending = true;
5608		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5609		if (rc < 0)     /* scsi_dma_map failed. */
5610			rc = SCSI_MLQUEUE_HOST_BUSY;
5611	}
5612	return rc;
5613}
5614
5615static void hpsa_command_resubmit_worker(struct work_struct *work)
5616{
5617	struct scsi_cmnd *cmd;
5618	struct hpsa_scsi_dev_t *dev;
5619	struct CommandList *c = container_of(work, struct CommandList, work);
5620
5621	cmd = c->scsi_cmd;
5622	dev = cmd->device->hostdata;
5623	if (!dev) {
5624		cmd->result = DID_NO_CONNECT << 16;
5625		return hpsa_cmd_free_and_done(c->h, c, cmd);
5626	}
5627
5628	if (dev->in_reset) {
5629		cmd->result = DID_RESET << 16;
5630		return hpsa_cmd_free_and_done(c->h, c, cmd);
5631	}
5632
5633	if (c->cmd_type == CMD_IOACCEL2) {
5634		struct ctlr_info *h = c->h;
5635		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5636		int rc;
5637
5638		if (c2->error_data.serv_response ==
5639				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5640			/* Resubmit with the retry_pending flag set. */
5641			rc = hpsa_ioaccel_submit(h, c, cmd, true);
5642			if (rc == 0)
5643				return;
5644			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5645				/*
5646				 * If we get here, it means dma mapping failed.
5647				 * Try again via scsi mid layer, which will
5648				 * then get SCSI_MLQUEUE_HOST_BUSY.
5649				 */
5650				cmd->result = DID_IMM_RETRY << 16;
5651				return hpsa_cmd_free_and_done(h, c, cmd);
5652			}
5653			/* else, fall thru and resubmit down CISS path */
5654		}
5655	}
5656	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5657	/*
5658	 * Here we have not come in though queue_command, so we
5659	 * can set the retry_pending flag to true for a driver initiated
5660	 * retry attempt (I.E. not a SML retry).
5661	 * I.E. We are submitting a driver initiated retry.
5662	 * Note: hpsa_ciss_submit does not zero out the command fields like
5663	 *       ioaccel submit does.
5664	 */
5665	c->retry_pending = true;
5666	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5667		/*
5668		 * If we get here, it means dma mapping failed. Try
5669		 * again via scsi mid layer, which will then get
5670		 * SCSI_MLQUEUE_HOST_BUSY.
5671		 *
5672		 * hpsa_ciss_submit will have already freed c
5673		 * if it encountered a dma mapping failure.
5674		 */
5675		cmd->result = DID_IMM_RETRY << 16;
5676		scsi_done(cmd);
5677	}
5678}
5679
5680/* Running in struct Scsi_Host->host_lock less mode */
5681static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5682{
5683	struct ctlr_info *h;
5684	struct hpsa_scsi_dev_t *dev;
5685	struct CommandList *c;
5686	int rc = 0;
5687
5688	/* Get the ptr to our adapter structure out of cmd->host. */
5689	h = sdev_to_hba(cmd->device);
5690
5691	BUG_ON(scsi_cmd_to_rq(cmd)->tag < 0);
5692
5693	dev = cmd->device->hostdata;
5694	if (!dev) {
5695		cmd->result = DID_NO_CONNECT << 16;
5696		scsi_done(cmd);
5697		return 0;
5698	}
5699
5700	if (dev->removed) {
5701		cmd->result = DID_NO_CONNECT << 16;
5702		scsi_done(cmd);
5703		return 0;
5704	}
5705
5706	if (unlikely(lockup_detected(h))) {
5707		cmd->result = DID_NO_CONNECT << 16;
5708		scsi_done(cmd);
5709		return 0;
5710	}
5711
5712	if (dev->in_reset)
5713		return SCSI_MLQUEUE_DEVICE_BUSY;
5714
5715	c = cmd_tagged_alloc(h, cmd);
5716	if (c == NULL)
5717		return SCSI_MLQUEUE_DEVICE_BUSY;
5718
5719	/*
5720	 * This is necessary because the SML doesn't zero out this field during
5721	 * error recovery.
5722	 */
5723	cmd->result = 0;
5724
5725	/*
5726	 * Call alternate submit routine for I/O accelerated commands.
5727	 * Retries always go down the normal I/O path.
5728	 * Note: If cmd->retries is non-zero, then this is a SML
5729	 *       initiated retry and not a driver initiated retry.
5730	 *       This command has been obtained from cmd_tagged_alloc
5731	 *       and is therefore a brand-new command.
5732	 */
5733	if (likely(cmd->retries == 0 &&
5734			!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)) &&
5735			h->acciopath_status)) {
5736		/* Submit with the retry_pending flag unset. */
5737		rc = hpsa_ioaccel_submit(h, c, cmd, false);
5738		if (rc == 0)
5739			return 0;
5740		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5741			hpsa_cmd_resolve_and_free(h, c);
5742			return SCSI_MLQUEUE_HOST_BUSY;
5743		}
5744	}
5745	return hpsa_ciss_submit(h, c, cmd, dev);
5746}
5747
5748static void hpsa_scan_complete(struct ctlr_info *h)
5749{
5750	unsigned long flags;
5751
5752	spin_lock_irqsave(&h->scan_lock, flags);
5753	h->scan_finished = 1;
5754	wake_up(&h->scan_wait_queue);
5755	spin_unlock_irqrestore(&h->scan_lock, flags);
5756}
5757
5758static void hpsa_scan_start(struct Scsi_Host *sh)
5759{
5760	struct ctlr_info *h = shost_to_hba(sh);
5761	unsigned long flags;
5762
5763	/*
5764	 * Don't let rescans be initiated on a controller known to be locked
5765	 * up.  If the controller locks up *during* a rescan, that thread is
5766	 * probably hosed, but at least we can prevent new rescan threads from
5767	 * piling up on a locked up controller.
5768	 */
5769	if (unlikely(lockup_detected(h)))
5770		return hpsa_scan_complete(h);
5771
5772	/*
5773	 * If a scan is already waiting to run, no need to add another
5774	 */
5775	spin_lock_irqsave(&h->scan_lock, flags);
5776	if (h->scan_waiting) {
5777		spin_unlock_irqrestore(&h->scan_lock, flags);
5778		return;
5779	}
5780
5781	spin_unlock_irqrestore(&h->scan_lock, flags);
5782
5783	/* wait until any scan already in progress is finished. */
5784	while (1) {
5785		spin_lock_irqsave(&h->scan_lock, flags);
5786		if (h->scan_finished)
5787			break;
5788		h->scan_waiting = 1;
5789		spin_unlock_irqrestore(&h->scan_lock, flags);
5790		wait_event(h->scan_wait_queue, h->scan_finished);
5791		/* Note: We don't need to worry about a race between this
5792		 * thread and driver unload because the midlayer will
5793		 * have incremented the reference count, so unload won't
5794		 * happen if we're in here.
5795		 */
5796	}
5797	h->scan_finished = 0; /* mark scan as in progress */
5798	h->scan_waiting = 0;
5799	spin_unlock_irqrestore(&h->scan_lock, flags);
5800
5801	if (unlikely(lockup_detected(h)))
5802		return hpsa_scan_complete(h);
5803
5804	/*
5805	 * Do the scan after a reset completion
5806	 */
5807	spin_lock_irqsave(&h->reset_lock, flags);
5808	if (h->reset_in_progress) {
5809		h->drv_req_rescan = 1;
5810		spin_unlock_irqrestore(&h->reset_lock, flags);
5811		hpsa_scan_complete(h);
5812		return;
5813	}
5814	spin_unlock_irqrestore(&h->reset_lock, flags);
5815
5816	hpsa_update_scsi_devices(h);
5817
5818	hpsa_scan_complete(h);
5819}
5820
5821static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5822{
5823	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5824
5825	if (!logical_drive)
5826		return -ENODEV;
5827
5828	if (qdepth < 1)
5829		qdepth = 1;
5830	else if (qdepth > logical_drive->queue_depth)
5831		qdepth = logical_drive->queue_depth;
5832
5833	return scsi_change_queue_depth(sdev, qdepth);
5834}
5835
5836static int hpsa_scan_finished(struct Scsi_Host *sh,
5837	unsigned long elapsed_time)
5838{
5839	struct ctlr_info *h = shost_to_hba(sh);
5840	unsigned long flags;
5841	int finished;
5842
5843	spin_lock_irqsave(&h->scan_lock, flags);
5844	finished = h->scan_finished;
5845	spin_unlock_irqrestore(&h->scan_lock, flags);
5846	return finished;
5847}
5848
5849static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5850{
5851	struct Scsi_Host *sh;
5852
5853	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(struct ctlr_info));
5854	if (sh == NULL) {
5855		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5856		return -ENOMEM;
5857	}
5858
5859	sh->io_port = 0;
5860	sh->n_io_port = 0;
5861	sh->this_id = -1;
5862	sh->max_channel = 3;
5863	sh->max_cmd_len = MAX_COMMAND_SIZE;
5864	sh->max_lun = HPSA_MAX_LUN;
5865	sh->max_id = HPSA_MAX_LUN;
5866	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5867	sh->cmd_per_lun = sh->can_queue;
5868	sh->sg_tablesize = h->maxsgentries;
5869	sh->transportt = hpsa_sas_transport_template;
5870	sh->hostdata[0] = (unsigned long) h;
5871	sh->irq = pci_irq_vector(h->pdev, 0);
5872	sh->unique_id = sh->irq;
5873
5874	h->scsi_host = sh;
5875	return 0;
5876}
5877
5878static int hpsa_scsi_add_host(struct ctlr_info *h)
5879{
5880	int rv;
5881
5882	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5883	if (rv) {
5884		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5885		return rv;
5886	}
5887	scsi_scan_host(h->scsi_host);
5888	return 0;
5889}
5890
5891/*
5892 * The block layer has already gone to the trouble of picking out a unique,
5893 * small-integer tag for this request.  We use an offset from that value as
5894 * an index to select our command block.  (The offset allows us to reserve the
5895 * low-numbered entries for our own uses.)
5896 */
5897static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5898{
5899	int idx = scsi_cmd_to_rq(scmd)->tag;
5900
5901	if (idx < 0)
5902		return idx;
5903
5904	/* Offset to leave space for internal cmds. */
5905	return idx += HPSA_NRESERVED_CMDS;
5906}
5907
5908/*
5909 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5910 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5911 */
5912static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5913				struct CommandList *c, unsigned char lunaddr[],
5914				int reply_queue)
5915{
5916	int rc;
5917
5918	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5919	(void) fill_cmd(c, TEST_UNIT_READY, h,
5920			NULL, 0, 0, lunaddr, TYPE_CMD);
5921	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5922	if (rc)
5923		return rc;
5924	/* no unmap needed here because no data xfer. */
5925
5926	/* Check if the unit is already ready. */
5927	if (c->err_info->CommandStatus == CMD_SUCCESS)
5928		return 0;
5929
5930	/*
5931	 * The first command sent after reset will receive "unit attention" to
5932	 * indicate that the LUN has been reset...this is actually what we're
5933	 * looking for (but, success is good too).
5934	 */
5935	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5936		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5937			(c->err_info->SenseInfo[2] == NO_SENSE ||
5938			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5939		return 0;
5940
5941	return 1;
5942}
5943
5944/*
5945 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5946 * returns zero when the unit is ready, and non-zero when giving up.
5947 */
5948static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5949				struct CommandList *c,
5950				unsigned char lunaddr[], int reply_queue)
5951{
5952	int rc;
5953	int count = 0;
5954	int waittime = 1; /* seconds */
5955
5956	/* Send test unit ready until device ready, or give up. */
5957	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5958
5959		/*
5960		 * Wait for a bit.  do this first, because if we send
5961		 * the TUR right away, the reset will just abort it.
5962		 */
5963		msleep(1000 * waittime);
5964
5965		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5966		if (!rc)
5967			break;
5968
5969		/* Increase wait time with each try, up to a point. */
5970		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5971			waittime *= 2;
5972
5973		dev_warn(&h->pdev->dev,
5974			 "waiting %d secs for device to become ready.\n",
5975			 waittime);
5976	}
5977
5978	return rc;
5979}
5980
5981static int wait_for_device_to_become_ready(struct ctlr_info *h,
5982					   unsigned char lunaddr[],
5983					   int reply_queue)
5984{
5985	int first_queue;
5986	int last_queue;
5987	int rq;
5988	int rc = 0;
5989	struct CommandList *c;
5990
5991	c = cmd_alloc(h);
5992
5993	/*
5994	 * If no specific reply queue was requested, then send the TUR
5995	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5996	 * the loop exactly once using only the specified queue.
5997	 */
5998	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5999		first_queue = 0;
6000		last_queue = h->nreply_queues - 1;
6001	} else {
6002		first_queue = reply_queue;
6003		last_queue = reply_queue;
6004	}
6005
6006	for (rq = first_queue; rq <= last_queue; rq++) {
6007		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
6008		if (rc)
6009			break;
6010	}
6011
6012	if (rc)
6013		dev_warn(&h->pdev->dev, "giving up on device.\n");
6014	else
6015		dev_warn(&h->pdev->dev, "device is ready.\n");
6016
6017	cmd_free(h, c);
6018	return rc;
6019}
6020
6021/* Need at least one of these error handlers to keep ../scsi/hosts.c from
6022 * complaining.  Doing a host- or bus-reset can't do anything good here.
6023 */
6024static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6025{
6026	int rc = SUCCESS;
6027	int i;
6028	struct ctlr_info *h;
6029	struct hpsa_scsi_dev_t *dev = NULL;
6030	u8 reset_type;
6031	char msg[48];
6032	unsigned long flags;
6033
6034	/* find the controller to which the command to be aborted was sent */
6035	h = sdev_to_hba(scsicmd->device);
6036	if (h == NULL) /* paranoia */
6037		return FAILED;
6038
6039	spin_lock_irqsave(&h->reset_lock, flags);
6040	h->reset_in_progress = 1;
6041	spin_unlock_irqrestore(&h->reset_lock, flags);
6042
6043	if (lockup_detected(h)) {
6044		rc = FAILED;
6045		goto return_reset_status;
6046	}
6047
6048	dev = scsicmd->device->hostdata;
6049	if (!dev) {
6050		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6051		rc = FAILED;
6052		goto return_reset_status;
6053	}
6054
6055	if (dev->devtype == TYPE_ENCLOSURE) {
6056		rc = SUCCESS;
6057		goto return_reset_status;
6058	}
6059
6060	/* if controller locked up, we can guarantee command won't complete */
6061	if (lockup_detected(h)) {
6062		snprintf(msg, sizeof(msg),
6063			 "cmd %d RESET FAILED, lockup detected",
6064			 hpsa_get_cmd_index(scsicmd));
6065		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6066		rc = FAILED;
6067		goto return_reset_status;
6068	}
6069
6070	/* this reset request might be the result of a lockup; check */
6071	if (detect_controller_lockup(h)) {
6072		snprintf(msg, sizeof(msg),
6073			 "cmd %d RESET FAILED, new lockup detected",
6074			 hpsa_get_cmd_index(scsicmd));
6075		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6076		rc = FAILED;
6077		goto return_reset_status;
6078	}
6079
6080	/* Do not attempt on controller */
6081	if (is_hba_lunid(dev->scsi3addr)) {
6082		rc = SUCCESS;
6083		goto return_reset_status;
6084	}
6085
6086	if (is_logical_dev_addr_mode(dev->scsi3addr))
6087		reset_type = HPSA_DEVICE_RESET_MSG;
6088	else
6089		reset_type = HPSA_PHYS_TARGET_RESET;
6090
6091	sprintf(msg, "resetting %s",
6092		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6093	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6094
6095	/*
6096	 * wait to see if any commands will complete before sending reset
6097	 */
6098	dev->in_reset = true; /* block any new cmds from OS for this device */
6099	for (i = 0; i < 10; i++) {
6100		if (atomic_read(&dev->commands_outstanding) > 0)
6101			msleep(1000);
6102		else
6103			break;
6104	}
6105
6106	/* send a reset to the SCSI LUN which the command was sent to */
6107	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6108	if (rc == 0)
6109		rc = SUCCESS;
6110	else
6111		rc = FAILED;
6112
6113	sprintf(msg, "reset %s %s",
6114		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6115		rc == SUCCESS ? "completed successfully" : "failed");
6116	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6117
6118return_reset_status:
6119	spin_lock_irqsave(&h->reset_lock, flags);
6120	h->reset_in_progress = 0;
6121	if (dev)
6122		dev->in_reset = false;
6123	spin_unlock_irqrestore(&h->reset_lock, flags);
6124	return rc;
6125}
6126
6127/*
6128 * For operations with an associated SCSI command, a command block is allocated
6129 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6130 * block request tag as an index into a table of entries.  cmd_tagged_free() is
6131 * the complement, although cmd_free() may be called instead.
6132 * This function is only called for new requests from queue_command.
6133 */
6134static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6135					    struct scsi_cmnd *scmd)
6136{
6137	int idx = hpsa_get_cmd_index(scmd);
6138	struct CommandList *c = h->cmd_pool + idx;
6139
6140	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6141		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6142			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6143		/* The index value comes from the block layer, so if it's out of
6144		 * bounds, it's probably not our bug.
6145		 */
6146		BUG();
6147	}
6148
6149	if (unlikely(!hpsa_is_cmd_idle(c))) {
6150		/*
6151		 * We expect that the SCSI layer will hand us a unique tag
6152		 * value.  Thus, there should never be a collision here between
6153		 * two requests...because if the selected command isn't idle
6154		 * then someone is going to be very disappointed.
6155		 */
6156		if (idx != h->last_collision_tag) { /* Print once per tag */
6157			dev_warn(&h->pdev->dev,
6158				"%s: tag collision (tag=%d)\n", __func__, idx);
6159			if (scmd)
6160				scsi_print_command(scmd);
6161			h->last_collision_tag = idx;
6162		}
6163		return NULL;
6164	}
6165
6166	atomic_inc(&c->refcount);
6167	hpsa_cmd_partial_init(h, idx, c);
6168
6169	/*
6170	 * This is a new command obtained from queue_command so
6171	 * there have not been any driver initiated retry attempts.
6172	 */
6173	c->retry_pending = false;
6174
6175	return c;
6176}
6177
6178static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6179{
6180	/*
6181	 * Release our reference to the block.  We don't need to do anything
6182	 * else to free it, because it is accessed by index.
6183	 */
6184	(void)atomic_dec(&c->refcount);
6185}
6186
6187/*
6188 * For operations that cannot sleep, a command block is allocated at init,
6189 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6190 * which ones are free or in use.  Lock must be held when calling this.
6191 * cmd_free() is the complement.
6192 * This function never gives up and returns NULL.  If it hangs,
6193 * another thread must call cmd_free() to free some tags.
6194 */
6195
6196static struct CommandList *cmd_alloc(struct ctlr_info *h)
6197{
6198	struct CommandList *c;
6199	int refcount, i;
6200	int offset = 0;
6201
6202	/*
6203	 * There is some *extremely* small but non-zero chance that that
6204	 * multiple threads could get in here, and one thread could
6205	 * be scanning through the list of bits looking for a free
6206	 * one, but the free ones are always behind him, and other
6207	 * threads sneak in behind him and eat them before he can
6208	 * get to them, so that while there is always a free one, a
6209	 * very unlucky thread might be starved anyway, never able to
6210	 * beat the other threads.  In reality, this happens so
6211	 * infrequently as to be indistinguishable from never.
6212	 *
6213	 * Note that we start allocating commands before the SCSI host structure
6214	 * is initialized.  Since the search starts at bit zero, this
6215	 * all works, since we have at least one command structure available;
6216	 * however, it means that the structures with the low indexes have to be
6217	 * reserved for driver-initiated requests, while requests from the block
6218	 * layer will use the higher indexes.
6219	 */
6220
6221	for (;;) {
6222		i = find_next_zero_bit(h->cmd_pool_bits,
6223					HPSA_NRESERVED_CMDS,
6224					offset);
6225		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6226			offset = 0;
6227			continue;
6228		}
6229		c = h->cmd_pool + i;
6230		refcount = atomic_inc_return(&c->refcount);
6231		if (unlikely(refcount > 1)) {
6232			cmd_free(h, c); /* already in use */
6233			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6234			continue;
6235		}
6236		set_bit(i, h->cmd_pool_bits);
6237		break; /* it's ours now. */
6238	}
6239	hpsa_cmd_partial_init(h, i, c);
6240	c->device = NULL;
6241
6242	/*
6243	 * cmd_alloc is for "internal" commands and they are never
6244	 * retried.
6245	 */
6246	c->retry_pending = false;
6247
6248	return c;
6249}
6250
6251/*
6252 * This is the complementary operation to cmd_alloc().  Note, however, in some
6253 * corner cases it may also be used to free blocks allocated by
6254 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6255 * the clear-bit is harmless.
6256 */
6257static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6258{
6259	if (atomic_dec_and_test(&c->refcount)) {
6260		int i;
6261
6262		i = c - h->cmd_pool;
6263		clear_bit(i, h->cmd_pool_bits);
6264	}
6265}
6266
6267#ifdef CONFIG_COMPAT
6268
6269static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6270	void __user *arg)
6271{
6272	struct ctlr_info *h = sdev_to_hba(dev);
6273	IOCTL32_Command_struct __user *arg32 = arg;
6274	IOCTL_Command_struct arg64;
6275	int err;
6276	u32 cp;
6277
6278	if (!arg)
6279		return -EINVAL;
6280
6281	memset(&arg64, 0, sizeof(arg64));
6282	if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6283		return -EFAULT;
6284	if (get_user(cp, &arg32->buf))
6285		return -EFAULT;
6286	arg64.buf = compat_ptr(cp);
6287
6288	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6289		return -EAGAIN;
6290	err = hpsa_passthru_ioctl(h, &arg64);
6291	atomic_inc(&h->passthru_cmds_avail);
6292	if (err)
6293		return err;
6294	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6295			 sizeof(arg32->error_info)))
6296		return -EFAULT;
6297	return 0;
6298}
6299
6300static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6301	unsigned int cmd, void __user *arg)
6302{
6303	struct ctlr_info *h = sdev_to_hba(dev);
6304	BIG_IOCTL32_Command_struct __user *arg32 = arg;
6305	BIG_IOCTL_Command_struct arg64;
6306	int err;
6307	u32 cp;
6308
6309	if (!arg)
6310		return -EINVAL;
6311	memset(&arg64, 0, sizeof(arg64));
6312	if (copy_from_user(&arg64, arg32,
6313			   offsetof(BIG_IOCTL32_Command_struct, buf)))
6314		return -EFAULT;
6315	if (get_user(cp, &arg32->buf))
6316		return -EFAULT;
6317	arg64.buf = compat_ptr(cp);
6318
6319	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6320		return -EAGAIN;
6321	err = hpsa_big_passthru_ioctl(h, &arg64);
6322	atomic_inc(&h->passthru_cmds_avail);
6323	if (err)
6324		return err;
6325	if (copy_to_user(&arg32->error_info, &arg64.error_info,
6326			 sizeof(arg32->error_info)))
6327		return -EFAULT;
6328	return 0;
6329}
6330
6331static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6332			     void __user *arg)
6333{
6334	switch (cmd) {
6335	case CCISS_GETPCIINFO:
6336	case CCISS_GETINTINFO:
6337	case CCISS_SETINTINFO:
6338	case CCISS_GETNODENAME:
6339	case CCISS_SETNODENAME:
6340	case CCISS_GETHEARTBEAT:
6341	case CCISS_GETBUSTYPES:
6342	case CCISS_GETFIRMVER:
6343	case CCISS_GETDRIVVER:
6344	case CCISS_REVALIDVOLS:
6345	case CCISS_DEREGDISK:
6346	case CCISS_REGNEWDISK:
6347	case CCISS_REGNEWD:
6348	case CCISS_RESCANDISK:
6349	case CCISS_GETLUNINFO:
6350		return hpsa_ioctl(dev, cmd, arg);
6351
6352	case CCISS_PASSTHRU32:
6353		return hpsa_ioctl32_passthru(dev, cmd, arg);
6354	case CCISS_BIG_PASSTHRU32:
6355		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6356
6357	default:
6358		return -ENOIOCTLCMD;
6359	}
6360}
6361#endif
6362
6363static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6364{
6365	struct hpsa_pci_info pciinfo;
6366
6367	if (!argp)
6368		return -EINVAL;
6369	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6370	pciinfo.bus = h->pdev->bus->number;
6371	pciinfo.dev_fn = h->pdev->devfn;
6372	pciinfo.board_id = h->board_id;
6373	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6374		return -EFAULT;
6375	return 0;
6376}
6377
6378static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6379{
6380	DriverVer_type DriverVer;
6381	unsigned char vmaj, vmin, vsubmin;
6382	int rc;
6383
6384	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6385		&vmaj, &vmin, &vsubmin);
6386	if (rc != 3) {
6387		dev_info(&h->pdev->dev, "driver version string '%s' "
6388			"unrecognized.", HPSA_DRIVER_VERSION);
6389		vmaj = 0;
6390		vmin = 0;
6391		vsubmin = 0;
6392	}
6393	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6394	if (!argp)
6395		return -EINVAL;
6396	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6397		return -EFAULT;
6398	return 0;
6399}
6400
6401static int hpsa_passthru_ioctl(struct ctlr_info *h,
6402			       IOCTL_Command_struct *iocommand)
6403{
6404	struct CommandList *c;
6405	char *buff = NULL;
6406	u64 temp64;
6407	int rc = 0;
6408
6409	if (!capable(CAP_SYS_RAWIO))
6410		return -EPERM;
6411	if ((iocommand->buf_size < 1) &&
6412	    (iocommand->Request.Type.Direction != XFER_NONE)) {
6413		return -EINVAL;
6414	}
6415	if (iocommand->buf_size > 0) {
6416		buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6417		if (buff == NULL)
6418			return -ENOMEM;
6419		if (iocommand->Request.Type.Direction & XFER_WRITE) {
6420			/* Copy the data into the buffer we created */
6421			if (copy_from_user(buff, iocommand->buf,
6422				iocommand->buf_size)) {
6423				rc = -EFAULT;
6424				goto out_kfree;
6425			}
6426		} else {
6427			memset(buff, 0, iocommand->buf_size);
6428		}
6429	}
6430	c = cmd_alloc(h);
6431
6432	/* Fill in the command type */
6433	c->cmd_type = CMD_IOCTL_PEND;
6434	c->scsi_cmd = SCSI_CMD_BUSY;
6435	/* Fill in Command Header */
6436	c->Header.ReplyQueue = 0; /* unused in simple mode */
6437	if (iocommand->buf_size > 0) {	/* buffer to fill */
6438		c->Header.SGList = 1;
6439		c->Header.SGTotal = cpu_to_le16(1);
6440	} else	{ /* no buffers to fill */
6441		c->Header.SGList = 0;
6442		c->Header.SGTotal = cpu_to_le16(0);
6443	}
6444	memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6445
6446	/* Fill in Request block */
6447	memcpy(&c->Request, &iocommand->Request,
6448		sizeof(c->Request));
6449
6450	/* Fill in the scatter gather information */
6451	if (iocommand->buf_size > 0) {
6452		temp64 = dma_map_single(&h->pdev->dev, buff,
6453			iocommand->buf_size, DMA_BIDIRECTIONAL);
6454		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6455			c->SG[0].Addr = cpu_to_le64(0);
6456			c->SG[0].Len = cpu_to_le32(0);
6457			rc = -ENOMEM;
6458			goto out;
6459		}
6460		c->SG[0].Addr = cpu_to_le64(temp64);
6461		c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6462		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6463	}
6464	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6465					NO_TIMEOUT);
6466	if (iocommand->buf_size > 0)
6467		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6468	check_ioctl_unit_attention(h, c);
6469	if (rc) {
6470		rc = -EIO;
6471		goto out;
6472	}
6473
6474	/* Copy the error information out */
6475	memcpy(&iocommand->error_info, c->err_info,
6476		sizeof(iocommand->error_info));
6477	if ((iocommand->Request.Type.Direction & XFER_READ) &&
6478		iocommand->buf_size > 0) {
6479		/* Copy the data out of the buffer we created */
6480		if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6481			rc = -EFAULT;
6482			goto out;
6483		}
6484	}
6485out:
6486	cmd_free(h, c);
6487out_kfree:
6488	kfree(buff);
6489	return rc;
6490}
6491
6492static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6493				   BIG_IOCTL_Command_struct *ioc)
6494{
6495	struct CommandList *c;
6496	unsigned char **buff = NULL;
6497	int *buff_size = NULL;
6498	u64 temp64;
6499	BYTE sg_used = 0;
6500	int status = 0;
6501	u32 left;
6502	u32 sz;
6503	BYTE __user *data_ptr;
6504
6505	if (!capable(CAP_SYS_RAWIO))
6506		return -EPERM;
6507
6508	if ((ioc->buf_size < 1) &&
6509	    (ioc->Request.Type.Direction != XFER_NONE))
6510		return -EINVAL;
6511	/* Check kmalloc limits  using all SGs */
6512	if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6513		return -EINVAL;
6514	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6515		return -EINVAL;
6516	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6517	if (!buff) {
6518		status = -ENOMEM;
6519		goto cleanup1;
6520	}
6521	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6522	if (!buff_size) {
6523		status = -ENOMEM;
6524		goto cleanup1;
6525	}
6526	left = ioc->buf_size;
6527	data_ptr = ioc->buf;
6528	while (left) {
6529		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6530		buff_size[sg_used] = sz;
6531		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6532		if (buff[sg_used] == NULL) {
6533			status = -ENOMEM;
6534			goto cleanup1;
6535		}
6536		if (ioc->Request.Type.Direction & XFER_WRITE) {
6537			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6538				status = -EFAULT;
6539				goto cleanup1;
6540			}
6541		} else
6542			memset(buff[sg_used], 0, sz);
6543		left -= sz;
6544		data_ptr += sz;
6545		sg_used++;
6546	}
6547	c = cmd_alloc(h);
6548
6549	c->cmd_type = CMD_IOCTL_PEND;
6550	c->scsi_cmd = SCSI_CMD_BUSY;
6551	c->Header.ReplyQueue = 0;
6552	c->Header.SGList = (u8) sg_used;
6553	c->Header.SGTotal = cpu_to_le16(sg_used);
6554	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6555	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6556	if (ioc->buf_size > 0) {
6557		int i;
6558		for (i = 0; i < sg_used; i++) {
6559			temp64 = dma_map_single(&h->pdev->dev, buff[i],
6560				    buff_size[i], DMA_BIDIRECTIONAL);
6561			if (dma_mapping_error(&h->pdev->dev,
6562							(dma_addr_t) temp64)) {
6563				c->SG[i].Addr = cpu_to_le64(0);
6564				c->SG[i].Len = cpu_to_le32(0);
6565				hpsa_pci_unmap(h->pdev, c, i,
6566					DMA_BIDIRECTIONAL);
6567				status = -ENOMEM;
6568				goto cleanup0;
6569			}
6570			c->SG[i].Addr = cpu_to_le64(temp64);
6571			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6572			c->SG[i].Ext = cpu_to_le32(0);
6573		}
6574		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6575	}
6576	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6577						NO_TIMEOUT);
6578	if (sg_used)
6579		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6580	check_ioctl_unit_attention(h, c);
6581	if (status) {
6582		status = -EIO;
6583		goto cleanup0;
6584	}
6585
6586	/* Copy the error information out */
6587	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6588	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6589		int i;
6590
6591		/* Copy the data out of the buffer we created */
6592		BYTE __user *ptr = ioc->buf;
6593		for (i = 0; i < sg_used; i++) {
6594			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6595				status = -EFAULT;
6596				goto cleanup0;
6597			}
6598			ptr += buff_size[i];
6599		}
6600	}
6601	status = 0;
6602cleanup0:
6603	cmd_free(h, c);
6604cleanup1:
6605	if (buff) {
6606		int i;
6607
6608		for (i = 0; i < sg_used; i++)
6609			kfree(buff[i]);
6610		kfree(buff);
6611	}
6612	kfree(buff_size);
6613	return status;
6614}
6615
6616static void check_ioctl_unit_attention(struct ctlr_info *h,
6617	struct CommandList *c)
6618{
6619	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6620			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6621		(void) check_for_unit_attention(h, c);
6622}
6623
6624/*
6625 * ioctl
6626 */
6627static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6628		      void __user *argp)
6629{
6630	struct ctlr_info *h = sdev_to_hba(dev);
6631	int rc;
6632
6633	switch (cmd) {
6634	case CCISS_DEREGDISK:
6635	case CCISS_REGNEWDISK:
6636	case CCISS_REGNEWD:
6637		hpsa_scan_start(h->scsi_host);
6638		return 0;
6639	case CCISS_GETPCIINFO:
6640		return hpsa_getpciinfo_ioctl(h, argp);
6641	case CCISS_GETDRIVVER:
6642		return hpsa_getdrivver_ioctl(h, argp);
6643	case CCISS_PASSTHRU: {
6644		IOCTL_Command_struct iocommand;
6645
6646		if (!argp)
6647			return -EINVAL;
6648		if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6649			return -EFAULT;
6650		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6651			return -EAGAIN;
6652		rc = hpsa_passthru_ioctl(h, &iocommand);
6653		atomic_inc(&h->passthru_cmds_avail);
6654		if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6655			rc = -EFAULT;
6656		return rc;
6657	}
6658	case CCISS_BIG_PASSTHRU: {
6659		BIG_IOCTL_Command_struct ioc;
6660		if (!argp)
6661			return -EINVAL;
6662		if (copy_from_user(&ioc, argp, sizeof(ioc)))
6663			return -EFAULT;
6664		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6665			return -EAGAIN;
6666		rc = hpsa_big_passthru_ioctl(h, &ioc);
6667		atomic_inc(&h->passthru_cmds_avail);
6668		if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6669			rc = -EFAULT;
6670		return rc;
6671	}
6672	default:
6673		return -ENOTTY;
6674	}
6675}
6676
6677static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6678{
6679	struct CommandList *c;
6680
6681	c = cmd_alloc(h);
6682
6683	/* fill_cmd can't fail here, no data buffer to map */
6684	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6685		RAID_CTLR_LUNID, TYPE_MSG);
6686	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6687	c->waiting = NULL;
6688	enqueue_cmd_and_start_io(h, c);
6689	/* Don't wait for completion, the reset won't complete.  Don't free
6690	 * the command either.  This is the last command we will send before
6691	 * re-initializing everything, so it doesn't matter and won't leak.
6692	 */
6693	return;
6694}
6695
6696static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6697	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6698	int cmd_type)
6699{
6700	enum dma_data_direction dir = DMA_NONE;
6701
6702	c->cmd_type = CMD_IOCTL_PEND;
6703	c->scsi_cmd = SCSI_CMD_BUSY;
6704	c->Header.ReplyQueue = 0;
6705	if (buff != NULL && size > 0) {
6706		c->Header.SGList = 1;
6707		c->Header.SGTotal = cpu_to_le16(1);
6708	} else {
6709		c->Header.SGList = 0;
6710		c->Header.SGTotal = cpu_to_le16(0);
6711	}
6712	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6713
6714	if (cmd_type == TYPE_CMD) {
6715		switch (cmd) {
6716		case HPSA_INQUIRY:
6717			/* are we trying to read a vital product page */
6718			if (page_code & VPD_PAGE) {
6719				c->Request.CDB[1] = 0x01;
6720				c->Request.CDB[2] = (page_code & 0xff);
6721			}
6722			c->Request.CDBLen = 6;
6723			c->Request.type_attr_dir =
6724				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6725			c->Request.Timeout = 0;
6726			c->Request.CDB[0] = HPSA_INQUIRY;
6727			c->Request.CDB[4] = size & 0xFF;
6728			break;
6729		case RECEIVE_DIAGNOSTIC:
6730			c->Request.CDBLen = 6;
6731			c->Request.type_attr_dir =
6732				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6733			c->Request.Timeout = 0;
6734			c->Request.CDB[0] = cmd;
6735			c->Request.CDB[1] = 1;
6736			c->Request.CDB[2] = 1;
6737			c->Request.CDB[3] = (size >> 8) & 0xFF;
6738			c->Request.CDB[4] = size & 0xFF;
6739			break;
6740		case HPSA_REPORT_LOG:
6741		case HPSA_REPORT_PHYS:
6742			/* Talking to controller so It's a physical command
6743			   mode = 00 target = 0.  Nothing to write.
6744			 */
6745			c->Request.CDBLen = 12;
6746			c->Request.type_attr_dir =
6747				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6748			c->Request.Timeout = 0;
6749			c->Request.CDB[0] = cmd;
6750			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6751			c->Request.CDB[7] = (size >> 16) & 0xFF;
6752			c->Request.CDB[8] = (size >> 8) & 0xFF;
6753			c->Request.CDB[9] = size & 0xFF;
6754			break;
6755		case BMIC_SENSE_DIAG_OPTIONS:
6756			c->Request.CDBLen = 16;
6757			c->Request.type_attr_dir =
6758				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6759			c->Request.Timeout = 0;
6760			/* Spec says this should be BMIC_WRITE */
6761			c->Request.CDB[0] = BMIC_READ;
6762			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6763			break;
6764		case BMIC_SET_DIAG_OPTIONS:
6765			c->Request.CDBLen = 16;
6766			c->Request.type_attr_dir =
6767					TYPE_ATTR_DIR(cmd_type,
6768						ATTR_SIMPLE, XFER_WRITE);
6769			c->Request.Timeout = 0;
6770			c->Request.CDB[0] = BMIC_WRITE;
6771			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6772			break;
6773		case HPSA_CACHE_FLUSH:
6774			c->Request.CDBLen = 12;
6775			c->Request.type_attr_dir =
6776					TYPE_ATTR_DIR(cmd_type,
6777						ATTR_SIMPLE, XFER_WRITE);
6778			c->Request.Timeout = 0;
6779			c->Request.CDB[0] = BMIC_WRITE;
6780			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6781			c->Request.CDB[7] = (size >> 8) & 0xFF;
6782			c->Request.CDB[8] = size & 0xFF;
6783			break;
6784		case TEST_UNIT_READY:
6785			c->Request.CDBLen = 6;
6786			c->Request.type_attr_dir =
6787				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6788			c->Request.Timeout = 0;
6789			break;
6790		case HPSA_GET_RAID_MAP:
6791			c->Request.CDBLen = 12;
6792			c->Request.type_attr_dir =
6793				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6794			c->Request.Timeout = 0;
6795			c->Request.CDB[0] = HPSA_CISS_READ;
6796			c->Request.CDB[1] = cmd;
6797			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6798			c->Request.CDB[7] = (size >> 16) & 0xFF;
6799			c->Request.CDB[8] = (size >> 8) & 0xFF;
6800			c->Request.CDB[9] = size & 0xFF;
6801			break;
6802		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6803			c->Request.CDBLen = 10;
6804			c->Request.type_attr_dir =
6805				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6806			c->Request.Timeout = 0;
6807			c->Request.CDB[0] = BMIC_READ;
6808			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6809			c->Request.CDB[7] = (size >> 16) & 0xFF;
6810			c->Request.CDB[8] = (size >> 8) & 0xFF;
6811			break;
6812		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6813			c->Request.CDBLen = 10;
6814			c->Request.type_attr_dir =
6815				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6816			c->Request.Timeout = 0;
6817			c->Request.CDB[0] = BMIC_READ;
6818			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6819			c->Request.CDB[7] = (size >> 16) & 0xFF;
6820			c->Request.CDB[8] = (size >> 8) & 0XFF;
6821			break;
6822		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6823			c->Request.CDBLen = 10;
6824			c->Request.type_attr_dir =
6825				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6826			c->Request.Timeout = 0;
6827			c->Request.CDB[0] = BMIC_READ;
6828			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6829			c->Request.CDB[7] = (size >> 16) & 0xFF;
6830			c->Request.CDB[8] = (size >> 8) & 0XFF;
6831			break;
6832		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6833			c->Request.CDBLen = 10;
6834			c->Request.type_attr_dir =
6835				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6836			c->Request.Timeout = 0;
6837			c->Request.CDB[0] = BMIC_READ;
6838			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6839			c->Request.CDB[7] = (size >> 16) & 0xFF;
6840			c->Request.CDB[8] = (size >> 8) & 0XFF;
6841			break;
6842		case BMIC_IDENTIFY_CONTROLLER:
6843			c->Request.CDBLen = 10;
6844			c->Request.type_attr_dir =
6845				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6846			c->Request.Timeout = 0;
6847			c->Request.CDB[0] = BMIC_READ;
6848			c->Request.CDB[1] = 0;
6849			c->Request.CDB[2] = 0;
6850			c->Request.CDB[3] = 0;
6851			c->Request.CDB[4] = 0;
6852			c->Request.CDB[5] = 0;
6853			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6854			c->Request.CDB[7] = (size >> 16) & 0xFF;
6855			c->Request.CDB[8] = (size >> 8) & 0XFF;
6856			c->Request.CDB[9] = 0;
6857			break;
6858		default:
6859			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6860			BUG();
6861		}
6862	} else if (cmd_type == TYPE_MSG) {
6863		switch (cmd) {
6864
6865		case  HPSA_PHYS_TARGET_RESET:
6866			c->Request.CDBLen = 16;
6867			c->Request.type_attr_dir =
6868				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6869			c->Request.Timeout = 0; /* Don't time out */
6870			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6871			c->Request.CDB[0] = HPSA_RESET;
6872			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6873			/* Physical target reset needs no control bytes 4-7*/
6874			c->Request.CDB[4] = 0x00;
6875			c->Request.CDB[5] = 0x00;
6876			c->Request.CDB[6] = 0x00;
6877			c->Request.CDB[7] = 0x00;
6878			break;
6879		case  HPSA_DEVICE_RESET_MSG:
6880			c->Request.CDBLen = 16;
6881			c->Request.type_attr_dir =
6882				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6883			c->Request.Timeout = 0; /* Don't time out */
6884			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6885			c->Request.CDB[0] =  cmd;
6886			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6887			/* If bytes 4-7 are zero, it means reset the */
6888			/* LunID device */
6889			c->Request.CDB[4] = 0x00;
6890			c->Request.CDB[5] = 0x00;
6891			c->Request.CDB[6] = 0x00;
6892			c->Request.CDB[7] = 0x00;
6893			break;
6894		default:
6895			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6896				cmd);
6897			BUG();
6898		}
6899	} else {
6900		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6901		BUG();
6902	}
6903
6904	switch (GET_DIR(c->Request.type_attr_dir)) {
6905	case XFER_READ:
6906		dir = DMA_FROM_DEVICE;
6907		break;
6908	case XFER_WRITE:
6909		dir = DMA_TO_DEVICE;
6910		break;
6911	case XFER_NONE:
6912		dir = DMA_NONE;
6913		break;
6914	default:
6915		dir = DMA_BIDIRECTIONAL;
6916	}
6917	if (hpsa_map_one(h->pdev, c, buff, size, dir))
6918		return -1;
6919	return 0;
6920}
6921
6922/*
6923 * Map (physical) PCI mem into (virtual) kernel space
6924 */
6925static void __iomem *remap_pci_mem(ulong base, ulong size)
6926{
6927	ulong page_base = ((ulong) base) & PAGE_MASK;
6928	ulong page_offs = ((ulong) base) - page_base;
6929	void __iomem *page_remapped = ioremap(page_base,
6930		page_offs + size);
6931
6932	return page_remapped ? (page_remapped + page_offs) : NULL;
6933}
6934
6935static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6936{
6937	return h->access.command_completed(h, q);
6938}
6939
6940static inline bool interrupt_pending(struct ctlr_info *h)
6941{
6942	return h->access.intr_pending(h);
6943}
6944
6945static inline long interrupt_not_for_us(struct ctlr_info *h)
6946{
6947	return (h->access.intr_pending(h) == 0) ||
6948		(h->interrupts_enabled == 0);
6949}
6950
6951static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6952	u32 raw_tag)
6953{
6954	if (unlikely(tag_index >= h->nr_cmds)) {
6955		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6956		return 1;
6957	}
6958	return 0;
6959}
6960
6961static inline void finish_cmd(struct CommandList *c)
6962{
6963	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6964	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6965			|| c->cmd_type == CMD_IOACCEL2))
6966		complete_scsi_command(c);
6967	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6968		complete(c->waiting);
6969}
6970
6971/* process completion of an indexed ("direct lookup") command */
6972static inline void process_indexed_cmd(struct ctlr_info *h,
6973	u32 raw_tag)
6974{
6975	u32 tag_index;
6976	struct CommandList *c;
6977
6978	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6979	if (!bad_tag(h, tag_index, raw_tag)) {
6980		c = h->cmd_pool + tag_index;
6981		finish_cmd(c);
6982	}
6983}
6984
6985/* Some controllers, like p400, will give us one interrupt
6986 * after a soft reset, even if we turned interrupts off.
6987 * Only need to check for this in the hpsa_xxx_discard_completions
6988 * functions.
6989 */
6990static int ignore_bogus_interrupt(struct ctlr_info *h)
6991{
6992	if (likely(!reset_devices))
6993		return 0;
6994
6995	if (likely(h->interrupts_enabled))
6996		return 0;
6997
6998	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6999		"(known firmware bug.)  Ignoring.\n");
7000
7001	return 1;
7002}
7003
7004/*
7005 * Convert &h->q[x] (passed to interrupt handlers) back to h.
7006 * Relies on (h-q[x] == x) being true for x such that
7007 * 0 <= x < MAX_REPLY_QUEUES.
7008 */
7009static struct ctlr_info *queue_to_hba(u8 *queue)
7010{
7011	return container_of((queue - *queue), struct ctlr_info, q[0]);
7012}
7013
7014static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7015{
7016	struct ctlr_info *h = queue_to_hba(queue);
7017	u8 q = *(u8 *) queue;
7018	u32 raw_tag;
7019
7020	if (ignore_bogus_interrupt(h))
7021		return IRQ_NONE;
7022
7023	if (interrupt_not_for_us(h))
7024		return IRQ_NONE;
7025	h->last_intr_timestamp = get_jiffies_64();
7026	while (interrupt_pending(h)) {
7027		raw_tag = get_next_completion(h, q);
7028		while (raw_tag != FIFO_EMPTY)
7029			raw_tag = next_command(h, q);
7030	}
7031	return IRQ_HANDLED;
7032}
7033
7034static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7035{
7036	struct ctlr_info *h = queue_to_hba(queue);
7037	u32 raw_tag;
7038	u8 q = *(u8 *) queue;
7039
7040	if (ignore_bogus_interrupt(h))
7041		return IRQ_NONE;
7042
7043	h->last_intr_timestamp = get_jiffies_64();
7044	raw_tag = get_next_completion(h, q);
7045	while (raw_tag != FIFO_EMPTY)
7046		raw_tag = next_command(h, q);
7047	return IRQ_HANDLED;
7048}
7049
7050static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7051{
7052	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7053	u32 raw_tag;
7054	u8 q = *(u8 *) queue;
7055
7056	if (interrupt_not_for_us(h))
7057		return IRQ_NONE;
7058	h->last_intr_timestamp = get_jiffies_64();
7059	while (interrupt_pending(h)) {
7060		raw_tag = get_next_completion(h, q);
7061		while (raw_tag != FIFO_EMPTY) {
7062			process_indexed_cmd(h, raw_tag);
7063			raw_tag = next_command(h, q);
7064		}
7065	}
7066	return IRQ_HANDLED;
7067}
7068
7069static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7070{
7071	struct ctlr_info *h = queue_to_hba(queue);
7072	u32 raw_tag;
7073	u8 q = *(u8 *) queue;
7074
7075	h->last_intr_timestamp = get_jiffies_64();
7076	raw_tag = get_next_completion(h, q);
7077	while (raw_tag != FIFO_EMPTY) {
7078		process_indexed_cmd(h, raw_tag);
7079		raw_tag = next_command(h, q);
7080	}
7081	return IRQ_HANDLED;
7082}
7083
7084/* Send a message CDB to the firmware. Careful, this only works
7085 * in simple mode, not performant mode due to the tag lookup.
7086 * We only ever use this immediately after a controller reset.
7087 */
7088static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7089			unsigned char type)
7090{
7091	struct Command {
7092		struct CommandListHeader CommandHeader;
7093		struct RequestBlock Request;
7094		struct ErrDescriptor ErrorDescriptor;
7095	};
7096	struct Command *cmd;
7097	static const size_t cmd_sz = sizeof(*cmd) +
7098					sizeof(cmd->ErrorDescriptor);
7099	dma_addr_t paddr64;
7100	__le32 paddr32;
7101	u32 tag;
7102	void __iomem *vaddr;
7103	int i, err;
7104
7105	vaddr = pci_ioremap_bar(pdev, 0);
7106	if (vaddr == NULL)
7107		return -ENOMEM;
7108
7109	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7110	 * CCISS commands, so they must be allocated from the lower 4GiB of
7111	 * memory.
7112	 */
7113	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7114	if (err) {
7115		iounmap(vaddr);
7116		return err;
7117	}
7118
7119	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7120	if (cmd == NULL) {
7121		iounmap(vaddr);
7122		return -ENOMEM;
7123	}
7124
7125	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7126	 * although there's no guarantee, we assume that the address is at
7127	 * least 4-byte aligned (most likely, it's page-aligned).
7128	 */
7129	paddr32 = cpu_to_le32(paddr64);
7130
7131	cmd->CommandHeader.ReplyQueue = 0;
7132	cmd->CommandHeader.SGList = 0;
7133	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7134	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7135	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7136
7137	cmd->Request.CDBLen = 16;
7138	cmd->Request.type_attr_dir =
7139			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7140	cmd->Request.Timeout = 0; /* Don't time out */
7141	cmd->Request.CDB[0] = opcode;
7142	cmd->Request.CDB[1] = type;
7143	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7144	cmd->ErrorDescriptor.Addr =
7145			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7146	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7147
7148	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7149
7150	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7151		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7152		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7153			break;
7154		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7155	}
7156
7157	iounmap(vaddr);
7158
7159	/* we leak the DMA buffer here ... no choice since the controller could
7160	 *  still complete the command.
7161	 */
7162	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7163		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7164			opcode, type);
7165		return -ETIMEDOUT;
7166	}
7167
7168	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7169
7170	if (tag & HPSA_ERROR_BIT) {
7171		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7172			opcode, type);
7173		return -EIO;
7174	}
7175
7176	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7177		opcode, type);
7178	return 0;
7179}
7180
7181#define hpsa_noop(p) hpsa_message(p, 3, 0)
7182
7183static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7184	void __iomem *vaddr, u32 use_doorbell)
7185{
7186
7187	if (use_doorbell) {
7188		/* For everything after the P600, the PCI power state method
7189		 * of resetting the controller doesn't work, so we have this
7190		 * other way using the doorbell register.
7191		 */
7192		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7193		writel(use_doorbell, vaddr + SA5_DOORBELL);
7194
7195		/* PMC hardware guys tell us we need a 10 second delay after
7196		 * doorbell reset and before any attempt to talk to the board
7197		 * at all to ensure that this actually works and doesn't fall
7198		 * over in some weird corner cases.
7199		 */
7200		msleep(10000);
7201	} else { /* Try to do it the PCI power state way */
7202
7203		/* Quoting from the Open CISS Specification: "The Power
7204		 * Management Control/Status Register (CSR) controls the power
7205		 * state of the device.  The normal operating state is D0,
7206		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7207		 * the controller, place the interface device in D3 then to D0,
7208		 * this causes a secondary PCI reset which will reset the
7209		 * controller." */
7210
7211		int rc = 0;
7212
7213		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7214
7215		/* enter the D3hot power management state */
7216		rc = pci_set_power_state(pdev, PCI_D3hot);
7217		if (rc)
7218			return rc;
7219
7220		msleep(500);
7221
7222		/* enter the D0 power management state */
7223		rc = pci_set_power_state(pdev, PCI_D0);
7224		if (rc)
7225			return rc;
7226
7227		/*
7228		 * The P600 requires a small delay when changing states.
7229		 * Otherwise we may think the board did not reset and we bail.
7230		 * This for kdump only and is particular to the P600.
7231		 */
7232		msleep(500);
7233	}
7234	return 0;
7235}
7236
7237static void init_driver_version(char *driver_version, int len)
7238{
7239	memset(driver_version, 0, len);
7240	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7241}
7242
7243static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7244{
7245	char *driver_version;
7246	int i, size = sizeof(cfgtable->driver_version);
7247
7248	driver_version = kmalloc(size, GFP_KERNEL);
7249	if (!driver_version)
7250		return -ENOMEM;
7251
7252	init_driver_version(driver_version, size);
7253	for (i = 0; i < size; i++)
7254		writeb(driver_version[i], &cfgtable->driver_version[i]);
7255	kfree(driver_version);
7256	return 0;
7257}
7258
7259static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7260					  unsigned char *driver_ver)
7261{
7262	int i;
7263
7264	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7265		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7266}
7267
7268static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7269{
7270
7271	char *driver_ver, *old_driver_ver;
7272	int rc, size = sizeof(cfgtable->driver_version);
7273
7274	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7275	if (!old_driver_ver)
7276		return -ENOMEM;
7277	driver_ver = old_driver_ver + size;
7278
7279	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7280	 * should have been changed, otherwise we know the reset failed.
7281	 */
7282	init_driver_version(old_driver_ver, size);
7283	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7284	rc = !memcmp(driver_ver, old_driver_ver, size);
7285	kfree(old_driver_ver);
7286	return rc;
7287}
7288/* This does a hard reset of the controller using PCI power management
7289 * states or the using the doorbell register.
7290 */
7291static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7292{
7293	u64 cfg_offset;
7294	u32 cfg_base_addr;
7295	u64 cfg_base_addr_index;
7296	void __iomem *vaddr;
7297	unsigned long paddr;
7298	u32 misc_fw_support;
7299	int rc;
7300	struct CfgTable __iomem *cfgtable;
7301	u32 use_doorbell;
7302	u16 command_register;
7303
7304	/* For controllers as old as the P600, this is very nearly
7305	 * the same thing as
7306	 *
7307	 * pci_save_state(pci_dev);
7308	 * pci_set_power_state(pci_dev, PCI_D3hot);
7309	 * pci_set_power_state(pci_dev, PCI_D0);
7310	 * pci_restore_state(pci_dev);
7311	 *
7312	 * For controllers newer than the P600, the pci power state
7313	 * method of resetting doesn't work so we have another way
7314	 * using the doorbell register.
7315	 */
7316
7317	if (!ctlr_is_resettable(board_id)) {
7318		dev_warn(&pdev->dev, "Controller not resettable\n");
7319		return -ENODEV;
7320	}
7321
7322	/* if controller is soft- but not hard resettable... */
7323	if (!ctlr_is_hard_resettable(board_id))
7324		return -ENOTSUPP; /* try soft reset later. */
7325
7326	/* Save the PCI command register */
7327	pci_read_config_word(pdev, 4, &command_register);
7328	pci_save_state(pdev);
7329
7330	/* find the first memory BAR, so we can find the cfg table */
7331	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7332	if (rc)
7333		return rc;
7334	vaddr = remap_pci_mem(paddr, 0x250);
7335	if (!vaddr)
7336		return -ENOMEM;
7337
7338	/* find cfgtable in order to check if reset via doorbell is supported */
7339	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7340					&cfg_base_addr_index, &cfg_offset);
7341	if (rc)
7342		goto unmap_vaddr;
7343	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7344		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7345	if (!cfgtable) {
7346		rc = -ENOMEM;
7347		goto unmap_vaddr;
7348	}
7349	rc = write_driver_ver_to_cfgtable(cfgtable);
7350	if (rc)
7351		goto unmap_cfgtable;
7352
7353	/* If reset via doorbell register is supported, use that.
7354	 * There are two such methods.  Favor the newest method.
7355	 */
7356	misc_fw_support = readl(&cfgtable->misc_fw_support);
7357	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7358	if (use_doorbell) {
7359		use_doorbell = DOORBELL_CTLR_RESET2;
7360	} else {
7361		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7362		if (use_doorbell) {
7363			dev_warn(&pdev->dev,
7364				"Soft reset not supported. Firmware update is required.\n");
7365			rc = -ENOTSUPP; /* try soft reset */
7366			goto unmap_cfgtable;
7367		}
7368	}
7369
7370	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7371	if (rc)
7372		goto unmap_cfgtable;
7373
7374	pci_restore_state(pdev);
7375	pci_write_config_word(pdev, 4, command_register);
7376
7377	/* Some devices (notably the HP Smart Array 5i Controller)
7378	   need a little pause here */
7379	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7380
7381	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7382	if (rc) {
7383		dev_warn(&pdev->dev,
7384			"Failed waiting for board to become ready after hard reset\n");
7385		goto unmap_cfgtable;
7386	}
7387
7388	rc = controller_reset_failed(vaddr);
7389	if (rc < 0)
7390		goto unmap_cfgtable;
7391	if (rc) {
7392		dev_warn(&pdev->dev, "Unable to successfully reset "
7393			"controller. Will try soft reset.\n");
7394		rc = -ENOTSUPP;
7395	} else {
7396		dev_info(&pdev->dev, "board ready after hard reset.\n");
7397	}
7398
7399unmap_cfgtable:
7400	iounmap(cfgtable);
7401
7402unmap_vaddr:
7403	iounmap(vaddr);
7404	return rc;
7405}
7406
7407/*
7408 *  We cannot read the structure directly, for portability we must use
7409 *   the io functions.
7410 *   This is for debug only.
7411 */
7412static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7413{
7414#ifdef HPSA_DEBUG
7415	int i;
7416	char temp_name[17];
7417
7418	dev_info(dev, "Controller Configuration information\n");
7419	dev_info(dev, "------------------------------------\n");
7420	for (i = 0; i < 4; i++)
7421		temp_name[i] = readb(&(tb->Signature[i]));
7422	temp_name[4] = '\0';
7423	dev_info(dev, "   Signature = %s\n", temp_name);
7424	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7425	dev_info(dev, "   Transport methods supported = 0x%x\n",
7426	       readl(&(tb->TransportSupport)));
7427	dev_info(dev, "   Transport methods active = 0x%x\n",
7428	       readl(&(tb->TransportActive)));
7429	dev_info(dev, "   Requested transport Method = 0x%x\n",
7430	       readl(&(tb->HostWrite.TransportRequest)));
7431	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7432	       readl(&(tb->HostWrite.CoalIntDelay)));
7433	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7434	       readl(&(tb->HostWrite.CoalIntCount)));
7435	dev_info(dev, "   Max outstanding commands = %d\n",
7436	       readl(&(tb->CmdsOutMax)));
7437	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7438	for (i = 0; i < 16; i++)
7439		temp_name[i] = readb(&(tb->ServerName[i]));
7440	temp_name[16] = '\0';
7441	dev_info(dev, "   Server Name = %s\n", temp_name);
7442	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7443		readl(&(tb->HeartBeat)));
7444#endif				/* HPSA_DEBUG */
7445}
7446
7447static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7448{
7449	int i, offset, mem_type, bar_type;
7450
7451	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7452		return 0;
7453	offset = 0;
7454	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7455		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7456		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7457			offset += 4;
7458		else {
7459			mem_type = pci_resource_flags(pdev, i) &
7460			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7461			switch (mem_type) {
7462			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7463			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7464				offset += 4;	/* 32 bit */
7465				break;
7466			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7467				offset += 8;
7468				break;
7469			default:	/* reserved in PCI 2.2 */
7470				dev_warn(&pdev->dev,
7471				       "base address is invalid\n");
7472				return -1;
7473			}
7474		}
7475		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7476			return i + 1;
7477	}
7478	return -1;
7479}
7480
7481static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7482{
7483	pci_free_irq_vectors(h->pdev);
7484	h->msix_vectors = 0;
7485}
7486
7487static void hpsa_setup_reply_map(struct ctlr_info *h)
7488{
7489	const struct cpumask *mask;
7490	unsigned int queue, cpu;
7491
7492	for (queue = 0; queue < h->msix_vectors; queue++) {
7493		mask = pci_irq_get_affinity(h->pdev, queue);
7494		if (!mask)
7495			goto fallback;
7496
7497		for_each_cpu(cpu, mask)
7498			h->reply_map[cpu] = queue;
7499	}
7500	return;
7501
7502fallback:
7503	for_each_possible_cpu(cpu)
7504		h->reply_map[cpu] = 0;
7505}
7506
7507/* If MSI/MSI-X is supported by the kernel we will try to enable it on
7508 * controllers that are capable. If not, we use legacy INTx mode.
7509 */
7510static int hpsa_interrupt_mode(struct ctlr_info *h)
7511{
7512	unsigned int flags = PCI_IRQ_LEGACY;
7513	int ret;
7514
7515	/* Some boards advertise MSI but don't really support it */
7516	switch (h->board_id) {
7517	case 0x40700E11:
7518	case 0x40800E11:
7519	case 0x40820E11:
7520	case 0x40830E11:
7521		break;
7522	default:
7523		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7524				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7525		if (ret > 0) {
7526			h->msix_vectors = ret;
7527			return 0;
7528		}
7529
7530		flags |= PCI_IRQ_MSI;
7531		break;
7532	}
7533
7534	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7535	if (ret < 0)
7536		return ret;
7537	return 0;
7538}
7539
7540static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7541				bool *legacy_board)
7542{
7543	int i;
7544	u32 subsystem_vendor_id, subsystem_device_id;
7545
7546	subsystem_vendor_id = pdev->subsystem_vendor;
7547	subsystem_device_id = pdev->subsystem_device;
7548	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7549		    subsystem_vendor_id;
7550
7551	if (legacy_board)
7552		*legacy_board = false;
7553	for (i = 0; i < ARRAY_SIZE(products); i++)
7554		if (*board_id == products[i].board_id) {
7555			if (products[i].access != &SA5A_access &&
7556			    products[i].access != &SA5B_access)
7557				return i;
7558			dev_warn(&pdev->dev,
7559				 "legacy board ID: 0x%08x\n",
7560				 *board_id);
7561			if (legacy_board)
7562			    *legacy_board = true;
7563			return i;
7564		}
7565
7566	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7567	if (legacy_board)
7568		*legacy_board = true;
7569	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7570}
7571
7572static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7573				    unsigned long *memory_bar)
7574{
7575	int i;
7576
7577	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7578		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7579			/* addressing mode bits already removed */
7580			*memory_bar = pci_resource_start(pdev, i);
7581			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7582				*memory_bar);
7583			return 0;
7584		}
7585	dev_warn(&pdev->dev, "no memory BAR found\n");
7586	return -ENODEV;
7587}
7588
7589static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7590				     int wait_for_ready)
7591{
7592	int i, iterations;
7593	u32 scratchpad;
7594	if (wait_for_ready)
7595		iterations = HPSA_BOARD_READY_ITERATIONS;
7596	else
7597		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7598
7599	for (i = 0; i < iterations; i++) {
7600		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7601		if (wait_for_ready) {
7602			if (scratchpad == HPSA_FIRMWARE_READY)
7603				return 0;
7604		} else {
7605			if (scratchpad != HPSA_FIRMWARE_READY)
7606				return 0;
7607		}
7608		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7609	}
7610	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7611	return -ENODEV;
7612}
7613
7614static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7615			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7616			       u64 *cfg_offset)
7617{
7618	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7619	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7620	*cfg_base_addr &= (u32) 0x0000ffff;
7621	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7622	if (*cfg_base_addr_index == -1) {
7623		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7624		return -ENODEV;
7625	}
7626	return 0;
7627}
7628
7629static void hpsa_free_cfgtables(struct ctlr_info *h)
7630{
7631	if (h->transtable) {
7632		iounmap(h->transtable);
7633		h->transtable = NULL;
7634	}
7635	if (h->cfgtable) {
7636		iounmap(h->cfgtable);
7637		h->cfgtable = NULL;
7638	}
7639}
7640
7641/* Find and map CISS config table and transfer table
7642+ * several items must be unmapped (freed) later
7643+ * */
7644static int hpsa_find_cfgtables(struct ctlr_info *h)
7645{
7646	u64 cfg_offset;
7647	u32 cfg_base_addr;
7648	u64 cfg_base_addr_index;
7649	u32 trans_offset;
7650	int rc;
7651
7652	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7653		&cfg_base_addr_index, &cfg_offset);
7654	if (rc)
7655		return rc;
7656	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7657		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7658	if (!h->cfgtable) {
7659		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7660		return -ENOMEM;
7661	}
7662	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7663	if (rc)
7664		return rc;
7665	/* Find performant mode table. */
7666	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7667	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7668				cfg_base_addr_index)+cfg_offset+trans_offset,
7669				sizeof(*h->transtable));
7670	if (!h->transtable) {
7671		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7672		hpsa_free_cfgtables(h);
7673		return -ENOMEM;
7674	}
7675	return 0;
7676}
7677
7678static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7679{
7680#define MIN_MAX_COMMANDS 16
7681	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7682
7683	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7684
7685	/* Limit commands in memory limited kdump scenario. */
7686	if (reset_devices && h->max_commands > 32)
7687		h->max_commands = 32;
7688
7689	if (h->max_commands < MIN_MAX_COMMANDS) {
7690		dev_warn(&h->pdev->dev,
7691			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7692			h->max_commands,
7693			MIN_MAX_COMMANDS);
7694		h->max_commands = MIN_MAX_COMMANDS;
7695	}
7696}
7697
7698/* If the controller reports that the total max sg entries is greater than 512,
7699 * then we know that chained SG blocks work.  (Original smart arrays did not
7700 * support chained SG blocks and would return zero for max sg entries.)
7701 */
7702static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7703{
7704	return h->maxsgentries > 512;
7705}
7706
7707/* Interrogate the hardware for some limits:
7708 * max commands, max SG elements without chaining, and with chaining,
7709 * SG chain block size, etc.
7710 */
7711static void hpsa_find_board_params(struct ctlr_info *h)
7712{
7713	hpsa_get_max_perf_mode_cmds(h);
7714	h->nr_cmds = h->max_commands;
7715	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7716	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7717	if (hpsa_supports_chained_sg_blocks(h)) {
7718		/* Limit in-command s/g elements to 32 save dma'able memory. */
7719		h->max_cmd_sg_entries = 32;
7720		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7721		h->maxsgentries--; /* save one for chain pointer */
7722	} else {
7723		/*
7724		 * Original smart arrays supported at most 31 s/g entries
7725		 * embedded inline in the command (trying to use more
7726		 * would lock up the controller)
7727		 */
7728		h->max_cmd_sg_entries = 31;
7729		h->maxsgentries = 31; /* default to traditional values */
7730		h->chainsize = 0;
7731	}
7732
7733	/* Find out what task management functions are supported and cache */
7734	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7735	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7736		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7737	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7738		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7739	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7740		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7741}
7742
7743static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7744{
7745	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7746		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7747		return false;
7748	}
7749	return true;
7750}
7751
7752static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7753{
7754	u32 driver_support;
7755
7756	driver_support = readl(&(h->cfgtable->driver_support));
7757	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7758#ifdef CONFIG_X86
7759	driver_support |= ENABLE_SCSI_PREFETCH;
7760#endif
7761	driver_support |= ENABLE_UNIT_ATTN;
7762	writel(driver_support, &(h->cfgtable->driver_support));
7763}
7764
7765/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7766 * in a prefetch beyond physical memory.
7767 */
7768static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7769{
7770	u32 dma_prefetch;
7771
7772	if (h->board_id != 0x3225103C)
7773		return;
7774	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7775	dma_prefetch |= 0x8000;
7776	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7777}
7778
7779static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7780{
7781	int i;
7782	u32 doorbell_value;
7783	unsigned long flags;
7784	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7785	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7786		spin_lock_irqsave(&h->lock, flags);
7787		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7788		spin_unlock_irqrestore(&h->lock, flags);
7789		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7790			goto done;
7791		/* delay and try again */
7792		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7793	}
7794	return -ENODEV;
7795done:
7796	return 0;
7797}
7798
7799static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7800{
7801	int i;
7802	u32 doorbell_value;
7803	unsigned long flags;
7804
7805	/* under certain very rare conditions, this can take awhile.
7806	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7807	 * as we enter this code.)
7808	 */
7809	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7810		if (h->remove_in_progress)
7811			goto done;
7812		spin_lock_irqsave(&h->lock, flags);
7813		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7814		spin_unlock_irqrestore(&h->lock, flags);
7815		if (!(doorbell_value & CFGTBL_ChangeReq))
7816			goto done;
7817		/* delay and try again */
7818		msleep(MODE_CHANGE_WAIT_INTERVAL);
7819	}
7820	return -ENODEV;
7821done:
7822	return 0;
7823}
7824
7825/* return -ENODEV or other reason on error, 0 on success */
7826static int hpsa_enter_simple_mode(struct ctlr_info *h)
7827{
7828	u32 trans_support;
7829
7830	trans_support = readl(&(h->cfgtable->TransportSupport));
7831	if (!(trans_support & SIMPLE_MODE))
7832		return -ENOTSUPP;
7833
7834	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7835
7836	/* Update the field, and then ring the doorbell */
7837	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7838	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7839	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7840	if (hpsa_wait_for_mode_change_ack(h))
7841		goto error;
7842	print_cfg_table(&h->pdev->dev, h->cfgtable);
7843	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7844		goto error;
7845	h->transMethod = CFGTBL_Trans_Simple;
7846	return 0;
7847error:
7848	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7849	return -ENODEV;
7850}
7851
7852/* free items allocated or mapped by hpsa_pci_init */
7853static void hpsa_free_pci_init(struct ctlr_info *h)
7854{
7855	hpsa_free_cfgtables(h);			/* pci_init 4 */
7856	iounmap(h->vaddr);			/* pci_init 3 */
7857	h->vaddr = NULL;
7858	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7859	/*
7860	 * call pci_disable_device before pci_release_regions per
7861	 * Documentation/driver-api/pci/pci.rst
7862	 */
7863	pci_disable_device(h->pdev);		/* pci_init 1 */
7864	pci_release_regions(h->pdev);		/* pci_init 2 */
7865}
7866
7867/* several items must be freed later */
7868static int hpsa_pci_init(struct ctlr_info *h)
7869{
7870	int prod_index, err;
7871	bool legacy_board;
7872
7873	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7874	if (prod_index < 0)
7875		return prod_index;
7876	h->product_name = products[prod_index].product_name;
7877	h->access = *(products[prod_index].access);
7878	h->legacy_board = legacy_board;
7879	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7880			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7881
7882	err = pci_enable_device(h->pdev);
7883	if (err) {
7884		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7885		pci_disable_device(h->pdev);
7886		return err;
7887	}
7888
7889	err = pci_request_regions(h->pdev, HPSA);
7890	if (err) {
7891		dev_err(&h->pdev->dev,
7892			"failed to obtain PCI resources\n");
7893		pci_disable_device(h->pdev);
7894		return err;
7895	}
7896
7897	pci_set_master(h->pdev);
7898
7899	err = hpsa_interrupt_mode(h);
7900	if (err)
7901		goto clean1;
7902
7903	/* setup mapping between CPU and reply queue */
7904	hpsa_setup_reply_map(h);
7905
7906	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7907	if (err)
7908		goto clean2;	/* intmode+region, pci */
7909	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7910	if (!h->vaddr) {
7911		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7912		err = -ENOMEM;
7913		goto clean2;	/* intmode+region, pci */
7914	}
7915	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7916	if (err)
7917		goto clean3;	/* vaddr, intmode+region, pci */
7918	err = hpsa_find_cfgtables(h);
7919	if (err)
7920		goto clean3;	/* vaddr, intmode+region, pci */
7921	hpsa_find_board_params(h);
7922
7923	if (!hpsa_CISS_signature_present(h)) {
7924		err = -ENODEV;
7925		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7926	}
7927	hpsa_set_driver_support_bits(h);
7928	hpsa_p600_dma_prefetch_quirk(h);
7929	err = hpsa_enter_simple_mode(h);
7930	if (err)
7931		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7932	return 0;
7933
7934clean4:	/* cfgtables, vaddr, intmode+region, pci */
7935	hpsa_free_cfgtables(h);
7936clean3:	/* vaddr, intmode+region, pci */
7937	iounmap(h->vaddr);
7938	h->vaddr = NULL;
7939clean2:	/* intmode+region, pci */
7940	hpsa_disable_interrupt_mode(h);
7941clean1:
7942	/*
7943	 * call pci_disable_device before pci_release_regions per
7944	 * Documentation/driver-api/pci/pci.rst
7945	 */
7946	pci_disable_device(h->pdev);
7947	pci_release_regions(h->pdev);
7948	return err;
7949}
7950
7951static void hpsa_hba_inquiry(struct ctlr_info *h)
7952{
7953	int rc;
7954
7955#define HBA_INQUIRY_BYTE_COUNT 64
7956	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7957	if (!h->hba_inquiry_data)
7958		return;
7959	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7960		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7961	if (rc != 0) {
7962		kfree(h->hba_inquiry_data);
7963		h->hba_inquiry_data = NULL;
7964	}
7965}
7966
7967static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7968{
7969	int rc, i;
7970	void __iomem *vaddr;
7971
7972	if (!reset_devices)
7973		return 0;
7974
7975	/* kdump kernel is loading, we don't know in which state is
7976	 * the pci interface. The dev->enable_cnt is equal zero
7977	 * so we call enable+disable, wait a while and switch it on.
7978	 */
7979	rc = pci_enable_device(pdev);
7980	if (rc) {
7981		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7982		return -ENODEV;
7983	}
7984	pci_disable_device(pdev);
7985	msleep(260);			/* a randomly chosen number */
7986	rc = pci_enable_device(pdev);
7987	if (rc) {
7988		dev_warn(&pdev->dev, "failed to enable device.\n");
7989		return -ENODEV;
7990	}
7991
7992	pci_set_master(pdev);
7993
7994	vaddr = pci_ioremap_bar(pdev, 0);
7995	if (vaddr == NULL) {
7996		rc = -ENOMEM;
7997		goto out_disable;
7998	}
7999	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8000	iounmap(vaddr);
8001
8002	/* Reset the controller with a PCI power-cycle or via doorbell */
8003	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8004
8005	/* -ENOTSUPP here means we cannot reset the controller
8006	 * but it's already (and still) up and running in
8007	 * "performant mode".  Or, it might be 640x, which can't reset
8008	 * due to concerns about shared bbwc between 6402/6404 pair.
8009	 */
8010	if (rc)
8011		goto out_disable;
8012
8013	/* Now try to get the controller to respond to a no-op */
8014	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8015	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8016		if (hpsa_noop(pdev) == 0)
8017			break;
8018		else
8019			dev_warn(&pdev->dev, "no-op failed%s\n",
8020					(i < 11 ? "; re-trying" : ""));
8021	}
8022
8023out_disable:
8024
8025	pci_disable_device(pdev);
8026	return rc;
8027}
8028
8029static void hpsa_free_cmd_pool(struct ctlr_info *h)
8030{
8031	bitmap_free(h->cmd_pool_bits);
8032	h->cmd_pool_bits = NULL;
8033	if (h->cmd_pool) {
8034		dma_free_coherent(&h->pdev->dev,
8035				h->nr_cmds * sizeof(struct CommandList),
8036				h->cmd_pool,
8037				h->cmd_pool_dhandle);
8038		h->cmd_pool = NULL;
8039		h->cmd_pool_dhandle = 0;
8040	}
8041	if (h->errinfo_pool) {
8042		dma_free_coherent(&h->pdev->dev,
8043				h->nr_cmds * sizeof(struct ErrorInfo),
8044				h->errinfo_pool,
8045				h->errinfo_pool_dhandle);
8046		h->errinfo_pool = NULL;
8047		h->errinfo_pool_dhandle = 0;
8048	}
8049}
8050
8051static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8052{
8053	h->cmd_pool_bits = bitmap_zalloc(h->nr_cmds, GFP_KERNEL);
8054	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8055		    h->nr_cmds * sizeof(*h->cmd_pool),
8056		    &h->cmd_pool_dhandle, GFP_KERNEL);
8057	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8058		    h->nr_cmds * sizeof(*h->errinfo_pool),
8059		    &h->errinfo_pool_dhandle, GFP_KERNEL);
8060	if ((h->cmd_pool_bits == NULL)
8061	    || (h->cmd_pool == NULL)
8062	    || (h->errinfo_pool == NULL)) {
8063		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8064		goto clean_up;
8065	}
8066	hpsa_preinitialize_commands(h);
8067	return 0;
8068clean_up:
8069	hpsa_free_cmd_pool(h);
8070	return -ENOMEM;
8071}
8072
8073/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8074static void hpsa_free_irqs(struct ctlr_info *h)
8075{
8076	int i;
8077	int irq_vector = 0;
8078
8079	if (hpsa_simple_mode)
8080		irq_vector = h->intr_mode;
8081
8082	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8083		/* Single reply queue, only one irq to free */
8084		free_irq(pci_irq_vector(h->pdev, irq_vector),
8085				&h->q[h->intr_mode]);
8086		h->q[h->intr_mode] = 0;
8087		return;
8088	}
8089
8090	for (i = 0; i < h->msix_vectors; i++) {
8091		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8092		h->q[i] = 0;
8093	}
8094	for (; i < MAX_REPLY_QUEUES; i++)
8095		h->q[i] = 0;
8096}
8097
8098/* returns 0 on success; cleans up and returns -Enn on error */
8099static int hpsa_request_irqs(struct ctlr_info *h,
8100	irqreturn_t (*msixhandler)(int, void *),
8101	irqreturn_t (*intxhandler)(int, void *))
8102{
8103	int rc, i;
8104	int irq_vector = 0;
8105
8106	if (hpsa_simple_mode)
8107		irq_vector = h->intr_mode;
8108
8109	/*
8110	 * initialize h->q[x] = x so that interrupt handlers know which
8111	 * queue to process.
8112	 */
8113	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8114		h->q[i] = (u8) i;
8115
8116	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8117		/* If performant mode and MSI-X, use multiple reply queues */
8118		for (i = 0; i < h->msix_vectors; i++) {
8119			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8120			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8121					0, h->intrname[i],
8122					&h->q[i]);
8123			if (rc) {
8124				int j;
8125
8126				dev_err(&h->pdev->dev,
8127					"failed to get irq %d for %s\n",
8128				       pci_irq_vector(h->pdev, i), h->devname);
8129				for (j = 0; j < i; j++) {
8130					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8131					h->q[j] = 0;
8132				}
8133				for (; j < MAX_REPLY_QUEUES; j++)
8134					h->q[j] = 0;
8135				return rc;
8136			}
8137		}
8138	} else {
8139		/* Use single reply pool */
8140		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8141			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8142				h->msix_vectors ? "x" : "");
8143			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8144				msixhandler, 0,
8145				h->intrname[0],
8146				&h->q[h->intr_mode]);
8147		} else {
8148			sprintf(h->intrname[h->intr_mode],
8149				"%s-intx", h->devname);
8150			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8151				intxhandler, IRQF_SHARED,
8152				h->intrname[0],
8153				&h->q[h->intr_mode]);
8154		}
8155	}
8156	if (rc) {
8157		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8158		       pci_irq_vector(h->pdev, irq_vector), h->devname);
8159		hpsa_free_irqs(h);
8160		return -ENODEV;
8161	}
8162	return 0;
8163}
8164
8165static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8166{
8167	int rc;
8168	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8169
8170	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8171	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8172	if (rc) {
8173		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8174		return rc;
8175	}
8176
8177	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8178	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8179	if (rc) {
8180		dev_warn(&h->pdev->dev, "Board failed to become ready "
8181			"after soft reset.\n");
8182		return rc;
8183	}
8184
8185	return 0;
8186}
8187
8188static void hpsa_free_reply_queues(struct ctlr_info *h)
8189{
8190	int i;
8191
8192	for (i = 0; i < h->nreply_queues; i++) {
8193		if (!h->reply_queue[i].head)
8194			continue;
8195		dma_free_coherent(&h->pdev->dev,
8196					h->reply_queue_size,
8197					h->reply_queue[i].head,
8198					h->reply_queue[i].busaddr);
8199		h->reply_queue[i].head = NULL;
8200		h->reply_queue[i].busaddr = 0;
8201	}
8202	h->reply_queue_size = 0;
8203}
8204
8205static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8206{
8207	hpsa_free_performant_mode(h);		/* init_one 7 */
8208	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8209	hpsa_free_cmd_pool(h);			/* init_one 5 */
8210	hpsa_free_irqs(h);			/* init_one 4 */
8211	scsi_host_put(h->scsi_host);		/* init_one 3 */
8212	h->scsi_host = NULL;			/* init_one 3 */
8213	hpsa_free_pci_init(h);			/* init_one 2_5 */
8214	free_percpu(h->lockup_detected);	/* init_one 2 */
8215	h->lockup_detected = NULL;		/* init_one 2 */
8216	if (h->resubmit_wq) {
8217		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8218		h->resubmit_wq = NULL;
8219	}
8220	if (h->rescan_ctlr_wq) {
8221		destroy_workqueue(h->rescan_ctlr_wq);
8222		h->rescan_ctlr_wq = NULL;
8223	}
8224	if (h->monitor_ctlr_wq) {
8225		destroy_workqueue(h->monitor_ctlr_wq);
8226		h->monitor_ctlr_wq = NULL;
8227	}
8228
8229	kfree(h);				/* init_one 1 */
8230}
8231
8232/* Called when controller lockup detected. */
8233static void fail_all_outstanding_cmds(struct ctlr_info *h)
8234{
8235	int i, refcount;
8236	struct CommandList *c;
8237	int failcount = 0;
8238
8239	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8240	for (i = 0; i < h->nr_cmds; i++) {
8241		c = h->cmd_pool + i;
8242		refcount = atomic_inc_return(&c->refcount);
8243		if (refcount > 1) {
8244			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8245			finish_cmd(c);
8246			atomic_dec(&h->commands_outstanding);
8247			failcount++;
8248		}
8249		cmd_free(h, c);
8250	}
8251	dev_warn(&h->pdev->dev,
8252		"failed %d commands in fail_all\n", failcount);
8253}
8254
8255static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8256{
8257	int cpu;
8258
8259	for_each_online_cpu(cpu) {
8260		u32 *lockup_detected;
8261		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8262		*lockup_detected = value;
8263	}
8264	wmb(); /* be sure the per-cpu variables are out to memory */
8265}
8266
8267static void controller_lockup_detected(struct ctlr_info *h)
8268{
8269	unsigned long flags;
8270	u32 lockup_detected;
8271
8272	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8273	spin_lock_irqsave(&h->lock, flags);
8274	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8275	if (!lockup_detected) {
8276		/* no heartbeat, but controller gave us a zero. */
8277		dev_warn(&h->pdev->dev,
8278			"lockup detected after %d but scratchpad register is zero\n",
8279			h->heartbeat_sample_interval / HZ);
8280		lockup_detected = 0xffffffff;
8281	}
8282	set_lockup_detected_for_all_cpus(h, lockup_detected);
8283	spin_unlock_irqrestore(&h->lock, flags);
8284	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8285			lockup_detected, h->heartbeat_sample_interval / HZ);
8286	if (lockup_detected == 0xffff0000) {
8287		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8288		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8289	}
8290	pci_disable_device(h->pdev);
8291	fail_all_outstanding_cmds(h);
8292}
8293
8294static int detect_controller_lockup(struct ctlr_info *h)
8295{
8296	u64 now;
8297	u32 heartbeat;
8298	unsigned long flags;
8299
8300	now = get_jiffies_64();
8301	/* If we've received an interrupt recently, we're ok. */
8302	if (time_after64(h->last_intr_timestamp +
8303				(h->heartbeat_sample_interval), now))
8304		return false;
8305
8306	/*
8307	 * If we've already checked the heartbeat recently, we're ok.
8308	 * This could happen if someone sends us a signal. We
8309	 * otherwise don't care about signals in this thread.
8310	 */
8311	if (time_after64(h->last_heartbeat_timestamp +
8312				(h->heartbeat_sample_interval), now))
8313		return false;
8314
8315	/* If heartbeat has not changed since we last looked, we're not ok. */
8316	spin_lock_irqsave(&h->lock, flags);
8317	heartbeat = readl(&h->cfgtable->HeartBeat);
8318	spin_unlock_irqrestore(&h->lock, flags);
8319	if (h->last_heartbeat == heartbeat) {
8320		controller_lockup_detected(h);
8321		return true;
8322	}
8323
8324	/* We're ok. */
8325	h->last_heartbeat = heartbeat;
8326	h->last_heartbeat_timestamp = now;
8327	return false;
8328}
8329
8330/*
8331 * Set ioaccel status for all ioaccel volumes.
8332 *
8333 * Called from monitor controller worker (hpsa_event_monitor_worker)
8334 *
8335 * A Volume (or Volumes that comprise an Array set) may be undergoing a
8336 * transformation, so we will be turning off ioaccel for all volumes that
8337 * make up the Array.
8338 */
8339static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8340{
8341	int rc;
8342	int i;
8343	u8 ioaccel_status;
8344	unsigned char *buf;
8345	struct hpsa_scsi_dev_t *device;
8346
8347	if (!h)
8348		return;
8349
8350	buf = kmalloc(64, GFP_KERNEL);
8351	if (!buf)
8352		return;
8353
8354	/*
8355	 * Run through current device list used during I/O requests.
8356	 */
8357	for (i = 0; i < h->ndevices; i++) {
8358		int offload_to_be_enabled = 0;
8359		int offload_config = 0;
8360
8361		device = h->dev[i];
8362
8363		if (!device)
8364			continue;
8365		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8366						HPSA_VPD_LV_IOACCEL_STATUS))
8367			continue;
8368
8369		memset(buf, 0, 64);
8370
8371		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8372					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8373					buf, 64);
8374		if (rc != 0)
8375			continue;
8376
8377		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8378
8379		/*
8380		 * Check if offload is still configured on
8381		 */
8382		offload_config =
8383				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8384		/*
8385		 * If offload is configured on, check to see if ioaccel
8386		 * needs to be enabled.
8387		 */
8388		if (offload_config)
8389			offload_to_be_enabled =
8390				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8391
8392		/*
8393		 * If ioaccel is to be re-enabled, re-enable later during the
8394		 * scan operation so the driver can get a fresh raidmap
8395		 * before turning ioaccel back on.
8396		 */
8397		if (offload_to_be_enabled)
8398			continue;
8399
8400		/*
8401		 * Immediately turn off ioaccel for any volume the
8402		 * controller tells us to. Some of the reasons could be:
8403		 *    transformation - change to the LVs of an Array.
8404		 *    degraded volume - component failure
8405		 */
8406		hpsa_turn_off_ioaccel_for_device(device);
8407	}
8408
8409	kfree(buf);
8410}
8411
8412static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8413{
8414	char *event_type;
8415
8416	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8417		return;
8418
8419	/* Ask the controller to clear the events we're handling. */
8420	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8421			| CFGTBL_Trans_io_accel2)) &&
8422		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8423		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8424
8425		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8426			event_type = "state change";
8427		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8428			event_type = "configuration change";
8429		/* Stop sending new RAID offload reqs via the IO accelerator */
8430		scsi_block_requests(h->scsi_host);
8431		hpsa_set_ioaccel_status(h);
8432		hpsa_drain_accel_commands(h);
8433		/* Set 'accelerator path config change' bit */
8434		dev_warn(&h->pdev->dev,
8435			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8436			h->events, event_type);
8437		writel(h->events, &(h->cfgtable->clear_event_notify));
8438		/* Set the "clear event notify field update" bit 6 */
8439		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8440		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8441		hpsa_wait_for_clear_event_notify_ack(h);
8442		scsi_unblock_requests(h->scsi_host);
8443	} else {
8444		/* Acknowledge controller notification events. */
8445		writel(h->events, &(h->cfgtable->clear_event_notify));
8446		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8447		hpsa_wait_for_clear_event_notify_ack(h);
8448	}
8449	return;
8450}
8451
8452/* Check a register on the controller to see if there are configuration
8453 * changes (added/changed/removed logical drives, etc.) which mean that
8454 * we should rescan the controller for devices.
8455 * Also check flag for driver-initiated rescan.
8456 */
8457static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8458{
8459	if (h->drv_req_rescan) {
8460		h->drv_req_rescan = 0;
8461		return 1;
8462	}
8463
8464	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8465		return 0;
8466
8467	h->events = readl(&(h->cfgtable->event_notify));
8468	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8469}
8470
8471/*
8472 * Check if any of the offline devices have become ready
8473 */
8474static int hpsa_offline_devices_ready(struct ctlr_info *h)
8475{
8476	unsigned long flags;
8477	struct offline_device_entry *d;
8478	struct list_head *this, *tmp;
8479
8480	spin_lock_irqsave(&h->offline_device_lock, flags);
8481	list_for_each_safe(this, tmp, &h->offline_device_list) {
8482		d = list_entry(this, struct offline_device_entry,
8483				offline_list);
8484		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8485		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8486			spin_lock_irqsave(&h->offline_device_lock, flags);
8487			list_del(&d->offline_list);
8488			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8489			return 1;
8490		}
8491		spin_lock_irqsave(&h->offline_device_lock, flags);
8492	}
8493	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8494	return 0;
8495}
8496
8497static int hpsa_luns_changed(struct ctlr_info *h)
8498{
8499	int rc = 1; /* assume there are changes */
8500	struct ReportLUNdata *logdev = NULL;
8501
8502	/* if we can't find out if lun data has changed,
8503	 * assume that it has.
8504	 */
8505
8506	if (!h->lastlogicals)
8507		return rc;
8508
8509	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8510	if (!logdev)
8511		return rc;
8512
8513	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8514		dev_warn(&h->pdev->dev,
8515			"report luns failed, can't track lun changes.\n");
8516		goto out;
8517	}
8518	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8519		dev_info(&h->pdev->dev,
8520			"Lun changes detected.\n");
8521		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8522		goto out;
8523	} else
8524		rc = 0; /* no changes detected. */
8525out:
8526	kfree(logdev);
8527	return rc;
8528}
8529
8530static void hpsa_perform_rescan(struct ctlr_info *h)
8531{
8532	struct Scsi_Host *sh = NULL;
8533	unsigned long flags;
8534
8535	/*
8536	 * Do the scan after the reset
8537	 */
8538	spin_lock_irqsave(&h->reset_lock, flags);
8539	if (h->reset_in_progress) {
8540		h->drv_req_rescan = 1;
8541		spin_unlock_irqrestore(&h->reset_lock, flags);
8542		return;
8543	}
8544	spin_unlock_irqrestore(&h->reset_lock, flags);
8545
8546	sh = scsi_host_get(h->scsi_host);
8547	if (sh != NULL) {
8548		hpsa_scan_start(sh);
8549		scsi_host_put(sh);
8550		h->drv_req_rescan = 0;
8551	}
8552}
8553
8554/*
8555 * watch for controller events
8556 */
8557static void hpsa_event_monitor_worker(struct work_struct *work)
8558{
8559	struct ctlr_info *h = container_of(to_delayed_work(work),
8560					struct ctlr_info, event_monitor_work);
8561	unsigned long flags;
8562
8563	spin_lock_irqsave(&h->lock, flags);
8564	if (h->remove_in_progress) {
8565		spin_unlock_irqrestore(&h->lock, flags);
8566		return;
8567	}
8568	spin_unlock_irqrestore(&h->lock, flags);
8569
8570	if (hpsa_ctlr_needs_rescan(h)) {
8571		hpsa_ack_ctlr_events(h);
8572		hpsa_perform_rescan(h);
8573	}
8574
8575	spin_lock_irqsave(&h->lock, flags);
8576	if (!h->remove_in_progress)
8577		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8578				HPSA_EVENT_MONITOR_INTERVAL);
8579	spin_unlock_irqrestore(&h->lock, flags);
8580}
8581
8582static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8583{
8584	unsigned long flags;
8585	struct ctlr_info *h = container_of(to_delayed_work(work),
8586					struct ctlr_info, rescan_ctlr_work);
8587
8588	spin_lock_irqsave(&h->lock, flags);
8589	if (h->remove_in_progress) {
8590		spin_unlock_irqrestore(&h->lock, flags);
8591		return;
8592	}
8593	spin_unlock_irqrestore(&h->lock, flags);
8594
8595	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8596		hpsa_perform_rescan(h);
8597	} else if (h->discovery_polling) {
8598		if (hpsa_luns_changed(h)) {
8599			dev_info(&h->pdev->dev,
8600				"driver discovery polling rescan.\n");
8601			hpsa_perform_rescan(h);
8602		}
8603	}
8604	spin_lock_irqsave(&h->lock, flags);
8605	if (!h->remove_in_progress)
8606		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8607				h->heartbeat_sample_interval);
8608	spin_unlock_irqrestore(&h->lock, flags);
8609}
8610
8611static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8612{
8613	unsigned long flags;
8614	struct ctlr_info *h = container_of(to_delayed_work(work),
8615					struct ctlr_info, monitor_ctlr_work);
8616
8617	detect_controller_lockup(h);
8618	if (lockup_detected(h))
8619		return;
8620
8621	spin_lock_irqsave(&h->lock, flags);
8622	if (!h->remove_in_progress)
8623		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8624				h->heartbeat_sample_interval);
8625	spin_unlock_irqrestore(&h->lock, flags);
8626}
8627
8628static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8629						char *name)
8630{
8631	struct workqueue_struct *wq = NULL;
8632
8633	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8634	if (!wq)
8635		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8636
8637	return wq;
8638}
8639
8640static void hpda_free_ctlr_info(struct ctlr_info *h)
8641{
8642	kfree(h->reply_map);
8643	kfree(h);
8644}
8645
8646static struct ctlr_info *hpda_alloc_ctlr_info(void)
8647{
8648	struct ctlr_info *h;
8649
8650	h = kzalloc(sizeof(*h), GFP_KERNEL);
8651	if (!h)
8652		return NULL;
8653
8654	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8655	if (!h->reply_map) {
8656		kfree(h);
8657		return NULL;
8658	}
8659	return h;
8660}
8661
8662static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8663{
8664	int rc;
8665	struct ctlr_info *h;
8666	int try_soft_reset = 0;
8667	unsigned long flags;
8668	u32 board_id;
8669
8670	if (number_of_controllers == 0)
8671		printk(KERN_INFO DRIVER_NAME "\n");
8672
8673	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8674	if (rc < 0) {
8675		dev_warn(&pdev->dev, "Board ID not found\n");
8676		return rc;
8677	}
8678
8679	rc = hpsa_init_reset_devices(pdev, board_id);
8680	if (rc) {
8681		if (rc != -ENOTSUPP)
8682			return rc;
8683		/* If the reset fails in a particular way (it has no way to do
8684		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8685		 * a soft reset once we get the controller configured up to the
8686		 * point that it can accept a command.
8687		 */
8688		try_soft_reset = 1;
8689		rc = 0;
8690	}
8691
8692reinit_after_soft_reset:
8693
8694	/* Command structures must be aligned on a 32-byte boundary because
8695	 * the 5 lower bits of the address are used by the hardware. and by
8696	 * the driver.  See comments in hpsa.h for more info.
8697	 */
8698	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8699	h = hpda_alloc_ctlr_info();
8700	if (!h) {
8701		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8702		return -ENOMEM;
8703	}
8704
8705	h->pdev = pdev;
8706
8707	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8708	INIT_LIST_HEAD(&h->offline_device_list);
8709	spin_lock_init(&h->lock);
8710	spin_lock_init(&h->offline_device_lock);
8711	spin_lock_init(&h->scan_lock);
8712	spin_lock_init(&h->reset_lock);
8713	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8714
8715	/* Allocate and clear per-cpu variable lockup_detected */
8716	h->lockup_detected = alloc_percpu(u32);
8717	if (!h->lockup_detected) {
8718		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8719		rc = -ENOMEM;
8720		goto clean1;	/* aer/h */
8721	}
8722	set_lockup_detected_for_all_cpus(h, 0);
8723
8724	rc = hpsa_pci_init(h);
8725	if (rc)
8726		goto clean2;	/* lu, aer/h */
8727
8728	/* relies on h-> settings made by hpsa_pci_init, including
8729	 * interrupt_mode h->intr */
8730	rc = hpsa_scsi_host_alloc(h);
8731	if (rc)
8732		goto clean2_5;	/* pci, lu, aer/h */
8733
8734	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8735	h->ctlr = number_of_controllers;
8736	number_of_controllers++;
8737
8738	/* configure PCI DMA stuff */
8739	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8740	if (rc != 0) {
8741		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8742		if (rc != 0) {
8743			dev_err(&pdev->dev, "no suitable DMA available\n");
8744			goto clean3;	/* shost, pci, lu, aer/h */
8745		}
8746	}
8747
8748	/* make sure the board interrupts are off */
8749	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8750
8751	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8752	if (rc)
8753		goto clean3;	/* shost, pci, lu, aer/h */
8754	rc = hpsa_alloc_cmd_pool(h);
8755	if (rc)
8756		goto clean4;	/* irq, shost, pci, lu, aer/h */
8757	rc = hpsa_alloc_sg_chain_blocks(h);
8758	if (rc)
8759		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8760	init_waitqueue_head(&h->scan_wait_queue);
8761	init_waitqueue_head(&h->event_sync_wait_queue);
8762	mutex_init(&h->reset_mutex);
8763	h->scan_finished = 1; /* no scan currently in progress */
8764	h->scan_waiting = 0;
8765
8766	pci_set_drvdata(pdev, h);
8767	h->ndevices = 0;
8768
8769	spin_lock_init(&h->devlock);
8770	rc = hpsa_put_ctlr_into_performant_mode(h);
8771	if (rc)
8772		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8773
8774	/* create the resubmit workqueue */
8775	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8776	if (!h->rescan_ctlr_wq) {
8777		rc = -ENOMEM;
8778		goto clean7;
8779	}
8780
8781	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8782	if (!h->resubmit_wq) {
8783		rc = -ENOMEM;
8784		goto clean7;	/* aer/h */
8785	}
8786
8787	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8788	if (!h->monitor_ctlr_wq) {
8789		rc = -ENOMEM;
8790		goto clean7;
8791	}
8792
8793	/*
8794	 * At this point, the controller is ready to take commands.
8795	 * Now, if reset_devices and the hard reset didn't work, try
8796	 * the soft reset and see if that works.
8797	 */
8798	if (try_soft_reset) {
8799
8800		/* This is kind of gross.  We may or may not get a completion
8801		 * from the soft reset command, and if we do, then the value
8802		 * from the fifo may or may not be valid.  So, we wait 10 secs
8803		 * after the reset throwing away any completions we get during
8804		 * that time.  Unregister the interrupt handler and register
8805		 * fake ones to scoop up any residual completions.
8806		 */
8807		spin_lock_irqsave(&h->lock, flags);
8808		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8809		spin_unlock_irqrestore(&h->lock, flags);
8810		hpsa_free_irqs(h);
8811		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8812					hpsa_intx_discard_completions);
8813		if (rc) {
8814			dev_warn(&h->pdev->dev,
8815				"Failed to request_irq after soft reset.\n");
8816			/*
8817			 * cannot goto clean7 or free_irqs will be called
8818			 * again. Instead, do its work
8819			 */
8820			hpsa_free_performant_mode(h);	/* clean7 */
8821			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8822			hpsa_free_cmd_pool(h);		/* clean5 */
8823			/*
8824			 * skip hpsa_free_irqs(h) clean4 since that
8825			 * was just called before request_irqs failed
8826			 */
8827			goto clean3;
8828		}
8829
8830		rc = hpsa_kdump_soft_reset(h);
8831		if (rc)
8832			/* Neither hard nor soft reset worked, we're hosed. */
8833			goto clean7;
8834
8835		dev_info(&h->pdev->dev, "Board READY.\n");
8836		dev_info(&h->pdev->dev,
8837			"Waiting for stale completions to drain.\n");
8838		h->access.set_intr_mask(h, HPSA_INTR_ON);
8839		msleep(10000);
8840		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8841
8842		rc = controller_reset_failed(h->cfgtable);
8843		if (rc)
8844			dev_info(&h->pdev->dev,
8845				"Soft reset appears to have failed.\n");
8846
8847		/* since the controller's reset, we have to go back and re-init
8848		 * everything.  Easiest to just forget what we've done and do it
8849		 * all over again.
8850		 */
8851		hpsa_undo_allocations_after_kdump_soft_reset(h);
8852		try_soft_reset = 0;
8853		if (rc)
8854			/* don't goto clean, we already unallocated */
8855			return -ENODEV;
8856
8857		goto reinit_after_soft_reset;
8858	}
8859
8860	/* Enable Accelerated IO path at driver layer */
8861	h->acciopath_status = 1;
8862	/* Disable discovery polling.*/
8863	h->discovery_polling = 0;
8864
8865
8866	/* Turn the interrupts on so we can service requests */
8867	h->access.set_intr_mask(h, HPSA_INTR_ON);
8868
8869	hpsa_hba_inquiry(h);
8870
8871	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8872	if (!h->lastlogicals)
8873		dev_info(&h->pdev->dev,
8874			"Can't track change to report lun data\n");
8875
8876	/* hook into SCSI subsystem */
8877	rc = hpsa_scsi_add_host(h);
8878	if (rc)
8879		goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8880
8881	/* Monitor the controller for firmware lockups */
8882	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8883	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8884	schedule_delayed_work(&h->monitor_ctlr_work,
8885				h->heartbeat_sample_interval);
8886	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8887	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8888				h->heartbeat_sample_interval);
8889	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8890	schedule_delayed_work(&h->event_monitor_work,
8891				HPSA_EVENT_MONITOR_INTERVAL);
8892	return 0;
8893
8894clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8895	kfree(h->lastlogicals);
8896clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8897	hpsa_free_performant_mode(h);
8898	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8899clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8900	hpsa_free_sg_chain_blocks(h);
8901clean5: /* cmd, irq, shost, pci, lu, aer/h */
8902	hpsa_free_cmd_pool(h);
8903clean4: /* irq, shost, pci, lu, aer/h */
8904	hpsa_free_irqs(h);
8905clean3: /* shost, pci, lu, aer/h */
8906	scsi_host_put(h->scsi_host);
8907	h->scsi_host = NULL;
8908clean2_5: /* pci, lu, aer/h */
8909	hpsa_free_pci_init(h);
8910clean2: /* lu, aer/h */
8911	if (h->lockup_detected) {
8912		free_percpu(h->lockup_detected);
8913		h->lockup_detected = NULL;
8914	}
8915clean1:	/* wq/aer/h */
8916	if (h->resubmit_wq) {
8917		destroy_workqueue(h->resubmit_wq);
8918		h->resubmit_wq = NULL;
8919	}
8920	if (h->rescan_ctlr_wq) {
8921		destroy_workqueue(h->rescan_ctlr_wq);
8922		h->rescan_ctlr_wq = NULL;
8923	}
8924	if (h->monitor_ctlr_wq) {
8925		destroy_workqueue(h->monitor_ctlr_wq);
8926		h->monitor_ctlr_wq = NULL;
8927	}
8928	hpda_free_ctlr_info(h);
8929	return rc;
8930}
8931
8932static void hpsa_flush_cache(struct ctlr_info *h)
8933{
8934	char *flush_buf;
8935	struct CommandList *c;
8936	int rc;
8937
8938	if (unlikely(lockup_detected(h)))
8939		return;
8940	flush_buf = kzalloc(4, GFP_KERNEL);
8941	if (!flush_buf)
8942		return;
8943
8944	c = cmd_alloc(h);
8945
8946	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8947		RAID_CTLR_LUNID, TYPE_CMD)) {
8948		goto out;
8949	}
8950	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8951			DEFAULT_TIMEOUT);
8952	if (rc)
8953		goto out;
8954	if (c->err_info->CommandStatus != 0)
8955out:
8956		dev_warn(&h->pdev->dev,
8957			"error flushing cache on controller\n");
8958	cmd_free(h, c);
8959	kfree(flush_buf);
8960}
8961
8962/* Make controller gather fresh report lun data each time we
8963 * send down a report luns request
8964 */
8965static void hpsa_disable_rld_caching(struct ctlr_info *h)
8966{
8967	u32 *options;
8968	struct CommandList *c;
8969	int rc;
8970
8971	/* Don't bother trying to set diag options if locked up */
8972	if (unlikely(h->lockup_detected))
8973		return;
8974
8975	options = kzalloc(sizeof(*options), GFP_KERNEL);
8976	if (!options)
8977		return;
8978
8979	c = cmd_alloc(h);
8980
8981	/* first, get the current diag options settings */
8982	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8983		RAID_CTLR_LUNID, TYPE_CMD))
8984		goto errout;
8985
8986	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8987			NO_TIMEOUT);
8988	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8989		goto errout;
8990
8991	/* Now, set the bit for disabling the RLD caching */
8992	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8993
8994	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8995		RAID_CTLR_LUNID, TYPE_CMD))
8996		goto errout;
8997
8998	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8999			NO_TIMEOUT);
9000	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9001		goto errout;
9002
9003	/* Now verify that it got set: */
9004	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9005		RAID_CTLR_LUNID, TYPE_CMD))
9006		goto errout;
9007
9008	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
9009			NO_TIMEOUT);
9010	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9011		goto errout;
9012
9013	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9014		goto out;
9015
9016errout:
9017	dev_err(&h->pdev->dev,
9018			"Error: failed to disable report lun data caching.\n");
9019out:
9020	cmd_free(h, c);
9021	kfree(options);
9022}
9023
9024static void __hpsa_shutdown(struct pci_dev *pdev)
9025{
9026	struct ctlr_info *h;
9027
9028	h = pci_get_drvdata(pdev);
9029	/* Turn board interrupts off  and send the flush cache command
9030	 * sendcmd will turn off interrupt, and send the flush...
9031	 * To write all data in the battery backed cache to disks
9032	 */
9033	hpsa_flush_cache(h);
9034	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9035	hpsa_free_irqs(h);			/* init_one 4 */
9036	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9037}
9038
9039static void hpsa_shutdown(struct pci_dev *pdev)
9040{
9041	__hpsa_shutdown(pdev);
9042	pci_disable_device(pdev);
9043}
9044
9045static void hpsa_free_device_info(struct ctlr_info *h)
9046{
9047	int i;
9048
9049	for (i = 0; i < h->ndevices; i++) {
9050		kfree(h->dev[i]);
9051		h->dev[i] = NULL;
9052	}
9053}
9054
9055static void hpsa_remove_one(struct pci_dev *pdev)
9056{
9057	struct ctlr_info *h;
9058	unsigned long flags;
9059
9060	if (pci_get_drvdata(pdev) == NULL) {
9061		dev_err(&pdev->dev, "unable to remove device\n");
9062		return;
9063	}
9064	h = pci_get_drvdata(pdev);
9065
9066	/* Get rid of any controller monitoring work items */
9067	spin_lock_irqsave(&h->lock, flags);
9068	h->remove_in_progress = 1;
9069	spin_unlock_irqrestore(&h->lock, flags);
9070	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9071	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9072	cancel_delayed_work_sync(&h->event_monitor_work);
9073	destroy_workqueue(h->rescan_ctlr_wq);
9074	destroy_workqueue(h->resubmit_wq);
9075	destroy_workqueue(h->monitor_ctlr_wq);
9076
9077	hpsa_delete_sas_host(h);
9078
9079	/*
9080	 * Call before disabling interrupts.
9081	 * scsi_remove_host can trigger I/O operations especially
9082	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9083	 * operations which cannot complete and will hang the system.
9084	 */
9085	if (h->scsi_host)
9086		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9087	/* includes hpsa_free_irqs - init_one 4 */
9088	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9089	__hpsa_shutdown(pdev);
9090
9091	hpsa_free_device_info(h);		/* scan */
9092
9093	kfree(h->hba_inquiry_data);			/* init_one 10 */
9094	h->hba_inquiry_data = NULL;			/* init_one 10 */
9095	hpsa_free_ioaccel2_sg_chain_blocks(h);
9096	hpsa_free_performant_mode(h);			/* init_one 7 */
9097	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9098	hpsa_free_cmd_pool(h);				/* init_one 5 */
9099	kfree(h->lastlogicals);
9100
9101	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9102
9103	scsi_host_put(h->scsi_host);			/* init_one 3 */
9104	h->scsi_host = NULL;				/* init_one 3 */
9105
9106	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9107	hpsa_free_pci_init(h);				/* init_one 2.5 */
9108
9109	free_percpu(h->lockup_detected);		/* init_one 2 */
9110	h->lockup_detected = NULL;			/* init_one 2 */
9111
9112	hpda_free_ctlr_info(h);				/* init_one 1 */
9113}
9114
9115static int __maybe_unused hpsa_suspend(
9116	__attribute__((unused)) struct device *dev)
9117{
9118	return -ENOSYS;
9119}
9120
9121static int __maybe_unused hpsa_resume
9122	(__attribute__((unused)) struct device *dev)
9123{
9124	return -ENOSYS;
9125}
9126
9127static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9128
9129static struct pci_driver hpsa_pci_driver = {
9130	.name = HPSA,
9131	.probe = hpsa_init_one,
9132	.remove = hpsa_remove_one,
9133	.id_table = hpsa_pci_device_id,	/* id_table */
9134	.shutdown = hpsa_shutdown,
9135	.driver.pm = &hpsa_pm_ops,
9136};
9137
9138/* Fill in bucket_map[], given nsgs (the max number of
9139 * scatter gather elements supported) and bucket[],
9140 * which is an array of 8 integers.  The bucket[] array
9141 * contains 8 different DMA transfer sizes (in 16
9142 * byte increments) which the controller uses to fetch
9143 * commands.  This function fills in bucket_map[], which
9144 * maps a given number of scatter gather elements to one of
9145 * the 8 DMA transfer sizes.  The point of it is to allow the
9146 * controller to only do as much DMA as needed to fetch the
9147 * command, with the DMA transfer size encoded in the lower
9148 * bits of the command address.
9149 */
9150static void  calc_bucket_map(int bucket[], int num_buckets,
9151	int nsgs, int min_blocks, u32 *bucket_map)
9152{
9153	int i, j, b, size;
9154
9155	/* Note, bucket_map must have nsgs+1 entries. */
9156	for (i = 0; i <= nsgs; i++) {
9157		/* Compute size of a command with i SG entries */
9158		size = i + min_blocks;
9159		b = num_buckets; /* Assume the biggest bucket */
9160		/* Find the bucket that is just big enough */
9161		for (j = 0; j < num_buckets; j++) {
9162			if (bucket[j] >= size) {
9163				b = j;
9164				break;
9165			}
9166		}
9167		/* for a command with i SG entries, use bucket b. */
9168		bucket_map[i] = b;
9169	}
9170}
9171
9172/*
9173 * return -ENODEV on err, 0 on success (or no action)
9174 * allocates numerous items that must be freed later
9175 */
9176static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9177{
9178	int i;
9179	unsigned long register_value;
9180	unsigned long transMethod = CFGTBL_Trans_Performant |
9181			(trans_support & CFGTBL_Trans_use_short_tags) |
9182				CFGTBL_Trans_enable_directed_msix |
9183			(trans_support & (CFGTBL_Trans_io_accel1 |
9184				CFGTBL_Trans_io_accel2));
9185	struct access_method access = SA5_performant_access;
9186
9187	/* This is a bit complicated.  There are 8 registers on
9188	 * the controller which we write to to tell it 8 different
9189	 * sizes of commands which there may be.  It's a way of
9190	 * reducing the DMA done to fetch each command.  Encoded into
9191	 * each command's tag are 3 bits which communicate to the controller
9192	 * which of the eight sizes that command fits within.  The size of
9193	 * each command depends on how many scatter gather entries there are.
9194	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9195	 * with the number of 16-byte blocks a command of that size requires.
9196	 * The smallest command possible requires 5 such 16 byte blocks.
9197	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9198	 * blocks.  Note, this only extends to the SG entries contained
9199	 * within the command block, and does not extend to chained blocks
9200	 * of SG elements.   bft[] contains the eight values we write to
9201	 * the registers.  They are not evenly distributed, but have more
9202	 * sizes for small commands, and fewer sizes for larger commands.
9203	 */
9204	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9205#define MIN_IOACCEL2_BFT_ENTRY 5
9206#define HPSA_IOACCEL2_HEADER_SZ 4
9207	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9208			13, 14, 15, 16, 17, 18, 19,
9209			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9210	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9211	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9212	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9213				 16 * MIN_IOACCEL2_BFT_ENTRY);
9214	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9215	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9216	/*  5 = 1 s/g entry or 4k
9217	 *  6 = 2 s/g entry or 8k
9218	 *  8 = 4 s/g entry or 16k
9219	 * 10 = 6 s/g entry or 24k
9220	 */
9221
9222	/* If the controller supports either ioaccel method then
9223	 * we can also use the RAID stack submit path that does not
9224	 * perform the superfluous readl() after each command submission.
9225	 */
9226	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9227		access = SA5_performant_access_no_read;
9228
9229	/* Controller spec: zero out this buffer. */
9230	for (i = 0; i < h->nreply_queues; i++)
9231		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9232
9233	bft[7] = SG_ENTRIES_IN_CMD + 4;
9234	calc_bucket_map(bft, ARRAY_SIZE(bft),
9235				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9236	for (i = 0; i < 8; i++)
9237		writel(bft[i], &h->transtable->BlockFetch[i]);
9238
9239	/* size of controller ring buffer */
9240	writel(h->max_commands, &h->transtable->RepQSize);
9241	writel(h->nreply_queues, &h->transtable->RepQCount);
9242	writel(0, &h->transtable->RepQCtrAddrLow32);
9243	writel(0, &h->transtable->RepQCtrAddrHigh32);
9244
9245	for (i = 0; i < h->nreply_queues; i++) {
9246		writel(0, &h->transtable->RepQAddr[i].upper);
9247		writel(h->reply_queue[i].busaddr,
9248			&h->transtable->RepQAddr[i].lower);
9249	}
9250
9251	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9252	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9253	/*
9254	 * enable outbound interrupt coalescing in accelerator mode;
9255	 */
9256	if (trans_support & CFGTBL_Trans_io_accel1) {
9257		access = SA5_ioaccel_mode1_access;
9258		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9259		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9260	} else
9261		if (trans_support & CFGTBL_Trans_io_accel2)
9262			access = SA5_ioaccel_mode2_access;
9263	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9264	if (hpsa_wait_for_mode_change_ack(h)) {
9265		dev_err(&h->pdev->dev,
9266			"performant mode problem - doorbell timeout\n");
9267		return -ENODEV;
9268	}
9269	register_value = readl(&(h->cfgtable->TransportActive));
9270	if (!(register_value & CFGTBL_Trans_Performant)) {
9271		dev_err(&h->pdev->dev,
9272			"performant mode problem - transport not active\n");
9273		return -ENODEV;
9274	}
9275	/* Change the access methods to the performant access methods */
9276	h->access = access;
9277	h->transMethod = transMethod;
9278
9279	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9280		(trans_support & CFGTBL_Trans_io_accel2)))
9281		return 0;
9282
9283	if (trans_support & CFGTBL_Trans_io_accel1) {
9284		/* Set up I/O accelerator mode */
9285		for (i = 0; i < h->nreply_queues; i++) {
9286			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9287			h->reply_queue[i].current_entry =
9288				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9289		}
9290		bft[7] = h->ioaccel_maxsg + 8;
9291		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9292				h->ioaccel1_blockFetchTable);
9293
9294		/* initialize all reply queue entries to unused */
9295		for (i = 0; i < h->nreply_queues; i++)
9296			memset(h->reply_queue[i].head,
9297				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9298				h->reply_queue_size);
9299
9300		/* set all the constant fields in the accelerator command
9301		 * frames once at init time to save CPU cycles later.
9302		 */
9303		for (i = 0; i < h->nr_cmds; i++) {
9304			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9305
9306			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9307			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9308					(i * sizeof(struct ErrorInfo)));
9309			cp->err_info_len = sizeof(struct ErrorInfo);
9310			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9311			cp->host_context_flags =
9312				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9313			cp->timeout_sec = 0;
9314			cp->ReplyQueue = 0;
9315			cp->tag =
9316				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9317			cp->host_addr =
9318				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9319					(i * sizeof(struct io_accel1_cmd)));
9320		}
9321	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9322		u64 cfg_offset, cfg_base_addr_index;
9323		u32 bft2_offset, cfg_base_addr;
9324
9325		hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9326				    &cfg_base_addr_index, &cfg_offset);
9327		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9328		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9329		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9330				4, h->ioaccel2_blockFetchTable);
9331		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9332		BUILD_BUG_ON(offsetof(struct CfgTable,
9333				io_accel_request_size_offset) != 0xb8);
9334		h->ioaccel2_bft2_regs =
9335			remap_pci_mem(pci_resource_start(h->pdev,
9336					cfg_base_addr_index) +
9337					cfg_offset + bft2_offset,
9338					ARRAY_SIZE(bft2) *
9339					sizeof(*h->ioaccel2_bft2_regs));
9340		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9341			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9342	}
9343	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9344	if (hpsa_wait_for_mode_change_ack(h)) {
9345		dev_err(&h->pdev->dev,
9346			"performant mode problem - enabling ioaccel mode\n");
9347		return -ENODEV;
9348	}
9349	return 0;
9350}
9351
9352/* Free ioaccel1 mode command blocks and block fetch table */
9353static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9354{
9355	if (h->ioaccel_cmd_pool) {
9356		dma_free_coherent(&h->pdev->dev,
9357				  h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9358				  h->ioaccel_cmd_pool,
9359				  h->ioaccel_cmd_pool_dhandle);
9360		h->ioaccel_cmd_pool = NULL;
9361		h->ioaccel_cmd_pool_dhandle = 0;
9362	}
9363	kfree(h->ioaccel1_blockFetchTable);
9364	h->ioaccel1_blockFetchTable = NULL;
9365}
9366
9367/* Allocate ioaccel1 mode command blocks and block fetch table */
9368static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9369{
9370	h->ioaccel_maxsg =
9371		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9372	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9373		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9374
9375	/* Command structures must be aligned on a 128-byte boundary
9376	 * because the 7 lower bits of the address are used by the
9377	 * hardware.
9378	 */
9379	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9380			IOACCEL1_COMMANDLIST_ALIGNMENT);
9381	h->ioaccel_cmd_pool =
9382		dma_alloc_coherent(&h->pdev->dev,
9383			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9384			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9385
9386	h->ioaccel1_blockFetchTable =
9387		kmalloc(((h->ioaccel_maxsg + 1) *
9388				sizeof(u32)), GFP_KERNEL);
9389
9390	if ((h->ioaccel_cmd_pool == NULL) ||
9391		(h->ioaccel1_blockFetchTable == NULL))
9392		goto clean_up;
9393
9394	memset(h->ioaccel_cmd_pool, 0,
9395		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9396	return 0;
9397
9398clean_up:
9399	hpsa_free_ioaccel1_cmd_and_bft(h);
9400	return -ENOMEM;
9401}
9402
9403/* Free ioaccel2 mode command blocks and block fetch table */
9404static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9405{
9406	hpsa_free_ioaccel2_sg_chain_blocks(h);
9407
9408	if (h->ioaccel2_cmd_pool) {
9409		dma_free_coherent(&h->pdev->dev,
9410				  h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9411				  h->ioaccel2_cmd_pool,
9412				  h->ioaccel2_cmd_pool_dhandle);
9413		h->ioaccel2_cmd_pool = NULL;
9414		h->ioaccel2_cmd_pool_dhandle = 0;
9415	}
9416	kfree(h->ioaccel2_blockFetchTable);
9417	h->ioaccel2_blockFetchTable = NULL;
9418}
9419
9420/* Allocate ioaccel2 mode command blocks and block fetch table */
9421static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9422{
9423	int rc;
9424
9425	/* Allocate ioaccel2 mode command blocks and block fetch table */
9426
9427	h->ioaccel_maxsg =
9428		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9429	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9430		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9431
9432	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9433			IOACCEL2_COMMANDLIST_ALIGNMENT);
9434	h->ioaccel2_cmd_pool =
9435		dma_alloc_coherent(&h->pdev->dev,
9436			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9437			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9438
9439	h->ioaccel2_blockFetchTable =
9440		kmalloc(((h->ioaccel_maxsg + 1) *
9441				sizeof(u32)), GFP_KERNEL);
9442
9443	if ((h->ioaccel2_cmd_pool == NULL) ||
9444		(h->ioaccel2_blockFetchTable == NULL)) {
9445		rc = -ENOMEM;
9446		goto clean_up;
9447	}
9448
9449	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9450	if (rc)
9451		goto clean_up;
9452
9453	memset(h->ioaccel2_cmd_pool, 0,
9454		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9455	return 0;
9456
9457clean_up:
9458	hpsa_free_ioaccel2_cmd_and_bft(h);
9459	return rc;
9460}
9461
9462/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9463static void hpsa_free_performant_mode(struct ctlr_info *h)
9464{
9465	kfree(h->blockFetchTable);
9466	h->blockFetchTable = NULL;
9467	hpsa_free_reply_queues(h);
9468	hpsa_free_ioaccel1_cmd_and_bft(h);
9469	hpsa_free_ioaccel2_cmd_and_bft(h);
9470}
9471
9472/* return -ENODEV on error, 0 on success (or no action)
9473 * allocates numerous items that must be freed later
9474 */
9475static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9476{
9477	u32 trans_support;
9478	int i, rc;
9479
9480	if (hpsa_simple_mode)
9481		return 0;
9482
9483	trans_support = readl(&(h->cfgtable->TransportSupport));
9484	if (!(trans_support & PERFORMANT_MODE))
9485		return 0;
9486
9487	/* Check for I/O accelerator mode support */
9488	if (trans_support & CFGTBL_Trans_io_accel1) {
9489		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9490		if (rc)
9491			return rc;
9492	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9493		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9494		if (rc)
9495			return rc;
9496	}
9497
9498	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9499	hpsa_get_max_perf_mode_cmds(h);
9500	/* Performant mode ring buffer and supporting data structures */
9501	h->reply_queue_size = h->max_commands * sizeof(u64);
9502
9503	for (i = 0; i < h->nreply_queues; i++) {
9504		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9505						h->reply_queue_size,
9506						&h->reply_queue[i].busaddr,
9507						GFP_KERNEL);
9508		if (!h->reply_queue[i].head) {
9509			rc = -ENOMEM;
9510			goto clean1;	/* rq, ioaccel */
9511		}
9512		h->reply_queue[i].size = h->max_commands;
9513		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9514		h->reply_queue[i].current_entry = 0;
9515	}
9516
9517	/* Need a block fetch table for performant mode */
9518	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9519				sizeof(u32)), GFP_KERNEL);
9520	if (!h->blockFetchTable) {
9521		rc = -ENOMEM;
9522		goto clean1;	/* rq, ioaccel */
9523	}
9524
9525	rc = hpsa_enter_performant_mode(h, trans_support);
9526	if (rc)
9527		goto clean2;	/* bft, rq, ioaccel */
9528	return 0;
9529
9530clean2:	/* bft, rq, ioaccel */
9531	kfree(h->blockFetchTable);
9532	h->blockFetchTable = NULL;
9533clean1:	/* rq, ioaccel */
9534	hpsa_free_reply_queues(h);
9535	hpsa_free_ioaccel1_cmd_and_bft(h);
9536	hpsa_free_ioaccel2_cmd_and_bft(h);
9537	return rc;
9538}
9539
9540static int is_accelerated_cmd(struct CommandList *c)
9541{
9542	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9543}
9544
9545static void hpsa_drain_accel_commands(struct ctlr_info *h)
9546{
9547	struct CommandList *c = NULL;
9548	int i, accel_cmds_out;
9549	int refcount;
9550
9551	do { /* wait for all outstanding ioaccel commands to drain out */
9552		accel_cmds_out = 0;
9553		for (i = 0; i < h->nr_cmds; i++) {
9554			c = h->cmd_pool + i;
9555			refcount = atomic_inc_return(&c->refcount);
9556			if (refcount > 1) /* Command is allocated */
9557				accel_cmds_out += is_accelerated_cmd(c);
9558			cmd_free(h, c);
9559		}
9560		if (accel_cmds_out <= 0)
9561			break;
9562		msleep(100);
9563	} while (1);
9564}
9565
9566static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9567				struct hpsa_sas_port *hpsa_sas_port)
9568{
9569	struct hpsa_sas_phy *hpsa_sas_phy;
9570	struct sas_phy *phy;
9571
9572	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9573	if (!hpsa_sas_phy)
9574		return NULL;
9575
9576	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9577		hpsa_sas_port->next_phy_index);
9578	if (!phy) {
9579		kfree(hpsa_sas_phy);
9580		return NULL;
9581	}
9582
9583	hpsa_sas_port->next_phy_index++;
9584	hpsa_sas_phy->phy = phy;
9585	hpsa_sas_phy->parent_port = hpsa_sas_port;
9586
9587	return hpsa_sas_phy;
9588}
9589
9590static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9591{
9592	struct sas_phy *phy = hpsa_sas_phy->phy;
9593
9594	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9595	if (hpsa_sas_phy->added_to_port)
9596		list_del(&hpsa_sas_phy->phy_list_entry);
9597	sas_phy_delete(phy);
9598	kfree(hpsa_sas_phy);
9599}
9600
9601static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9602{
9603	int rc;
9604	struct hpsa_sas_port *hpsa_sas_port;
9605	struct sas_phy *phy;
9606	struct sas_identify *identify;
9607
9608	hpsa_sas_port = hpsa_sas_phy->parent_port;
9609	phy = hpsa_sas_phy->phy;
9610
9611	identify = &phy->identify;
9612	memset(identify, 0, sizeof(*identify));
9613	identify->sas_address = hpsa_sas_port->sas_address;
9614	identify->device_type = SAS_END_DEVICE;
9615	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9616	identify->target_port_protocols = SAS_PROTOCOL_STP;
9617	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9618	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9619	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9620	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9621	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9622
9623	rc = sas_phy_add(hpsa_sas_phy->phy);
9624	if (rc)
9625		return rc;
9626
9627	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9628	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9629			&hpsa_sas_port->phy_list_head);
9630	hpsa_sas_phy->added_to_port = true;
9631
9632	return 0;
9633}
9634
9635static int
9636	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9637				struct sas_rphy *rphy)
9638{
9639	struct sas_identify *identify;
9640
9641	identify = &rphy->identify;
9642	identify->sas_address = hpsa_sas_port->sas_address;
9643	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9644	identify->target_port_protocols = SAS_PROTOCOL_STP;
9645
9646	return sas_rphy_add(rphy);
9647}
9648
9649static struct hpsa_sas_port
9650	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9651				u64 sas_address)
9652{
9653	int rc;
9654	struct hpsa_sas_port *hpsa_sas_port;
9655	struct sas_port *port;
9656
9657	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9658	if (!hpsa_sas_port)
9659		return NULL;
9660
9661	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9662	hpsa_sas_port->parent_node = hpsa_sas_node;
9663
9664	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9665	if (!port)
9666		goto free_hpsa_port;
9667
9668	rc = sas_port_add(port);
9669	if (rc)
9670		goto free_sas_port;
9671
9672	hpsa_sas_port->port = port;
9673	hpsa_sas_port->sas_address = sas_address;
9674	list_add_tail(&hpsa_sas_port->port_list_entry,
9675			&hpsa_sas_node->port_list_head);
9676
9677	return hpsa_sas_port;
9678
9679free_sas_port:
9680	sas_port_free(port);
9681free_hpsa_port:
9682	kfree(hpsa_sas_port);
9683
9684	return NULL;
9685}
9686
9687static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9688{
9689	struct hpsa_sas_phy *hpsa_sas_phy;
9690	struct hpsa_sas_phy *next;
9691
9692	list_for_each_entry_safe(hpsa_sas_phy, next,
9693			&hpsa_sas_port->phy_list_head, phy_list_entry)
9694		hpsa_free_sas_phy(hpsa_sas_phy);
9695
9696	sas_port_delete(hpsa_sas_port->port);
9697	list_del(&hpsa_sas_port->port_list_entry);
9698	kfree(hpsa_sas_port);
9699}
9700
9701static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9702{
9703	struct hpsa_sas_node *hpsa_sas_node;
9704
9705	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9706	if (hpsa_sas_node) {
9707		hpsa_sas_node->parent_dev = parent_dev;
9708		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9709	}
9710
9711	return hpsa_sas_node;
9712}
9713
9714static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9715{
9716	struct hpsa_sas_port *hpsa_sas_port;
9717	struct hpsa_sas_port *next;
9718
9719	if (!hpsa_sas_node)
9720		return;
9721
9722	list_for_each_entry_safe(hpsa_sas_port, next,
9723			&hpsa_sas_node->port_list_head, port_list_entry)
9724		hpsa_free_sas_port(hpsa_sas_port);
9725
9726	kfree(hpsa_sas_node);
9727}
9728
9729static struct hpsa_scsi_dev_t
9730	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9731					struct sas_rphy *rphy)
9732{
9733	int i;
9734	struct hpsa_scsi_dev_t *device;
9735
9736	for (i = 0; i < h->ndevices; i++) {
9737		device = h->dev[i];
9738		if (!device->sas_port)
9739			continue;
9740		if (device->sas_port->rphy == rphy)
9741			return device;
9742	}
9743
9744	return NULL;
9745}
9746
9747static int hpsa_add_sas_host(struct ctlr_info *h)
9748{
9749	int rc;
9750	struct device *parent_dev;
9751	struct hpsa_sas_node *hpsa_sas_node;
9752	struct hpsa_sas_port *hpsa_sas_port;
9753	struct hpsa_sas_phy *hpsa_sas_phy;
9754
9755	parent_dev = &h->scsi_host->shost_dev;
9756
9757	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9758	if (!hpsa_sas_node)
9759		return -ENOMEM;
9760
9761	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9762	if (!hpsa_sas_port) {
9763		rc = -ENODEV;
9764		goto free_sas_node;
9765	}
9766
9767	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9768	if (!hpsa_sas_phy) {
9769		rc = -ENODEV;
9770		goto free_sas_port;
9771	}
9772
9773	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9774	if (rc)
9775		goto free_sas_phy;
9776
9777	h->sas_host = hpsa_sas_node;
9778
9779	return 0;
9780
9781free_sas_phy:
9782	sas_phy_free(hpsa_sas_phy->phy);
9783	kfree(hpsa_sas_phy);
9784free_sas_port:
9785	hpsa_free_sas_port(hpsa_sas_port);
9786free_sas_node:
9787	hpsa_free_sas_node(hpsa_sas_node);
9788
9789	return rc;
9790}
9791
9792static void hpsa_delete_sas_host(struct ctlr_info *h)
9793{
9794	hpsa_free_sas_node(h->sas_host);
9795}
9796
9797static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9798				struct hpsa_scsi_dev_t *device)
9799{
9800	int rc;
9801	struct hpsa_sas_port *hpsa_sas_port;
9802	struct sas_rphy *rphy;
9803
9804	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9805	if (!hpsa_sas_port)
9806		return -ENOMEM;
9807
9808	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9809	if (!rphy) {
9810		rc = -ENODEV;
9811		goto free_sas_port;
9812	}
9813
9814	hpsa_sas_port->rphy = rphy;
9815	device->sas_port = hpsa_sas_port;
9816
9817	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9818	if (rc)
9819		goto free_sas_rphy;
9820
9821	return 0;
9822
9823free_sas_rphy:
9824	sas_rphy_free(rphy);
9825free_sas_port:
9826	hpsa_free_sas_port(hpsa_sas_port);
9827	device->sas_port = NULL;
9828
9829	return rc;
9830}
9831
9832static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9833{
9834	if (device->sas_port) {
9835		hpsa_free_sas_port(device->sas_port);
9836		device->sas_port = NULL;
9837	}
9838}
9839
9840static int
9841hpsa_sas_get_linkerrors(struct sas_phy *phy)
9842{
9843	return 0;
9844}
9845
9846static int
9847hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9848{
9849	struct Scsi_Host *shost = phy_to_shost(rphy);
9850	struct ctlr_info *h;
9851	struct hpsa_scsi_dev_t *sd;
9852
9853	if (!shost)
9854		return -ENXIO;
9855
9856	h = shost_to_hba(shost);
9857
9858	if (!h)
9859		return -ENXIO;
9860
9861	sd = hpsa_find_device_by_sas_rphy(h, rphy);
9862	if (!sd)
9863		return -ENXIO;
9864
9865	*identifier = sd->eli;
9866
9867	return 0;
9868}
9869
9870static int
9871hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9872{
9873	return -ENXIO;
9874}
9875
9876static int
9877hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9878{
9879	return 0;
9880}
9881
9882static int
9883hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9884{
9885	return 0;
9886}
9887
9888static int
9889hpsa_sas_phy_setup(struct sas_phy *phy)
9890{
9891	return 0;
9892}
9893
9894static void
9895hpsa_sas_phy_release(struct sas_phy *phy)
9896{
9897}
9898
9899static int
9900hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9901{
9902	return -EINVAL;
9903}
9904
9905static struct sas_function_template hpsa_sas_transport_functions = {
9906	.get_linkerrors = hpsa_sas_get_linkerrors,
9907	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9908	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9909	.phy_reset = hpsa_sas_phy_reset,
9910	.phy_enable = hpsa_sas_phy_enable,
9911	.phy_setup = hpsa_sas_phy_setup,
9912	.phy_release = hpsa_sas_phy_release,
9913	.set_phy_speed = hpsa_sas_phy_speed,
9914};
9915
9916/*
9917 *  This is it.  Register the PCI driver information for the cards we control
9918 *  the OS will call our registered routines when it finds one of our cards.
9919 */
9920static int __init hpsa_init(void)
9921{
9922	int rc;
9923
9924	hpsa_sas_transport_template =
9925		sas_attach_transport(&hpsa_sas_transport_functions);
9926	if (!hpsa_sas_transport_template)
9927		return -ENODEV;
9928
9929	rc = pci_register_driver(&hpsa_pci_driver);
9930
9931	if (rc)
9932		sas_release_transport(hpsa_sas_transport_template);
9933
9934	return rc;
9935}
9936
9937static void __exit hpsa_cleanup(void)
9938{
9939	pci_unregister_driver(&hpsa_pci_driver);
9940	sas_release_transport(hpsa_sas_transport_template);
9941}
9942
9943static void __attribute__((unused)) verify_offsets(void)
9944{
9945#define VERIFY_OFFSET(member, offset) \
9946	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9947
9948	VERIFY_OFFSET(structure_size, 0);
9949	VERIFY_OFFSET(volume_blk_size, 4);
9950	VERIFY_OFFSET(volume_blk_cnt, 8);
9951	VERIFY_OFFSET(phys_blk_shift, 16);
9952	VERIFY_OFFSET(parity_rotation_shift, 17);
9953	VERIFY_OFFSET(strip_size, 18);
9954	VERIFY_OFFSET(disk_starting_blk, 20);
9955	VERIFY_OFFSET(disk_blk_cnt, 28);
9956	VERIFY_OFFSET(data_disks_per_row, 36);
9957	VERIFY_OFFSET(metadata_disks_per_row, 38);
9958	VERIFY_OFFSET(row_cnt, 40);
9959	VERIFY_OFFSET(layout_map_count, 42);
9960	VERIFY_OFFSET(flags, 44);
9961	VERIFY_OFFSET(dekindex, 46);
9962	/* VERIFY_OFFSET(reserved, 48 */
9963	VERIFY_OFFSET(data, 64);
9964
9965#undef VERIFY_OFFSET
9966
9967#define VERIFY_OFFSET(member, offset) \
9968	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9969
9970	VERIFY_OFFSET(IU_type, 0);
9971	VERIFY_OFFSET(direction, 1);
9972	VERIFY_OFFSET(reply_queue, 2);
9973	/* VERIFY_OFFSET(reserved1, 3);  */
9974	VERIFY_OFFSET(scsi_nexus, 4);
9975	VERIFY_OFFSET(Tag, 8);
9976	VERIFY_OFFSET(cdb, 16);
9977	VERIFY_OFFSET(cciss_lun, 32);
9978	VERIFY_OFFSET(data_len, 40);
9979	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9980	VERIFY_OFFSET(sg_count, 45);
9981	/* VERIFY_OFFSET(reserved3 */
9982	VERIFY_OFFSET(err_ptr, 48);
9983	VERIFY_OFFSET(err_len, 56);
9984	/* VERIFY_OFFSET(reserved4  */
9985	VERIFY_OFFSET(sg, 64);
9986
9987#undef VERIFY_OFFSET
9988
9989#define VERIFY_OFFSET(member, offset) \
9990	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9991
9992	VERIFY_OFFSET(dev_handle, 0x00);
9993	VERIFY_OFFSET(reserved1, 0x02);
9994	VERIFY_OFFSET(function, 0x03);
9995	VERIFY_OFFSET(reserved2, 0x04);
9996	VERIFY_OFFSET(err_info, 0x0C);
9997	VERIFY_OFFSET(reserved3, 0x10);
9998	VERIFY_OFFSET(err_info_len, 0x12);
9999	VERIFY_OFFSET(reserved4, 0x13);
10000	VERIFY_OFFSET(sgl_offset, 0x14);
10001	VERIFY_OFFSET(reserved5, 0x15);
10002	VERIFY_OFFSET(transfer_len, 0x1C);
10003	VERIFY_OFFSET(reserved6, 0x20);
10004	VERIFY_OFFSET(io_flags, 0x24);
10005	VERIFY_OFFSET(reserved7, 0x26);
10006	VERIFY_OFFSET(LUN, 0x34);
10007	VERIFY_OFFSET(control, 0x3C);
10008	VERIFY_OFFSET(CDB, 0x40);
10009	VERIFY_OFFSET(reserved8, 0x50);
10010	VERIFY_OFFSET(host_context_flags, 0x60);
10011	VERIFY_OFFSET(timeout_sec, 0x62);
10012	VERIFY_OFFSET(ReplyQueue, 0x64);
10013	VERIFY_OFFSET(reserved9, 0x65);
10014	VERIFY_OFFSET(tag, 0x68);
10015	VERIFY_OFFSET(host_addr, 0x70);
10016	VERIFY_OFFSET(CISS_LUN, 0x78);
10017	VERIFY_OFFSET(SG, 0x78 + 8);
10018#undef VERIFY_OFFSET
10019}
10020
10021module_init(hpsa_init);
10022module_exit(hpsa_cleanup);
10023