1/*
2 * This file is part of the Chelsio FCoE driver for Linux.
3 *
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses.  You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 *     Redistribution and use in source and binary forms, with or
13 *     without modification, are permitted provided that the following
14 *     conditions are met:
15 *
16 *      - Redistributions of source code must retain the above
17 *        copyright notice, this list of conditions and the following
18 *        disclaimer.
19 *
20 *      - Redistributions in binary form must reproduce the above
21 *        copyright notice, this list of conditions and the following
22 *        disclaimer in the documentation and/or other materials
23 *        provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/pci.h>
36#include <linux/pci_regs.h>
37#include <linux/firmware.h>
38#include <linux/stddef.h>
39#include <linux/delay.h>
40#include <linux/string.h>
41#include <linux/compiler.h>
42#include <linux/jiffies.h>
43#include <linux/kernel.h>
44#include <linux/log2.h>
45
46#include "csio_hw.h"
47#include "csio_lnode.h"
48#include "csio_rnode.h"
49
50int csio_dbg_level = 0xFEFF;
51unsigned int csio_port_mask = 0xf;
52
53/* Default FW event queue entries. */
54static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
55
56/* Default MSI param level */
57int csio_msi = 2;
58
59/* FCoE function instances */
60static int dev_num;
61
62/* FCoE Adapter types & its description */
63static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
64	{"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
65	{"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
66	{"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"},
67	{"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
68	{"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
69	{"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
70	{"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
71	{"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
72	{"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
73	{"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
74	{"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
75	{"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
76	{"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
77	{"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
78	{"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
79	{"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
80	{"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
81	{"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
82	{"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
83	{"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"},
84	{"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"},
85	{"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"}
86};
87
88static void csio_mgmtm_cleanup(struct csio_mgmtm *);
89static void csio_hw_mbm_cleanup(struct csio_hw *);
90
91/* State machine forward declarations */
92static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
93static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
94static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
95static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
96static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
97static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
98static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
99static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
100static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
101
102static void csio_hw_initialize(struct csio_hw *hw);
103static void csio_evtq_stop(struct csio_hw *hw);
104static void csio_evtq_start(struct csio_hw *hw);
105
106int csio_is_hw_ready(struct csio_hw *hw)
107{
108	return csio_match_state(hw, csio_hws_ready);
109}
110
111int csio_is_hw_removing(struct csio_hw *hw)
112{
113	return csio_match_state(hw, csio_hws_removing);
114}
115
116
117/*
118 *	csio_hw_wait_op_done_val - wait until an operation is completed
119 *	@hw: the HW module
120 *	@reg: the register to check for completion
121 *	@mask: a single-bit field within @reg that indicates completion
122 *	@polarity: the value of the field when the operation is completed
123 *	@attempts: number of check iterations
124 *	@delay: delay in usecs between iterations
125 *	@valp: where to store the value of the register at completion time
126 *
127 *	Wait until an operation is completed by checking a bit in a register
128 *	up to @attempts times.  If @valp is not NULL the value of the register
129 *	at the time it indicated completion is stored there.  Returns 0 if the
130 *	operation completes and	-EAGAIN	otherwise.
131 */
132int
133csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
134			 int polarity, int attempts, int delay, uint32_t *valp)
135{
136	uint32_t val;
137	while (1) {
138		val = csio_rd_reg32(hw, reg);
139
140		if (!!(val & mask) == polarity) {
141			if (valp)
142				*valp = val;
143			return 0;
144		}
145
146		if (--attempts == 0)
147			return -EAGAIN;
148		if (delay)
149			udelay(delay);
150	}
151}
152
153/*
154 *	csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
155 *	@hw: the adapter
156 *	@addr: the indirect TP register address
157 *	@mask: specifies the field within the register to modify
158 *	@val: new value for the field
159 *
160 *	Sets a field of an indirect TP register to the given value.
161 */
162void
163csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
164			unsigned int mask, unsigned int val)
165{
166	csio_wr_reg32(hw, addr, TP_PIO_ADDR_A);
167	val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask;
168	csio_wr_reg32(hw, val, TP_PIO_DATA_A);
169}
170
171void
172csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
173		   uint32_t value)
174{
175	uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
176
177	csio_wr_reg32(hw, val | value, reg);
178	/* Flush */
179	csio_rd_reg32(hw, reg);
180
181}
182
183static int
184csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
185{
186	return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
187					    addr, len, buf, 0);
188}
189
190/*
191 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
192 */
193#define EEPROM_MAX_RD_POLL	40
194#define EEPROM_MAX_WR_POLL	6
195#define EEPROM_STAT_ADDR	0x7bfc
196#define VPD_BASE		0x400
197#define VPD_BASE_OLD		0
198#define VPD_LEN			1024
199#define VPD_INFO_FLD_HDR_SIZE	3
200
201/*
202 *	csio_hw_seeprom_read - read a serial EEPROM location
203 *	@hw: hw to read
204 *	@addr: EEPROM virtual address
205 *	@data: where to store the read data
206 *
207 *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
208 *	VPD capability.  Note that this function must be called with a virtual
209 *	address.
210 */
211static int
212csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
213{
214	uint16_t val = 0;
215	int attempts = EEPROM_MAX_RD_POLL;
216	uint32_t base = hw->params.pci.vpd_cap_addr;
217
218	if (addr >= EEPROMVSIZE || (addr & 3))
219		return -EINVAL;
220
221	pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
222
223	do {
224		udelay(10);
225		pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
226	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
227
228	if (!(val & PCI_VPD_ADDR_F)) {
229		csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
230		return -EINVAL;
231	}
232
233	pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
234	*data = le32_to_cpu(*(__le32 *)data);
235
236	return 0;
237}
238
239/*
240 * Partial EEPROM Vital Product Data structure.  Includes only the ID and
241 * VPD-R sections.
242 */
243struct t4_vpd_hdr {
244	u8  id_tag;
245	u8  id_len[2];
246	u8  id_data[ID_LEN];
247	u8  vpdr_tag;
248	u8  vpdr_len[2];
249};
250
251/*
252 *	csio_hw_get_vpd_keyword_val - Locates an information field keyword in
253 *				      the VPD
254 *	@v: Pointer to buffered vpd data structure
255 *	@kw: The keyword to search for
256 *
257 *	Returns the value of the information field keyword or
258 *	-EINVAL otherwise.
259 */
260static int
261csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
262{
263	int32_t i;
264	int32_t offset , len;
265	const uint8_t *buf = &v->id_tag;
266	const uint8_t *vpdr_len = &v->vpdr_tag;
267	offset = sizeof(struct t4_vpd_hdr);
268	len =  (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
269
270	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
271		return -EINVAL;
272
273	for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
274		if (memcmp(buf + i , kw, 2) == 0) {
275			i += VPD_INFO_FLD_HDR_SIZE;
276			return i;
277		}
278
279		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
280	}
281
282	return -EINVAL;
283}
284
285static int
286csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
287{
288	*pos = pci_find_capability(pdev, cap);
289	if (*pos)
290		return 0;
291
292	return -1;
293}
294
295/*
296 *	csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
297 *	@hw: HW module
298 *	@p: where to store the parameters
299 *
300 *	Reads card parameters stored in VPD EEPROM.
301 */
302static int
303csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
304{
305	int i, ret, ec, sn, addr;
306	uint8_t *vpd, csum;
307	const struct t4_vpd_hdr *v;
308	/* To get around compilation warning from strstrip */
309	char __always_unused *s;
310
311	if (csio_is_valid_vpd(hw))
312		return 0;
313
314	ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
315				  &hw->params.pci.vpd_cap_addr);
316	if (ret)
317		return -EINVAL;
318
319	vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
320	if (vpd == NULL)
321		return -ENOMEM;
322
323	/*
324	 * Card information normally starts at VPD_BASE but early cards had
325	 * it at 0.
326	 */
327	ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
328	addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
329
330	for (i = 0; i < VPD_LEN; i += 4) {
331		ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
332		if (ret) {
333			kfree(vpd);
334			return ret;
335		}
336	}
337
338	/* Reset the VPD flag! */
339	hw->flags &= (~CSIO_HWF_VPD_VALID);
340
341	v = (const struct t4_vpd_hdr *)vpd;
342
343#define FIND_VPD_KW(var, name) do { \
344	var = csio_hw_get_vpd_keyword_val(v, name); \
345	if (var < 0) { \
346		csio_err(hw, "missing VPD keyword " name "\n"); \
347		kfree(vpd); \
348		return -EINVAL; \
349	} \
350} while (0)
351
352	FIND_VPD_KW(i, "RV");
353	for (csum = 0; i >= 0; i--)
354		csum += vpd[i];
355
356	if (csum) {
357		csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
358		kfree(vpd);
359		return -EINVAL;
360	}
361	FIND_VPD_KW(ec, "EC");
362	FIND_VPD_KW(sn, "SN");
363#undef FIND_VPD_KW
364
365	memcpy(p->id, v->id_data, ID_LEN);
366	s = strstrip(p->id);
367	memcpy(p->ec, vpd + ec, EC_LEN);
368	s = strstrip(p->ec);
369	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
370	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
371	s = strstrip(p->sn);
372
373	csio_valid_vpd_copied(hw);
374
375	kfree(vpd);
376	return 0;
377}
378
379/*
380 *	csio_hw_sf1_read - read data from the serial flash
381 *	@hw: the HW module
382 *	@byte_cnt: number of bytes to read
383 *	@cont: whether another operation will be chained
384 *      @lock: whether to lock SF for PL access only
385 *	@valp: where to store the read data
386 *
387 *	Reads up to 4 bytes of data from the serial flash.  The location of
388 *	the read needs to be specified prior to calling this by issuing the
389 *	appropriate commands to the serial flash.
390 */
391static int
392csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
393		 int32_t lock, uint32_t *valp)
394{
395	int ret;
396
397	if (!byte_cnt || byte_cnt > 4)
398		return -EINVAL;
399	if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
400		return -EBUSY;
401
402	csio_wr_reg32(hw,  SF_LOCK_V(lock) | SF_CONT_V(cont) |
403		      BYTECNT_V(byte_cnt - 1), SF_OP_A);
404	ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
405				       10, NULL);
406	if (!ret)
407		*valp = csio_rd_reg32(hw, SF_DATA_A);
408	return ret;
409}
410
411/*
412 *	csio_hw_sf1_write - write data to the serial flash
413 *	@hw: the HW module
414 *	@byte_cnt: number of bytes to write
415 *	@cont: whether another operation will be chained
416 *      @lock: whether to lock SF for PL access only
417 *	@val: value to write
418 *
419 *	Writes up to 4 bytes of data to the serial flash.  The location of
420 *	the write needs to be specified prior to calling this by issuing the
421 *	appropriate commands to the serial flash.
422 */
423static int
424csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
425		  int32_t lock, uint32_t val)
426{
427	if (!byte_cnt || byte_cnt > 4)
428		return -EINVAL;
429	if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
430		return -EBUSY;
431
432	csio_wr_reg32(hw, val, SF_DATA_A);
433	csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) |
434		      OP_V(1) | SF_LOCK_V(lock), SF_OP_A);
435
436	return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
437					10, NULL);
438}
439
440/*
441 *	csio_hw_flash_wait_op - wait for a flash operation to complete
442 *	@hw: the HW module
443 *	@attempts: max number of polls of the status register
444 *	@delay: delay between polls in ms
445 *
446 *	Wait for a flash operation to complete by polling the status register.
447 */
448static int
449csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
450{
451	int ret;
452	uint32_t status;
453
454	while (1) {
455		ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
456		if (ret != 0)
457			return ret;
458
459		ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
460		if (ret != 0)
461			return ret;
462
463		if (!(status & 1))
464			return 0;
465		if (--attempts == 0)
466			return -EAGAIN;
467		if (delay)
468			msleep(delay);
469	}
470}
471
472/*
473 *	csio_hw_read_flash - read words from serial flash
474 *	@hw: the HW module
475 *	@addr: the start address for the read
476 *	@nwords: how many 32-bit words to read
477 *	@data: where to store the read data
478 *	@byte_oriented: whether to store data as bytes or as words
479 *
480 *	Read the specified number of 32-bit words from the serial flash.
481 *	If @byte_oriented is set the read data is stored as a byte array
482 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
483 *	natural endianess.
484 */
485static int
486csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
487		  uint32_t *data, int32_t byte_oriented)
488{
489	int ret;
490
491	if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
492		return -EINVAL;
493
494	addr = swab32(addr) | SF_RD_DATA_FAST;
495
496	ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
497	if (ret != 0)
498		return ret;
499
500	ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
501	if (ret != 0)
502		return ret;
503
504	for ( ; nwords; nwords--, data++) {
505		ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
506		if (nwords == 1)
507			csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
508		if (ret)
509			return ret;
510		if (byte_oriented)
511			*data = (__force __u32) htonl(*data);
512	}
513	return 0;
514}
515
516/*
517 *	csio_hw_write_flash - write up to a page of data to the serial flash
518 *	@hw: the hw
519 *	@addr: the start address to write
520 *	@n: length of data to write in bytes
521 *	@data: the data to write
522 *
523 *	Writes up to a page of data (256 bytes) to the serial flash starting
524 *	at the given address.  All the data must be written to the same page.
525 */
526static int
527csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
528		    uint32_t n, const uint8_t *data)
529{
530	int ret = -EINVAL;
531	uint32_t buf[64];
532	uint32_t i, c, left, val, offset = addr & 0xff;
533
534	if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
535		return -EINVAL;
536
537	val = swab32(addr) | SF_PROG_PAGE;
538
539	ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
540	if (ret != 0)
541		goto unlock;
542
543	ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
544	if (ret != 0)
545		goto unlock;
546
547	for (left = n; left; left -= c) {
548		c = min(left, 4U);
549		for (val = 0, i = 0; i < c; ++i)
550			val = (val << 8) + *data++;
551
552		ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
553		if (ret)
554			goto unlock;
555	}
556	ret = csio_hw_flash_wait_op(hw, 8, 1);
557	if (ret)
558		goto unlock;
559
560	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
561
562	/* Read the page to verify the write succeeded */
563	ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
564	if (ret)
565		return ret;
566
567	if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
568		csio_err(hw,
569			 "failed to correctly write the flash page at %#x\n",
570			 addr);
571		return -EINVAL;
572	}
573
574	return 0;
575
576unlock:
577	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
578	return ret;
579}
580
581/*
582 *	csio_hw_flash_erase_sectors - erase a range of flash sectors
583 *	@hw: the HW module
584 *	@start: the first sector to erase
585 *	@end: the last sector to erase
586 *
587 *	Erases the sectors in the given inclusive range.
588 */
589static int
590csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
591{
592	int ret = 0;
593
594	while (start <= end) {
595
596		ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
597		if (ret != 0)
598			goto out;
599
600		ret = csio_hw_sf1_write(hw, 4, 0, 1,
601					SF_ERASE_SECTOR | (start << 8));
602		if (ret != 0)
603			goto out;
604
605		ret = csio_hw_flash_wait_op(hw, 14, 500);
606		if (ret != 0)
607			goto out;
608
609		start++;
610	}
611out:
612	if (ret)
613		csio_err(hw, "erase of flash sector %d failed, error %d\n",
614			 start, ret);
615	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
616	return 0;
617}
618
619static void
620csio_hw_print_fw_version(struct csio_hw *hw, char *str)
621{
622	csio_info(hw, "%s: %u.%u.%u.%u\n", str,
623		    FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
624		    FW_HDR_FW_VER_MINOR_G(hw->fwrev),
625		    FW_HDR_FW_VER_MICRO_G(hw->fwrev),
626		    FW_HDR_FW_VER_BUILD_G(hw->fwrev));
627}
628
629/*
630 * csio_hw_get_fw_version - read the firmware version
631 * @hw: HW module
632 * @vers: where to place the version
633 *
634 * Reads the FW version from flash.
635 */
636static int
637csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
638{
639	return csio_hw_read_flash(hw, FLASH_FW_START +
640				  offsetof(struct fw_hdr, fw_ver), 1,
641				  vers, 0);
642}
643
644/*
645 *	csio_hw_get_tp_version - read the TP microcode version
646 *	@hw: HW module
647 *	@vers: where to place the version
648 *
649 *	Reads the TP microcode version from flash.
650 */
651static int
652csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
653{
654	return csio_hw_read_flash(hw, FLASH_FW_START +
655			offsetof(struct fw_hdr, tp_microcode_ver), 1,
656			vers, 0);
657}
658
659/*
660 * csio_hw_fw_dload - download firmware.
661 * @hw: HW module
662 * @fw_data: firmware image to write.
663 * @size: image size
664 *
665 * Write the supplied firmware image to the card's serial flash.
666 */
667static int
668csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
669{
670	uint32_t csum;
671	int32_t addr;
672	int ret;
673	uint32_t i;
674	uint8_t first_page[SF_PAGE_SIZE];
675	const __be32 *p = (const __be32 *)fw_data;
676	struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
677	uint32_t sf_sec_size;
678
679	if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
680		csio_err(hw, "Serial Flash data invalid\n");
681		return -EINVAL;
682	}
683
684	if (!size) {
685		csio_err(hw, "FW image has no data\n");
686		return -EINVAL;
687	}
688
689	if (size & 511) {
690		csio_err(hw, "FW image size not multiple of 512 bytes\n");
691		return -EINVAL;
692	}
693
694	if (ntohs(hdr->len512) * 512 != size) {
695		csio_err(hw, "FW image size differs from size in FW header\n");
696		return -EINVAL;
697	}
698
699	if (size > FLASH_FW_MAX_SIZE) {
700		csio_err(hw, "FW image too large, max is %u bytes\n",
701			    FLASH_FW_MAX_SIZE);
702		return -EINVAL;
703	}
704
705	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
706		csum += ntohl(p[i]);
707
708	if (csum != 0xffffffff) {
709		csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
710		return -EINVAL;
711	}
712
713	sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
714	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
715
716	csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
717			  FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1);
718
719	ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC,
720					  FLASH_FW_START_SEC + i - 1);
721	if (ret) {
722		csio_err(hw, "Flash Erase failed\n");
723		goto out;
724	}
725
726	/*
727	 * We write the correct version at the end so the driver can see a bad
728	 * version if the FW write fails.  Start by writing a copy of the
729	 * first page with a bad version.
730	 */
731	memcpy(first_page, fw_data, SF_PAGE_SIZE);
732	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
733	ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page);
734	if (ret)
735		goto out;
736
737	csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
738		    FW_IMG_START, FW_IMG_START + size);
739
740	addr = FLASH_FW_START;
741	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
742		addr += SF_PAGE_SIZE;
743		fw_data += SF_PAGE_SIZE;
744		ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
745		if (ret)
746			goto out;
747	}
748
749	ret = csio_hw_write_flash(hw,
750				  FLASH_FW_START +
751					offsetof(struct fw_hdr, fw_ver),
752				  sizeof(hdr->fw_ver),
753				  (const uint8_t *)&hdr->fw_ver);
754
755out:
756	if (ret)
757		csio_err(hw, "firmware download failed, error %d\n", ret);
758	return ret;
759}
760
761static int
762csio_hw_get_flash_params(struct csio_hw *hw)
763{
764	/* Table for non-Numonix supported flash parts.  Numonix parts are left
765	 * to the preexisting code.  All flash parts have 64KB sectors.
766	 */
767	static struct flash_desc {
768		u32 vendor_and_model_id;
769		u32 size_mb;
770	} supported_flash[] = {
771		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
772	};
773
774	u32 part, manufacturer;
775	u32 density, size = 0;
776	u32 flashid = 0;
777	int ret;
778
779	ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
780	if (!ret)
781		ret = csio_hw_sf1_read(hw, 3, 0, 1, &flashid);
782	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
783	if (ret)
784		return ret;
785
786	/* Check to see if it's one of our non-standard supported Flash parts.
787	 */
788	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
789		if (supported_flash[part].vendor_and_model_id == flashid) {
790			hw->params.sf_size = supported_flash[part].size_mb;
791			hw->params.sf_nsec =
792				hw->params.sf_size / SF_SEC_SIZE;
793			goto found;
794		}
795
796	/* Decode Flash part size.  The code below looks repetitive with
797	 * common encodings, but that's not guaranteed in the JEDEC
798	 * specification for the Read JEDEC ID command.  The only thing that
799	 * we're guaranteed by the JEDEC specification is where the
800	 * Manufacturer ID is in the returned result.  After that each
801	 * Manufacturer ~could~ encode things completely differently.
802	 * Note, all Flash parts must have 64KB sectors.
803	 */
804	manufacturer = flashid & 0xff;
805	switch (manufacturer) {
806	case 0x20: { /* Micron/Numonix */
807		/* This Density -> Size decoding table is taken from Micron
808		 * Data Sheets.
809		 */
810		density = (flashid >> 16) & 0xff;
811		switch (density) {
812		case 0x14 ... 0x19: /* 1MB - 32MB */
813			size = 1 << density;
814			break;
815		case 0x20: /* 64MB */
816			size = 1 << 26;
817			break;
818		case 0x21: /* 128MB */
819			size = 1 << 27;
820			break;
821		case 0x22: /* 256MB */
822			size = 1 << 28;
823		}
824		break;
825	}
826	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
827		/* This Density -> Size decoding table is taken from ISSI
828		 * Data Sheets.
829		 */
830		density = (flashid >> 16) & 0xff;
831		switch (density) {
832		case 0x16: /* 32 MB */
833			size = 1 << 25;
834			break;
835		case 0x17: /* 64MB */
836			size = 1 << 26;
837		}
838		break;
839	}
840	case 0xc2: /* Macronix */
841	case 0xef: /* Winbond */ {
842		/* This Density -> Size decoding table is taken from
843		 * Macronix and Winbond Data Sheets.
844		 */
845		density = (flashid >> 16) & 0xff;
846		switch (density) {
847		case 0x17: /* 8MB */
848		case 0x18: /* 16MB */
849			size = 1 << density;
850		}
851	}
852	}
853
854	/* If we didn't recognize the FLASH part, that's no real issue: the
855	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
856	 * use a FLASH part which is at least 4MB in size and has 64KB
857	 * sectors.  The unrecognized FLASH part is likely to be much larger
858	 * than 4MB, but that's all we really need.
859	 */
860	if (size == 0) {
861		csio_warn(hw, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
862			  flashid);
863		size = 1 << 22;
864	}
865
866	/* Store decoded Flash size */
867	hw->params.sf_size = size;
868	hw->params.sf_nsec = size / SF_SEC_SIZE;
869
870found:
871	if (hw->params.sf_size < FLASH_MIN_SIZE)
872		csio_warn(hw, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
873			  flashid, hw->params.sf_size, FLASH_MIN_SIZE);
874	return 0;
875}
876
877/*****************************************************************************/
878/* HW State machine assists                                                  */
879/*****************************************************************************/
880
881static int
882csio_hw_dev_ready(struct csio_hw *hw)
883{
884	uint32_t reg;
885	int cnt = 6;
886	int src_pf;
887
888	while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) &&
889	       (--cnt != 0))
890		mdelay(100);
891
892	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
893		src_pf = SOURCEPF_G(reg);
894	else
895		src_pf = T6_SOURCEPF_G(reg);
896
897	if ((cnt == 0) && (((int32_t)(src_pf) < 0) ||
898			   (src_pf >= CSIO_MAX_PFN))) {
899		csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
900		return -EIO;
901	}
902
903	hw->pfn = src_pf;
904
905	return 0;
906}
907
908/*
909 * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
910 * @hw: HW module
911 * @state: Device state
912 *
913 * FW_HELLO_CMD has to be polled for completion.
914 */
915static int
916csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
917{
918	struct csio_mb	*mbp;
919	int	rv = 0;
920	enum fw_retval retval;
921	uint8_t mpfn;
922	char state_str[16];
923	int retries = FW_CMD_HELLO_RETRIES;
924
925	memset(state_str, 0, sizeof(state_str));
926
927	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
928	if (!mbp) {
929		rv = -ENOMEM;
930		CSIO_INC_STATS(hw, n_err_nomem);
931		goto out;
932	}
933
934retry:
935	csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
936		      hw->pfn, CSIO_MASTER_MAY, NULL);
937
938	rv = csio_mb_issue(hw, mbp);
939	if (rv) {
940		csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
941		goto out_free_mb;
942	}
943
944	csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
945	if (retval != FW_SUCCESS) {
946		csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
947		rv = -EINVAL;
948		goto out_free_mb;
949	}
950
951	/* Firmware has designated us to be master */
952	if (hw->pfn == mpfn) {
953		hw->flags |= CSIO_HWF_MASTER;
954	} else if (*state == CSIO_DEV_STATE_UNINIT) {
955		/*
956		 * If we're not the Master PF then we need to wait around for
957		 * the Master PF Driver to finish setting up the adapter.
958		 *
959		 * Note that we also do this wait if we're a non-Master-capable
960		 * PF and there is no current Master PF; a Master PF may show up
961		 * momentarily and we wouldn't want to fail pointlessly.  (This
962		 * can happen when an OS loads lots of different drivers rapidly
963		 * at the same time). In this case, the Master PF returned by
964		 * the firmware will be PCIE_FW_MASTER_MASK so the test below
965		 * will work ...
966		 */
967
968		int waiting = FW_CMD_HELLO_TIMEOUT;
969
970		/*
971		 * Wait for the firmware to either indicate an error or
972		 * initialized state.  If we see either of these we bail out
973		 * and report the issue to the caller.  If we exhaust the
974		 * "hello timeout" and we haven't exhausted our retries, try
975		 * again.  Otherwise bail with a timeout error.
976		 */
977		for (;;) {
978			uint32_t pcie_fw;
979
980			spin_unlock_irq(&hw->lock);
981			msleep(50);
982			spin_lock_irq(&hw->lock);
983			waiting -= 50;
984
985			/*
986			 * If neither Error nor Initialized are indicated
987			 * by the firmware keep waiting till we exhaust our
988			 * timeout ... and then retry if we haven't exhausted
989			 * our retries ...
990			 */
991			pcie_fw = csio_rd_reg32(hw, PCIE_FW_A);
992			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
993				if (waiting <= 0) {
994					if (retries-- > 0)
995						goto retry;
996
997					rv = -ETIMEDOUT;
998					break;
999				}
1000				continue;
1001			}
1002
1003			/*
1004			 * We either have an Error or Initialized condition
1005			 * report errors preferentially.
1006			 */
1007			if (state) {
1008				if (pcie_fw & PCIE_FW_ERR_F) {
1009					*state = CSIO_DEV_STATE_ERR;
1010					rv = -ETIMEDOUT;
1011				} else if (pcie_fw & PCIE_FW_INIT_F)
1012					*state = CSIO_DEV_STATE_INIT;
1013			}
1014
1015			/*
1016			 * If we arrived before a Master PF was selected and
1017			 * there's not a valid Master PF, grab its identity
1018			 * for our caller.
1019			 */
1020			if (mpfn == PCIE_FW_MASTER_M &&
1021			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
1022				mpfn = PCIE_FW_MASTER_G(pcie_fw);
1023			break;
1024		}
1025		hw->flags &= ~CSIO_HWF_MASTER;
1026	}
1027
1028	switch (*state) {
1029	case CSIO_DEV_STATE_UNINIT:
1030		strcpy(state_str, "Initializing");
1031		break;
1032	case CSIO_DEV_STATE_INIT:
1033		strcpy(state_str, "Initialized");
1034		break;
1035	case CSIO_DEV_STATE_ERR:
1036		strcpy(state_str, "Error");
1037		break;
1038	default:
1039		strcpy(state_str, "Unknown");
1040		break;
1041	}
1042
1043	if (hw->pfn == mpfn)
1044		csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
1045			hw->pfn, state_str);
1046	else
1047		csio_info(hw,
1048		    "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
1049		    hw->pfn, mpfn, state_str);
1050
1051out_free_mb:
1052	mempool_free(mbp, hw->mb_mempool);
1053out:
1054	return rv;
1055}
1056
1057/*
1058 * csio_do_bye - Perform the BYE FW Mailbox command and process response.
1059 * @hw: HW module
1060 *
1061 */
1062static int
1063csio_do_bye(struct csio_hw *hw)
1064{
1065	struct csio_mb	*mbp;
1066	enum fw_retval retval;
1067
1068	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1069	if (!mbp) {
1070		CSIO_INC_STATS(hw, n_err_nomem);
1071		return -ENOMEM;
1072	}
1073
1074	csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1075
1076	if (csio_mb_issue(hw, mbp)) {
1077		csio_err(hw, "Issue of BYE command failed\n");
1078		mempool_free(mbp, hw->mb_mempool);
1079		return -EINVAL;
1080	}
1081
1082	retval = csio_mb_fw_retval(mbp);
1083	if (retval != FW_SUCCESS) {
1084		mempool_free(mbp, hw->mb_mempool);
1085		return -EINVAL;
1086	}
1087
1088	mempool_free(mbp, hw->mb_mempool);
1089
1090	return 0;
1091}
1092
1093/*
1094 * csio_do_reset- Perform the device reset.
1095 * @hw: HW module
1096 * @fw_rst: FW reset
1097 *
1098 * If fw_rst is set, issues FW reset mbox cmd otherwise
1099 * does PIO reset.
1100 * Performs reset of the function.
1101 */
1102static int
1103csio_do_reset(struct csio_hw *hw, bool fw_rst)
1104{
1105	struct csio_mb	*mbp;
1106	enum fw_retval retval;
1107
1108	if (!fw_rst) {
1109		/* PIO reset */
1110		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1111		mdelay(2000);
1112		return 0;
1113	}
1114
1115	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1116	if (!mbp) {
1117		CSIO_INC_STATS(hw, n_err_nomem);
1118		return -ENOMEM;
1119	}
1120
1121	csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1122		      PIORSTMODE_F | PIORST_F, 0, NULL);
1123
1124	if (csio_mb_issue(hw, mbp)) {
1125		csio_err(hw, "Issue of RESET command failed.n");
1126		mempool_free(mbp, hw->mb_mempool);
1127		return -EINVAL;
1128	}
1129
1130	retval = csio_mb_fw_retval(mbp);
1131	if (retval != FW_SUCCESS) {
1132		csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1133		mempool_free(mbp, hw->mb_mempool);
1134		return -EINVAL;
1135	}
1136
1137	mempool_free(mbp, hw->mb_mempool);
1138
1139	return 0;
1140}
1141
1142static int
1143csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1144{
1145	struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1146	uint16_t caps;
1147
1148	caps = ntohs(rsp->fcoecaps);
1149
1150	if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1151		csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1152		return -EINVAL;
1153	}
1154
1155	if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1156		csio_err(hw, "No FCoE Control Offload capability\n");
1157		return -EINVAL;
1158	}
1159
1160	return 0;
1161}
1162
1163/*
1164 *	csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1165 *	@hw: the HW module
1166 *	@mbox: mailbox to use for the FW RESET command (if desired)
1167 *	@force: force uP into RESET even if FW RESET command fails
1168 *
1169 *	Issues a RESET command to firmware (if desired) with a HALT indication
1170 *	and then puts the microprocessor into RESET state.  The RESET command
1171 *	will only be issued if a legitimate mailbox is provided (mbox <=
1172 *	PCIE_FW_MASTER_MASK).
1173 *
1174 *	This is generally used in order for the host to safely manipulate the
1175 *	adapter without fear of conflicting with whatever the firmware might
1176 *	be doing.  The only way out of this state is to RESTART the firmware
1177 *	...
1178 */
1179static int
1180csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1181{
1182	enum fw_retval retval = 0;
1183
1184	/*
1185	 * If a legitimate mailbox is provided, issue a RESET command
1186	 * with a HALT indication.
1187	 */
1188	if (mbox <= PCIE_FW_MASTER_M) {
1189		struct csio_mb	*mbp;
1190
1191		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1192		if (!mbp) {
1193			CSIO_INC_STATS(hw, n_err_nomem);
1194			return -ENOMEM;
1195		}
1196
1197		csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1198			      PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F,
1199			      NULL);
1200
1201		if (csio_mb_issue(hw, mbp)) {
1202			csio_err(hw, "Issue of RESET command failed!\n");
1203			mempool_free(mbp, hw->mb_mempool);
1204			return -EINVAL;
1205		}
1206
1207		retval = csio_mb_fw_retval(mbp);
1208		mempool_free(mbp, hw->mb_mempool);
1209	}
1210
1211	/*
1212	 * Normally we won't complete the operation if the firmware RESET
1213	 * command fails but if our caller insists we'll go ahead and put the
1214	 * uP into RESET.  This can be useful if the firmware is hung or even
1215	 * missing ...  We'll have to take the risk of putting the uP into
1216	 * RESET without the cooperation of firmware in that case.
1217	 *
1218	 * We also force the firmware's HALT flag to be on in case we bypassed
1219	 * the firmware RESET command above or we're dealing with old firmware
1220	 * which doesn't have the HALT capability.  This will serve as a flag
1221	 * for the incoming firmware to know that it's coming out of a HALT
1222	 * rather than a RESET ... if it's new enough to understand that ...
1223	 */
1224	if (retval == 0 || force) {
1225		csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
1226		csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F,
1227				   PCIE_FW_HALT_F);
1228	}
1229
1230	/*
1231	 * And we always return the result of the firmware RESET command
1232	 * even when we force the uP into RESET ...
1233	 */
1234	return retval ? -EINVAL : 0;
1235}
1236
1237/*
1238 *	csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1239 *	@hw: the HW module
1240 *	@reset: if we want to do a RESET to restart things
1241 *
1242 *	Restart firmware previously halted by csio_hw_fw_halt().  On successful
1243 *	return the previous PF Master remains as the new PF Master and there
1244 *	is no need to issue a new HELLO command, etc.
1245 *
1246 *	We do this in two ways:
1247 *
1248 *	 1. If we're dealing with newer firmware we'll simply want to take
1249 *	    the chip's microprocessor out of RESET.  This will cause the
1250 *	    firmware to start up from its start vector.  And then we'll loop
1251 *	    until the firmware indicates it's started again (PCIE_FW.HALT
1252 *	    reset to 0) or we timeout.
1253 *
1254 *	 2. If we're dealing with older firmware then we'll need to RESET
1255 *	    the chip since older firmware won't recognize the PCIE_FW.HALT
1256 *	    flag and automatically RESET itself on startup.
1257 */
1258static int
1259csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1260{
1261	if (reset) {
1262		/*
1263		 * Since we're directing the RESET instead of the firmware
1264		 * doing it automatically, we need to clear the PCIE_FW.HALT
1265		 * bit.
1266		 */
1267		csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0);
1268
1269		/*
1270		 * If we've been given a valid mailbox, first try to get the
1271		 * firmware to do the RESET.  If that works, great and we can
1272		 * return success.  Otherwise, if we haven't been given a
1273		 * valid mailbox or the RESET command failed, fall back to
1274		 * hitting the chip with a hammer.
1275		 */
1276		if (mbox <= PCIE_FW_MASTER_M) {
1277			csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1278			msleep(100);
1279			if (csio_do_reset(hw, true) == 0)
1280				return 0;
1281		}
1282
1283		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1284		msleep(2000);
1285	} else {
1286		int ms;
1287
1288		csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1289		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1290			if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F))
1291				return 0;
1292			msleep(100);
1293			ms += 100;
1294		}
1295		return -ETIMEDOUT;
1296	}
1297	return 0;
1298}
1299
1300/*
1301 *	csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1302 *	@hw: the HW module
1303 *	@mbox: mailbox to use for the FW RESET command (if desired)
1304 *	@fw_data: the firmware image to write
1305 *	@size: image size
1306 *	@force: force upgrade even if firmware doesn't cooperate
1307 *
1308 *	Perform all of the steps necessary for upgrading an adapter's
1309 *	firmware image.  Normally this requires the cooperation of the
1310 *	existing firmware in order to halt all existing activities
1311 *	but if an invalid mailbox token is passed in we skip that step
1312 *	(though we'll still put the adapter microprocessor into RESET in
1313 *	that case).
1314 *
1315 *	On successful return the new firmware will have been loaded and
1316 *	the adapter will have been fully RESET losing all previous setup
1317 *	state.  On unsuccessful return the adapter may be completely hosed ...
1318 *	positive errno indicates that the adapter is ~probably~ intact, a
1319 *	negative errno indicates that things are looking bad ...
1320 */
1321static int
1322csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1323		  const u8 *fw_data, uint32_t size, int32_t force)
1324{
1325	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1326	int reset, ret;
1327
1328	ret = csio_hw_fw_halt(hw, mbox, force);
1329	if (ret != 0 && !force)
1330		return ret;
1331
1332	ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1333	if (ret != 0)
1334		return ret;
1335
1336	/*
1337	 * Older versions of the firmware don't understand the new
1338	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1339	 * restart.  So for newly loaded older firmware we'll have to do the
1340	 * RESET for it so it starts up on a clean slate.  We can tell if
1341	 * the newly loaded firmware will handle this right by checking
1342	 * its header flags to see if it advertises the capability.
1343	 */
1344	reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1345	return csio_hw_fw_restart(hw, mbox, reset);
1346}
1347
1348/*
1349 * csio_get_device_params - Get device parameters.
1350 * @hw: HW module
1351 *
1352 */
1353static int
1354csio_get_device_params(struct csio_hw *hw)
1355{
1356	struct csio_wrm *wrm	= csio_hw_to_wrm(hw);
1357	struct csio_mb	*mbp;
1358	enum fw_retval retval;
1359	u32 param[6];
1360	int i, j = 0;
1361
1362	/* Initialize portids to -1 */
1363	for (i = 0; i < CSIO_MAX_PPORTS; i++)
1364		hw->pport[i].portid = -1;
1365
1366	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1367	if (!mbp) {
1368		CSIO_INC_STATS(hw, n_err_nomem);
1369		return -ENOMEM;
1370	}
1371
1372	/* Get port vec information. */
1373	param[0] = FW_PARAM_DEV(PORTVEC);
1374
1375	/* Get Core clock. */
1376	param[1] = FW_PARAM_DEV(CCLK);
1377
1378	/* Get EQ id start and end. */
1379	param[2] = FW_PARAM_PFVF(EQ_START);
1380	param[3] = FW_PARAM_PFVF(EQ_END);
1381
1382	/* Get IQ id start and end. */
1383	param[4] = FW_PARAM_PFVF(IQFLINT_START);
1384	param[5] = FW_PARAM_PFVF(IQFLINT_END);
1385
1386	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1387		       ARRAY_SIZE(param), param, NULL, false, NULL);
1388	if (csio_mb_issue(hw, mbp)) {
1389		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1390		mempool_free(mbp, hw->mb_mempool);
1391		return -EINVAL;
1392	}
1393
1394	csio_mb_process_read_params_rsp(hw, mbp, &retval,
1395			ARRAY_SIZE(param), param);
1396	if (retval != FW_SUCCESS) {
1397		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1398				retval);
1399		mempool_free(mbp, hw->mb_mempool);
1400		return -EINVAL;
1401	}
1402
1403	/* cache the information. */
1404	hw->port_vec = param[0];
1405	hw->vpd.cclk = param[1];
1406	wrm->fw_eq_start = param[2];
1407	wrm->fw_iq_start = param[4];
1408
1409	/* Using FW configured max iqs & eqs */
1410	if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1411		!csio_is_hw_master(hw)) {
1412		hw->cfg_niq = param[5] - param[4] + 1;
1413		hw->cfg_neq = param[3] - param[2] + 1;
1414		csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1415			hw->cfg_niq, hw->cfg_neq);
1416	}
1417
1418	hw->port_vec &= csio_port_mask;
1419
1420	hw->num_pports	= hweight32(hw->port_vec);
1421
1422	csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1423		    hw->port_vec, hw->num_pports);
1424
1425	for (i = 0; i < hw->num_pports; i++) {
1426		while ((hw->port_vec & (1 << j)) == 0)
1427			j++;
1428		hw->pport[i].portid = j++;
1429		csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1430	}
1431	mempool_free(mbp, hw->mb_mempool);
1432
1433	return 0;
1434}
1435
1436
1437/*
1438 * csio_config_device_caps - Get and set device capabilities.
1439 * @hw: HW module
1440 *
1441 */
1442static int
1443csio_config_device_caps(struct csio_hw *hw)
1444{
1445	struct csio_mb	*mbp;
1446	enum fw_retval retval;
1447	int rv = -EINVAL;
1448
1449	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1450	if (!mbp) {
1451		CSIO_INC_STATS(hw, n_err_nomem);
1452		return -ENOMEM;
1453	}
1454
1455	/* Get device capabilities */
1456	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1457
1458	if (csio_mb_issue(hw, mbp)) {
1459		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1460		goto out;
1461	}
1462
1463	retval = csio_mb_fw_retval(mbp);
1464	if (retval != FW_SUCCESS) {
1465		csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1466		goto out;
1467	}
1468
1469	/* Validate device capabilities */
1470	rv = csio_hw_validate_caps(hw, mbp);
1471	if (rv != 0)
1472		goto out;
1473
1474	/* Don't config device capabilities if already configured */
1475	if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1476		rv = 0;
1477		goto out;
1478	}
1479
1480	/* Write back desired device capabilities */
1481	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1482			    false, true, NULL);
1483
1484	if (csio_mb_issue(hw, mbp)) {
1485		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1486		goto out;
1487	}
1488
1489	retval = csio_mb_fw_retval(mbp);
1490	if (retval != FW_SUCCESS) {
1491		csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1492		goto out;
1493	}
1494
1495	rv = 0;
1496out:
1497	mempool_free(mbp, hw->mb_mempool);
1498	return rv;
1499}
1500
1501static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
1502{
1503	enum cc_fec cc_fec = 0;
1504
1505	if (fw_fec & FW_PORT_CAP32_FEC_RS)
1506		cc_fec |= FEC_RS;
1507	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1508		cc_fec |= FEC_BASER_RS;
1509
1510	return cc_fec;
1511}
1512
1513static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
1514{
1515	fw_port_cap32_t fw_pause = 0;
1516
1517	if (cc_pause & PAUSE_RX)
1518		fw_pause |= FW_PORT_CAP32_FC_RX;
1519	if (cc_pause & PAUSE_TX)
1520		fw_pause |= FW_PORT_CAP32_FC_TX;
1521
1522	return fw_pause;
1523}
1524
1525static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
1526{
1527	fw_port_cap32_t fw_fec = 0;
1528
1529	if (cc_fec & FEC_RS)
1530		fw_fec |= FW_PORT_CAP32_FEC_RS;
1531	if (cc_fec & FEC_BASER_RS)
1532		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
1533
1534	return fw_fec;
1535}
1536
1537/**
1538 * fwcap_to_fwspeed - return highest speed in Port Capabilities
1539 * @acaps: advertised Port Capabilities
1540 *
1541 * Get the highest speed for the port from the advertised Port
1542 * Capabilities.
1543 */
1544fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
1545{
1546	#define TEST_SPEED_RETURN(__caps_speed) \
1547		do { \
1548			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
1549				return FW_PORT_CAP32_SPEED_##__caps_speed; \
1550		} while (0)
1551
1552	TEST_SPEED_RETURN(400G);
1553	TEST_SPEED_RETURN(200G);
1554	TEST_SPEED_RETURN(100G);
1555	TEST_SPEED_RETURN(50G);
1556	TEST_SPEED_RETURN(40G);
1557	TEST_SPEED_RETURN(25G);
1558	TEST_SPEED_RETURN(10G);
1559	TEST_SPEED_RETURN(1G);
1560	TEST_SPEED_RETURN(100M);
1561
1562	#undef TEST_SPEED_RETURN
1563
1564	return 0;
1565}
1566
1567/**
1568 *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
1569 *      @caps16: a 16-bit Port Capabilities value
1570 *
1571 *      Returns the equivalent 32-bit Port Capabilities value.
1572 */
1573fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
1574{
1575	fw_port_cap32_t caps32 = 0;
1576
1577	#define CAP16_TO_CAP32(__cap) \
1578		do { \
1579			if (caps16 & FW_PORT_CAP_##__cap) \
1580				caps32 |= FW_PORT_CAP32_##__cap; \
1581		} while (0)
1582
1583	CAP16_TO_CAP32(SPEED_100M);
1584	CAP16_TO_CAP32(SPEED_1G);
1585	CAP16_TO_CAP32(SPEED_25G);
1586	CAP16_TO_CAP32(SPEED_10G);
1587	CAP16_TO_CAP32(SPEED_40G);
1588	CAP16_TO_CAP32(SPEED_100G);
1589	CAP16_TO_CAP32(FC_RX);
1590	CAP16_TO_CAP32(FC_TX);
1591	CAP16_TO_CAP32(ANEG);
1592	CAP16_TO_CAP32(MDIAUTO);
1593	CAP16_TO_CAP32(MDISTRAIGHT);
1594	CAP16_TO_CAP32(FEC_RS);
1595	CAP16_TO_CAP32(FEC_BASER_RS);
1596	CAP16_TO_CAP32(802_3_PAUSE);
1597	CAP16_TO_CAP32(802_3_ASM_DIR);
1598
1599	#undef CAP16_TO_CAP32
1600
1601	return caps32;
1602}
1603
1604/**
1605 *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
1606 *	@caps32: a 32-bit Port Capabilities value
1607 *
1608 *	Returns the equivalent 16-bit Port Capabilities value.  Note that
1609 *	not all 32-bit Port Capabilities can be represented in the 16-bit
1610 *	Port Capabilities and some fields/values may not make it.
1611 */
1612fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
1613{
1614	fw_port_cap16_t caps16 = 0;
1615
1616	#define CAP32_TO_CAP16(__cap) \
1617		do { \
1618			if (caps32 & FW_PORT_CAP32_##__cap) \
1619				caps16 |= FW_PORT_CAP_##__cap; \
1620		} while (0)
1621
1622	CAP32_TO_CAP16(SPEED_100M);
1623	CAP32_TO_CAP16(SPEED_1G);
1624	CAP32_TO_CAP16(SPEED_10G);
1625	CAP32_TO_CAP16(SPEED_25G);
1626	CAP32_TO_CAP16(SPEED_40G);
1627	CAP32_TO_CAP16(SPEED_100G);
1628	CAP32_TO_CAP16(FC_RX);
1629	CAP32_TO_CAP16(FC_TX);
1630	CAP32_TO_CAP16(802_3_PAUSE);
1631	CAP32_TO_CAP16(802_3_ASM_DIR);
1632	CAP32_TO_CAP16(ANEG);
1633	CAP32_TO_CAP16(FORCE_PAUSE);
1634	CAP32_TO_CAP16(MDIAUTO);
1635	CAP32_TO_CAP16(MDISTRAIGHT);
1636	CAP32_TO_CAP16(FEC_RS);
1637	CAP32_TO_CAP16(FEC_BASER_RS);
1638
1639	#undef CAP32_TO_CAP16
1640
1641	return caps16;
1642}
1643
1644/**
1645 *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
1646 *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
1647 *
1648 *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
1649 *      32-bit Port Capabilities value.
1650 */
1651fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
1652{
1653	fw_port_cap32_t linkattr = 0;
1654
1655	/* The format of the Link Status in the old
1656	 * 16-bit Port Information message isn't the same as the
1657	 * 16-bit Port Capabilities bitfield used everywhere else.
1658	 */
1659	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1660		linkattr |= FW_PORT_CAP32_FC_RX;
1661	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1662		linkattr |= FW_PORT_CAP32_FC_TX;
1663	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1664		linkattr |= FW_PORT_CAP32_SPEED_100M;
1665	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1666		linkattr |= FW_PORT_CAP32_SPEED_1G;
1667	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1668		linkattr |= FW_PORT_CAP32_SPEED_10G;
1669	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1670		linkattr |= FW_PORT_CAP32_SPEED_25G;
1671	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1672		linkattr |= FW_PORT_CAP32_SPEED_40G;
1673	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1674		linkattr |= FW_PORT_CAP32_SPEED_100G;
1675
1676	return linkattr;
1677}
1678
1679/**
1680 *      csio_init_link_config - initialize a link's SW state
1681 *      @lc: pointer to structure holding the link state
1682 *      @pcaps: link Port Capabilities
1683 *      @acaps: link current Advertised Port Capabilities
1684 *
1685 *      Initializes the SW state maintained for each link, including the link's
1686 *      capabilities and default speed/flow-control/autonegotiation settings.
1687 */
1688static void csio_init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
1689				  fw_port_cap32_t acaps)
1690{
1691	lc->pcaps = pcaps;
1692	lc->def_acaps = acaps;
1693	lc->lpacaps = 0;
1694	lc->speed_caps = 0;
1695	lc->speed = 0;
1696	lc->requested_fc = PAUSE_RX | PAUSE_TX;
1697	lc->fc = lc->requested_fc;
1698
1699	/*
1700	 * For Forward Error Control, we default to whatever the Firmware
1701	 * tells us the Link is currently advertising.
1702	 */
1703	lc->requested_fec = FEC_AUTO;
1704	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
1705
1706	/* If the Port is capable of Auto-Negtotiation, initialize it as
1707	 * "enabled" and copy over all of the Physical Port Capabilities
1708	 * to the Advertised Port Capabilities.  Otherwise mark it as
1709	 * Auto-Negotiate disabled and select the highest supported speed
1710	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
1711	 * and t4_handle_get_port_info().
1712	 */
1713	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
1714		lc->acaps = lc->pcaps & ADVERT_MASK;
1715		lc->autoneg = AUTONEG_ENABLE;
1716		lc->requested_fc |= PAUSE_AUTONEG;
1717	} else {
1718		lc->acaps = 0;
1719		lc->autoneg = AUTONEG_DISABLE;
1720	}
1721}
1722
1723static void csio_link_l1cfg(struct link_config *lc, uint16_t fw_caps,
1724			    uint32_t *rcaps)
1725{
1726	unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
1727	fw_port_cap32_t fw_fc, cc_fec, fw_fec, lrcap;
1728
1729	lc->link_ok = 0;
1730
1731	/*
1732	 * Convert driver coding of Pause Frame Flow Control settings into the
1733	 * Firmware's API.
1734	 */
1735	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
1736
1737	/*
1738	 * Convert Common Code Forward Error Control settings into the
1739	 * Firmware's API.  If the current Requested FEC has "Automatic"
1740	 * (IEEE 802.3) specified, then we use whatever the Firmware
1741	 * sent us as part of it's IEEE 802.3-based interpretation of
1742	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
1743	 * use whatever is in the current Requested FEC settings.
1744	 */
1745	if (lc->requested_fec & FEC_AUTO)
1746		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
1747	else
1748		cc_fec = lc->requested_fec;
1749	fw_fec = cc_to_fwcap_fec(cc_fec);
1750
1751	/* Figure out what our Requested Port Capabilities are going to be.
1752	 * Note parallel structure in t4_handle_get_port_info() and
1753	 * init_link_config().
1754	 */
1755	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
1756		lrcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
1757		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
1758		lc->fec = cc_fec;
1759	} else if (lc->autoneg == AUTONEG_DISABLE) {
1760		lrcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
1761		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
1762		lc->fec = cc_fec;
1763	} else {
1764		lrcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
1765	}
1766
1767	*rcaps = lrcap;
1768}
1769
1770/*
1771 * csio_enable_ports - Bring up all available ports.
1772 * @hw: HW module.
1773 *
1774 */
1775static int
1776csio_enable_ports(struct csio_hw *hw)
1777{
1778	struct csio_mb  *mbp;
1779	u16 fw_caps = FW_CAPS_UNKNOWN;
1780	enum fw_retval retval;
1781	uint8_t portid;
1782	fw_port_cap32_t pcaps, acaps, rcaps;
1783	int i;
1784
1785	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1786	if (!mbp) {
1787		CSIO_INC_STATS(hw, n_err_nomem);
1788		return -ENOMEM;
1789	}
1790
1791	for (i = 0; i < hw->num_pports; i++) {
1792		portid = hw->pport[i].portid;
1793
1794		if (fw_caps == FW_CAPS_UNKNOWN) {
1795			u32 param, val;
1796
1797			param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
1798			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
1799			val = 1;
1800
1801			csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO,
1802				       hw->pfn, 0, 1, &param, &val, true,
1803				       NULL);
1804
1805			if (csio_mb_issue(hw, mbp)) {
1806				csio_err(hw, "failed to issue FW_PARAMS_CMD(r) port:%d\n",
1807					 portid);
1808				mempool_free(mbp, hw->mb_mempool);
1809				return -EINVAL;
1810			}
1811
1812			csio_mb_process_read_params_rsp(hw, mbp, &retval,
1813							0, NULL);
1814			fw_caps = retval ? FW_CAPS16 : FW_CAPS32;
1815		}
1816
1817		/* Read PORT information */
1818		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1819			     false, 0, fw_caps, NULL);
1820
1821		if (csio_mb_issue(hw, mbp)) {
1822			csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1823				 portid);
1824			mempool_free(mbp, hw->mb_mempool);
1825			return -EINVAL;
1826		}
1827
1828		csio_mb_process_read_port_rsp(hw, mbp, &retval, fw_caps,
1829					      &pcaps, &acaps);
1830		if (retval != FW_SUCCESS) {
1831			csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1832				 portid, retval);
1833			mempool_free(mbp, hw->mb_mempool);
1834			return -EINVAL;
1835		}
1836
1837		csio_init_link_config(&hw->pport[i].link_cfg, pcaps, acaps);
1838
1839		csio_link_l1cfg(&hw->pport[i].link_cfg, fw_caps, &rcaps);
1840
1841		/* Write back PORT information */
1842		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1843			     true, rcaps, fw_caps, NULL);
1844
1845		if (csio_mb_issue(hw, mbp)) {
1846			csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1847				 portid);
1848			mempool_free(mbp, hw->mb_mempool);
1849			return -EINVAL;
1850		}
1851
1852		retval = csio_mb_fw_retval(mbp);
1853		if (retval != FW_SUCCESS) {
1854			csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1855				 portid, retval);
1856			mempool_free(mbp, hw->mb_mempool);
1857			return -EINVAL;
1858		}
1859
1860	} /* For all ports */
1861
1862	mempool_free(mbp, hw->mb_mempool);
1863
1864	return 0;
1865}
1866
1867/*
1868 * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1869 * @hw: HW module
1870 * Issued with lock held.
1871 */
1872static int
1873csio_get_fcoe_resinfo(struct csio_hw *hw)
1874{
1875	struct csio_fcoe_res_info *res_info = &hw->fres_info;
1876	struct fw_fcoe_res_info_cmd *rsp;
1877	struct csio_mb  *mbp;
1878	enum fw_retval retval;
1879
1880	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1881	if (!mbp) {
1882		CSIO_INC_STATS(hw, n_err_nomem);
1883		return -ENOMEM;
1884	}
1885
1886	/* Get FCoE FW resource information */
1887	csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1888
1889	if (csio_mb_issue(hw, mbp)) {
1890		csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1891		mempool_free(mbp, hw->mb_mempool);
1892		return -EINVAL;
1893	}
1894
1895	rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1896	retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
1897	if (retval != FW_SUCCESS) {
1898		csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1899			 retval);
1900		mempool_free(mbp, hw->mb_mempool);
1901		return -EINVAL;
1902	}
1903
1904	res_info->e_d_tov = ntohs(rsp->e_d_tov);
1905	res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1906	res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1907	res_info->r_r_tov = ntohs(rsp->r_r_tov);
1908	res_info->max_xchgs = ntohl(rsp->max_xchgs);
1909	res_info->max_ssns = ntohl(rsp->max_ssns);
1910	res_info->used_xchgs = ntohl(rsp->used_xchgs);
1911	res_info->used_ssns = ntohl(rsp->used_ssns);
1912	res_info->max_fcfs = ntohl(rsp->max_fcfs);
1913	res_info->max_vnps = ntohl(rsp->max_vnps);
1914	res_info->used_fcfs = ntohl(rsp->used_fcfs);
1915	res_info->used_vnps = ntohl(rsp->used_vnps);
1916
1917	csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1918						  res_info->max_xchgs);
1919	mempool_free(mbp, hw->mb_mempool);
1920
1921	return 0;
1922}
1923
1924static int
1925csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1926{
1927	struct csio_mb	*mbp;
1928	enum fw_retval retval;
1929	u32 _param[1];
1930
1931	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1932	if (!mbp) {
1933		CSIO_INC_STATS(hw, n_err_nomem);
1934		return -ENOMEM;
1935	}
1936
1937	/*
1938	 * Find out whether we're dealing with a version of
1939	 * the firmware which has configuration file support.
1940	 */
1941	_param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1942		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
1943
1944	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1945		       ARRAY_SIZE(_param), _param, NULL, false, NULL);
1946	if (csio_mb_issue(hw, mbp)) {
1947		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1948		mempool_free(mbp, hw->mb_mempool);
1949		return -EINVAL;
1950	}
1951
1952	csio_mb_process_read_params_rsp(hw, mbp, &retval,
1953			ARRAY_SIZE(_param), _param);
1954	if (retval != FW_SUCCESS) {
1955		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1956				retval);
1957		mempool_free(mbp, hw->mb_mempool);
1958		return -EINVAL;
1959	}
1960
1961	mempool_free(mbp, hw->mb_mempool);
1962	*param = _param[0];
1963
1964	return 0;
1965}
1966
1967static int
1968csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1969{
1970	int ret = 0;
1971	const struct firmware *cf;
1972	struct pci_dev *pci_dev = hw->pdev;
1973	struct device *dev = &pci_dev->dev;
1974	unsigned int mtype = 0, maddr = 0;
1975	uint32_t *cfg_data;
1976	int value_to_add = 0;
1977	const char *fw_cfg_file;
1978
1979	if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
1980		fw_cfg_file = FW_CFG_NAME_T5;
1981	else
1982		fw_cfg_file = FW_CFG_NAME_T6;
1983
1984	if (request_firmware(&cf, fw_cfg_file, dev) < 0) {
1985		csio_err(hw, "could not find config file %s, err: %d\n",
1986			 fw_cfg_file, ret);
1987		return -ENOENT;
1988	}
1989
1990	if (cf->size%4 != 0)
1991		value_to_add = 4 - (cf->size % 4);
1992
1993	cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1994	if (cfg_data == NULL) {
1995		ret = -ENOMEM;
1996		goto leave;
1997	}
1998
1999	memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
2000	if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
2001		ret = -EINVAL;
2002		goto leave;
2003	}
2004
2005	mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
2006	maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
2007
2008	ret = csio_memory_write(hw, mtype, maddr,
2009				cf->size + value_to_add, cfg_data);
2010
2011	if ((ret == 0) && (value_to_add != 0)) {
2012		union {
2013			u32 word;
2014			char buf[4];
2015		} last;
2016		size_t size = cf->size & ~0x3;
2017		int i;
2018
2019		last.word = cfg_data[size >> 2];
2020		for (i = value_to_add; i < 4; i++)
2021			last.buf[i] = 0;
2022		ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
2023	}
2024	if (ret == 0) {
2025		csio_info(hw, "config file upgraded to %s\n", fw_cfg_file);
2026		snprintf(path, 64, "%s%s", "/lib/firmware/", fw_cfg_file);
2027	}
2028
2029leave:
2030	kfree(cfg_data);
2031	release_firmware(cf);
2032	return ret;
2033}
2034
2035/*
2036 * HW initialization: contact FW, obtain config, perform basic init.
2037 *
2038 * If the firmware we're dealing with has Configuration File support, then
2039 * we use that to perform all configuration -- either using the configuration
2040 * file stored in flash on the adapter or using a filesystem-local file
2041 * if available.
2042 *
2043 * If we don't have configuration file support in the firmware, then we'll
2044 * have to set things up the old fashioned way with hard-coded register
2045 * writes and firmware commands ...
2046 */
2047
2048/*
2049 * Attempt to initialize the HW via a Firmware Configuration File.
2050 */
2051static int
2052csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
2053{
2054	struct csio_mb	*mbp = NULL;
2055	struct fw_caps_config_cmd *caps_cmd;
2056	unsigned int mtype, maddr;
2057	int rv = -EINVAL;
2058	uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
2059	char path[64];
2060	char *config_name = NULL;
2061
2062	/*
2063	 * Reset device if necessary
2064	 */
2065	if (reset) {
2066		rv = csio_do_reset(hw, true);
2067		if (rv != 0)
2068			goto bye;
2069	}
2070
2071	/*
2072	 * If we have a configuration file in host ,
2073	 * then use that.  Otherwise, use the configuration file stored
2074	 * in the HW flash ...
2075	 */
2076	spin_unlock_irq(&hw->lock);
2077	rv = csio_hw_flash_config(hw, fw_cfg_param, path);
2078	spin_lock_irq(&hw->lock);
2079	if (rv != 0) {
2080		/*
2081		 * config file was not found. Use default
2082		 * config file from flash.
2083		 */
2084		config_name = "On FLASH";
2085		mtype = FW_MEMTYPE_CF_FLASH;
2086		maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
2087	} else {
2088		config_name = path;
2089		mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
2090		maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
2091	}
2092
2093	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2094	if (!mbp) {
2095		CSIO_INC_STATS(hw, n_err_nomem);
2096		return -ENOMEM;
2097	}
2098	/*
2099	 * Tell the firmware to process the indicated Configuration File.
2100	 * If there are no errors and the caller has provided return value
2101	 * pointers for the [fini] section version, checksum and computed
2102	 * checksum, pass those back to the caller.
2103	 */
2104	caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
2105	CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
2106	caps_cmd->op_to_write =
2107		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2108		      FW_CMD_REQUEST_F |
2109		      FW_CMD_READ_F);
2110	caps_cmd->cfvalid_to_len16 =
2111		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
2112		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
2113		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
2114		      FW_LEN16(*caps_cmd));
2115
2116	if (csio_mb_issue(hw, mbp)) {
2117		rv = -EINVAL;
2118		goto bye;
2119	}
2120
2121	rv = csio_mb_fw_retval(mbp);
2122	 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
2123	  * Configuration File in FLASH), our last gasp effort is to use the
2124	  * Firmware Configuration File which is embedded in the
2125	  * firmware.  A very few early versions of the firmware didn't
2126	  * have one embedded but we can ignore those.
2127	  */
2128	if (rv == ENOENT) {
2129		CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
2130		caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2131					      FW_CMD_REQUEST_F |
2132					      FW_CMD_READ_F);
2133		caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
2134
2135		if (csio_mb_issue(hw, mbp)) {
2136			rv = -EINVAL;
2137			goto bye;
2138		}
2139
2140		rv = csio_mb_fw_retval(mbp);
2141		config_name = "Firmware Default";
2142	}
2143	if (rv != FW_SUCCESS)
2144		goto bye;
2145
2146	finiver = ntohl(caps_cmd->finiver);
2147	finicsum = ntohl(caps_cmd->finicsum);
2148	cfcsum = ntohl(caps_cmd->cfcsum);
2149
2150	/*
2151	 * And now tell the firmware to use the configuration we just loaded.
2152	 */
2153	caps_cmd->op_to_write =
2154		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2155		      FW_CMD_REQUEST_F |
2156		      FW_CMD_WRITE_F);
2157	caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
2158
2159	if (csio_mb_issue(hw, mbp)) {
2160		rv = -EINVAL;
2161		goto bye;
2162	}
2163
2164	rv = csio_mb_fw_retval(mbp);
2165	if (rv != FW_SUCCESS) {
2166		csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
2167		goto bye;
2168	}
2169
2170	if (finicsum != cfcsum) {
2171		csio_warn(hw,
2172		      "Config File checksum mismatch: csum=%#x, computed=%#x\n",
2173		      finicsum, cfcsum);
2174	}
2175
2176	/* Validate device capabilities */
2177	rv = csio_hw_validate_caps(hw, mbp);
2178	if (rv != 0)
2179		goto bye;
2180
2181	mempool_free(mbp, hw->mb_mempool);
2182	mbp = NULL;
2183
2184	/*
2185	 * Note that we're operating with parameters
2186	 * not supplied by the driver, rather than from hard-wired
2187	 * initialization constants buried in the driver.
2188	 */
2189	hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2190
2191	/* device parameters */
2192	rv = csio_get_device_params(hw);
2193	if (rv != 0)
2194		goto bye;
2195
2196	/* Configure SGE */
2197	csio_wr_sge_init(hw);
2198
2199	/*
2200	 * And finally tell the firmware to initialize itself using the
2201	 * parameters from the Configuration File.
2202	 */
2203	/* Post event to notify completion of configuration */
2204	csio_post_event(&hw->sm, CSIO_HWE_INIT);
2205
2206	csio_info(hw, "Successfully configure using Firmware "
2207		  "Configuration File %s, version %#x, computed checksum %#x\n",
2208		  config_name, finiver, cfcsum);
2209	return 0;
2210
2211	/*
2212	 * Something bad happened.  Return the error ...
2213	 */
2214bye:
2215	if (mbp)
2216		mempool_free(mbp, hw->mb_mempool);
2217	hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
2218	csio_warn(hw, "Configuration file error %d\n", rv);
2219	return rv;
2220}
2221
2222/* Is the given firmware API compatible with the one the driver was compiled
2223 * with?
2224 */
2225static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2226{
2227
2228	/* short circuit if it's the exact same firmware version */
2229	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2230		return 1;
2231
2232#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2233	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2234	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
2235		return 1;
2236#undef SAME_INTF
2237
2238	return 0;
2239}
2240
2241/* The firmware in the filesystem is usable, but should it be installed?
2242 * This routine explains itself in detail if it indicates the filesystem
2243 * firmware should be installed.
2244 */
2245static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable,
2246				int k, int c)
2247{
2248	const char *reason;
2249
2250	if (!card_fw_usable) {
2251		reason = "incompatible or unusable";
2252		goto install;
2253	}
2254
2255	if (k > c) {
2256		reason = "older than the version supported with this driver";
2257		goto install;
2258	}
2259
2260	return 0;
2261
2262install:
2263	csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, "
2264		"installing firmware %u.%u.%u.%u on card.\n",
2265		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2266		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
2267		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2268		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2269
2270	return 1;
2271}
2272
2273static struct fw_info fw_info_array[] = {
2274	{
2275		.chip = CHELSIO_T5,
2276		.fs_name = FW_CFG_NAME_T5,
2277		.fw_mod_name = FW_FNAME_T5,
2278		.fw_hdr = {
2279			.chip = FW_HDR_CHIP_T5,
2280			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
2281			.intfver_nic = FW_INTFVER(T5, NIC),
2282			.intfver_vnic = FW_INTFVER(T5, VNIC),
2283			.intfver_ri = FW_INTFVER(T5, RI),
2284			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
2285			.intfver_fcoe = FW_INTFVER(T5, FCOE),
2286		},
2287	}, {
2288		.chip = CHELSIO_T6,
2289		.fs_name = FW_CFG_NAME_T6,
2290		.fw_mod_name = FW_FNAME_T6,
2291		.fw_hdr = {
2292			.chip = FW_HDR_CHIP_T6,
2293			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
2294			.intfver_nic = FW_INTFVER(T6, NIC),
2295			.intfver_vnic = FW_INTFVER(T6, VNIC),
2296			.intfver_ri = FW_INTFVER(T6, RI),
2297			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
2298			.intfver_fcoe = FW_INTFVER(T6, FCOE),
2299		},
2300	}
2301};
2302
2303static struct fw_info *find_fw_info(int chip)
2304{
2305	int i;
2306
2307	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
2308		if (fw_info_array[i].chip == chip)
2309			return &fw_info_array[i];
2310	}
2311	return NULL;
2312}
2313
2314static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info,
2315	       const u8 *fw_data, unsigned int fw_size,
2316	       struct fw_hdr *card_fw, enum csio_dev_state state,
2317	       int *reset)
2318{
2319	int ret, card_fw_usable, fs_fw_usable;
2320	const struct fw_hdr *fs_fw;
2321	const struct fw_hdr *drv_fw;
2322
2323	drv_fw = &fw_info->fw_hdr;
2324
2325	/* Read the header of the firmware on the card */
2326	ret = csio_hw_read_flash(hw, FLASH_FW_START,
2327			    sizeof(*card_fw) / sizeof(uint32_t),
2328			    (uint32_t *)card_fw, 1);
2329	if (ret == 0) {
2330		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
2331	} else {
2332		csio_err(hw,
2333			"Unable to read card's firmware header: %d\n", ret);
2334		card_fw_usable = 0;
2335	}
2336
2337	if (fw_data != NULL) {
2338		fs_fw = (const void *)fw_data;
2339		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
2340	} else {
2341		fs_fw = NULL;
2342		fs_fw_usable = 0;
2343	}
2344
2345	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
2346	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
2347		/* Common case: the firmware on the card is an exact match and
2348		 * the filesystem one is an exact match too, or the filesystem
2349		 * one is absent/incompatible.
2350		 */
2351	} else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT &&
2352		   csio_should_install_fs_fw(hw, card_fw_usable,
2353					be32_to_cpu(fs_fw->fw_ver),
2354					be32_to_cpu(card_fw->fw_ver))) {
2355		ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data,
2356				     fw_size, 0);
2357		if (ret != 0) {
2358			csio_err(hw,
2359				"failed to install firmware: %d\n", ret);
2360			goto bye;
2361		}
2362
2363		/* Installed successfully, update the cached header too. */
2364		memcpy(card_fw, fs_fw, sizeof(*card_fw));
2365		card_fw_usable = 1;
2366		*reset = 0;	/* already reset as part of load_fw */
2367	}
2368
2369	if (!card_fw_usable) {
2370		uint32_t d, c, k;
2371
2372		d = be32_to_cpu(drv_fw->fw_ver);
2373		c = be32_to_cpu(card_fw->fw_ver);
2374		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
2375
2376		csio_err(hw, "Cannot find a usable firmware: "
2377			"chip state %d, "
2378			"driver compiled with %d.%d.%d.%d, "
2379			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
2380			state,
2381			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
2382			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
2383			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2384			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
2385			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2386			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2387		ret = -EINVAL;
2388		goto bye;
2389	}
2390
2391	/* We're using whatever's on the card and it's known to be good. */
2392	hw->fwrev = be32_to_cpu(card_fw->fw_ver);
2393	hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
2394
2395bye:
2396	return ret;
2397}
2398
2399/*
2400 * Returns -EINVAL if attempts to flash the firmware failed,
2401 * -ENOMEM if memory allocation failed else returns 0,
2402 * if flashing was not attempted because the card had the
2403 * latest firmware ECANCELED is returned
2404 */
2405static int
2406csio_hw_flash_fw(struct csio_hw *hw, int *reset)
2407{
2408	int ret = -ECANCELED;
2409	const struct firmware *fw;
2410	struct fw_info *fw_info;
2411	struct fw_hdr *card_fw;
2412	struct pci_dev *pci_dev = hw->pdev;
2413	struct device *dev = &pci_dev->dev ;
2414	const u8 *fw_data = NULL;
2415	unsigned int fw_size = 0;
2416	const char *fw_bin_file;
2417
2418	/* This is the firmware whose headers the driver was compiled
2419	 * against
2420	 */
2421	fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id));
2422	if (fw_info == NULL) {
2423		csio_err(hw,
2424			"unable to get firmware info for chip %d.\n",
2425			CHELSIO_CHIP_VERSION(hw->chip_id));
2426		return -EINVAL;
2427	}
2428
2429	/* allocate memory to read the header of the firmware on the
2430	 * card
2431	 */
2432	card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL);
2433	if (!card_fw)
2434		return -ENOMEM;
2435
2436	if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
2437		fw_bin_file = FW_FNAME_T5;
2438	else
2439		fw_bin_file = FW_FNAME_T6;
2440
2441	if (request_firmware(&fw, fw_bin_file, dev) < 0) {
2442		csio_err(hw, "could not find firmware image %s, err: %d\n",
2443			 fw_bin_file, ret);
2444	} else {
2445		fw_data = fw->data;
2446		fw_size = fw->size;
2447	}
2448
2449	/* upgrade FW logic */
2450	ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw,
2451			 hw->fw_state, reset);
2452
2453	/* Cleaning up */
2454	if (fw != NULL)
2455		release_firmware(fw);
2456	kfree(card_fw);
2457	return ret;
2458}
2459
2460static int csio_hw_check_fwver(struct csio_hw *hw)
2461{
2462	if (csio_is_t6(hw->pdev->device & CSIO_HW_CHIP_MASK) &&
2463	    (hw->fwrev < CSIO_MIN_T6_FW)) {
2464		csio_hw_print_fw_version(hw, "T6 unsupported fw");
2465		return -1;
2466	}
2467
2468	return 0;
2469}
2470
2471/*
2472 * csio_hw_configure - Configure HW
2473 * @hw - HW module
2474 *
2475 */
2476static void
2477csio_hw_configure(struct csio_hw *hw)
2478{
2479	int reset = 1;
2480	int rv;
2481	u32 param[1];
2482
2483	rv = csio_hw_dev_ready(hw);
2484	if (rv != 0) {
2485		CSIO_INC_STATS(hw, n_err_fatal);
2486		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2487		goto out;
2488	}
2489
2490	/* HW version */
2491	hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A);
2492
2493	/* Needed for FW download */
2494	rv = csio_hw_get_flash_params(hw);
2495	if (rv != 0) {
2496		csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2497		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2498		goto out;
2499	}
2500
2501	/* Set PCIe completion timeout to 4 seconds */
2502	if (pci_is_pcie(hw->pdev))
2503		pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
2504				PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
2505
2506	hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2507
2508	rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2509	if (rv != 0)
2510		goto out;
2511
2512	csio_hw_print_fw_version(hw, "Firmware revision");
2513
2514	rv = csio_do_hello(hw, &hw->fw_state);
2515	if (rv != 0) {
2516		CSIO_INC_STATS(hw, n_err_fatal);
2517		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2518		goto out;
2519	}
2520
2521	/* Read vpd */
2522	rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2523	if (rv != 0)
2524		goto out;
2525
2526	csio_hw_get_fw_version(hw, &hw->fwrev);
2527	csio_hw_get_tp_version(hw, &hw->tp_vers);
2528	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2529
2530			/* Do firmware update */
2531		spin_unlock_irq(&hw->lock);
2532		rv = csio_hw_flash_fw(hw, &reset);
2533		spin_lock_irq(&hw->lock);
2534
2535		if (rv != 0)
2536			goto out;
2537
2538		rv = csio_hw_check_fwver(hw);
2539		if (rv < 0)
2540			goto out;
2541
2542		/* If the firmware doesn't support Configuration Files,
2543		 * return an error.
2544		 */
2545		rv = csio_hw_check_fwconfig(hw, param);
2546		if (rv != 0) {
2547			csio_info(hw, "Firmware doesn't support "
2548				  "Firmware Configuration files\n");
2549			goto out;
2550		}
2551
2552		/* The firmware provides us with a memory buffer where we can
2553		 * load a Configuration File from the host if we want to
2554		 * override the Configuration File in flash.
2555		 */
2556		rv = csio_hw_use_fwconfig(hw, reset, param);
2557		if (rv == -ENOENT) {
2558			csio_info(hw, "Could not initialize "
2559				  "adapter, error%d\n", rv);
2560			goto out;
2561		}
2562		if (rv != 0) {
2563			csio_info(hw, "Could not initialize "
2564				  "adapter, error%d\n", rv);
2565			goto out;
2566		}
2567
2568	} else {
2569		rv = csio_hw_check_fwver(hw);
2570		if (rv < 0)
2571			goto out;
2572
2573		if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2574
2575			hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2576
2577			/* device parameters */
2578			rv = csio_get_device_params(hw);
2579			if (rv != 0)
2580				goto out;
2581
2582			/* Get device capabilities */
2583			rv = csio_config_device_caps(hw);
2584			if (rv != 0)
2585				goto out;
2586
2587			/* Configure SGE */
2588			csio_wr_sge_init(hw);
2589
2590			/* Post event to notify completion of configuration */
2591			csio_post_event(&hw->sm, CSIO_HWE_INIT);
2592			goto out;
2593		}
2594	} /* if not master */
2595
2596out:
2597	return;
2598}
2599
2600/*
2601 * csio_hw_initialize - Initialize HW
2602 * @hw - HW module
2603 *
2604 */
2605static void
2606csio_hw_initialize(struct csio_hw *hw)
2607{
2608	struct csio_mb	*mbp;
2609	enum fw_retval retval;
2610	int rv;
2611	int i;
2612
2613	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2614		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2615		if (!mbp)
2616			goto out;
2617
2618		csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2619
2620		if (csio_mb_issue(hw, mbp)) {
2621			csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2622			goto free_and_out;
2623		}
2624
2625		retval = csio_mb_fw_retval(mbp);
2626		if (retval != FW_SUCCESS) {
2627			csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2628				 retval);
2629			goto free_and_out;
2630		}
2631
2632		mempool_free(mbp, hw->mb_mempool);
2633	}
2634
2635	rv = csio_get_fcoe_resinfo(hw);
2636	if (rv != 0) {
2637		csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2638		goto out;
2639	}
2640
2641	spin_unlock_irq(&hw->lock);
2642	rv = csio_config_queues(hw);
2643	spin_lock_irq(&hw->lock);
2644
2645	if (rv != 0) {
2646		csio_err(hw, "Config of queues failed!: %d\n", rv);
2647		goto out;
2648	}
2649
2650	for (i = 0; i < hw->num_pports; i++)
2651		hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2652
2653	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2654		rv = csio_enable_ports(hw);
2655		if (rv != 0) {
2656			csio_err(hw, "Failed to enable ports: %d\n", rv);
2657			goto out;
2658		}
2659	}
2660
2661	csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2662	return;
2663
2664free_and_out:
2665	mempool_free(mbp, hw->mb_mempool);
2666out:
2667	return;
2668}
2669
2670#define PF_INTR_MASK (PFSW_F | PFCIM_F)
2671
2672/*
2673 * csio_hw_intr_enable - Enable HW interrupts
2674 * @hw: Pointer to HW module.
2675 *
2676 * Enable interrupts in HW registers.
2677 */
2678static void
2679csio_hw_intr_enable(struct csio_hw *hw)
2680{
2681	uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2682	u32 pf = 0;
2683	uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A);
2684
2685	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2686		pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2687	else
2688		pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2689
2690	/*
2691	 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2692	 * by FW, so do nothing for INTX.
2693	 */
2694	if (hw->intr_mode == CSIO_IM_MSIX)
2695		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2696				   AIVEC_V(AIVEC_M), vec);
2697	else if (hw->intr_mode == CSIO_IM_MSI)
2698		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2699				   AIVEC_V(AIVEC_M), 0);
2700
2701	csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A));
2702
2703	/* Turn on MB interrupts - this will internally flush PIO as well */
2704	csio_mb_intr_enable(hw);
2705
2706	/* These are common registers - only a master can modify them */
2707	if (csio_is_hw_master(hw)) {
2708		/*
2709		 * Disable the Serial FLASH interrupt, if enabled!
2710		 */
2711		pl &= (~SF_F);
2712		csio_wr_reg32(hw, pl, PL_INT_ENABLE_A);
2713
2714		csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
2715			      EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
2716			      ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
2717			      ERR_DATA_CPL_ON_HIGH_QID1_F |
2718			      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2719			      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2720			      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2721			      ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
2722			      SGE_INT_ENABLE3_A);
2723		csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf);
2724	}
2725
2726	hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2727
2728}
2729
2730/*
2731 * csio_hw_intr_disable - Disable HW interrupts
2732 * @hw: Pointer to HW module.
2733 *
2734 * Turn off Mailbox and PCI_PF_CFG interrupts.
2735 */
2736void
2737csio_hw_intr_disable(struct csio_hw *hw)
2738{
2739	u32 pf = 0;
2740
2741	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2742		pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2743	else
2744		pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2745
2746	if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2747		return;
2748
2749	hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2750
2751	csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A));
2752	if (csio_is_hw_master(hw))
2753		csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0);
2754
2755	/* Turn off MB interrupts */
2756	csio_mb_intr_disable(hw);
2757
2758}
2759
2760void
2761csio_hw_fatal_err(struct csio_hw *hw)
2762{
2763	csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2764	csio_hw_intr_disable(hw);
2765
2766	/* Do not reset HW, we may need FW state for debugging */
2767	csio_fatal(hw, "HW Fatal error encountered!\n");
2768}
2769
2770/*****************************************************************************/
2771/* START: HW SM                                                              */
2772/*****************************************************************************/
2773/*
2774 * csio_hws_uninit - Uninit state
2775 * @hw - HW module
2776 * @evt - Event
2777 *
2778 */
2779static void
2780csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2781{
2782	hw->prev_evt = hw->cur_evt;
2783	hw->cur_evt = evt;
2784	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2785
2786	switch (evt) {
2787	case CSIO_HWE_CFG:
2788		csio_set_state(&hw->sm, csio_hws_configuring);
2789		csio_hw_configure(hw);
2790		break;
2791
2792	default:
2793		CSIO_INC_STATS(hw, n_evt_unexp);
2794		break;
2795	}
2796}
2797
2798/*
2799 * csio_hws_configuring - Configuring state
2800 * @hw - HW module
2801 * @evt - Event
2802 *
2803 */
2804static void
2805csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2806{
2807	hw->prev_evt = hw->cur_evt;
2808	hw->cur_evt = evt;
2809	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2810
2811	switch (evt) {
2812	case CSIO_HWE_INIT:
2813		csio_set_state(&hw->sm, csio_hws_initializing);
2814		csio_hw_initialize(hw);
2815		break;
2816
2817	case CSIO_HWE_INIT_DONE:
2818		csio_set_state(&hw->sm, csio_hws_ready);
2819		/* Fan out event to all lnode SMs */
2820		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2821		break;
2822
2823	case CSIO_HWE_FATAL:
2824		csio_set_state(&hw->sm, csio_hws_uninit);
2825		break;
2826
2827	case CSIO_HWE_PCI_REMOVE:
2828		csio_do_bye(hw);
2829		break;
2830	default:
2831		CSIO_INC_STATS(hw, n_evt_unexp);
2832		break;
2833	}
2834}
2835
2836/*
2837 * csio_hws_initializing - Initializing state
2838 * @hw - HW module
2839 * @evt - Event
2840 *
2841 */
2842static void
2843csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2844{
2845	hw->prev_evt = hw->cur_evt;
2846	hw->cur_evt = evt;
2847	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2848
2849	switch (evt) {
2850	case CSIO_HWE_INIT_DONE:
2851		csio_set_state(&hw->sm, csio_hws_ready);
2852
2853		/* Fan out event to all lnode SMs */
2854		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2855
2856		/* Enable interrupts */
2857		csio_hw_intr_enable(hw);
2858		break;
2859
2860	case CSIO_HWE_FATAL:
2861		csio_set_state(&hw->sm, csio_hws_uninit);
2862		break;
2863
2864	case CSIO_HWE_PCI_REMOVE:
2865		csio_do_bye(hw);
2866		break;
2867
2868	default:
2869		CSIO_INC_STATS(hw, n_evt_unexp);
2870		break;
2871	}
2872}
2873
2874/*
2875 * csio_hws_ready - Ready state
2876 * @hw - HW module
2877 * @evt - Event
2878 *
2879 */
2880static void
2881csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2882{
2883	/* Remember the event */
2884	hw->evtflag = evt;
2885
2886	hw->prev_evt = hw->cur_evt;
2887	hw->cur_evt = evt;
2888	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2889
2890	switch (evt) {
2891	case CSIO_HWE_HBA_RESET:
2892	case CSIO_HWE_FW_DLOAD:
2893	case CSIO_HWE_SUSPEND:
2894	case CSIO_HWE_PCI_REMOVE:
2895	case CSIO_HWE_PCIERR_DETECTED:
2896		csio_set_state(&hw->sm, csio_hws_quiescing);
2897		/* cleanup all outstanding cmds */
2898		if (evt == CSIO_HWE_HBA_RESET ||
2899		    evt == CSIO_HWE_PCIERR_DETECTED)
2900			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2901		else
2902			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2903
2904		csio_hw_intr_disable(hw);
2905		csio_hw_mbm_cleanup(hw);
2906		csio_evtq_stop(hw);
2907		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2908		csio_evtq_flush(hw);
2909		csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2910		csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2911		break;
2912
2913	case CSIO_HWE_FATAL:
2914		csio_set_state(&hw->sm, csio_hws_uninit);
2915		break;
2916
2917	default:
2918		CSIO_INC_STATS(hw, n_evt_unexp);
2919		break;
2920	}
2921}
2922
2923/*
2924 * csio_hws_quiescing - Quiescing state
2925 * @hw - HW module
2926 * @evt - Event
2927 *
2928 */
2929static void
2930csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2931{
2932	hw->prev_evt = hw->cur_evt;
2933	hw->cur_evt = evt;
2934	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2935
2936	switch (evt) {
2937	case CSIO_HWE_QUIESCED:
2938		switch (hw->evtflag) {
2939		case CSIO_HWE_FW_DLOAD:
2940			csio_set_state(&hw->sm, csio_hws_resetting);
2941			/* Download firmware */
2942			fallthrough;
2943
2944		case CSIO_HWE_HBA_RESET:
2945			csio_set_state(&hw->sm, csio_hws_resetting);
2946			/* Start reset of the HBA */
2947			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2948			csio_wr_destroy_queues(hw, false);
2949			csio_do_reset(hw, false);
2950			csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2951			break;
2952
2953		case CSIO_HWE_PCI_REMOVE:
2954			csio_set_state(&hw->sm, csio_hws_removing);
2955			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2956			csio_wr_destroy_queues(hw, true);
2957			/* Now send the bye command */
2958			csio_do_bye(hw);
2959			break;
2960
2961		case CSIO_HWE_SUSPEND:
2962			csio_set_state(&hw->sm, csio_hws_quiesced);
2963			break;
2964
2965		case CSIO_HWE_PCIERR_DETECTED:
2966			csio_set_state(&hw->sm, csio_hws_pcierr);
2967			csio_wr_destroy_queues(hw, false);
2968			break;
2969
2970		default:
2971			CSIO_INC_STATS(hw, n_evt_unexp);
2972			break;
2973
2974		}
2975		break;
2976
2977	default:
2978		CSIO_INC_STATS(hw, n_evt_unexp);
2979		break;
2980	}
2981}
2982
2983/*
2984 * csio_hws_quiesced - Quiesced state
2985 * @hw - HW module
2986 * @evt - Event
2987 *
2988 */
2989static void
2990csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2991{
2992	hw->prev_evt = hw->cur_evt;
2993	hw->cur_evt = evt;
2994	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2995
2996	switch (evt) {
2997	case CSIO_HWE_RESUME:
2998		csio_set_state(&hw->sm, csio_hws_configuring);
2999		csio_hw_configure(hw);
3000		break;
3001
3002	default:
3003		CSIO_INC_STATS(hw, n_evt_unexp);
3004		break;
3005	}
3006}
3007
3008/*
3009 * csio_hws_resetting - HW Resetting state
3010 * @hw - HW module
3011 * @evt - Event
3012 *
3013 */
3014static void
3015csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
3016{
3017	hw->prev_evt = hw->cur_evt;
3018	hw->cur_evt = evt;
3019	CSIO_INC_STATS(hw, n_evt_sm[evt]);
3020
3021	switch (evt) {
3022	case CSIO_HWE_HBA_RESET_DONE:
3023		csio_evtq_start(hw);
3024		csio_set_state(&hw->sm, csio_hws_configuring);
3025		csio_hw_configure(hw);
3026		break;
3027
3028	default:
3029		CSIO_INC_STATS(hw, n_evt_unexp);
3030		break;
3031	}
3032}
3033
3034/*
3035 * csio_hws_removing - PCI Hotplug removing state
3036 * @hw - HW module
3037 * @evt - Event
3038 *
3039 */
3040static void
3041csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
3042{
3043	hw->prev_evt = hw->cur_evt;
3044	hw->cur_evt = evt;
3045	CSIO_INC_STATS(hw, n_evt_sm[evt]);
3046
3047	switch (evt) {
3048	case CSIO_HWE_HBA_RESET:
3049		if (!csio_is_hw_master(hw))
3050			break;
3051		/*
3052		 * The BYE should have already been issued, so we can't
3053		 * use the mailbox interface. Hence we use the PL_RST
3054		 * register directly.
3055		 */
3056		csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
3057		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
3058		mdelay(2000);
3059		break;
3060
3061	/* Should never receive any new events */
3062	default:
3063		CSIO_INC_STATS(hw, n_evt_unexp);
3064		break;
3065
3066	}
3067}
3068
3069/*
3070 * csio_hws_pcierr - PCI Error state
3071 * @hw - HW module
3072 * @evt - Event
3073 *
3074 */
3075static void
3076csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
3077{
3078	hw->prev_evt = hw->cur_evt;
3079	hw->cur_evt = evt;
3080	CSIO_INC_STATS(hw, n_evt_sm[evt]);
3081
3082	switch (evt) {
3083	case CSIO_HWE_PCIERR_SLOT_RESET:
3084		csio_evtq_start(hw);
3085		csio_set_state(&hw->sm, csio_hws_configuring);
3086		csio_hw_configure(hw);
3087		break;
3088
3089	default:
3090		CSIO_INC_STATS(hw, n_evt_unexp);
3091		break;
3092	}
3093}
3094
3095/*****************************************************************************/
3096/* END: HW SM                                                                */
3097/*****************************************************************************/
3098
3099/*
3100 *	csio_handle_intr_status - table driven interrupt handler
3101 *	@hw: HW instance
3102 *	@reg: the interrupt status register to process
3103 *	@acts: table of interrupt actions
3104 *
3105 *	A table driven interrupt handler that applies a set of masks to an
3106 *	interrupt status word and performs the corresponding actions if the
3107 *	interrupts described by the mask have occurred.  The actions include
3108 *	optionally emitting a warning or alert message. The table is terminated
3109 *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3110 *	conditions.
3111 */
3112int
3113csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
3114				 const struct intr_info *acts)
3115{
3116	int fatal = 0;
3117	unsigned int mask = 0;
3118	unsigned int status = csio_rd_reg32(hw, reg);
3119
3120	for ( ; acts->mask; ++acts) {
3121		if (!(status & acts->mask))
3122			continue;
3123		if (acts->fatal) {
3124			fatal++;
3125			csio_fatal(hw, "Fatal %s (0x%x)\n",
3126				    acts->msg, status & acts->mask);
3127		} else if (acts->msg)
3128			csio_info(hw, "%s (0x%x)\n",
3129				    acts->msg, status & acts->mask);
3130		mask |= acts->mask;
3131	}
3132	status &= mask;
3133	if (status)                           /* clear processed interrupts */
3134		csio_wr_reg32(hw, status, reg);
3135	return fatal;
3136}
3137
3138/*
3139 * TP interrupt handler.
3140 */
3141static void csio_tp_intr_handler(struct csio_hw *hw)
3142{
3143	static struct intr_info tp_intr_info[] = {
3144		{ 0x3fffffff, "TP parity error", -1, 1 },
3145		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3146		{ 0, NULL, 0, 0 }
3147	};
3148
3149	if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info))
3150		csio_hw_fatal_err(hw);
3151}
3152
3153/*
3154 * SGE interrupt handler.
3155 */
3156static void csio_sge_intr_handler(struct csio_hw *hw)
3157{
3158	uint64_t v;
3159
3160	static struct intr_info sge_intr_info[] = {
3161		{ ERR_CPL_EXCEED_IQE_SIZE_F,
3162		  "SGE received CPL exceeding IQE size", -1, 1 },
3163		{ ERR_INVALID_CIDX_INC_F,
3164		  "SGE GTS CIDX increment too large", -1, 0 },
3165		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3166		{ ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
3167		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3168		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3169		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3170		  0 },
3171		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3172		  0 },
3173		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3174		  0 },
3175		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3176		  0 },
3177		{ ERR_ING_CTXT_PRIO_F,
3178		  "SGE too many priority ingress contexts", -1, 0 },
3179		{ ERR_EGR_CTXT_PRIO_F,
3180		  "SGE too many priority egress contexts", -1, 0 },
3181		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3182		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3183		{ 0, NULL, 0, 0 }
3184	};
3185
3186	v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
3187	    ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
3188	if (v) {
3189		csio_fatal(hw, "SGE parity error (%#llx)\n",
3190			    (unsigned long long)v);
3191		csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
3192						SGE_INT_CAUSE1_A);
3193		csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
3194	}
3195
3196	v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
3197
3198	if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
3199	    v != 0)
3200		csio_hw_fatal_err(hw);
3201}
3202
3203#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3204		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3205#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3206		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3207
3208/*
3209 * CIM interrupt handler.
3210 */
3211static void csio_cim_intr_handler(struct csio_hw *hw)
3212{
3213	static struct intr_info cim_intr_info[] = {
3214		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3215		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3216		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3217		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3218		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3219		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3220		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3221		{ 0, NULL, 0, 0 }
3222	};
3223	static struct intr_info cim_upintr_info[] = {
3224		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3225		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3226		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
3227		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
3228		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3229		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3230		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3231		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3232		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3233		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3234		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3235		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3236		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3237		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3238		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3239		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3240		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3241		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3242		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3243		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3244		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3245		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3246		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3247		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3248		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3249		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3250		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3251		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3252		{ 0, NULL, 0, 0 }
3253	};
3254
3255	int fat;
3256
3257	fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A,
3258				      cim_intr_info) +
3259	      csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A,
3260				      cim_upintr_info);
3261	if (fat)
3262		csio_hw_fatal_err(hw);
3263}
3264
3265/*
3266 * ULP RX interrupt handler.
3267 */
3268static void csio_ulprx_intr_handler(struct csio_hw *hw)
3269{
3270	static struct intr_info ulprx_intr_info[] = {
3271		{ 0x1800000, "ULPRX context error", -1, 1 },
3272		{ 0x7fffff, "ULPRX parity error", -1, 1 },
3273		{ 0, NULL, 0, 0 }
3274	};
3275
3276	if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3277		csio_hw_fatal_err(hw);
3278}
3279
3280/*
3281 * ULP TX interrupt handler.
3282 */
3283static void csio_ulptx_intr_handler(struct csio_hw *hw)
3284{
3285	static struct intr_info ulptx_intr_info[] = {
3286		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3287		  0 },
3288		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3289		  0 },
3290		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3291		  0 },
3292		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3293		  0 },
3294		{ 0xfffffff, "ULPTX parity error", -1, 1 },
3295		{ 0, NULL, 0, 0 }
3296	};
3297
3298	if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3299		csio_hw_fatal_err(hw);
3300}
3301
3302/*
3303 * PM TX interrupt handler.
3304 */
3305static void csio_pmtx_intr_handler(struct csio_hw *hw)
3306{
3307	static struct intr_info pmtx_intr_info[] = {
3308		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3309		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3310		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3311		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3312		{ 0xffffff0, "PMTX framing error", -1, 1 },
3313		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
3314		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1,
3315		  1 },
3316		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
3317		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
3318		{ 0, NULL, 0, 0 }
3319	};
3320
3321	if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info))
3322		csio_hw_fatal_err(hw);
3323}
3324
3325/*
3326 * PM RX interrupt handler.
3327 */
3328static void csio_pmrx_intr_handler(struct csio_hw *hw)
3329{
3330	static struct intr_info pmrx_intr_info[] = {
3331		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
3332		{ 0x3ffff0, "PMRX framing error", -1, 1 },
3333		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
3334		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1,
3335		  1 },
3336		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
3337		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
3338		{ 0, NULL, 0, 0 }
3339	};
3340
3341	if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info))
3342		csio_hw_fatal_err(hw);
3343}
3344
3345/*
3346 * CPL switch interrupt handler.
3347 */
3348static void csio_cplsw_intr_handler(struct csio_hw *hw)
3349{
3350	static struct intr_info cplsw_intr_info[] = {
3351		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
3352		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
3353		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
3354		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
3355		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
3356		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
3357		{ 0, NULL, 0, 0 }
3358	};
3359
3360	if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info))
3361		csio_hw_fatal_err(hw);
3362}
3363
3364/*
3365 * LE interrupt handler.
3366 */
3367static void csio_le_intr_handler(struct csio_hw *hw)
3368{
3369	enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
3370
3371	static struct intr_info le_intr_info[] = {
3372		{ LIPMISS_F, "LE LIP miss", -1, 0 },
3373		{ LIP0_F, "LE 0 LIP error", -1, 0 },
3374		{ PARITYERR_F, "LE parity error", -1, 1 },
3375		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3376		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
3377		{ 0, NULL, 0, 0 }
3378	};
3379
3380	static struct intr_info t6_le_intr_info[] = {
3381		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
3382		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
3383		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
3384		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3385		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
3386		{ 0, NULL, 0, 0 }
3387	};
3388
3389	if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A,
3390				    (chip == CHELSIO_T5) ?
3391				    le_intr_info : t6_le_intr_info))
3392		csio_hw_fatal_err(hw);
3393}
3394
3395/*
3396 * MPS interrupt handler.
3397 */
3398static void csio_mps_intr_handler(struct csio_hw *hw)
3399{
3400	static struct intr_info mps_rx_intr_info[] = {
3401		{ 0xffffff, "MPS Rx parity error", -1, 1 },
3402		{ 0, NULL, 0, 0 }
3403	};
3404	static struct intr_info mps_tx_intr_info[] = {
3405		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
3406		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3407		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
3408		  -1, 1 },
3409		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
3410		  -1, 1 },
3411		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
3412		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
3413		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
3414		{ 0, NULL, 0, 0 }
3415	};
3416	static struct intr_info mps_trc_intr_info[] = {
3417		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
3418		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
3419		  -1, 1 },
3420		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
3421		{ 0, NULL, 0, 0 }
3422	};
3423	static struct intr_info mps_stat_sram_intr_info[] = {
3424		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3425		{ 0, NULL, 0, 0 }
3426	};
3427	static struct intr_info mps_stat_tx_intr_info[] = {
3428		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3429		{ 0, NULL, 0, 0 }
3430	};
3431	static struct intr_info mps_stat_rx_intr_info[] = {
3432		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3433		{ 0, NULL, 0, 0 }
3434	};
3435	static struct intr_info mps_cls_intr_info[] = {
3436		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
3437		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
3438		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
3439		{ 0, NULL, 0, 0 }
3440	};
3441
3442	int fat;
3443
3444	fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A,
3445				      mps_rx_intr_info) +
3446	      csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A,
3447				      mps_tx_intr_info) +
3448	      csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A,
3449				      mps_trc_intr_info) +
3450	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
3451				      mps_stat_sram_intr_info) +
3452	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
3453				      mps_stat_tx_intr_info) +
3454	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
3455				      mps_stat_rx_intr_info) +
3456	      csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A,
3457				      mps_cls_intr_info);
3458
3459	csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A);
3460	csio_rd_reg32(hw, MPS_INT_CAUSE_A);                    /* flush */
3461	if (fat)
3462		csio_hw_fatal_err(hw);
3463}
3464
3465#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3466		      ECC_UE_INT_CAUSE_F)
3467
3468/*
3469 * EDC/MC interrupt handler.
3470 */
3471static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3472{
3473	static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3474
3475	unsigned int addr, cnt_addr, v;
3476
3477	if (idx <= MEM_EDC1) {
3478		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3479		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3480	} else {
3481		addr = MC_INT_CAUSE_A;
3482		cnt_addr = MC_ECC_STATUS_A;
3483	}
3484
3485	v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3486	if (v & PERR_INT_CAUSE_F)
3487		csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3488	if (v & ECC_CE_INT_CAUSE_F) {
3489		uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr));
3490
3491		csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr);
3492		csio_warn(hw, "%u %s correctable ECC data error%s\n",
3493			    cnt, name[idx], cnt > 1 ? "s" : "");
3494	}
3495	if (v & ECC_UE_INT_CAUSE_F)
3496		csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3497
3498	csio_wr_reg32(hw, v, addr);
3499	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3500		csio_hw_fatal_err(hw);
3501}
3502
3503/*
3504 * MA interrupt handler.
3505 */
3506static void csio_ma_intr_handler(struct csio_hw *hw)
3507{
3508	uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A);
3509
3510	if (status & MEM_PERR_INT_CAUSE_F)
3511		csio_fatal(hw, "MA parity error, parity status %#x\n",
3512			    csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A));
3513	if (status & MEM_WRAP_INT_CAUSE_F) {
3514		v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A);
3515		csio_fatal(hw,
3516		   "MA address wrap-around error by client %u to address %#x\n",
3517		   MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4);
3518	}
3519	csio_wr_reg32(hw, status, MA_INT_CAUSE_A);
3520	csio_hw_fatal_err(hw);
3521}
3522
3523/*
3524 * SMB interrupt handler.
3525 */
3526static void csio_smb_intr_handler(struct csio_hw *hw)
3527{
3528	static struct intr_info smb_intr_info[] = {
3529		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3530		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3531		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3532		{ 0, NULL, 0, 0 }
3533	};
3534
3535	if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info))
3536		csio_hw_fatal_err(hw);
3537}
3538
3539/*
3540 * NC-SI interrupt handler.
3541 */
3542static void csio_ncsi_intr_handler(struct csio_hw *hw)
3543{
3544	static struct intr_info ncsi_intr_info[] = {
3545		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3546		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3547		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3548		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3549		{ 0, NULL, 0, 0 }
3550	};
3551
3552	if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info))
3553		csio_hw_fatal_err(hw);
3554}
3555
3556/*
3557 * XGMAC interrupt handler.
3558 */
3559static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3560{
3561	uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3562
3563	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3564	if (!v)
3565		return;
3566
3567	if (v & TXFIFO_PRTY_ERR_F)
3568		csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3569	if (v & RXFIFO_PRTY_ERR_F)
3570		csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3571	csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3572	csio_hw_fatal_err(hw);
3573}
3574
3575/*
3576 * PL interrupt handler.
3577 */
3578static void csio_pl_intr_handler(struct csio_hw *hw)
3579{
3580	static struct intr_info pl_intr_info[] = {
3581		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
3582		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3583		{ 0, NULL, 0, 0 }
3584	};
3585
3586	if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info))
3587		csio_hw_fatal_err(hw);
3588}
3589
3590/*
3591 *	csio_hw_slow_intr_handler - control path interrupt handler
3592 *	@hw: HW module
3593 *
3594 *	Interrupt handler for non-data global interrupt events, e.g., errors.
3595 *	The designation 'slow' is because it involves register reads, while
3596 *	data interrupts typically don't involve any MMIOs.
3597 */
3598int
3599csio_hw_slow_intr_handler(struct csio_hw *hw)
3600{
3601	uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A);
3602
3603	if (!(cause & CSIO_GLBL_INTR_MASK)) {
3604		CSIO_INC_STATS(hw, n_plint_unexp);
3605		return 0;
3606	}
3607
3608	csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3609
3610	CSIO_INC_STATS(hw, n_plint_cnt);
3611
3612	if (cause & CIM_F)
3613		csio_cim_intr_handler(hw);
3614
3615	if (cause & MPS_F)
3616		csio_mps_intr_handler(hw);
3617
3618	if (cause & NCSI_F)
3619		csio_ncsi_intr_handler(hw);
3620
3621	if (cause & PL_F)
3622		csio_pl_intr_handler(hw);
3623
3624	if (cause & SMB_F)
3625		csio_smb_intr_handler(hw);
3626
3627	if (cause & XGMAC0_F)
3628		csio_xgmac_intr_handler(hw, 0);
3629
3630	if (cause & XGMAC1_F)
3631		csio_xgmac_intr_handler(hw, 1);
3632
3633	if (cause & XGMAC_KR0_F)
3634		csio_xgmac_intr_handler(hw, 2);
3635
3636	if (cause & XGMAC_KR1_F)
3637		csio_xgmac_intr_handler(hw, 3);
3638
3639	if (cause & PCIE_F)
3640		hw->chip_ops->chip_pcie_intr_handler(hw);
3641
3642	if (cause & MC_F)
3643		csio_mem_intr_handler(hw, MEM_MC);
3644
3645	if (cause & EDC0_F)
3646		csio_mem_intr_handler(hw, MEM_EDC0);
3647
3648	if (cause & EDC1_F)
3649		csio_mem_intr_handler(hw, MEM_EDC1);
3650
3651	if (cause & LE_F)
3652		csio_le_intr_handler(hw);
3653
3654	if (cause & TP_F)
3655		csio_tp_intr_handler(hw);
3656
3657	if (cause & MA_F)
3658		csio_ma_intr_handler(hw);
3659
3660	if (cause & PM_TX_F)
3661		csio_pmtx_intr_handler(hw);
3662
3663	if (cause & PM_RX_F)
3664		csio_pmrx_intr_handler(hw);
3665
3666	if (cause & ULP_RX_F)
3667		csio_ulprx_intr_handler(hw);
3668
3669	if (cause & CPL_SWITCH_F)
3670		csio_cplsw_intr_handler(hw);
3671
3672	if (cause & SGE_F)
3673		csio_sge_intr_handler(hw);
3674
3675	if (cause & ULP_TX_F)
3676		csio_ulptx_intr_handler(hw);
3677
3678	/* Clear the interrupts just processed for which we are the master. */
3679	csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A);
3680	csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */
3681
3682	return 1;
3683}
3684
3685/*****************************************************************************
3686 * HW <--> mailbox interfacing routines.
3687 ****************************************************************************/
3688/*
3689 * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3690 *
3691 * @data: Private data pointer.
3692 *
3693 * Called from worker thread context.
3694 */
3695static void
3696csio_mberr_worker(void *data)
3697{
3698	struct csio_hw *hw = (struct csio_hw *)data;
3699	struct csio_mbm *mbm = &hw->mbm;
3700	LIST_HEAD(cbfn_q);
3701	struct csio_mb *mbp_next;
3702	int rv;
3703
3704	del_timer_sync(&mbm->timer);
3705
3706	spin_lock_irq(&hw->lock);
3707	if (list_empty(&mbm->cbfn_q)) {
3708		spin_unlock_irq(&hw->lock);
3709		return;
3710	}
3711
3712	list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3713	mbm->stats.n_cbfnq = 0;
3714
3715	/* Try to start waiting mailboxes */
3716	if (!list_empty(&mbm->req_q)) {
3717		mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3718		list_del_init(&mbp_next->list);
3719
3720		rv = csio_mb_issue(hw, mbp_next);
3721		if (rv != 0)
3722			list_add_tail(&mbp_next->list, &mbm->req_q);
3723		else
3724			CSIO_DEC_STATS(mbm, n_activeq);
3725	}
3726	spin_unlock_irq(&hw->lock);
3727
3728	/* Now callback completions */
3729	csio_mb_completions(hw, &cbfn_q);
3730}
3731
3732/*
3733 * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3734 *
3735 * @data: private data pointer
3736 *
3737 **/
3738static void
3739csio_hw_mb_timer(struct timer_list *t)
3740{
3741	struct csio_mbm *mbm = from_timer(mbm, t, timer);
3742	struct csio_hw *hw = mbm->hw;
3743	struct csio_mb *mbp = NULL;
3744
3745	spin_lock_irq(&hw->lock);
3746	mbp = csio_mb_tmo_handler(hw);
3747	spin_unlock_irq(&hw->lock);
3748
3749	/* Call back the function for the timed-out Mailbox */
3750	if (mbp)
3751		mbp->mb_cbfn(hw, mbp);
3752
3753}
3754
3755/*
3756 * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3757 * @hw: HW module
3758 *
3759 * Called with lock held, should exit with lock held.
3760 * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3761 * into a local queue. Drops lock and calls the completions. Holds
3762 * lock and returns.
3763 */
3764static void
3765csio_hw_mbm_cleanup(struct csio_hw *hw)
3766{
3767	LIST_HEAD(cbfn_q);
3768
3769	csio_mb_cancel_all(hw, &cbfn_q);
3770
3771	spin_unlock_irq(&hw->lock);
3772	csio_mb_completions(hw, &cbfn_q);
3773	spin_lock_irq(&hw->lock);
3774}
3775
3776/*****************************************************************************
3777 * Event handling
3778 ****************************************************************************/
3779int
3780csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3781			uint16_t len)
3782{
3783	struct csio_evt_msg *evt_entry = NULL;
3784
3785	if (type >= CSIO_EVT_MAX)
3786		return -EINVAL;
3787
3788	if (len > CSIO_EVT_MSG_SIZE)
3789		return -EINVAL;
3790
3791	if (hw->flags & CSIO_HWF_FWEVT_STOP)
3792		return -EINVAL;
3793
3794	if (list_empty(&hw->evt_free_q)) {
3795		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3796			 type, len);
3797		return -ENOMEM;
3798	}
3799
3800	evt_entry = list_first_entry(&hw->evt_free_q,
3801				     struct csio_evt_msg, list);
3802	list_del_init(&evt_entry->list);
3803
3804	/* copy event msg and queue the event */
3805	evt_entry->type = type;
3806	memcpy((void *)evt_entry->data, evt_msg, len);
3807	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3808
3809	CSIO_DEC_STATS(hw, n_evt_freeq);
3810	CSIO_INC_STATS(hw, n_evt_activeq);
3811
3812	return 0;
3813}
3814
3815static int
3816csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3817			uint16_t len, bool msg_sg)
3818{
3819	struct csio_evt_msg *evt_entry = NULL;
3820	struct csio_fl_dma_buf *fl_sg;
3821	uint32_t off = 0;
3822	unsigned long flags;
3823	int n, ret = 0;
3824
3825	if (type >= CSIO_EVT_MAX)
3826		return -EINVAL;
3827
3828	if (len > CSIO_EVT_MSG_SIZE)
3829		return -EINVAL;
3830
3831	spin_lock_irqsave(&hw->lock, flags);
3832	if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3833		ret = -EINVAL;
3834		goto out;
3835	}
3836
3837	if (list_empty(&hw->evt_free_q)) {
3838		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3839			 type, len);
3840		ret = -ENOMEM;
3841		goto out;
3842	}
3843
3844	evt_entry = list_first_entry(&hw->evt_free_q,
3845				     struct csio_evt_msg, list);
3846	list_del_init(&evt_entry->list);
3847
3848	/* copy event msg and queue the event */
3849	evt_entry->type = type;
3850
3851	/* If Payload in SG list*/
3852	if (msg_sg) {
3853		fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3854		for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3855			memcpy((void *)((uintptr_t)evt_entry->data + off),
3856				fl_sg->flbufs[n].vaddr,
3857				fl_sg->flbufs[n].len);
3858			off += fl_sg->flbufs[n].len;
3859		}
3860	} else
3861		memcpy((void *)evt_entry->data, evt_msg, len);
3862
3863	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3864	CSIO_DEC_STATS(hw, n_evt_freeq);
3865	CSIO_INC_STATS(hw, n_evt_activeq);
3866out:
3867	spin_unlock_irqrestore(&hw->lock, flags);
3868	return ret;
3869}
3870
3871static void
3872csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3873{
3874	if (evt_entry) {
3875		spin_lock_irq(&hw->lock);
3876		list_del_init(&evt_entry->list);
3877		list_add_tail(&evt_entry->list, &hw->evt_free_q);
3878		CSIO_DEC_STATS(hw, n_evt_activeq);
3879		CSIO_INC_STATS(hw, n_evt_freeq);
3880		spin_unlock_irq(&hw->lock);
3881	}
3882}
3883
3884void
3885csio_evtq_flush(struct csio_hw *hw)
3886{
3887	uint32_t count;
3888	count = 30;
3889	while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3890		spin_unlock_irq(&hw->lock);
3891		msleep(2000);
3892		spin_lock_irq(&hw->lock);
3893	}
3894
3895	CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3896}
3897
3898static void
3899csio_evtq_stop(struct csio_hw *hw)
3900{
3901	hw->flags |= CSIO_HWF_FWEVT_STOP;
3902}
3903
3904static void
3905csio_evtq_start(struct csio_hw *hw)
3906{
3907	hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3908}
3909
3910static void
3911csio_evtq_cleanup(struct csio_hw *hw)
3912{
3913	struct list_head *evt_entry, *next_entry;
3914
3915	/* Release outstanding events from activeq to freeq*/
3916	if (!list_empty(&hw->evt_active_q))
3917		list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3918
3919	hw->stats.n_evt_activeq = 0;
3920	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3921
3922	/* Freeup event entry */
3923	list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3924		kfree(evt_entry);
3925		CSIO_DEC_STATS(hw, n_evt_freeq);
3926	}
3927
3928	hw->stats.n_evt_freeq = 0;
3929}
3930
3931
3932static void
3933csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3934			  struct csio_fl_dma_buf *flb, void *priv)
3935{
3936	__u8 op;
3937	void *msg = NULL;
3938	uint32_t msg_len = 0;
3939	bool msg_sg = 0;
3940
3941	op = ((struct rss_header *) wr)->opcode;
3942	if (op == CPL_FW6_PLD) {
3943		CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3944		if (!flb || !flb->totlen) {
3945			CSIO_INC_STATS(hw, n_cpl_unexp);
3946			return;
3947		}
3948
3949		msg = (void *) flb;
3950		msg_len = flb->totlen;
3951		msg_sg = 1;
3952	} else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3953
3954		CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3955		/* skip RSS header */
3956		msg = (void *)((uintptr_t)wr + sizeof(__be64));
3957		msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3958			   sizeof(struct cpl_fw4_msg);
3959	} else {
3960		csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3961		CSIO_INC_STATS(hw, n_cpl_unexp);
3962		return;
3963	}
3964
3965	/*
3966	 * Enqueue event to EventQ. Events processing happens
3967	 * in Event worker thread context
3968	 */
3969	if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3970				  (uint16_t)msg_len, msg_sg))
3971		CSIO_INC_STATS(hw, n_evt_drop);
3972}
3973
3974void
3975csio_evtq_worker(struct work_struct *work)
3976{
3977	struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3978	struct list_head *evt_entry, *next_entry;
3979	LIST_HEAD(evt_q);
3980	struct csio_evt_msg	*evt_msg;
3981	struct cpl_fw6_msg *msg;
3982	struct csio_rnode *rn;
3983	int rv = 0;
3984	uint8_t evtq_stop = 0;
3985
3986	csio_dbg(hw, "event worker thread active evts#%d\n",
3987		 hw->stats.n_evt_activeq);
3988
3989	spin_lock_irq(&hw->lock);
3990	while (!list_empty(&hw->evt_active_q)) {
3991		list_splice_tail_init(&hw->evt_active_q, &evt_q);
3992		spin_unlock_irq(&hw->lock);
3993
3994		list_for_each_safe(evt_entry, next_entry, &evt_q) {
3995			evt_msg = (struct csio_evt_msg *) evt_entry;
3996
3997			/* Drop events if queue is STOPPED */
3998			spin_lock_irq(&hw->lock);
3999			if (hw->flags & CSIO_HWF_FWEVT_STOP)
4000				evtq_stop = 1;
4001			spin_unlock_irq(&hw->lock);
4002			if (evtq_stop) {
4003				CSIO_INC_STATS(hw, n_evt_drop);
4004				goto free_evt;
4005			}
4006
4007			switch (evt_msg->type) {
4008			case CSIO_EVT_FW:
4009				msg = (struct cpl_fw6_msg *)(evt_msg->data);
4010
4011				if ((msg->opcode == CPL_FW6_MSG ||
4012				     msg->opcode == CPL_FW4_MSG) &&
4013				    !msg->type) {
4014					rv = csio_mb_fwevt_handler(hw,
4015								msg->data);
4016					if (!rv)
4017						break;
4018					/* Handle any remaining fw events */
4019					csio_fcoe_fwevt_handler(hw,
4020							msg->opcode, msg->data);
4021				} else if (msg->opcode == CPL_FW6_PLD) {
4022
4023					csio_fcoe_fwevt_handler(hw,
4024							msg->opcode, msg->data);
4025				} else {
4026					csio_warn(hw,
4027					     "Unhandled FW msg op %x type %x\n",
4028						  msg->opcode, msg->type);
4029					CSIO_INC_STATS(hw, n_evt_drop);
4030				}
4031				break;
4032
4033			case CSIO_EVT_MBX:
4034				csio_mberr_worker(hw);
4035				break;
4036
4037			case CSIO_EVT_DEV_LOSS:
4038				memcpy(&rn, evt_msg->data, sizeof(rn));
4039				csio_rnode_devloss_handler(rn);
4040				break;
4041
4042			default:
4043				csio_warn(hw, "Unhandled event %x on evtq\n",
4044					  evt_msg->type);
4045				CSIO_INC_STATS(hw, n_evt_unexp);
4046				break;
4047			}
4048free_evt:
4049			csio_free_evt(hw, evt_msg);
4050		}
4051
4052		spin_lock_irq(&hw->lock);
4053	}
4054	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
4055	spin_unlock_irq(&hw->lock);
4056}
4057
4058int
4059csio_fwevtq_handler(struct csio_hw *hw)
4060{
4061	int rv;
4062
4063	if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
4064		CSIO_INC_STATS(hw, n_int_stray);
4065		return -EINVAL;
4066	}
4067
4068	rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
4069			   csio_process_fwevtq_entry, NULL);
4070	return rv;
4071}
4072
4073/****************************************************************************
4074 * Entry points
4075 ****************************************************************************/
4076
4077/* Management module */
4078/*
4079 * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
4080 * mgmt - mgmt module
4081 * @io_req - io request
4082 *
4083 * Return - 0:if given IO Req exists in active Q.
4084 *          -EINVAL  :if lookup fails.
4085 */
4086int
4087csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
4088{
4089	struct list_head *tmp;
4090
4091	/* Lookup ioreq in the ACTIVEQ */
4092	list_for_each(tmp, &mgmtm->active_q) {
4093		if (io_req == (struct csio_ioreq *)tmp)
4094			return 0;
4095	}
4096	return -EINVAL;
4097}
4098
4099#define	ECM_MIN_TMO	1000	/* Minimum timeout value for req */
4100
4101/*
4102 * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
4103 * @data - Event data.
4104 *
4105 * Return - none.
4106 */
4107static void
4108csio_mgmt_tmo_handler(struct timer_list *t)
4109{
4110	struct csio_mgmtm *mgmtm = from_timer(mgmtm, t, mgmt_timer);
4111	struct list_head *tmp;
4112	struct csio_ioreq *io_req;
4113
4114	csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
4115
4116	spin_lock_irq(&mgmtm->hw->lock);
4117
4118	list_for_each(tmp, &mgmtm->active_q) {
4119		io_req = (struct csio_ioreq *) tmp;
4120		io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
4121
4122		if (!io_req->tmo) {
4123			/* Dequeue the request from retry Q. */
4124			tmp = csio_list_prev(tmp);
4125			list_del_init(&io_req->sm.sm_list);
4126			if (io_req->io_cbfn) {
4127				/* io_req will be freed by completion handler */
4128				io_req->wr_status = -ETIMEDOUT;
4129				io_req->io_cbfn(mgmtm->hw, io_req);
4130			} else {
4131				CSIO_DB_ASSERT(0);
4132			}
4133		}
4134	}
4135
4136	/* If retry queue is not empty, re-arm timer */
4137	if (!list_empty(&mgmtm->active_q))
4138		mod_timer(&mgmtm->mgmt_timer,
4139			  jiffies + msecs_to_jiffies(ECM_MIN_TMO));
4140	spin_unlock_irq(&mgmtm->hw->lock);
4141}
4142
4143static void
4144csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
4145{
4146	struct csio_hw *hw = mgmtm->hw;
4147	struct csio_ioreq *io_req;
4148	struct list_head *tmp;
4149	uint32_t count;
4150
4151	count = 30;
4152	/* Wait for all outstanding req to complete gracefully */
4153	while ((!list_empty(&mgmtm->active_q)) && count--) {
4154		spin_unlock_irq(&hw->lock);
4155		msleep(2000);
4156		spin_lock_irq(&hw->lock);
4157	}
4158
4159	/* release outstanding req from ACTIVEQ */
4160	list_for_each(tmp, &mgmtm->active_q) {
4161		io_req = (struct csio_ioreq *) tmp;
4162		tmp = csio_list_prev(tmp);
4163		list_del_init(&io_req->sm.sm_list);
4164		mgmtm->stats.n_active--;
4165		if (io_req->io_cbfn) {
4166			/* io_req will be freed by completion handler */
4167			io_req->wr_status = -ETIMEDOUT;
4168			io_req->io_cbfn(mgmtm->hw, io_req);
4169		}
4170	}
4171}
4172
4173/*
4174 * csio_mgmt_init - Mgmt module init entry point
4175 * @mgmtsm - mgmt module
4176 * @hw	 - HW module
4177 *
4178 * Initialize mgmt timer, resource wait queue, active queue,
4179 * completion q. Allocate Egress and Ingress
4180 * WR queues and save off the queue index returned by the WR
4181 * module for future use. Allocate and save off mgmt reqs in the
4182 * mgmt_req_freelist for future use. Make sure their SM is initialized
4183 * to uninit state.
4184 * Returns: 0 - on success
4185 *          -ENOMEM   - on error.
4186 */
4187static int
4188csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
4189{
4190	timer_setup(&mgmtm->mgmt_timer, csio_mgmt_tmo_handler, 0);
4191
4192	INIT_LIST_HEAD(&mgmtm->active_q);
4193	INIT_LIST_HEAD(&mgmtm->cbfn_q);
4194
4195	mgmtm->hw = hw;
4196	/*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
4197
4198	return 0;
4199}
4200
4201/*
4202 * csio_mgmtm_exit - MGMT module exit entry point
4203 * @mgmtsm - mgmt module
4204 *
4205 * This function called during MGMT module uninit.
4206 * Stop timers, free ioreqs allocated.
4207 * Returns: None
4208 *
4209 */
4210static void
4211csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
4212{
4213	del_timer_sync(&mgmtm->mgmt_timer);
4214}
4215
4216
4217/**
4218 * csio_hw_start - Kicks off the HW State machine
4219 * @hw:		Pointer to HW module.
4220 *
4221 * It is assumed that the initialization is a synchronous operation.
4222 * So when we return after posting the event, the HW SM should be in
4223 * the ready state, if there were no errors during init.
4224 */
4225int
4226csio_hw_start(struct csio_hw *hw)
4227{
4228	spin_lock_irq(&hw->lock);
4229	csio_post_event(&hw->sm, CSIO_HWE_CFG);
4230	spin_unlock_irq(&hw->lock);
4231
4232	if (csio_is_hw_ready(hw))
4233		return 0;
4234	else if (csio_match_state(hw, csio_hws_uninit))
4235		return -EINVAL;
4236	else
4237		return -ENODEV;
4238}
4239
4240int
4241csio_hw_stop(struct csio_hw *hw)
4242{
4243	csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
4244
4245	if (csio_is_hw_removing(hw))
4246		return 0;
4247	else
4248		return -EINVAL;
4249}
4250
4251/* Max reset retries */
4252#define CSIO_MAX_RESET_RETRIES	3
4253
4254/**
4255 * csio_hw_reset - Reset the hardware
4256 * @hw:		HW module.
4257 *
4258 * Caller should hold lock across this function.
4259 */
4260int
4261csio_hw_reset(struct csio_hw *hw)
4262{
4263	if (!csio_is_hw_master(hw))
4264		return -EPERM;
4265
4266	if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
4267		csio_dbg(hw, "Max hw reset attempts reached..");
4268		return -EINVAL;
4269	}
4270
4271	hw->rst_retries++;
4272	csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
4273
4274	if (csio_is_hw_ready(hw)) {
4275		hw->rst_retries = 0;
4276		hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
4277		return 0;
4278	} else
4279		return -EINVAL;
4280}
4281
4282/*
4283 * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
4284 * @hw: HW module.
4285 */
4286static void
4287csio_hw_get_device_id(struct csio_hw *hw)
4288{
4289	/* Is the adapter device id cached already ?*/
4290	if (csio_is_dev_id_cached(hw))
4291		return;
4292
4293	/* Get the PCI vendor & device id */
4294	pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
4295			     &hw->params.pci.vendor_id);
4296	pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
4297			     &hw->params.pci.device_id);
4298
4299	csio_dev_id_cached(hw);
4300	hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
4301
4302} /* csio_hw_get_device_id */
4303
4304/*
4305 * csio_hw_set_description - Set the model, description of the hw.
4306 * @hw: HW module.
4307 * @ven_id: PCI Vendor ID
4308 * @dev_id: PCI Device ID
4309 */
4310static void
4311csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
4312{
4313	uint32_t adap_type, prot_type;
4314
4315	if (ven_id == CSIO_VENDOR_ID) {
4316		prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
4317		adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
4318
4319		if (prot_type == CSIO_T5_FCOE_ASIC) {
4320			memcpy(hw->hw_ver,
4321			       csio_t5_fcoe_adapters[adap_type].model_no, 16);
4322			memcpy(hw->model_desc,
4323			       csio_t5_fcoe_adapters[adap_type].description,
4324			       32);
4325		} else {
4326			char tempName[32] = "Chelsio FCoE Controller";
4327			memcpy(hw->model_desc, tempName, 32);
4328		}
4329	}
4330} /* csio_hw_set_description */
4331
4332/**
4333 * csio_hw_init - Initialize HW module.
4334 * @hw:		Pointer to HW module.
4335 *
4336 * Initialize the members of the HW module.
4337 */
4338int
4339csio_hw_init(struct csio_hw *hw)
4340{
4341	int rv = -EINVAL;
4342	uint32_t i;
4343	uint16_t ven_id, dev_id;
4344	struct csio_evt_msg	*evt_entry;
4345
4346	INIT_LIST_HEAD(&hw->sm.sm_list);
4347	csio_init_state(&hw->sm, csio_hws_uninit);
4348	spin_lock_init(&hw->lock);
4349	INIT_LIST_HEAD(&hw->sln_head);
4350
4351	/* Get the PCI vendor & device id */
4352	csio_hw_get_device_id(hw);
4353
4354	strcpy(hw->name, CSIO_HW_NAME);
4355
4356	/* Initialize the HW chip ops T5 specific ops */
4357	hw->chip_ops = &t5_ops;
4358
4359	/* Set the model & its description */
4360
4361	ven_id = hw->params.pci.vendor_id;
4362	dev_id = hw->params.pci.device_id;
4363
4364	csio_hw_set_description(hw, ven_id, dev_id);
4365
4366	/* Initialize default log level */
4367	hw->params.log_level = (uint32_t) csio_dbg_level;
4368
4369	csio_set_fwevt_intr_idx(hw, -1);
4370	csio_set_nondata_intr_idx(hw, -1);
4371
4372	/* Init all the modules: Mailbox, WorkRequest and Transport */
4373	if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
4374		goto err;
4375
4376	rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
4377	if (rv)
4378		goto err_mbm_exit;
4379
4380	rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
4381	if (rv)
4382		goto err_wrm_exit;
4383
4384	rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
4385	if (rv)
4386		goto err_scsim_exit;
4387	/* Pre-allocate evtq and initialize them */
4388	INIT_LIST_HEAD(&hw->evt_active_q);
4389	INIT_LIST_HEAD(&hw->evt_free_q);
4390	for (i = 0; i < csio_evtq_sz; i++) {
4391
4392		evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
4393		if (!evt_entry) {
4394			rv = -ENOMEM;
4395			csio_err(hw, "Failed to initialize eventq");
4396			goto err_evtq_cleanup;
4397		}
4398
4399		list_add_tail(&evt_entry->list, &hw->evt_free_q);
4400		CSIO_INC_STATS(hw, n_evt_freeq);
4401	}
4402
4403	hw->dev_num = dev_num;
4404	dev_num++;
4405
4406	return 0;
4407
4408err_evtq_cleanup:
4409	csio_evtq_cleanup(hw);
4410	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4411err_scsim_exit:
4412	csio_scsim_exit(csio_hw_to_scsim(hw));
4413err_wrm_exit:
4414	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4415err_mbm_exit:
4416	csio_mbm_exit(csio_hw_to_mbm(hw));
4417err:
4418	return rv;
4419}
4420
4421/**
4422 * csio_hw_exit - Un-initialize HW module.
4423 * @hw:		Pointer to HW module.
4424 *
4425 */
4426void
4427csio_hw_exit(struct csio_hw *hw)
4428{
4429	csio_evtq_cleanup(hw);
4430	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4431	csio_scsim_exit(csio_hw_to_scsim(hw));
4432	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4433	csio_mbm_exit(csio_hw_to_mbm(hw));
4434}
4435