1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Texas Instruments K3 RTC driver
4 *
5 * Copyright (C) 2021-2022 Texas Instruments Incorporated - https://www.ti.com/
6 */
7
8#include <linux/clk.h>
9#include <linux/delay.h>
10#include <linux/mod_devicetable.h>
11#include <linux/module.h>
12#include <linux/of.h>
13#include <linux/platform_device.h>
14#include <linux/sys_soc.h>
15#include <linux/property.h>
16#include <linux/regmap.h>
17#include <linux/rtc.h>
18
19/* Registers */
20#define REG_K3RTC_S_CNT_LSW		0x08
21#define REG_K3RTC_S_CNT_MSW		0x0c
22#define REG_K3RTC_COMP			0x10
23#define REG_K3RTC_ON_OFF_S_CNT_LSW	0x20
24#define REG_K3RTC_ON_OFF_S_CNT_MSW	0x24
25#define REG_K3RTC_SCRATCH0		0x30
26#define REG_K3RTC_SCRATCH7		0x4c
27#define REG_K3RTC_GENERAL_CTL		0x50
28#define REG_K3RTC_IRQSTATUS_RAW_SYS	0x54
29#define REG_K3RTC_IRQSTATUS_SYS		0x58
30#define REG_K3RTC_IRQENABLE_SET_SYS	0x5c
31#define REG_K3RTC_IRQENABLE_CLR_SYS	0x60
32#define REG_K3RTC_SYNCPEND		0x68
33#define REG_K3RTC_KICK0			0x70
34#define REG_K3RTC_KICK1			0x74
35
36/* Freeze when lsw is read and unfreeze when msw is read */
37#define K3RTC_CNT_FMODE_S_CNT_VALUE	(0x2 << 24)
38
39/* Magic values for lock/unlock */
40#define K3RTC_KICK0_UNLOCK_VALUE	0x83e70b13
41#define K3RTC_KICK1_UNLOCK_VALUE	0x95a4f1e0
42
43/* Multiplier for ppb conversions */
44#define K3RTC_PPB_MULT			(1000000000LL)
45/* Min and max values supported with 'offset' interface (swapped sign) */
46#define K3RTC_MIN_OFFSET		(-277761)
47#define K3RTC_MAX_OFFSET		(277778)
48
49static const struct regmap_config ti_k3_rtc_regmap_config = {
50	.name = "peripheral-registers",
51	.reg_bits = 32,
52	.val_bits = 32,
53	.reg_stride = 4,
54	.max_register = REG_K3RTC_KICK1,
55};
56
57enum ti_k3_rtc_fields {
58	K3RTC_KICK0,
59	K3RTC_KICK1,
60	K3RTC_S_CNT_LSW,
61	K3RTC_S_CNT_MSW,
62	K3RTC_O32K_OSC_DEP_EN,
63	K3RTC_UNLOCK,
64	K3RTC_CNT_FMODE,
65	K3RTC_PEND,
66	K3RTC_RELOAD_FROM_BBD,
67	K3RTC_COMP,
68
69	K3RTC_ALM_S_CNT_LSW,
70	K3RTC_ALM_S_CNT_MSW,
71	K3RTC_IRQ_STATUS_RAW,
72	K3RTC_IRQ_STATUS,
73	K3RTC_IRQ_ENABLE_SET,
74	K3RTC_IRQ_ENABLE_CLR,
75
76	K3RTC_IRQ_STATUS_ALT,
77	K3RTC_IRQ_ENABLE_CLR_ALT,
78
79	K3_RTC_MAX_FIELDS
80};
81
82static const struct reg_field ti_rtc_reg_fields[] = {
83	[K3RTC_KICK0] = REG_FIELD(REG_K3RTC_KICK0, 0, 31),
84	[K3RTC_KICK1] = REG_FIELD(REG_K3RTC_KICK1, 0, 31),
85	[K3RTC_S_CNT_LSW] = REG_FIELD(REG_K3RTC_S_CNT_LSW, 0, 31),
86	[K3RTC_S_CNT_MSW] = REG_FIELD(REG_K3RTC_S_CNT_MSW, 0, 15),
87	[K3RTC_O32K_OSC_DEP_EN] = REG_FIELD(REG_K3RTC_GENERAL_CTL, 21, 21),
88	[K3RTC_UNLOCK] = REG_FIELD(REG_K3RTC_GENERAL_CTL, 23, 23),
89	[K3RTC_CNT_FMODE] = REG_FIELD(REG_K3RTC_GENERAL_CTL, 24, 25),
90	[K3RTC_PEND] = REG_FIELD(REG_K3RTC_SYNCPEND, 0, 1),
91	[K3RTC_RELOAD_FROM_BBD] = REG_FIELD(REG_K3RTC_SYNCPEND, 31, 31),
92	[K3RTC_COMP] = REG_FIELD(REG_K3RTC_COMP, 0, 31),
93
94	/* We use on to off as alarm trigger */
95	[K3RTC_ALM_S_CNT_LSW] = REG_FIELD(REG_K3RTC_ON_OFF_S_CNT_LSW, 0, 31),
96	[K3RTC_ALM_S_CNT_MSW] = REG_FIELD(REG_K3RTC_ON_OFF_S_CNT_MSW, 0, 15),
97	[K3RTC_IRQ_STATUS_RAW] = REG_FIELD(REG_K3RTC_IRQSTATUS_RAW_SYS, 0, 0),
98	[K3RTC_IRQ_STATUS] = REG_FIELD(REG_K3RTC_IRQSTATUS_SYS, 0, 0),
99	[K3RTC_IRQ_ENABLE_SET] = REG_FIELD(REG_K3RTC_IRQENABLE_SET_SYS, 0, 0),
100	[K3RTC_IRQ_ENABLE_CLR] = REG_FIELD(REG_K3RTC_IRQENABLE_CLR_SYS, 0, 0),
101	/* Off to on is alternate */
102	[K3RTC_IRQ_STATUS_ALT] = REG_FIELD(REG_K3RTC_IRQSTATUS_SYS, 1, 1),
103	[K3RTC_IRQ_ENABLE_CLR_ALT] = REG_FIELD(REG_K3RTC_IRQENABLE_CLR_SYS, 1, 1),
104};
105
106/**
107 * struct ti_k3_rtc - Private data for ti-k3-rtc
108 * @irq:		IRQ
109 * @sync_timeout_us:	data sync timeout period in uSec
110 * @rate_32k:		32k clock rate in Hz
111 * @rtc_dev:		rtc device
112 * @regmap:		rtc mmio regmap
113 * @r_fields:		rtc register fields
114 */
115struct ti_k3_rtc {
116	unsigned int irq;
117	u32 sync_timeout_us;
118	unsigned long rate_32k;
119	struct rtc_device *rtc_dev;
120	struct regmap *regmap;
121	struct regmap_field *r_fields[K3_RTC_MAX_FIELDS];
122};
123
124static int k3rtc_field_read(struct ti_k3_rtc *priv, enum ti_k3_rtc_fields f)
125{
126	int ret;
127	int val;
128
129	ret = regmap_field_read(priv->r_fields[f], &val);
130	/*
131	 * We shouldn't be seeing regmap fail on us for mmio reads
132	 * This is possible if clock context fails, but that isn't the case for us
133	 */
134	if (WARN_ON_ONCE(ret))
135		return ret;
136	return val;
137}
138
139static void k3rtc_field_write(struct ti_k3_rtc *priv, enum ti_k3_rtc_fields f, u32 val)
140{
141	regmap_field_write(priv->r_fields[f], val);
142}
143
144/**
145 * k3rtc_fence  - Ensure a register sync took place between the two domains
146 * @priv:      pointer to priv data
147 *
148 * Return: 0 if the sync took place, else returns -ETIMEDOUT
149 */
150static int k3rtc_fence(struct ti_k3_rtc *priv)
151{
152	int ret;
153
154	ret = regmap_field_read_poll_timeout(priv->r_fields[K3RTC_PEND], ret,
155					     !ret, 2, priv->sync_timeout_us);
156
157	return ret;
158}
159
160static inline int k3rtc_check_unlocked(struct ti_k3_rtc *priv)
161{
162	int ret;
163
164	ret = k3rtc_field_read(priv, K3RTC_UNLOCK);
165	if (ret < 0)
166		return ret;
167
168	return (ret) ? 0 : 1;
169}
170
171static int k3rtc_unlock_rtc(struct ti_k3_rtc *priv)
172{
173	int ret;
174
175	ret = k3rtc_check_unlocked(priv);
176	if (!ret)
177		return ret;
178
179	k3rtc_field_write(priv, K3RTC_KICK0, K3RTC_KICK0_UNLOCK_VALUE);
180	k3rtc_field_write(priv, K3RTC_KICK1, K3RTC_KICK1_UNLOCK_VALUE);
181
182	/* Skip fence since we are going to check the unlock bit as fence */
183	ret = regmap_field_read_poll_timeout(priv->r_fields[K3RTC_UNLOCK], ret,
184					     ret, 2, priv->sync_timeout_us);
185
186	return ret;
187}
188
189/*
190 * This is the list of SoCs affected by TI's i2327 errata causing the RTC
191 * state-machine to break if not unlocked fast enough during boot. These
192 * SoCs must have the bootloader unlock this device very early in the
193 * boot-flow before we (Linux) can use this device.
194 */
195static const struct soc_device_attribute has_erratum_i2327[] = {
196	{ .family = "AM62X", .revision = "SR1.0" },
197	{ /* sentinel */ }
198};
199
200static int k3rtc_configure(struct device *dev)
201{
202	int ret;
203	struct ti_k3_rtc *priv = dev_get_drvdata(dev);
204
205	/*
206	 * HWBUG: The compare state machine is broken if the RTC module
207	 * is NOT unlocked in under one second of boot - which is pretty long
208	 * time from the perspective of Linux driver (module load, u-boot
209	 * shell all can take much longer than this.
210	 *
211	 * In such occurrence, it is assumed that the RTC module is unusable
212	 */
213	if (soc_device_match(has_erratum_i2327)) {
214		ret = k3rtc_check_unlocked(priv);
215		/* If there is an error OR if we are locked, return error */
216		if (ret) {
217			dev_err(dev,
218				HW_ERR "Erratum i2327 unlock QUIRK! Cannot operate!!\n");
219			return -EFAULT;
220		}
221	} else {
222		/* May need to explicitly unlock first time */
223		ret = k3rtc_unlock_rtc(priv);
224		if (ret) {
225			dev_err(dev, "Failed to unlock(%d)!\n", ret);
226			return ret;
227		}
228	}
229
230	/* Enable Shadow register sync on 32k clock boundary */
231	k3rtc_field_write(priv, K3RTC_O32K_OSC_DEP_EN, 0x1);
232
233	/*
234	 * Wait at least clock sync time before proceeding further programming.
235	 * This ensures that the 32k based sync is active.
236	 */
237	usleep_range(priv->sync_timeout_us, priv->sync_timeout_us + 5);
238
239	/* We need to ensure fence here to make sure sync here */
240	ret = k3rtc_fence(priv);
241	if (ret) {
242		dev_err(dev,
243			"Failed fence osc_dep enable(%d) - is 32k clk working?!\n", ret);
244		return ret;
245	}
246
247	/*
248	 * FMODE setting: Reading lower seconds will freeze value on higher
249	 * seconds. This also implies that we must *ALWAYS* read lower seconds
250	 * prior to reading higher seconds
251	 */
252	k3rtc_field_write(priv, K3RTC_CNT_FMODE, K3RTC_CNT_FMODE_S_CNT_VALUE);
253
254	/* Clear any spurious IRQ sources if any */
255	k3rtc_field_write(priv, K3RTC_IRQ_STATUS_ALT, 0x1);
256	k3rtc_field_write(priv, K3RTC_IRQ_STATUS, 0x1);
257	/* Disable all IRQs */
258	k3rtc_field_write(priv, K3RTC_IRQ_ENABLE_CLR_ALT, 0x1);
259	k3rtc_field_write(priv, K3RTC_IRQ_ENABLE_CLR, 0x1);
260
261	/* And.. Let us Sync the writes in */
262	return k3rtc_fence(priv);
263}
264
265static int ti_k3_rtc_read_time(struct device *dev, struct rtc_time *tm)
266{
267	struct ti_k3_rtc *priv = dev_get_drvdata(dev);
268	u32 seconds_lo, seconds_hi;
269
270	seconds_lo = k3rtc_field_read(priv, K3RTC_S_CNT_LSW);
271	seconds_hi = k3rtc_field_read(priv, K3RTC_S_CNT_MSW);
272
273	rtc_time64_to_tm((((time64_t)seconds_hi) << 32) | (time64_t)seconds_lo, tm);
274
275	return 0;
276}
277
278static int ti_k3_rtc_set_time(struct device *dev, struct rtc_time *tm)
279{
280	struct ti_k3_rtc *priv = dev_get_drvdata(dev);
281	time64_t seconds;
282
283	seconds = rtc_tm_to_time64(tm);
284
285	/*
286	 * Read operation on LSW will freeze the RTC, so to update
287	 * the time, we cannot use field operations. Just write since the
288	 * reserved bits are ignored.
289	 */
290	regmap_write(priv->regmap, REG_K3RTC_S_CNT_LSW, seconds);
291	regmap_write(priv->regmap, REG_K3RTC_S_CNT_MSW, seconds >> 32);
292
293	return k3rtc_fence(priv);
294}
295
296static int ti_k3_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
297{
298	struct ti_k3_rtc *priv = dev_get_drvdata(dev);
299	u32 reg;
300	u32 offset = enabled ? K3RTC_IRQ_ENABLE_SET : K3RTC_IRQ_ENABLE_CLR;
301
302	reg = k3rtc_field_read(priv, K3RTC_IRQ_ENABLE_SET);
303	if ((enabled && reg) || (!enabled && !reg))
304		return 0;
305
306	k3rtc_field_write(priv, offset, 0x1);
307
308	/*
309	 * Ensure the write sync is through - NOTE: it should be OK to have
310	 * ISR to fire as we are checking sync (which should be done in a 32k
311	 * cycle or so).
312	 */
313	return k3rtc_fence(priv);
314}
315
316static int ti_k3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
317{
318	struct ti_k3_rtc *priv = dev_get_drvdata(dev);
319	u32 seconds_lo, seconds_hi;
320
321	seconds_lo = k3rtc_field_read(priv, K3RTC_ALM_S_CNT_LSW);
322	seconds_hi = k3rtc_field_read(priv, K3RTC_ALM_S_CNT_MSW);
323
324	rtc_time64_to_tm((((time64_t)seconds_hi) << 32) | (time64_t)seconds_lo, &alarm->time);
325
326	alarm->enabled = k3rtc_field_read(priv, K3RTC_IRQ_ENABLE_SET);
327
328	return 0;
329}
330
331static int ti_k3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
332{
333	struct ti_k3_rtc *priv = dev_get_drvdata(dev);
334	time64_t seconds;
335	int ret;
336
337	seconds = rtc_tm_to_time64(&alarm->time);
338
339	k3rtc_field_write(priv, K3RTC_ALM_S_CNT_LSW, seconds);
340	k3rtc_field_write(priv, K3RTC_ALM_S_CNT_MSW, (seconds >> 32));
341
342	/* Make sure the alarm time is synced in */
343	ret = k3rtc_fence(priv);
344	if (ret) {
345		dev_err(dev, "Failed to fence(%d)! Potential config issue?\n", ret);
346		return ret;
347	}
348
349	/* Alarm IRQ enable will do a sync */
350	return ti_k3_rtc_alarm_irq_enable(dev, alarm->enabled);
351}
352
353static int ti_k3_rtc_read_offset(struct device *dev, long *offset)
354{
355	struct ti_k3_rtc *priv = dev_get_drvdata(dev);
356	u32 ticks_per_hr = priv->rate_32k * 3600;
357	int comp;
358	s64 tmp;
359
360	comp = k3rtc_field_read(priv, K3RTC_COMP);
361
362	/* Convert from RTC calibration register format to ppb format */
363	tmp = comp * (s64)K3RTC_PPB_MULT;
364	if (tmp < 0)
365		tmp -= ticks_per_hr / 2LL;
366	else
367		tmp += ticks_per_hr / 2LL;
368	tmp = div_s64(tmp, ticks_per_hr);
369
370	/* Offset value operates in negative way, so swap sign */
371	*offset = (long)-tmp;
372
373	return 0;
374}
375
376static int ti_k3_rtc_set_offset(struct device *dev, long offset)
377{
378	struct ti_k3_rtc *priv = dev_get_drvdata(dev);
379	u32 ticks_per_hr = priv->rate_32k * 3600;
380	int comp;
381	s64 tmp;
382
383	/* Make sure offset value is within supported range */
384	if (offset < K3RTC_MIN_OFFSET || offset > K3RTC_MAX_OFFSET)
385		return -ERANGE;
386
387	/* Convert from ppb format to RTC calibration register format */
388	tmp = offset * (s64)ticks_per_hr;
389	if (tmp < 0)
390		tmp -= K3RTC_PPB_MULT / 2LL;
391	else
392		tmp += K3RTC_PPB_MULT / 2LL;
393	tmp = div_s64(tmp, K3RTC_PPB_MULT);
394
395	/* Offset value operates in negative way, so swap sign */
396	comp = (int)-tmp;
397
398	k3rtc_field_write(priv, K3RTC_COMP, comp);
399
400	return k3rtc_fence(priv);
401}
402
403static irqreturn_t ti_k3_rtc_interrupt(s32 irq, void *dev_id)
404{
405	struct device *dev = dev_id;
406	struct ti_k3_rtc *priv = dev_get_drvdata(dev);
407	u32 reg;
408	int ret;
409
410	/*
411	 * IRQ assertion can be very fast, however, the IRQ Status clear
412	 * de-assert depends on 32k clock edge in the 32k domain
413	 * If we clear the status prior to the first 32k clock edge,
414	 * the status bit is cleared, but the IRQ stays re-asserted.
415	 *
416	 * To prevent this condition, we need to wait for clock sync time.
417	 * We can either do that by polling the 32k observability signal for
418	 * a toggle OR we could just sleep and let the processor do other
419	 * stuff.
420	 */
421	usleep_range(priv->sync_timeout_us, priv->sync_timeout_us + 2);
422
423	/* Lets make sure that this is a valid interrupt */
424	reg = k3rtc_field_read(priv, K3RTC_IRQ_STATUS);
425
426	if (!reg) {
427		u32 raw = k3rtc_field_read(priv, K3RTC_IRQ_STATUS_RAW);
428
429		dev_err(dev,
430			HW_ERR
431			"Erratum i2327/IRQ trig: status: 0x%08x / 0x%08x\n", reg, raw);
432		return IRQ_NONE;
433	}
434
435	/*
436	 * Write 1 to clear status reg
437	 * We cannot use a field operation here due to a potential race between
438	 * 32k domain and vbus domain.
439	 */
440	regmap_write(priv->regmap, REG_K3RTC_IRQSTATUS_SYS, 0x1);
441
442	/* Sync the write in */
443	ret = k3rtc_fence(priv);
444	if (ret) {
445		dev_err(dev, "Failed to fence irq status clr(%d)!\n", ret);
446		return IRQ_NONE;
447	}
448
449	/*
450	 * Force the 32k status to be reloaded back in to ensure status is
451	 * reflected back correctly.
452	 */
453	k3rtc_field_write(priv, K3RTC_RELOAD_FROM_BBD, 0x1);
454
455	/* Ensure the write sync is through */
456	ret = k3rtc_fence(priv);
457	if (ret) {
458		dev_err(dev, "Failed to fence reload from bbd(%d)!\n", ret);
459		return IRQ_NONE;
460	}
461
462	/* Now we ensure that the status bit is cleared */
463	ret = regmap_field_read_poll_timeout(priv->r_fields[K3RTC_IRQ_STATUS],
464					     ret, !ret, 2, priv->sync_timeout_us);
465	if (ret) {
466		dev_err(dev, "Time out waiting for status clear\n");
467		return IRQ_NONE;
468	}
469
470	/* Notify RTC core on event */
471	rtc_update_irq(priv->rtc_dev, 1, RTC_IRQF | RTC_AF);
472
473	return IRQ_HANDLED;
474}
475
476static const struct rtc_class_ops ti_k3_rtc_ops = {
477	.read_time = ti_k3_rtc_read_time,
478	.set_time = ti_k3_rtc_set_time,
479	.read_alarm = ti_k3_rtc_read_alarm,
480	.set_alarm = ti_k3_rtc_set_alarm,
481	.read_offset = ti_k3_rtc_read_offset,
482	.set_offset = ti_k3_rtc_set_offset,
483	.alarm_irq_enable = ti_k3_rtc_alarm_irq_enable,
484};
485
486static int ti_k3_rtc_scratch_read(void *priv_data, unsigned int offset,
487				  void *val, size_t bytes)
488{
489	struct ti_k3_rtc *priv = (struct ti_k3_rtc *)priv_data;
490
491	return regmap_bulk_read(priv->regmap, REG_K3RTC_SCRATCH0 + offset, val, bytes / 4);
492}
493
494static int ti_k3_rtc_scratch_write(void *priv_data, unsigned int offset,
495				   void *val, size_t bytes)
496{
497	struct ti_k3_rtc *priv = (struct ti_k3_rtc *)priv_data;
498	int ret;
499
500	ret = regmap_bulk_write(priv->regmap, REG_K3RTC_SCRATCH0 + offset, val, bytes / 4);
501	if (ret)
502		return ret;
503
504	return k3rtc_fence(priv);
505}
506
507static struct nvmem_config ti_k3_rtc_nvmem_config = {
508	.name = "ti_k3_rtc_scratch",
509	.word_size = 4,
510	.stride = 4,
511	.size = REG_K3RTC_SCRATCH7 - REG_K3RTC_SCRATCH0 + 4,
512	.reg_read = ti_k3_rtc_scratch_read,
513	.reg_write = ti_k3_rtc_scratch_write,
514};
515
516static int k3rtc_get_32kclk(struct device *dev, struct ti_k3_rtc *priv)
517{
518	struct clk *clk;
519
520	clk = devm_clk_get_enabled(dev, "osc32k");
521	if (IS_ERR(clk))
522		return PTR_ERR(clk);
523
524	priv->rate_32k = clk_get_rate(clk);
525
526	/* Make sure we are exact 32k clock. Else, try to compensate delay */
527	if (priv->rate_32k != 32768)
528		dev_warn(dev, "Clock rate %ld is not 32768! Could misbehave!\n",
529			 priv->rate_32k);
530
531	/*
532	 * Sync timeout should be two 32k clk sync cycles = ~61uS. We double
533	 * it to comprehend intermediate bus segment and cpu frequency
534	 * deltas
535	 */
536	priv->sync_timeout_us = (u32)(DIV_ROUND_UP_ULL(1000000, priv->rate_32k) * 4);
537
538	return 0;
539}
540
541static int k3rtc_get_vbusclk(struct device *dev, struct ti_k3_rtc *priv)
542{
543	struct clk *clk;
544
545	/* Note: VBUS isn't a context clock, it is needed for hardware operation */
546	clk = devm_clk_get_enabled(dev, "vbus");
547	if (IS_ERR(clk))
548		return PTR_ERR(clk);
549
550	return 0;
551}
552
553static int ti_k3_rtc_probe(struct platform_device *pdev)
554{
555	struct device *dev = &pdev->dev;
556	struct ti_k3_rtc *priv;
557	void __iomem *rtc_base;
558	int ret;
559
560	priv = devm_kzalloc(dev, sizeof(struct ti_k3_rtc), GFP_KERNEL);
561	if (!priv)
562		return -ENOMEM;
563
564	rtc_base = devm_platform_ioremap_resource(pdev, 0);
565	if (IS_ERR(rtc_base))
566		return PTR_ERR(rtc_base);
567
568	priv->regmap = devm_regmap_init_mmio(dev, rtc_base, &ti_k3_rtc_regmap_config);
569	if (IS_ERR(priv->regmap))
570		return PTR_ERR(priv->regmap);
571
572	ret = devm_regmap_field_bulk_alloc(dev, priv->regmap, priv->r_fields,
573					   ti_rtc_reg_fields, K3_RTC_MAX_FIELDS);
574	if (ret)
575		return ret;
576
577	ret = k3rtc_get_32kclk(dev, priv);
578	if (ret)
579		return ret;
580	ret = k3rtc_get_vbusclk(dev, priv);
581	if (ret)
582		return ret;
583
584	ret = platform_get_irq(pdev, 0);
585	if (ret < 0)
586		return ret;
587	priv->irq = (unsigned int)ret;
588
589	priv->rtc_dev = devm_rtc_allocate_device(dev);
590	if (IS_ERR(priv->rtc_dev))
591		return PTR_ERR(priv->rtc_dev);
592
593	priv->rtc_dev->ops = &ti_k3_rtc_ops;
594	priv->rtc_dev->range_max = (1ULL << 48) - 1;	/* 48Bit seconds */
595	ti_k3_rtc_nvmem_config.priv = priv;
596
597	ret = devm_request_threaded_irq(dev, priv->irq, NULL,
598					ti_k3_rtc_interrupt,
599					IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
600					dev_name(dev), dev);
601	if (ret) {
602		dev_err(dev, "Could not request IRQ: %d\n", ret);
603		return ret;
604	}
605
606	platform_set_drvdata(pdev, priv);
607
608	ret = k3rtc_configure(dev);
609	if (ret)
610		return ret;
611
612	if (device_property_present(dev, "wakeup-source"))
613		device_init_wakeup(dev, true);
614	else
615		device_set_wakeup_capable(dev, true);
616
617	ret = devm_rtc_register_device(priv->rtc_dev);
618	if (ret)
619		return ret;
620
621	return devm_rtc_nvmem_register(priv->rtc_dev, &ti_k3_rtc_nvmem_config);
622}
623
624static const struct of_device_id ti_k3_rtc_of_match_table[] = {
625	{.compatible = "ti,am62-rtc" },
626	{}
627};
628MODULE_DEVICE_TABLE(of, ti_k3_rtc_of_match_table);
629
630static int __maybe_unused ti_k3_rtc_suspend(struct device *dev)
631{
632	struct ti_k3_rtc *priv = dev_get_drvdata(dev);
633
634	if (device_may_wakeup(dev))
635		return enable_irq_wake(priv->irq);
636
637	return 0;
638}
639
640static int __maybe_unused ti_k3_rtc_resume(struct device *dev)
641{
642	struct ti_k3_rtc *priv = dev_get_drvdata(dev);
643
644	if (device_may_wakeup(dev))
645		disable_irq_wake(priv->irq);
646	return 0;
647}
648
649static SIMPLE_DEV_PM_OPS(ti_k3_rtc_pm_ops, ti_k3_rtc_suspend, ti_k3_rtc_resume);
650
651static struct platform_driver ti_k3_rtc_driver = {
652	.probe = ti_k3_rtc_probe,
653	.driver = {
654		   .name = "rtc-ti-k3",
655		   .of_match_table = ti_k3_rtc_of_match_table,
656		   .pm = &ti_k3_rtc_pm_ops,
657	},
658};
659module_platform_driver(ti_k3_rtc_driver);
660
661MODULE_LICENSE("GPL");
662MODULE_DESCRIPTION("TI K3 RTC driver");
663MODULE_AUTHOR("Nishanth Menon");
664