1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Virtio-based remote processor messaging bus
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 */
11
12#define pr_fmt(fmt) "%s: " fmt, __func__
13
14#include <linux/dma-mapping.h>
15#include <linux/idr.h>
16#include <linux/jiffies.h>
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/mutex.h>
20#include <linux/rpmsg.h>
21#include <linux/rpmsg/byteorder.h>
22#include <linux/rpmsg/ns.h>
23#include <linux/scatterlist.h>
24#include <linux/slab.h>
25#include <linux/sched.h>
26#include <linux/virtio.h>
27#include <linux/virtio_ids.h>
28#include <linux/virtio_config.h>
29#include <linux/wait.h>
30
31#include "rpmsg_internal.h"
32
33/**
34 * struct virtproc_info - virtual remote processor state
35 * @vdev:	the virtio device
36 * @rvq:	rx virtqueue
37 * @svq:	tx virtqueue
38 * @rbufs:	kernel address of rx buffers
39 * @sbufs:	kernel address of tx buffers
40 * @num_bufs:	total number of buffers for rx and tx
41 * @buf_size:   size of one rx or tx buffer
42 * @last_sbuf:	index of last tx buffer used
43 * @bufs_dma:	dma base addr of the buffers
44 * @tx_lock:	protects svq, sbufs and sleepers, to allow concurrent senders.
45 *		sending a message might require waking up a dozing remote
46 *		processor, which involves sleeping, hence the mutex.
47 * @endpoints:	idr of local endpoints, allows fast retrieval
48 * @endpoints_lock: lock of the endpoints set
49 * @sendq:	wait queue of sending contexts waiting for a tx buffers
50 * @sleepers:	number of senders that are waiting for a tx buffer
51 *
52 * This structure stores the rpmsg state of a given virtio remote processor
53 * device (there might be several virtio proc devices for each physical
54 * remote processor).
55 */
56struct virtproc_info {
57	struct virtio_device *vdev;
58	struct virtqueue *rvq, *svq;
59	void *rbufs, *sbufs;
60	unsigned int num_bufs;
61	unsigned int buf_size;
62	int last_sbuf;
63	dma_addr_t bufs_dma;
64	struct mutex tx_lock;
65	struct idr endpoints;
66	struct mutex endpoints_lock;
67	wait_queue_head_t sendq;
68	atomic_t sleepers;
69};
70
71/* The feature bitmap for virtio rpmsg */
72#define VIRTIO_RPMSG_F_NS	0 /* RP supports name service notifications */
73
74/**
75 * struct rpmsg_hdr - common header for all rpmsg messages
76 * @src: source address
77 * @dst: destination address
78 * @reserved: reserved for future use
79 * @len: length of payload (in bytes)
80 * @flags: message flags
81 * @data: @len bytes of message payload data
82 *
83 * Every message sent(/received) on the rpmsg bus begins with this header.
84 */
85struct rpmsg_hdr {
86	__rpmsg32 src;
87	__rpmsg32 dst;
88	__rpmsg32 reserved;
89	__rpmsg16 len;
90	__rpmsg16 flags;
91	u8 data[];
92} __packed;
93
94
95/**
96 * struct virtio_rpmsg_channel - rpmsg channel descriptor
97 * @rpdev: the rpmsg channel device
98 * @vrp: the virtio remote processor device this channel belongs to
99 *
100 * This structure stores the channel that links the rpmsg device to the virtio
101 * remote processor device.
102 */
103struct virtio_rpmsg_channel {
104	struct rpmsg_device rpdev;
105
106	struct virtproc_info *vrp;
107};
108
109#define to_virtio_rpmsg_channel(_rpdev) \
110	container_of(_rpdev, struct virtio_rpmsg_channel, rpdev)
111
112/*
113 * We're allocating buffers of 512 bytes each for communications. The
114 * number of buffers will be computed from the number of buffers supported
115 * by the vring, upto a maximum of 512 buffers (256 in each direction).
116 *
117 * Each buffer will have 16 bytes for the msg header and 496 bytes for
118 * the payload.
119 *
120 * This will utilize a maximum total space of 256KB for the buffers.
121 *
122 * We might also want to add support for user-provided buffers in time.
123 * This will allow bigger buffer size flexibility, and can also be used
124 * to achieve zero-copy messaging.
125 *
126 * Note that these numbers are purely a decision of this driver - we
127 * can change this without changing anything in the firmware of the remote
128 * processor.
129 */
130#define MAX_RPMSG_NUM_BUFS	(512)
131#define MAX_RPMSG_BUF_SIZE	(512)
132
133/*
134 * Local addresses are dynamically allocated on-demand.
135 * We do not dynamically assign addresses from the low 1024 range,
136 * in order to reserve that address range for predefined services.
137 */
138#define RPMSG_RESERVED_ADDRESSES	(1024)
139
140static void virtio_rpmsg_destroy_ept(struct rpmsg_endpoint *ept);
141static int virtio_rpmsg_send(struct rpmsg_endpoint *ept, void *data, int len);
142static int virtio_rpmsg_sendto(struct rpmsg_endpoint *ept, void *data, int len,
143			       u32 dst);
144static int virtio_rpmsg_send_offchannel(struct rpmsg_endpoint *ept, u32 src,
145					u32 dst, void *data, int len);
146static int virtio_rpmsg_trysend(struct rpmsg_endpoint *ept, void *data, int len);
147static int virtio_rpmsg_trysendto(struct rpmsg_endpoint *ept, void *data,
148				  int len, u32 dst);
149static int virtio_rpmsg_trysend_offchannel(struct rpmsg_endpoint *ept, u32 src,
150					   u32 dst, void *data, int len);
151static ssize_t virtio_rpmsg_get_mtu(struct rpmsg_endpoint *ept);
152static struct rpmsg_device *__rpmsg_create_channel(struct virtproc_info *vrp,
153						   struct rpmsg_channel_info *chinfo);
154
155static const struct rpmsg_endpoint_ops virtio_endpoint_ops = {
156	.destroy_ept = virtio_rpmsg_destroy_ept,
157	.send = virtio_rpmsg_send,
158	.sendto = virtio_rpmsg_sendto,
159	.send_offchannel = virtio_rpmsg_send_offchannel,
160	.trysend = virtio_rpmsg_trysend,
161	.trysendto = virtio_rpmsg_trysendto,
162	.trysend_offchannel = virtio_rpmsg_trysend_offchannel,
163	.get_mtu = virtio_rpmsg_get_mtu,
164};
165
166/**
167 * rpmsg_sg_init - initialize scatterlist according to cpu address location
168 * @sg: scatterlist to fill
169 * @cpu_addr: virtual address of the buffer
170 * @len: buffer length
171 *
172 * An internal function filling scatterlist according to virtual address
173 * location (in vmalloc or in kernel).
174 */
175static void
176rpmsg_sg_init(struct scatterlist *sg, void *cpu_addr, unsigned int len)
177{
178	if (is_vmalloc_addr(cpu_addr)) {
179		sg_init_table(sg, 1);
180		sg_set_page(sg, vmalloc_to_page(cpu_addr), len,
181			    offset_in_page(cpu_addr));
182	} else {
183		WARN_ON(!virt_addr_valid(cpu_addr));
184		sg_init_one(sg, cpu_addr, len);
185	}
186}
187
188/**
189 * __ept_release() - deallocate an rpmsg endpoint
190 * @kref: the ept's reference count
191 *
192 * This function deallocates an ept, and is invoked when its @kref refcount
193 * drops to zero.
194 *
195 * Never invoke this function directly!
196 */
197static void __ept_release(struct kref *kref)
198{
199	struct rpmsg_endpoint *ept = container_of(kref, struct rpmsg_endpoint,
200						  refcount);
201	/*
202	 * At this point no one holds a reference to ept anymore,
203	 * so we can directly free it
204	 */
205	kfree(ept);
206}
207
208/* for more info, see below documentation of rpmsg_create_ept() */
209static struct rpmsg_endpoint *__rpmsg_create_ept(struct virtproc_info *vrp,
210						 struct rpmsg_device *rpdev,
211						 rpmsg_rx_cb_t cb,
212						 void *priv, u32 addr)
213{
214	int id_min, id_max, id;
215	struct rpmsg_endpoint *ept;
216	struct device *dev = rpdev ? &rpdev->dev : &vrp->vdev->dev;
217
218	ept = kzalloc(sizeof(*ept), GFP_KERNEL);
219	if (!ept)
220		return NULL;
221
222	kref_init(&ept->refcount);
223	mutex_init(&ept->cb_lock);
224
225	ept->rpdev = rpdev;
226	ept->cb = cb;
227	ept->priv = priv;
228	ept->ops = &virtio_endpoint_ops;
229
230	/* do we need to allocate a local address ? */
231	if (addr == RPMSG_ADDR_ANY) {
232		id_min = RPMSG_RESERVED_ADDRESSES;
233		id_max = 0;
234	} else {
235		id_min = addr;
236		id_max = addr + 1;
237	}
238
239	mutex_lock(&vrp->endpoints_lock);
240
241	/* bind the endpoint to an rpmsg address (and allocate one if needed) */
242	id = idr_alloc(&vrp->endpoints, ept, id_min, id_max, GFP_KERNEL);
243	if (id < 0) {
244		dev_err(dev, "idr_alloc failed: %d\n", id);
245		goto free_ept;
246	}
247	ept->addr = id;
248
249	mutex_unlock(&vrp->endpoints_lock);
250
251	return ept;
252
253free_ept:
254	mutex_unlock(&vrp->endpoints_lock);
255	kref_put(&ept->refcount, __ept_release);
256	return NULL;
257}
258
259static struct rpmsg_device *virtio_rpmsg_create_channel(struct rpmsg_device *rpdev,
260							struct rpmsg_channel_info *chinfo)
261{
262	struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev);
263	struct virtproc_info *vrp = vch->vrp;
264
265	return __rpmsg_create_channel(vrp, chinfo);
266}
267
268static int virtio_rpmsg_release_channel(struct rpmsg_device *rpdev,
269					struct rpmsg_channel_info *chinfo)
270{
271	struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev);
272	struct virtproc_info *vrp = vch->vrp;
273
274	return rpmsg_unregister_device(&vrp->vdev->dev, chinfo);
275}
276
277static struct rpmsg_endpoint *virtio_rpmsg_create_ept(struct rpmsg_device *rpdev,
278						      rpmsg_rx_cb_t cb,
279						      void *priv,
280						      struct rpmsg_channel_info chinfo)
281{
282	struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev);
283
284	return __rpmsg_create_ept(vch->vrp, rpdev, cb, priv, chinfo.src);
285}
286
287/**
288 * __rpmsg_destroy_ept() - destroy an existing rpmsg endpoint
289 * @vrp: virtproc which owns this ept
290 * @ept: endpoing to destroy
291 *
292 * An internal function which destroy an ept without assuming it is
293 * bound to an rpmsg channel. This is needed for handling the internal
294 * name service endpoint, which isn't bound to an rpmsg channel.
295 * See also __rpmsg_create_ept().
296 */
297static void
298__rpmsg_destroy_ept(struct virtproc_info *vrp, struct rpmsg_endpoint *ept)
299{
300	/* make sure new inbound messages can't find this ept anymore */
301	mutex_lock(&vrp->endpoints_lock);
302	idr_remove(&vrp->endpoints, ept->addr);
303	mutex_unlock(&vrp->endpoints_lock);
304
305	/* make sure in-flight inbound messages won't invoke cb anymore */
306	mutex_lock(&ept->cb_lock);
307	ept->cb = NULL;
308	mutex_unlock(&ept->cb_lock);
309
310	kref_put(&ept->refcount, __ept_release);
311}
312
313static void virtio_rpmsg_destroy_ept(struct rpmsg_endpoint *ept)
314{
315	struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(ept->rpdev);
316
317	__rpmsg_destroy_ept(vch->vrp, ept);
318}
319
320static int virtio_rpmsg_announce_create(struct rpmsg_device *rpdev)
321{
322	struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev);
323	struct virtproc_info *vrp = vch->vrp;
324	struct device *dev = &rpdev->dev;
325	int err = 0;
326
327	/* need to tell remote processor's name service about this channel ? */
328	if (rpdev->announce && rpdev->ept &&
329	    virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) {
330		struct rpmsg_ns_msg nsm;
331
332		strscpy_pad(nsm.name, rpdev->id.name, sizeof(nsm.name));
333		nsm.addr = cpu_to_rpmsg32(rpdev, rpdev->ept->addr);
334		nsm.flags = cpu_to_rpmsg32(rpdev, RPMSG_NS_CREATE);
335
336		err = rpmsg_sendto(rpdev->ept, &nsm, sizeof(nsm), RPMSG_NS_ADDR);
337		if (err)
338			dev_err(dev, "failed to announce service %d\n", err);
339	}
340
341	return err;
342}
343
344static int virtio_rpmsg_announce_destroy(struct rpmsg_device *rpdev)
345{
346	struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev);
347	struct virtproc_info *vrp = vch->vrp;
348	struct device *dev = &rpdev->dev;
349	int err = 0;
350
351	/* tell remote processor's name service we're removing this channel */
352	if (rpdev->announce && rpdev->ept &&
353	    virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) {
354		struct rpmsg_ns_msg nsm;
355
356		strscpy_pad(nsm.name, rpdev->id.name, sizeof(nsm.name));
357		nsm.addr = cpu_to_rpmsg32(rpdev, rpdev->ept->addr);
358		nsm.flags = cpu_to_rpmsg32(rpdev, RPMSG_NS_DESTROY);
359
360		err = rpmsg_sendto(rpdev->ept, &nsm, sizeof(nsm), RPMSG_NS_ADDR);
361		if (err)
362			dev_err(dev, "failed to announce service %d\n", err);
363	}
364
365	return err;
366}
367
368static const struct rpmsg_device_ops virtio_rpmsg_ops = {
369	.create_channel = virtio_rpmsg_create_channel,
370	.release_channel = virtio_rpmsg_release_channel,
371	.create_ept = virtio_rpmsg_create_ept,
372	.announce_create = virtio_rpmsg_announce_create,
373	.announce_destroy = virtio_rpmsg_announce_destroy,
374};
375
376static void virtio_rpmsg_release_device(struct device *dev)
377{
378	struct rpmsg_device *rpdev = to_rpmsg_device(dev);
379	struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev);
380
381	kfree(rpdev->driver_override);
382	kfree(vch);
383}
384
385/*
386 * create an rpmsg channel using its name and address info.
387 * this function will be used to create both static and dynamic
388 * channels.
389 */
390static struct rpmsg_device *__rpmsg_create_channel(struct virtproc_info *vrp,
391						   struct rpmsg_channel_info *chinfo)
392{
393	struct virtio_rpmsg_channel *vch;
394	struct rpmsg_device *rpdev;
395	struct device *tmp, *dev = &vrp->vdev->dev;
396	int ret;
397
398	/* make sure a similar channel doesn't already exist */
399	tmp = rpmsg_find_device(dev, chinfo);
400	if (tmp) {
401		/* decrement the matched device's refcount back */
402		put_device(tmp);
403		dev_err(dev, "channel %s:%x:%x already exist\n",
404				chinfo->name, chinfo->src, chinfo->dst);
405		return NULL;
406	}
407
408	vch = kzalloc(sizeof(*vch), GFP_KERNEL);
409	if (!vch)
410		return NULL;
411
412	/* Link the channel to our vrp */
413	vch->vrp = vrp;
414
415	/* Assign public information to the rpmsg_device */
416	rpdev = &vch->rpdev;
417	rpdev->src = chinfo->src;
418	rpdev->dst = chinfo->dst;
419	rpdev->ops = &virtio_rpmsg_ops;
420	rpdev->little_endian = virtio_is_little_endian(vrp->vdev);
421
422	/*
423	 * rpmsg server channels has predefined local address (for now),
424	 * and their existence needs to be announced remotely
425	 */
426	rpdev->announce = rpdev->src != RPMSG_ADDR_ANY;
427
428	strscpy(rpdev->id.name, chinfo->name, sizeof(rpdev->id.name));
429
430	rpdev->dev.parent = &vrp->vdev->dev;
431	rpdev->dev.release = virtio_rpmsg_release_device;
432	ret = rpmsg_register_device(rpdev);
433	if (ret)
434		return NULL;
435
436	return rpdev;
437}
438
439/* super simple buffer "allocator" that is just enough for now */
440static void *get_a_tx_buf(struct virtproc_info *vrp)
441{
442	unsigned int len;
443	void *ret;
444
445	/* support multiple concurrent senders */
446	mutex_lock(&vrp->tx_lock);
447
448	/*
449	 * either pick the next unused tx buffer
450	 * (half of our buffers are used for sending messages)
451	 */
452	if (vrp->last_sbuf < vrp->num_bufs / 2)
453		ret = vrp->sbufs + vrp->buf_size * vrp->last_sbuf++;
454	/* or recycle a used one */
455	else
456		ret = virtqueue_get_buf(vrp->svq, &len);
457
458	mutex_unlock(&vrp->tx_lock);
459
460	return ret;
461}
462
463/**
464 * rpmsg_upref_sleepers() - enable "tx-complete" interrupts, if needed
465 * @vrp: virtual remote processor state
466 *
467 * This function is called before a sender is blocked, waiting for
468 * a tx buffer to become available.
469 *
470 * If we already have blocking senders, this function merely increases
471 * the "sleepers" reference count, and exits.
472 *
473 * Otherwise, if this is the first sender to block, we also enable
474 * virtio's tx callbacks, so we'd be immediately notified when a tx
475 * buffer is consumed (we rely on virtio's tx callback in order
476 * to wake up sleeping senders as soon as a tx buffer is used by the
477 * remote processor).
478 */
479static void rpmsg_upref_sleepers(struct virtproc_info *vrp)
480{
481	/* support multiple concurrent senders */
482	mutex_lock(&vrp->tx_lock);
483
484	/* are we the first sleeping context waiting for tx buffers ? */
485	if (atomic_inc_return(&vrp->sleepers) == 1)
486		/* enable "tx-complete" interrupts before dozing off */
487		virtqueue_enable_cb(vrp->svq);
488
489	mutex_unlock(&vrp->tx_lock);
490}
491
492/**
493 * rpmsg_downref_sleepers() - disable "tx-complete" interrupts, if needed
494 * @vrp: virtual remote processor state
495 *
496 * This function is called after a sender, that waited for a tx buffer
497 * to become available, is unblocked.
498 *
499 * If we still have blocking senders, this function merely decreases
500 * the "sleepers" reference count, and exits.
501 *
502 * Otherwise, if there are no more blocking senders, we also disable
503 * virtio's tx callbacks, to avoid the overhead incurred with handling
504 * those (now redundant) interrupts.
505 */
506static void rpmsg_downref_sleepers(struct virtproc_info *vrp)
507{
508	/* support multiple concurrent senders */
509	mutex_lock(&vrp->tx_lock);
510
511	/* are we the last sleeping context waiting for tx buffers ? */
512	if (atomic_dec_and_test(&vrp->sleepers))
513		/* disable "tx-complete" interrupts */
514		virtqueue_disable_cb(vrp->svq);
515
516	mutex_unlock(&vrp->tx_lock);
517}
518
519/**
520 * rpmsg_send_offchannel_raw() - send a message across to the remote processor
521 * @rpdev: the rpmsg channel
522 * @src: source address
523 * @dst: destination address
524 * @data: payload of message
525 * @len: length of payload
526 * @wait: indicates whether caller should block in case no TX buffers available
527 *
528 * This function is the base implementation for all of the rpmsg sending API.
529 *
530 * It will send @data of length @len to @dst, and say it's from @src. The
531 * message will be sent to the remote processor which the @rpdev channel
532 * belongs to.
533 *
534 * The message is sent using one of the TX buffers that are available for
535 * communication with this remote processor.
536 *
537 * If @wait is true, the caller will be blocked until either a TX buffer is
538 * available, or 15 seconds elapses (we don't want callers to
539 * sleep indefinitely due to misbehaving remote processors), and in that
540 * case -ERESTARTSYS is returned. The number '15' itself was picked
541 * arbitrarily; there's little point in asking drivers to provide a timeout
542 * value themselves.
543 *
544 * Otherwise, if @wait is false, and there are no TX buffers available,
545 * the function will immediately fail, and -ENOMEM will be returned.
546 *
547 * Normally drivers shouldn't use this function directly; instead, drivers
548 * should use the appropriate rpmsg_{try}send{to, _offchannel} API
549 * (see include/linux/rpmsg.h).
550 *
551 * Return: 0 on success and an appropriate error value on failure.
552 */
553static int rpmsg_send_offchannel_raw(struct rpmsg_device *rpdev,
554				     u32 src, u32 dst,
555				     void *data, int len, bool wait)
556{
557	struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev);
558	struct virtproc_info *vrp = vch->vrp;
559	struct device *dev = &rpdev->dev;
560	struct scatterlist sg;
561	struct rpmsg_hdr *msg;
562	int err;
563
564	/* bcasting isn't allowed */
565	if (src == RPMSG_ADDR_ANY || dst == RPMSG_ADDR_ANY) {
566		dev_err(dev, "invalid addr (src 0x%x, dst 0x%x)\n", src, dst);
567		return -EINVAL;
568	}
569
570	/*
571	 * We currently use fixed-sized buffers, and therefore the payload
572	 * length is limited.
573	 *
574	 * One of the possible improvements here is either to support
575	 * user-provided buffers (and then we can also support zero-copy
576	 * messaging), or to improve the buffer allocator, to support
577	 * variable-length buffer sizes.
578	 */
579	if (len > vrp->buf_size - sizeof(struct rpmsg_hdr)) {
580		dev_err(dev, "message is too big (%d)\n", len);
581		return -EMSGSIZE;
582	}
583
584	/* grab a buffer */
585	msg = get_a_tx_buf(vrp);
586	if (!msg && !wait)
587		return -ENOMEM;
588
589	/* no free buffer ? wait for one (but bail after 15 seconds) */
590	while (!msg) {
591		/* enable "tx-complete" interrupts, if not already enabled */
592		rpmsg_upref_sleepers(vrp);
593
594		/*
595		 * sleep until a free buffer is available or 15 secs elapse.
596		 * the timeout period is not configurable because there's
597		 * little point in asking drivers to specify that.
598		 * if later this happens to be required, it'd be easy to add.
599		 */
600		err = wait_event_interruptible_timeout(vrp->sendq,
601					(msg = get_a_tx_buf(vrp)),
602					msecs_to_jiffies(15000));
603
604		/* disable "tx-complete" interrupts if we're the last sleeper */
605		rpmsg_downref_sleepers(vrp);
606
607		/* timeout ? */
608		if (!err) {
609			dev_err(dev, "timeout waiting for a tx buffer\n");
610			return -ERESTARTSYS;
611		}
612	}
613
614	msg->len = cpu_to_rpmsg16(rpdev, len);
615	msg->flags = 0;
616	msg->src = cpu_to_rpmsg32(rpdev, src);
617	msg->dst = cpu_to_rpmsg32(rpdev, dst);
618	msg->reserved = 0;
619	memcpy(msg->data, data, len);
620
621	dev_dbg(dev, "TX From 0x%x, To 0x%x, Len %d, Flags %d, Reserved %d\n",
622		src, dst, len, msg->flags, msg->reserved);
623#if defined(CONFIG_DYNAMIC_DEBUG)
624	dynamic_hex_dump("rpmsg_virtio TX: ", DUMP_PREFIX_NONE, 16, 1,
625			 msg, sizeof(*msg) + len, true);
626#endif
627
628	rpmsg_sg_init(&sg, msg, sizeof(*msg) + len);
629
630	mutex_lock(&vrp->tx_lock);
631
632	/* add message to the remote processor's virtqueue */
633	err = virtqueue_add_outbuf(vrp->svq, &sg, 1, msg, GFP_KERNEL);
634	if (err) {
635		/*
636		 * need to reclaim the buffer here, otherwise it's lost
637		 * (memory won't leak, but rpmsg won't use it again for TX).
638		 * this will wait for a buffer management overhaul.
639		 */
640		dev_err(dev, "virtqueue_add_outbuf failed: %d\n", err);
641		goto out;
642	}
643
644	/* tell the remote processor it has a pending message to read */
645	virtqueue_kick(vrp->svq);
646out:
647	mutex_unlock(&vrp->tx_lock);
648	return err;
649}
650
651static int virtio_rpmsg_send(struct rpmsg_endpoint *ept, void *data, int len)
652{
653	struct rpmsg_device *rpdev = ept->rpdev;
654	u32 src = ept->addr, dst = rpdev->dst;
655
656	return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true);
657}
658
659static int virtio_rpmsg_sendto(struct rpmsg_endpoint *ept, void *data, int len,
660			       u32 dst)
661{
662	struct rpmsg_device *rpdev = ept->rpdev;
663	u32 src = ept->addr;
664
665	return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true);
666}
667
668static int virtio_rpmsg_send_offchannel(struct rpmsg_endpoint *ept, u32 src,
669					u32 dst, void *data, int len)
670{
671	struct rpmsg_device *rpdev = ept->rpdev;
672
673	return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true);
674}
675
676static int virtio_rpmsg_trysend(struct rpmsg_endpoint *ept, void *data, int len)
677{
678	struct rpmsg_device *rpdev = ept->rpdev;
679	u32 src = ept->addr, dst = rpdev->dst;
680
681	return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false);
682}
683
684static int virtio_rpmsg_trysendto(struct rpmsg_endpoint *ept, void *data,
685				  int len, u32 dst)
686{
687	struct rpmsg_device *rpdev = ept->rpdev;
688	u32 src = ept->addr;
689
690	return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false);
691}
692
693static int virtio_rpmsg_trysend_offchannel(struct rpmsg_endpoint *ept, u32 src,
694					   u32 dst, void *data, int len)
695{
696	struct rpmsg_device *rpdev = ept->rpdev;
697
698	return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false);
699}
700
701static ssize_t virtio_rpmsg_get_mtu(struct rpmsg_endpoint *ept)
702{
703	struct rpmsg_device *rpdev = ept->rpdev;
704	struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev);
705
706	return vch->vrp->buf_size - sizeof(struct rpmsg_hdr);
707}
708
709static int rpmsg_recv_single(struct virtproc_info *vrp, struct device *dev,
710			     struct rpmsg_hdr *msg, unsigned int len)
711{
712	struct rpmsg_endpoint *ept;
713	struct scatterlist sg;
714	bool little_endian = virtio_is_little_endian(vrp->vdev);
715	unsigned int msg_len = __rpmsg16_to_cpu(little_endian, msg->len);
716	int err;
717
718	dev_dbg(dev, "From: 0x%x, To: 0x%x, Len: %d, Flags: %d, Reserved: %d\n",
719		__rpmsg32_to_cpu(little_endian, msg->src),
720		__rpmsg32_to_cpu(little_endian, msg->dst), msg_len,
721		__rpmsg16_to_cpu(little_endian, msg->flags),
722		__rpmsg32_to_cpu(little_endian, msg->reserved));
723#if defined(CONFIG_DYNAMIC_DEBUG)
724	dynamic_hex_dump("rpmsg_virtio RX: ", DUMP_PREFIX_NONE, 16, 1,
725			 msg, sizeof(*msg) + msg_len, true);
726#endif
727
728	/*
729	 * We currently use fixed-sized buffers, so trivially sanitize
730	 * the reported payload length.
731	 */
732	if (len > vrp->buf_size ||
733	    msg_len > (len - sizeof(struct rpmsg_hdr))) {
734		dev_warn(dev, "inbound msg too big: (%d, %d)\n", len, msg_len);
735		return -EINVAL;
736	}
737
738	/* use the dst addr to fetch the callback of the appropriate user */
739	mutex_lock(&vrp->endpoints_lock);
740
741	ept = idr_find(&vrp->endpoints, __rpmsg32_to_cpu(little_endian, msg->dst));
742
743	/* let's make sure no one deallocates ept while we use it */
744	if (ept)
745		kref_get(&ept->refcount);
746
747	mutex_unlock(&vrp->endpoints_lock);
748
749	if (ept) {
750		/* make sure ept->cb doesn't go away while we use it */
751		mutex_lock(&ept->cb_lock);
752
753		if (ept->cb)
754			ept->cb(ept->rpdev, msg->data, msg_len, ept->priv,
755				__rpmsg32_to_cpu(little_endian, msg->src));
756
757		mutex_unlock(&ept->cb_lock);
758
759		/* farewell, ept, we don't need you anymore */
760		kref_put(&ept->refcount, __ept_release);
761	} else
762		dev_warn_ratelimited(dev, "msg received with no recipient\n");
763
764	/* publish the real size of the buffer */
765	rpmsg_sg_init(&sg, msg, vrp->buf_size);
766
767	/* add the buffer back to the remote processor's virtqueue */
768	err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, msg, GFP_KERNEL);
769	if (err < 0) {
770		dev_err(dev, "failed to add a virtqueue buffer: %d\n", err);
771		return err;
772	}
773
774	return 0;
775}
776
777/* called when an rx buffer is used, and it's time to digest a message */
778static void rpmsg_recv_done(struct virtqueue *rvq)
779{
780	struct virtproc_info *vrp = rvq->vdev->priv;
781	struct device *dev = &rvq->vdev->dev;
782	struct rpmsg_hdr *msg;
783	unsigned int len, msgs_received = 0;
784	int err;
785
786	msg = virtqueue_get_buf(rvq, &len);
787	if (!msg) {
788		dev_err(dev, "uhm, incoming signal, but no used buffer ?\n");
789		return;
790	}
791
792	while (msg) {
793		err = rpmsg_recv_single(vrp, dev, msg, len);
794		if (err)
795			break;
796
797		msgs_received++;
798
799		msg = virtqueue_get_buf(rvq, &len);
800	}
801
802	dev_dbg(dev, "Received %u messages\n", msgs_received);
803
804	/* tell the remote processor we added another available rx buffer */
805	if (msgs_received)
806		virtqueue_kick(vrp->rvq);
807}
808
809/*
810 * This is invoked whenever the remote processor completed processing
811 * a TX msg we just sent it, and the buffer is put back to the used ring.
812 *
813 * Normally, though, we suppress this "tx complete" interrupt in order to
814 * avoid the incurred overhead.
815 */
816static void rpmsg_xmit_done(struct virtqueue *svq)
817{
818	struct virtproc_info *vrp = svq->vdev->priv;
819
820	dev_dbg(&svq->vdev->dev, "%s\n", __func__);
821
822	/* wake up potential senders that are waiting for a tx buffer */
823	wake_up_interruptible(&vrp->sendq);
824}
825
826/*
827 * Called to expose to user a /dev/rpmsg_ctrlX interface allowing to
828 * create endpoint-to-endpoint communication without associated RPMsg channel.
829 * The endpoints are rattached to the ctrldev RPMsg device.
830 */
831static struct rpmsg_device *rpmsg_virtio_add_ctrl_dev(struct virtio_device *vdev)
832{
833	struct virtproc_info *vrp = vdev->priv;
834	struct virtio_rpmsg_channel *vch;
835	struct rpmsg_device *rpdev_ctrl;
836	int err = 0;
837
838	vch = kzalloc(sizeof(*vch), GFP_KERNEL);
839	if (!vch)
840		return ERR_PTR(-ENOMEM);
841
842	/* Link the channel to the vrp */
843	vch->vrp = vrp;
844
845	/* Assign public information to the rpmsg_device */
846	rpdev_ctrl = &vch->rpdev;
847	rpdev_ctrl->ops = &virtio_rpmsg_ops;
848
849	rpdev_ctrl->dev.parent = &vrp->vdev->dev;
850	rpdev_ctrl->dev.release = virtio_rpmsg_release_device;
851	rpdev_ctrl->little_endian = virtio_is_little_endian(vrp->vdev);
852
853	err = rpmsg_ctrldev_register_device(rpdev_ctrl);
854	if (err) {
855		/* vch will be free in virtio_rpmsg_release_device() */
856		return ERR_PTR(err);
857	}
858
859	return rpdev_ctrl;
860}
861
862static void rpmsg_virtio_del_ctrl_dev(struct rpmsg_device *rpdev_ctrl)
863{
864	if (!rpdev_ctrl)
865		return;
866	device_unregister(&rpdev_ctrl->dev);
867}
868
869static int rpmsg_probe(struct virtio_device *vdev)
870{
871	vq_callback_t *vq_cbs[] = { rpmsg_recv_done, rpmsg_xmit_done };
872	static const char * const names[] = { "input", "output" };
873	struct virtqueue *vqs[2];
874	struct virtproc_info *vrp;
875	struct virtio_rpmsg_channel *vch = NULL;
876	struct rpmsg_device *rpdev_ns, *rpdev_ctrl;
877	void *bufs_va;
878	int err = 0, i;
879	size_t total_buf_space;
880	bool notify;
881
882	vrp = kzalloc(sizeof(*vrp), GFP_KERNEL);
883	if (!vrp)
884		return -ENOMEM;
885
886	vrp->vdev = vdev;
887
888	idr_init(&vrp->endpoints);
889	mutex_init(&vrp->endpoints_lock);
890	mutex_init(&vrp->tx_lock);
891	init_waitqueue_head(&vrp->sendq);
892
893	/* We expect two virtqueues, rx and tx (and in this order) */
894	err = virtio_find_vqs(vdev, 2, vqs, vq_cbs, names, NULL);
895	if (err)
896		goto free_vrp;
897
898	vrp->rvq = vqs[0];
899	vrp->svq = vqs[1];
900
901	/* we expect symmetric tx/rx vrings */
902	WARN_ON(virtqueue_get_vring_size(vrp->rvq) !=
903		virtqueue_get_vring_size(vrp->svq));
904
905	/* we need less buffers if vrings are small */
906	if (virtqueue_get_vring_size(vrp->rvq) < MAX_RPMSG_NUM_BUFS / 2)
907		vrp->num_bufs = virtqueue_get_vring_size(vrp->rvq) * 2;
908	else
909		vrp->num_bufs = MAX_RPMSG_NUM_BUFS;
910
911	vrp->buf_size = MAX_RPMSG_BUF_SIZE;
912
913	total_buf_space = vrp->num_bufs * vrp->buf_size;
914
915	/* allocate coherent memory for the buffers */
916	bufs_va = dma_alloc_coherent(vdev->dev.parent,
917				     total_buf_space, &vrp->bufs_dma,
918				     GFP_KERNEL);
919	if (!bufs_va) {
920		err = -ENOMEM;
921		goto vqs_del;
922	}
923
924	dev_dbg(&vdev->dev, "buffers: va %pK, dma %pad\n",
925		bufs_va, &vrp->bufs_dma);
926
927	/* half of the buffers is dedicated for RX */
928	vrp->rbufs = bufs_va;
929
930	/* and half is dedicated for TX */
931	vrp->sbufs = bufs_va + total_buf_space / 2;
932
933	/* set up the receive buffers */
934	for (i = 0; i < vrp->num_bufs / 2; i++) {
935		struct scatterlist sg;
936		void *cpu_addr = vrp->rbufs + i * vrp->buf_size;
937
938		rpmsg_sg_init(&sg, cpu_addr, vrp->buf_size);
939
940		err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, cpu_addr,
941					  GFP_KERNEL);
942		WARN_ON(err); /* sanity check; this can't really happen */
943	}
944
945	/* suppress "tx-complete" interrupts */
946	virtqueue_disable_cb(vrp->svq);
947
948	vdev->priv = vrp;
949
950	rpdev_ctrl = rpmsg_virtio_add_ctrl_dev(vdev);
951	if (IS_ERR(rpdev_ctrl)) {
952		err = PTR_ERR(rpdev_ctrl);
953		goto free_coherent;
954	}
955
956	/* if supported by the remote processor, enable the name service */
957	if (virtio_has_feature(vdev, VIRTIO_RPMSG_F_NS)) {
958		vch = kzalloc(sizeof(*vch), GFP_KERNEL);
959		if (!vch) {
960			err = -ENOMEM;
961			goto free_ctrldev;
962		}
963
964		/* Link the channel to our vrp */
965		vch->vrp = vrp;
966
967		/* Assign public information to the rpmsg_device */
968		rpdev_ns = &vch->rpdev;
969		rpdev_ns->ops = &virtio_rpmsg_ops;
970		rpdev_ns->little_endian = virtio_is_little_endian(vrp->vdev);
971
972		rpdev_ns->dev.parent = &vrp->vdev->dev;
973		rpdev_ns->dev.release = virtio_rpmsg_release_device;
974
975		err = rpmsg_ns_register_device(rpdev_ns);
976		if (err)
977			/* vch will be free in virtio_rpmsg_release_device() */
978			goto free_ctrldev;
979	}
980
981	/*
982	 * Prepare to kick but don't notify yet - we can't do this before
983	 * device is ready.
984	 */
985	notify = virtqueue_kick_prepare(vrp->rvq);
986
987	/* From this point on, we can notify and get callbacks. */
988	virtio_device_ready(vdev);
989
990	/* tell the remote processor it can start sending messages */
991	/*
992	 * this might be concurrent with callbacks, but we are only
993	 * doing notify, not a full kick here, so that's ok.
994	 */
995	if (notify)
996		virtqueue_notify(vrp->rvq);
997
998	dev_info(&vdev->dev, "rpmsg host is online\n");
999
1000	return 0;
1001
1002free_ctrldev:
1003	rpmsg_virtio_del_ctrl_dev(rpdev_ctrl);
1004free_coherent:
1005	dma_free_coherent(vdev->dev.parent, total_buf_space,
1006			  bufs_va, vrp->bufs_dma);
1007vqs_del:
1008	vdev->config->del_vqs(vrp->vdev);
1009free_vrp:
1010	kfree(vrp);
1011	return err;
1012}
1013
1014static int rpmsg_remove_device(struct device *dev, void *data)
1015{
1016	device_unregister(dev);
1017
1018	return 0;
1019}
1020
1021static void rpmsg_remove(struct virtio_device *vdev)
1022{
1023	struct virtproc_info *vrp = vdev->priv;
1024	size_t total_buf_space = vrp->num_bufs * vrp->buf_size;
1025	int ret;
1026
1027	virtio_reset_device(vdev);
1028
1029	ret = device_for_each_child(&vdev->dev, NULL, rpmsg_remove_device);
1030	if (ret)
1031		dev_warn(&vdev->dev, "can't remove rpmsg device: %d\n", ret);
1032
1033	idr_destroy(&vrp->endpoints);
1034
1035	vdev->config->del_vqs(vrp->vdev);
1036
1037	dma_free_coherent(vdev->dev.parent, total_buf_space,
1038			  vrp->rbufs, vrp->bufs_dma);
1039
1040	kfree(vrp);
1041}
1042
1043static struct virtio_device_id id_table[] = {
1044	{ VIRTIO_ID_RPMSG, VIRTIO_DEV_ANY_ID },
1045	{ 0 },
1046};
1047
1048static unsigned int features[] = {
1049	VIRTIO_RPMSG_F_NS,
1050};
1051
1052static struct virtio_driver virtio_ipc_driver = {
1053	.feature_table	= features,
1054	.feature_table_size = ARRAY_SIZE(features),
1055	.driver.name	= KBUILD_MODNAME,
1056	.driver.owner	= THIS_MODULE,
1057	.id_table	= id_table,
1058	.probe		= rpmsg_probe,
1059	.remove		= rpmsg_remove,
1060};
1061
1062static int __init rpmsg_init(void)
1063{
1064	int ret;
1065
1066	ret = register_virtio_driver(&virtio_ipc_driver);
1067	if (ret)
1068		pr_err("failed to register virtio driver: %d\n", ret);
1069
1070	return ret;
1071}
1072subsys_initcall(rpmsg_init);
1073
1074static void __exit rpmsg_fini(void)
1075{
1076	unregister_virtio_driver(&virtio_ipc_driver);
1077}
1078module_exit(rpmsg_fini);
1079
1080MODULE_DEVICE_TABLE(virtio, id_table);
1081MODULE_DESCRIPTION("Virtio-based remote processor messaging bus");
1082MODULE_LICENSE("GPL v2");
1083