1// SPDX-License-Identifier: GPL-2.0-only
2// Copyright (c) 2020, The Linux Foundation. All rights reserved.
3
4#include <linux/module.h>
5#include <linux/of_irq.h>
6#include <linux/of.h>
7#include <linux/of_device.h>
8#include <linux/platform_device.h>
9#include <linux/regmap.h>
10#include <linux/regulator/driver.h>
11#include <linux/regulator/of_regulator.h>
12
13#define REG_PERPH_TYPE                  0x04
14
15#define QCOM_LAB_TYPE			0x24
16#define QCOM_IBB_TYPE			0x20
17
18#define PMI8998_LAB_REG_BASE		0xde00
19#define PMI8998_IBB_REG_BASE		0xdc00
20#define PMI8998_IBB_LAB_REG_OFFSET	0x200
21
22#define REG_LABIBB_STATUS1		0x08
23 #define LABIBB_STATUS1_SC_BIT		BIT(6)
24 #define LABIBB_STATUS1_VREG_OK_BIT	BIT(7)
25
26#define REG_LABIBB_INT_SET_TYPE		0x11
27#define REG_LABIBB_INT_POLARITY_HIGH	0x12
28#define REG_LABIBB_INT_POLARITY_LOW	0x13
29#define REG_LABIBB_INT_LATCHED_CLR	0x14
30#define REG_LABIBB_INT_EN_SET		0x15
31#define REG_LABIBB_INT_EN_CLR		0x16
32 #define LABIBB_INT_VREG_OK		BIT(0)
33 #define LABIBB_INT_VREG_TYPE_LEVEL	0
34
35#define REG_LABIBB_VOLTAGE		0x41
36 #define LABIBB_VOLTAGE_OVERRIDE_EN	BIT(7)
37 #define LAB_VOLTAGE_SET_MASK		GENMASK(3, 0)
38 #define IBB_VOLTAGE_SET_MASK		GENMASK(5, 0)
39
40#define REG_LABIBB_ENABLE_CTL		0x46
41 #define LABIBB_CONTROL_ENABLE		BIT(7)
42
43#define REG_LABIBB_PD_CTL		0x47
44 #define LAB_PD_CTL_MASK		GENMASK(1, 0)
45 #define IBB_PD_CTL_MASK		(BIT(0) | BIT(7))
46 #define LAB_PD_CTL_STRONG_PULL		BIT(0)
47 #define IBB_PD_CTL_HALF_STRENGTH	BIT(0)
48 #define IBB_PD_CTL_EN			BIT(7)
49
50#define REG_LABIBB_CURRENT_LIMIT	0x4b
51 #define LAB_CURRENT_LIMIT_MASK		GENMASK(2, 0)
52 #define IBB_CURRENT_LIMIT_MASK		GENMASK(4, 0)
53 #define LAB_CURRENT_LIMIT_OVERRIDE_EN	BIT(3)
54 #define LABIBB_CURRENT_LIMIT_EN	BIT(7)
55
56#define REG_IBB_PWRUP_PWRDN_CTL_1	0x58
57 #define IBB_CTL_1_DISCHARGE_EN		BIT(2)
58
59#define REG_LABIBB_SOFT_START_CTL	0x5f
60#define REG_LABIBB_SEC_ACCESS		0xd0
61 #define LABIBB_SEC_UNLOCK_CODE		0xa5
62
63#define LAB_ENABLE_CTL_MASK		BIT(7)
64#define IBB_ENABLE_CTL_MASK		(BIT(7) | BIT(6))
65
66#define LABIBB_OFF_ON_DELAY		1000
67#define LAB_ENABLE_TIME			(LABIBB_OFF_ON_DELAY * 2)
68#define IBB_ENABLE_TIME			(LABIBB_OFF_ON_DELAY * 10)
69#define LABIBB_POLL_ENABLED_TIME	1000
70#define OCP_RECOVERY_INTERVAL_MS	500
71#define SC_RECOVERY_INTERVAL_MS		250
72#define LABIBB_MAX_OCP_COUNT		4
73#define LABIBB_MAX_SC_COUNT		3
74#define LABIBB_MAX_FATAL_COUNT		2
75
76struct labibb_current_limits {
77	u32				uA_min;
78	u32				uA_step;
79	u8				ovr_val;
80};
81
82struct labibb_regulator {
83	struct regulator_desc		desc;
84	struct device			*dev;
85	struct regmap			*regmap;
86	struct regulator_dev		*rdev;
87	struct labibb_current_limits	uA_limits;
88	struct delayed_work		ocp_recovery_work;
89	struct delayed_work		sc_recovery_work;
90	u16				base;
91	u8				type;
92	u8				dischg_sel;
93	u8				soft_start_sel;
94	int				sc_irq;
95	int				sc_count;
96	int				ocp_irq;
97	int				ocp_irq_count;
98	int				fatal_count;
99};
100
101struct labibb_regulator_data {
102	const char			*name;
103	u8				type;
104	u16				base;
105	const struct regulator_desc	*desc;
106};
107
108static int qcom_labibb_ocp_hw_enable(struct regulator_dev *rdev)
109{
110	struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
111	int ret;
112
113	/* Clear irq latch status to avoid spurious event */
114	ret = regmap_update_bits(rdev->regmap,
115				 vreg->base + REG_LABIBB_INT_LATCHED_CLR,
116				 LABIBB_INT_VREG_OK, 1);
117	if (ret)
118		return ret;
119
120	/* Enable OCP HW interrupt */
121	return regmap_update_bits(rdev->regmap,
122				  vreg->base + REG_LABIBB_INT_EN_SET,
123				  LABIBB_INT_VREG_OK, 1);
124}
125
126static int qcom_labibb_ocp_hw_disable(struct regulator_dev *rdev)
127{
128	struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
129
130	return regmap_update_bits(rdev->regmap,
131				  vreg->base + REG_LABIBB_INT_EN_CLR,
132				  LABIBB_INT_VREG_OK, 1);
133}
134
135/**
136 * qcom_labibb_check_ocp_status - Check the Over-Current Protection status
137 * @vreg: Main driver structure
138 *
139 * This function checks the STATUS1 register for the VREG_OK bit: if it is
140 * set, then there is no Over-Current event.
141 *
142 * Returns: Zero if there is no over-current, 1 if in over-current or
143 *          negative number for error
144 */
145static int qcom_labibb_check_ocp_status(struct labibb_regulator *vreg)
146{
147	u32 cur_status;
148	int ret;
149
150	ret = regmap_read(vreg->rdev->regmap, vreg->base + REG_LABIBB_STATUS1,
151			  &cur_status);
152	if (ret)
153		return ret;
154
155	return !(cur_status & LABIBB_STATUS1_VREG_OK_BIT);
156}
157
158/**
159 * qcom_labibb_ocp_recovery_worker - Handle OCP event
160 * @work: OCP work structure
161 *
162 * This is the worker function to handle the Over Current Protection
163 * hardware event; This will check if the hardware is still
164 * signaling an over-current condition and will eventually stop
165 * the regulator if such condition is still signaled after
166 * LABIBB_MAX_OCP_COUNT times.
167 *
168 * If the driver that is consuming the regulator did not take action
169 * for the OCP condition, or the hardware did not stabilize, a cut
170 * of the LAB and IBB regulators will be forced (regulators will be
171 * disabled).
172 *
173 * As last, if the writes to shut down the LAB/IBB regulators fail
174 * for more than LABIBB_MAX_FATAL_COUNT, then a kernel panic will be
175 * triggered, as a last resort to protect the hardware from burning;
176 * this, however, is expected to never happen, but this is kept to
177 * try to further ensure that we protect the hardware at all costs.
178 */
179static void qcom_labibb_ocp_recovery_worker(struct work_struct *work)
180{
181	struct labibb_regulator *vreg;
182	const struct regulator_ops *ops;
183	int ret;
184
185	vreg = container_of(work, struct labibb_regulator,
186			    ocp_recovery_work.work);
187	ops = vreg->rdev->desc->ops;
188
189	if (vreg->ocp_irq_count >= LABIBB_MAX_OCP_COUNT) {
190		/*
191		 * If we tried to disable the regulator multiple times but
192		 * we kept failing, there's only one last hope to save our
193		 * hardware from the death: raise a kernel bug, reboot and
194		 * hope that the bootloader kindly saves us. This, though
195		 * is done only as paranoid checking, because failing the
196		 * regmap write to disable the vreg is almost impossible,
197		 * since we got here after multiple regmap R/W.
198		 */
199		BUG_ON(vreg->fatal_count > LABIBB_MAX_FATAL_COUNT);
200		dev_err(&vreg->rdev->dev, "LABIBB: CRITICAL: Disabling regulator\n");
201
202		/* Disable the regulator immediately to avoid damage */
203		ret = ops->disable(vreg->rdev);
204		if (ret) {
205			vreg->fatal_count++;
206			goto reschedule;
207		}
208		enable_irq(vreg->ocp_irq);
209		vreg->fatal_count = 0;
210		return;
211	}
212
213	ret = qcom_labibb_check_ocp_status(vreg);
214	if (ret != 0) {
215		vreg->ocp_irq_count++;
216		goto reschedule;
217	}
218
219	ret = qcom_labibb_ocp_hw_enable(vreg->rdev);
220	if (ret) {
221		/* We cannot trust it without OCP enabled. */
222		dev_err(vreg->dev, "Cannot enable OCP IRQ\n");
223		vreg->ocp_irq_count++;
224		goto reschedule;
225	}
226
227	enable_irq(vreg->ocp_irq);
228	/* Everything went fine: reset the OCP count! */
229	vreg->ocp_irq_count = 0;
230	return;
231
232reschedule:
233	mod_delayed_work(system_wq, &vreg->ocp_recovery_work,
234			 msecs_to_jiffies(OCP_RECOVERY_INTERVAL_MS));
235}
236
237/**
238 * qcom_labibb_ocp_isr - Interrupt routine for OverCurrent Protection
239 * @irq:  Interrupt number
240 * @chip: Main driver structure
241 *
242 * Over Current Protection (OCP) will signal to the client driver
243 * that an over-current event has happened and then will schedule
244 * a recovery worker.
245 *
246 * Disabling and eventually re-enabling the regulator is expected
247 * to be done by the driver, as some hardware may be triggering an
248 * over-current condition only at first initialization or it may
249 * be expected only for a very brief amount of time, after which
250 * the attached hardware may be expected to stabilize its current
251 * draw.
252 *
253 * Returns: IRQ_HANDLED for success or IRQ_NONE for failure.
254 */
255static irqreturn_t qcom_labibb_ocp_isr(int irq, void *chip)
256{
257	struct labibb_regulator *vreg = chip;
258	const struct regulator_ops *ops = vreg->rdev->desc->ops;
259	int ret;
260
261	/* If the regulator is not enabled, this is a fake event */
262	if (!ops->is_enabled(vreg->rdev))
263		return IRQ_HANDLED;
264
265	/* If we tried to recover for too many times it's not getting better */
266	if (vreg->ocp_irq_count > LABIBB_MAX_OCP_COUNT)
267		return IRQ_NONE;
268
269	/*
270	 * If we (unlikely) can't read this register, to prevent hardware
271	 * damage at all costs, we assume that the overcurrent event was
272	 * real; Moreover, if the status register is not signaling OCP,
273	 * it was a spurious event, so it's all ok.
274	 */
275	ret = qcom_labibb_check_ocp_status(vreg);
276	if (ret == 0) {
277		vreg->ocp_irq_count = 0;
278		goto end;
279	}
280	vreg->ocp_irq_count++;
281
282	/*
283	 * Disable the interrupt temporarily, or it will fire continuously;
284	 * we will re-enable it in the recovery worker function.
285	 */
286	disable_irq_nosync(irq);
287
288	/* Warn the user for overcurrent */
289	dev_warn(vreg->dev, "Over-Current interrupt fired!\n");
290
291	/* Disable the interrupt to avoid hogging */
292	ret = qcom_labibb_ocp_hw_disable(vreg->rdev);
293	if (ret)
294		goto end;
295
296	/* Signal overcurrent event to drivers */
297	regulator_notifier_call_chain(vreg->rdev,
298				      REGULATOR_EVENT_OVER_CURRENT, NULL);
299
300end:
301	/* Schedule the recovery work */
302	schedule_delayed_work(&vreg->ocp_recovery_work,
303			      msecs_to_jiffies(OCP_RECOVERY_INTERVAL_MS));
304	if (ret)
305		return IRQ_NONE;
306
307	return IRQ_HANDLED;
308}
309
310static int qcom_labibb_set_ocp(struct regulator_dev *rdev, int lim,
311			       int severity, bool enable)
312{
313	struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
314	char *ocp_irq_name;
315	u32 irq_flags = IRQF_ONESHOT;
316	int irq_trig_low, ret;
317
318	/*
319	 * labibb supports only protection - and does not support setting
320	 * limit. Furthermore, we don't support disabling protection.
321	 */
322	if (lim || severity != REGULATOR_SEVERITY_PROT || !enable)
323		return -EINVAL;
324
325	/* If there is no OCP interrupt, there's nothing to set */
326	if (vreg->ocp_irq <= 0)
327		return -EINVAL;
328
329	ocp_irq_name = devm_kasprintf(vreg->dev, GFP_KERNEL, "%s-over-current",
330				      vreg->desc.name);
331	if (!ocp_irq_name)
332		return -ENOMEM;
333
334	/* IRQ polarities - LAB: trigger-low, IBB: trigger-high */
335	switch (vreg->type) {
336	case QCOM_LAB_TYPE:
337		irq_flags |= IRQF_TRIGGER_LOW;
338		irq_trig_low = 1;
339		break;
340	case QCOM_IBB_TYPE:
341		irq_flags |= IRQF_TRIGGER_HIGH;
342		irq_trig_low = 0;
343		break;
344	default:
345		return -EINVAL;
346	}
347
348	/* Activate OCP HW level interrupt */
349	ret = regmap_update_bits(rdev->regmap,
350				 vreg->base + REG_LABIBB_INT_SET_TYPE,
351				 LABIBB_INT_VREG_OK,
352				 LABIBB_INT_VREG_TYPE_LEVEL);
353	if (ret)
354		return ret;
355
356	/* Set OCP interrupt polarity */
357	ret = regmap_update_bits(rdev->regmap,
358				 vreg->base + REG_LABIBB_INT_POLARITY_HIGH,
359				 LABIBB_INT_VREG_OK, !irq_trig_low);
360	if (ret)
361		return ret;
362	ret = regmap_update_bits(rdev->regmap,
363				 vreg->base + REG_LABIBB_INT_POLARITY_LOW,
364				 LABIBB_INT_VREG_OK, irq_trig_low);
365	if (ret)
366		return ret;
367
368	ret = qcom_labibb_ocp_hw_enable(rdev);
369	if (ret)
370		return ret;
371
372	return devm_request_threaded_irq(vreg->dev, vreg->ocp_irq, NULL,
373					 qcom_labibb_ocp_isr, irq_flags,
374					 ocp_irq_name, vreg);
375}
376
377/**
378 * qcom_labibb_check_sc_status - Check the Short Circuit Protection status
379 * @vreg: Main driver structure
380 *
381 * This function checks the STATUS1 register on both LAB and IBB regulators
382 * for the ShortCircuit bit: if it is set on *any* of them, then we have
383 * experienced a short-circuit event.
384 *
385 * Returns: Zero if there is no short-circuit, 1 if in short-circuit or
386 *          negative number for error
387 */
388static int qcom_labibb_check_sc_status(struct labibb_regulator *vreg)
389{
390	u32 ibb_status, ibb_reg, lab_status, lab_reg;
391	int ret;
392
393	/* We have to work on both regulators due to PBS... */
394	lab_reg = ibb_reg = vreg->base + REG_LABIBB_STATUS1;
395	if (vreg->type == QCOM_LAB_TYPE)
396		ibb_reg -= PMI8998_IBB_LAB_REG_OFFSET;
397	else
398		lab_reg += PMI8998_IBB_LAB_REG_OFFSET;
399
400	ret = regmap_read(vreg->rdev->regmap, lab_reg, &lab_status);
401	if (ret)
402		return ret;
403	ret = regmap_read(vreg->rdev->regmap, ibb_reg, &ibb_status);
404	if (ret)
405		return ret;
406
407	return !!(lab_status & LABIBB_STATUS1_SC_BIT) ||
408	       !!(ibb_status & LABIBB_STATUS1_SC_BIT);
409}
410
411/**
412 * qcom_labibb_sc_recovery_worker - Handle Short Circuit event
413 * @work: SC work structure
414 *
415 * This is the worker function to handle the Short Circuit Protection
416 * hardware event; This will check if the hardware is still
417 * signaling a short-circuit condition and will eventually never
418 * re-enable the regulator if such condition is still signaled after
419 * LABIBB_MAX_SC_COUNT times.
420 *
421 * If the driver that is consuming the regulator did not take action
422 * for the SC condition, or the hardware did not stabilize, this
423 * worker will stop rescheduling, leaving the regulators disabled
424 * as already done by the Portable Batch System (PBS).
425 *
426 * Returns: IRQ_HANDLED for success or IRQ_NONE for failure.
427 */
428static void qcom_labibb_sc_recovery_worker(struct work_struct *work)
429{
430	struct labibb_regulator *vreg;
431	const struct regulator_ops *ops;
432	u32 lab_reg, ibb_reg, lab_val, ibb_val, val;
433	bool pbs_cut = false;
434	int i, sc, ret;
435
436	vreg = container_of(work, struct labibb_regulator,
437			    sc_recovery_work.work);
438	ops = vreg->rdev->desc->ops;
439
440	/*
441	 * If we tried to check the regulator status multiple times but we
442	 * kept failing, then just bail out, as the Portable Batch System
443	 * (PBS) will disable the vregs for us, preventing hardware damage.
444	 */
445	if (vreg->fatal_count > LABIBB_MAX_FATAL_COUNT)
446		return;
447
448	/* Too many short-circuit events. Throw in the towel. */
449	if (vreg->sc_count > LABIBB_MAX_SC_COUNT)
450		return;
451
452	/*
453	 * The Portable Batch System (PBS) automatically disables LAB
454	 * and IBB when a short-circuit event is detected, so we have to
455	 * check and work on both of them at the same time.
456	 */
457	lab_reg = ibb_reg = vreg->base + REG_LABIBB_ENABLE_CTL;
458	if (vreg->type == QCOM_LAB_TYPE)
459		ibb_reg -= PMI8998_IBB_LAB_REG_OFFSET;
460	else
461		lab_reg += PMI8998_IBB_LAB_REG_OFFSET;
462
463	sc = qcom_labibb_check_sc_status(vreg);
464	if (sc)
465		goto reschedule;
466
467	for (i = 0; i < LABIBB_MAX_SC_COUNT; i++) {
468		ret = regmap_read(vreg->regmap, lab_reg, &lab_val);
469		if (ret) {
470			vreg->fatal_count++;
471			goto reschedule;
472		}
473
474		ret = regmap_read(vreg->regmap, ibb_reg, &ibb_val);
475		if (ret) {
476			vreg->fatal_count++;
477			goto reschedule;
478		}
479		val = lab_val & ibb_val;
480
481		if (!(val & LABIBB_CONTROL_ENABLE)) {
482			pbs_cut = true;
483			break;
484		}
485		usleep_range(5000, 6000);
486	}
487	if (pbs_cut)
488		goto reschedule;
489
490
491	/*
492	 * If we have reached this point, we either have successfully
493	 * recovered from the SC condition or we had a spurious SC IRQ,
494	 * which means that we can re-enable the regulators, if they
495	 * have ever been disabled by the PBS.
496	 */
497	ret = ops->enable(vreg->rdev);
498	if (ret)
499		goto reschedule;
500
501	/* Everything went fine: reset the OCP count! */
502	vreg->sc_count = 0;
503	enable_irq(vreg->sc_irq);
504	return;
505
506reschedule:
507	/*
508	 * Now that we have done basic handling of the short-circuit,
509	 * reschedule this worker in the regular system workqueue, as
510	 * taking action is not truly urgent anymore.
511	 */
512	vreg->sc_count++;
513	mod_delayed_work(system_wq, &vreg->sc_recovery_work,
514			 msecs_to_jiffies(SC_RECOVERY_INTERVAL_MS));
515}
516
517/**
518 * qcom_labibb_sc_isr - Interrupt routine for Short Circuit Protection
519 * @irq:  Interrupt number
520 * @chip: Main driver structure
521 *
522 * Short Circuit Protection (SCP) will signal to the client driver
523 * that a regulation-out event has happened and then will schedule
524 * a recovery worker.
525 *
526 * The LAB and IBB regulators will be automatically disabled by the
527 * Portable Batch System (PBS) and they will be enabled again by
528 * the worker function if the hardware stops signaling the short
529 * circuit event.
530 *
531 * Returns: IRQ_HANDLED for success or IRQ_NONE for failure.
532 */
533static irqreturn_t qcom_labibb_sc_isr(int irq, void *chip)
534{
535	struct labibb_regulator *vreg = chip;
536
537	if (vreg->sc_count > LABIBB_MAX_SC_COUNT)
538		return IRQ_NONE;
539
540	/* Warn the user for short circuit */
541	dev_warn(vreg->dev, "Short-Circuit interrupt fired!\n");
542
543	/*
544	 * Disable the interrupt temporarily, or it will fire continuously;
545	 * we will re-enable it in the recovery worker function.
546	 */
547	disable_irq_nosync(irq);
548
549	/* Signal out of regulation event to drivers */
550	regulator_notifier_call_chain(vreg->rdev,
551				      REGULATOR_EVENT_REGULATION_OUT, NULL);
552
553	/* Schedule the short-circuit handling as high-priority work */
554	mod_delayed_work(system_highpri_wq, &vreg->sc_recovery_work,
555			 msecs_to_jiffies(SC_RECOVERY_INTERVAL_MS));
556	return IRQ_HANDLED;
557}
558
559
560static int qcom_labibb_set_current_limit(struct regulator_dev *rdev,
561					 int min_uA, int max_uA)
562{
563	struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
564	struct regulator_desc *desc = &vreg->desc;
565	struct labibb_current_limits *lim = &vreg->uA_limits;
566	u32 mask, val;
567	int i, ret, sel = -1;
568
569	if (min_uA < lim->uA_min || max_uA < lim->uA_min)
570		return -EINVAL;
571
572	for (i = 0; i < desc->n_current_limits; i++) {
573		int uA_limit = (lim->uA_step * i) + lim->uA_min;
574
575		if (max_uA >= uA_limit && min_uA <= uA_limit)
576			sel = i;
577	}
578	if (sel < 0)
579		return -EINVAL;
580
581	/* Current limit setting needs secure access */
582	ret = regmap_write(vreg->regmap, vreg->base + REG_LABIBB_SEC_ACCESS,
583			   LABIBB_SEC_UNLOCK_CODE);
584	if (ret)
585		return ret;
586
587	mask = desc->csel_mask | lim->ovr_val;
588	mask |= LABIBB_CURRENT_LIMIT_EN;
589	val = (u32)sel | lim->ovr_val;
590	val |= LABIBB_CURRENT_LIMIT_EN;
591
592	return regmap_update_bits(vreg->regmap, desc->csel_reg, mask, val);
593}
594
595static int qcom_labibb_get_current_limit(struct regulator_dev *rdev)
596{
597	struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
598	struct regulator_desc *desc = &vreg->desc;
599	struct labibb_current_limits *lim = &vreg->uA_limits;
600	unsigned int cur_step;
601	int ret;
602
603	ret = regmap_read(vreg->regmap, desc->csel_reg, &cur_step);
604	if (ret)
605		return ret;
606	cur_step &= desc->csel_mask;
607
608	return (cur_step * lim->uA_step) + lim->uA_min;
609}
610
611static int qcom_labibb_set_soft_start(struct regulator_dev *rdev)
612{
613	struct labibb_regulator *vreg = rdev_get_drvdata(rdev);
614	u32 val = 0;
615
616	if (vreg->type == QCOM_IBB_TYPE)
617		val = vreg->dischg_sel;
618	else
619		val = vreg->soft_start_sel;
620
621	return regmap_write(rdev->regmap, rdev->desc->soft_start_reg, val);
622}
623
624static int qcom_labibb_get_table_sel(const int *table, int sz, u32 value)
625{
626	int i;
627
628	for (i = 0; i < sz; i++)
629		if (table[i] == value)
630			return i;
631	return -EINVAL;
632}
633
634/* IBB discharge resistor values in KOhms */
635static const int dischg_resistor_values[] = { 300, 64, 32, 16 };
636
637/* Soft start time in microseconds */
638static const int soft_start_values[] = { 200, 400, 600, 800 };
639
640static int qcom_labibb_of_parse_cb(struct device_node *np,
641				   const struct regulator_desc *desc,
642				   struct regulator_config *config)
643{
644	struct labibb_regulator *vreg = config->driver_data;
645	u32 dischg_kohms, soft_start_time;
646	int ret;
647
648	ret = of_property_read_u32(np, "qcom,discharge-resistor-kohms",
649				       &dischg_kohms);
650	if (ret)
651		dischg_kohms = 300;
652
653	ret = qcom_labibb_get_table_sel(dischg_resistor_values,
654					ARRAY_SIZE(dischg_resistor_values),
655					dischg_kohms);
656	if (ret < 0)
657		return ret;
658	vreg->dischg_sel = (u8)ret;
659
660	ret = of_property_read_u32(np, "qcom,soft-start-us",
661				   &soft_start_time);
662	if (ret)
663		soft_start_time = 200;
664
665	ret = qcom_labibb_get_table_sel(soft_start_values,
666					ARRAY_SIZE(soft_start_values),
667					soft_start_time);
668	if (ret < 0)
669		return ret;
670	vreg->soft_start_sel = (u8)ret;
671
672	return 0;
673}
674
675static const struct regulator_ops qcom_labibb_ops = {
676	.enable			= regulator_enable_regmap,
677	.disable		= regulator_disable_regmap,
678	.is_enabled		= regulator_is_enabled_regmap,
679	.set_voltage_sel	= regulator_set_voltage_sel_regmap,
680	.get_voltage_sel	= regulator_get_voltage_sel_regmap,
681	.list_voltage		= regulator_list_voltage_linear,
682	.map_voltage		= regulator_map_voltage_linear,
683	.set_active_discharge	= regulator_set_active_discharge_regmap,
684	.set_pull_down		= regulator_set_pull_down_regmap,
685	.set_current_limit	= qcom_labibb_set_current_limit,
686	.get_current_limit	= qcom_labibb_get_current_limit,
687	.set_soft_start		= qcom_labibb_set_soft_start,
688	.set_over_current_protection = qcom_labibb_set_ocp,
689};
690
691static const struct regulator_desc pmi8998_lab_desc = {
692	.enable_mask		= LAB_ENABLE_CTL_MASK,
693	.enable_reg		= (PMI8998_LAB_REG_BASE + REG_LABIBB_ENABLE_CTL),
694	.enable_val		= LABIBB_CONTROL_ENABLE,
695	.enable_time		= LAB_ENABLE_TIME,
696	.poll_enabled_time	= LABIBB_POLL_ENABLED_TIME,
697	.soft_start_reg		= (PMI8998_LAB_REG_BASE + REG_LABIBB_SOFT_START_CTL),
698	.pull_down_reg		= (PMI8998_LAB_REG_BASE + REG_LABIBB_PD_CTL),
699	.pull_down_mask		= LAB_PD_CTL_MASK,
700	.pull_down_val_on	= LAB_PD_CTL_STRONG_PULL,
701	.vsel_reg		= (PMI8998_LAB_REG_BASE + REG_LABIBB_VOLTAGE),
702	.vsel_mask		= LAB_VOLTAGE_SET_MASK,
703	.apply_reg		= (PMI8998_LAB_REG_BASE + REG_LABIBB_VOLTAGE),
704	.apply_bit		= LABIBB_VOLTAGE_OVERRIDE_EN,
705	.csel_reg		= (PMI8998_LAB_REG_BASE + REG_LABIBB_CURRENT_LIMIT),
706	.csel_mask		= LAB_CURRENT_LIMIT_MASK,
707	.n_current_limits	= 8,
708	.off_on_delay		= LABIBB_OFF_ON_DELAY,
709	.owner			= THIS_MODULE,
710	.type			= REGULATOR_VOLTAGE,
711	.min_uV			= 4600000,
712	.uV_step		= 100000,
713	.n_voltages		= 16,
714	.ops			= &qcom_labibb_ops,
715	.of_parse_cb		= qcom_labibb_of_parse_cb,
716};
717
718static const struct regulator_desc pmi8998_ibb_desc = {
719	.enable_mask		= IBB_ENABLE_CTL_MASK,
720	.enable_reg		= (PMI8998_IBB_REG_BASE + REG_LABIBB_ENABLE_CTL),
721	.enable_val		= LABIBB_CONTROL_ENABLE,
722	.enable_time		= IBB_ENABLE_TIME,
723	.poll_enabled_time	= LABIBB_POLL_ENABLED_TIME,
724	.soft_start_reg		= (PMI8998_IBB_REG_BASE + REG_LABIBB_SOFT_START_CTL),
725	.active_discharge_off	= 0,
726	.active_discharge_on	= IBB_CTL_1_DISCHARGE_EN,
727	.active_discharge_mask	= IBB_CTL_1_DISCHARGE_EN,
728	.active_discharge_reg	= (PMI8998_IBB_REG_BASE + REG_IBB_PWRUP_PWRDN_CTL_1),
729	.pull_down_reg		= (PMI8998_IBB_REG_BASE + REG_LABIBB_PD_CTL),
730	.pull_down_mask		= IBB_PD_CTL_MASK,
731	.pull_down_val_on	= IBB_PD_CTL_HALF_STRENGTH | IBB_PD_CTL_EN,
732	.vsel_reg		= (PMI8998_IBB_REG_BASE + REG_LABIBB_VOLTAGE),
733	.vsel_mask		= IBB_VOLTAGE_SET_MASK,
734	.apply_reg		= (PMI8998_IBB_REG_BASE + REG_LABIBB_VOLTAGE),
735	.apply_bit		= LABIBB_VOLTAGE_OVERRIDE_EN,
736	.csel_reg		= (PMI8998_IBB_REG_BASE + REG_LABIBB_CURRENT_LIMIT),
737	.csel_mask		= IBB_CURRENT_LIMIT_MASK,
738	.n_current_limits	= 32,
739	.off_on_delay		= LABIBB_OFF_ON_DELAY,
740	.owner			= THIS_MODULE,
741	.type			= REGULATOR_VOLTAGE,
742	.min_uV			= 1400000,
743	.uV_step		= 100000,
744	.n_voltages		= 64,
745	.ops			= &qcom_labibb_ops,
746	.of_parse_cb		= qcom_labibb_of_parse_cb,
747};
748
749static const struct labibb_regulator_data pmi8998_labibb_data[] = {
750	{"lab", QCOM_LAB_TYPE, PMI8998_LAB_REG_BASE, &pmi8998_lab_desc},
751	{"ibb", QCOM_IBB_TYPE, PMI8998_IBB_REG_BASE, &pmi8998_ibb_desc},
752	{ },
753};
754
755static const struct of_device_id qcom_labibb_match[] = {
756	{ .compatible = "qcom,pmi8998-lab-ibb", .data = &pmi8998_labibb_data},
757	{ },
758};
759MODULE_DEVICE_TABLE(of, qcom_labibb_match);
760
761static int qcom_labibb_regulator_probe(struct platform_device *pdev)
762{
763	struct labibb_regulator *vreg;
764	struct device *dev = &pdev->dev;
765	struct regulator_config cfg = {};
766	struct device_node *reg_node;
767	const struct labibb_regulator_data *reg_data;
768	struct regmap *reg_regmap;
769	unsigned int type;
770	int ret;
771
772	reg_regmap = dev_get_regmap(pdev->dev.parent, NULL);
773	if (!reg_regmap) {
774		dev_err(&pdev->dev, "Couldn't get parent's regmap\n");
775		return -ENODEV;
776	}
777
778	reg_data = device_get_match_data(&pdev->dev);
779	if (!reg_data)
780		return -ENODEV;
781
782	for (; reg_data->name; reg_data++) {
783		char *sc_irq_name;
784		int irq = 0;
785
786		/* Validate if the type of regulator is indeed
787		 * what's mentioned in DT.
788		 */
789		ret = regmap_read(reg_regmap, reg_data->base + REG_PERPH_TYPE,
790				  &type);
791		if (ret < 0) {
792			dev_err(dev,
793				"Peripheral type read failed ret=%d\n",
794				ret);
795			return -EINVAL;
796		}
797
798		if (WARN_ON((type != QCOM_LAB_TYPE) && (type != QCOM_IBB_TYPE)) ||
799		    WARN_ON(type != reg_data->type))
800			return -EINVAL;
801
802		vreg  = devm_kzalloc(&pdev->dev, sizeof(*vreg),
803					   GFP_KERNEL);
804		if (!vreg)
805			return -ENOMEM;
806
807		sc_irq_name = devm_kasprintf(dev, GFP_KERNEL,
808					     "%s-short-circuit",
809					     reg_data->name);
810		if (!sc_irq_name)
811			return -ENOMEM;
812
813		reg_node = of_get_child_by_name(pdev->dev.of_node,
814						reg_data->name);
815		if (!reg_node)
816			return -EINVAL;
817
818		/* The Short Circuit interrupt is critical */
819		irq = of_irq_get_byname(reg_node, "sc-err");
820		if (irq <= 0) {
821			if (irq == 0)
822				irq = -EINVAL;
823
824			of_node_put(reg_node);
825			return dev_err_probe(vreg->dev, irq,
826					     "Short-circuit irq not found.\n");
827		}
828		vreg->sc_irq = irq;
829
830		/* OverCurrent Protection IRQ is optional */
831		irq = of_irq_get_byname(reg_node, "ocp");
832		vreg->ocp_irq = irq;
833		vreg->ocp_irq_count = 0;
834		of_node_put(reg_node);
835
836		vreg->regmap = reg_regmap;
837		vreg->dev = dev;
838		vreg->base = reg_data->base;
839		vreg->type = reg_data->type;
840		INIT_DELAYED_WORK(&vreg->sc_recovery_work,
841				  qcom_labibb_sc_recovery_worker);
842
843		if (vreg->ocp_irq > 0)
844			INIT_DELAYED_WORK(&vreg->ocp_recovery_work,
845					  qcom_labibb_ocp_recovery_worker);
846
847		switch (vreg->type) {
848		case QCOM_LAB_TYPE:
849			/* LAB Limits: 200-1600mA */
850			vreg->uA_limits.uA_min  = 200000;
851			vreg->uA_limits.uA_step = 200000;
852			vreg->uA_limits.ovr_val = LAB_CURRENT_LIMIT_OVERRIDE_EN;
853			break;
854		case QCOM_IBB_TYPE:
855			/* IBB Limits: 0-1550mA */
856			vreg->uA_limits.uA_min  = 0;
857			vreg->uA_limits.uA_step = 50000;
858			vreg->uA_limits.ovr_val = 0; /* No override bit */
859			break;
860		default:
861			return -EINVAL;
862		}
863
864		memcpy(&vreg->desc, reg_data->desc, sizeof(vreg->desc));
865		vreg->desc.of_match = reg_data->name;
866		vreg->desc.name = reg_data->name;
867
868		cfg.dev = vreg->dev;
869		cfg.driver_data = vreg;
870		cfg.regmap = vreg->regmap;
871
872		vreg->rdev = devm_regulator_register(vreg->dev, &vreg->desc,
873							&cfg);
874
875		if (IS_ERR(vreg->rdev)) {
876			dev_err(dev, "qcom_labibb: error registering %s : %d\n",
877					reg_data->name, ret);
878			return PTR_ERR(vreg->rdev);
879		}
880
881		ret = devm_request_threaded_irq(vreg->dev, vreg->sc_irq, NULL,
882						qcom_labibb_sc_isr,
883						IRQF_ONESHOT |
884						IRQF_TRIGGER_RISING,
885						sc_irq_name, vreg);
886		if (ret)
887			return ret;
888	}
889
890	return 0;
891}
892
893static struct platform_driver qcom_labibb_regulator_driver = {
894	.driver	= {
895		.name = "qcom-lab-ibb-regulator",
896		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
897		.of_match_table	= qcom_labibb_match,
898	},
899	.probe = qcom_labibb_regulator_probe,
900};
901module_platform_driver(qcom_labibb_regulator_driver);
902
903MODULE_DESCRIPTION("Qualcomm labibb driver");
904MODULE_AUTHOR("Nisha Kumari <nishakumari@codeaurora.org>");
905MODULE_AUTHOR("Sumit Semwal <sumit.semwal@linaro.org>");
906MODULE_LICENSE("GPL v2");
907