1// SPDX-License-Identifier: GPL-2.0
2/*
3 * corePWM driver for Microchip "soft" FPGA IP cores.
4 *
5 * Copyright (c) 2021-2023 Microchip Corporation. All rights reserved.
6 * Author: Conor Dooley <conor.dooley@microchip.com>
7 * Documentation:
8 * https://www.microsemi.com/document-portal/doc_download/1245275-corepwm-hb
9 *
10 * Limitations:
11 * - If the IP block is configured without "shadow registers", all register
12 *   writes will take effect immediately, causing glitches on the output.
13 *   If shadow registers *are* enabled, setting the "SYNC_UPDATE" register
14 *   notifies the core that it needs to update the registers defining the
15 *   waveform from the contents of the "shadow registers". Otherwise, changes
16 *   will take effective immediately, even for those channels.
17 *   As setting the period/duty cycle takes 4 register writes, there is a window
18 *   in which this races against the start of a new period.
19 * - The IP block has no concept of a duty cycle, only rising/falling edges of
20 *   the waveform. Unfortunately, if the rising & falling edges registers have
21 *   the same value written to them the IP block will do whichever of a rising
22 *   or a falling edge is possible. I.E. a 50% waveform at twice the requested
23 *   period. Therefore to get a 0% waveform, the output is set the max high/low
24 *   time depending on polarity.
25 *   If the duty cycle is 0%, and the requested period is less than the
26 *   available period resolution, this will manifest as a ~100% waveform (with
27 *   some output glitches) rather than 50%.
28 * - The PWM period is set for the whole IP block not per channel. The driver
29 *   will only change the period if no other PWM output is enabled.
30 */
31
32#include <linux/clk.h>
33#include <linux/delay.h>
34#include <linux/err.h>
35#include <linux/io.h>
36#include <linux/ktime.h>
37#include <linux/math.h>
38#include <linux/module.h>
39#include <linux/mutex.h>
40#include <linux/of.h>
41#include <linux/platform_device.h>
42#include <linux/pwm.h>
43
44#define MCHPCOREPWM_PRESCALE_MAX	0xff
45#define MCHPCOREPWM_PERIOD_STEPS_MAX	0xfe
46#define MCHPCOREPWM_PERIOD_MAX		0xff00
47
48#define MCHPCOREPWM_PRESCALE	0x00
49#define MCHPCOREPWM_PERIOD	0x04
50#define MCHPCOREPWM_EN(i)	(0x08 + 0x04 * (i)) /* 0x08, 0x0c */
51#define MCHPCOREPWM_POSEDGE(i)	(0x10 + 0x08 * (i)) /* 0x10, 0x18, ..., 0x88 */
52#define MCHPCOREPWM_NEGEDGE(i)	(0x14 + 0x08 * (i)) /* 0x14, 0x1c, ..., 0x8c */
53#define MCHPCOREPWM_SYNC_UPD	0xe4
54#define MCHPCOREPWM_TIMEOUT_MS	100u
55
56struct mchp_core_pwm_chip {
57	struct clk *clk;
58	void __iomem *base;
59	struct mutex lock; /* protects the shared period */
60	ktime_t update_timestamp;
61	u32 sync_update_mask;
62	u16 channel_enabled;
63};
64
65static inline struct mchp_core_pwm_chip *to_mchp_core_pwm(struct pwm_chip *chip)
66{
67	return pwmchip_get_drvdata(chip);
68}
69
70static void mchp_core_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm,
71				 bool enable, u64 period)
72{
73	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
74	u8 channel_enable, reg_offset, shift;
75
76	/*
77	 * There are two adjacent 8 bit control regs, the lower reg controls
78	 * 0-7 and the upper reg 8-15. Check if the pwm is in the upper reg
79	 * and if so, offset by the bus width.
80	 */
81	reg_offset = MCHPCOREPWM_EN(pwm->hwpwm >> 3);
82	shift = pwm->hwpwm & 7;
83
84	channel_enable = readb_relaxed(mchp_core_pwm->base + reg_offset);
85	channel_enable &= ~(1 << shift);
86	channel_enable |= (enable << shift);
87
88	writel_relaxed(channel_enable, mchp_core_pwm->base + reg_offset);
89	mchp_core_pwm->channel_enabled &= ~BIT(pwm->hwpwm);
90	mchp_core_pwm->channel_enabled |= enable << pwm->hwpwm;
91
92	/*
93	 * The updated values will not appear on the bus until they have been
94	 * applied to the waveform at the beginning of the next period.
95	 * This is a NO-OP if the channel does not have shadow registers.
96	 */
97	if (mchp_core_pwm->sync_update_mask & (1 << pwm->hwpwm))
98		mchp_core_pwm->update_timestamp = ktime_add_ns(ktime_get(), period);
99}
100
101static void mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip *mchp_core_pwm,
102					       unsigned int channel)
103{
104	/*
105	 * If a shadow register is used for this PWM channel, and iff there is
106	 * a pending update to the waveform, we must wait for it to be applied
107	 * before attempting to read its state. Reading the registers yields
108	 * the currently implemented settings & the new ones are only readable
109	 * once the current period has ended.
110	 */
111
112	if (mchp_core_pwm->sync_update_mask & (1 << channel)) {
113		ktime_t current_time = ktime_get();
114		s64 remaining_ns;
115		u32 delay_us;
116
117		remaining_ns = ktime_to_ns(ktime_sub(mchp_core_pwm->update_timestamp,
118						     current_time));
119
120		/*
121		 * If the update has gone through, don't bother waiting for
122		 * obvious reasons. Otherwise wait around for an appropriate
123		 * amount of time for the update to go through.
124		 */
125		if (remaining_ns <= 0)
126			return;
127
128		delay_us = DIV_ROUND_UP_ULL(remaining_ns, NSEC_PER_USEC);
129		fsleep(delay_us);
130	}
131}
132
133static u64 mchp_core_pwm_calc_duty(const struct pwm_state *state, u64 clk_rate,
134				   u8 prescale, u8 period_steps)
135{
136	u64 duty_steps, tmp;
137
138	/*
139	 * Calculate the duty cycle in multiples of the prescaled period:
140	 * duty_steps = duty_in_ns / step_in_ns
141	 * step_in_ns = (prescale * NSEC_PER_SEC) / clk_rate
142	 * The code below is rearranged slightly to only divide once.
143	 */
144	tmp = (((u64)prescale) + 1) * NSEC_PER_SEC;
145	duty_steps = mul_u64_u64_div_u64(state->duty_cycle, clk_rate, tmp);
146
147	return duty_steps;
148}
149
150static void mchp_core_pwm_apply_duty(struct pwm_chip *chip, struct pwm_device *pwm,
151				     const struct pwm_state *state, u64 duty_steps,
152				     u16 period_steps)
153{
154	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
155	u8 posedge, negedge;
156	u8 first_edge = 0, second_edge = duty_steps;
157
158	/*
159	 * Setting posedge == negedge doesn't yield a constant output,
160	 * so that's an unsuitable setting to model duty_steps = 0.
161	 * In that case set the unwanted edge to a value that never
162	 * triggers.
163	 */
164	if (duty_steps == 0)
165		first_edge = period_steps + 1;
166
167	if (state->polarity == PWM_POLARITY_INVERSED) {
168		negedge = first_edge;
169		posedge = second_edge;
170	} else {
171		posedge = first_edge;
172		negedge = second_edge;
173	}
174
175	/*
176	 * Set the sync bit which ensures that periods that already started are
177	 * completed unaltered. At each counter reset event the values are
178	 * updated from the shadow registers.
179	 */
180	writel_relaxed(posedge, mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
181	writel_relaxed(negedge, mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
182}
183
184static int mchp_core_pwm_calc_period(const struct pwm_state *state, unsigned long clk_rate,
185				     u16 *prescale, u16 *period_steps)
186{
187	u64 tmp;
188
189	/*
190	 * Calculate the period cycles and prescale values.
191	 * The registers are each 8 bits wide & multiplied to compute the period
192	 * using the formula:
193	 *           (prescale + 1) * (period_steps + 1)
194	 * period = -------------------------------------
195	 *                      clk_rate
196	 * so the maximum period that can be generated is 0x10000 times the
197	 * period of the input clock.
198	 * However, due to the design of the "hardware", it is not possible to
199	 * attain a 100% duty cycle if the full range of period_steps is used.
200	 * Therefore period_steps is restricted to 0xfe and the maximum multiple
201	 * of the clock period attainable is (0xff + 1) * (0xfe + 1) = 0xff00
202	 *
203	 * The prescale and period_steps registers operate similarly to
204	 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
205	 * in the register plus one.
206	 * It's therefore not possible to set a period lower than 1/clk_rate, so
207	 * if tmp is 0, abort. Without aborting, we will set a period that is
208	 * greater than that requested and, more importantly, will trigger the
209	 * neg-/pos-edge issue described in the limitations.
210	 */
211	tmp = mul_u64_u64_div_u64(state->period, clk_rate, NSEC_PER_SEC);
212	if (tmp >= MCHPCOREPWM_PERIOD_MAX) {
213		*prescale = MCHPCOREPWM_PRESCALE_MAX;
214		*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
215
216		return 0;
217	}
218
219	/*
220	 * There are multiple strategies that could be used to choose the
221	 * prescale & period_steps values.
222	 * Here the idea is to pick values so that the selection of duty cycles
223	 * is as finegrain as possible, while also keeping the period less than
224	 * that requested.
225	 *
226	 * A simple way to satisfy the first condition is to always set
227	 * period_steps to its maximum value. This neatly also satisfies the
228	 * second condition too, since using the maximum value of period_steps
229	 * to calculate prescale actually calculates its upper bound.
230	 * Integer division will ensure a round down, so the period will thereby
231	 * always be less than that requested.
232	 *
233	 * The downside of this approach is a significant degree of inaccuracy,
234	 * especially as tmp approaches integer multiples of
235	 * MCHPCOREPWM_PERIOD_STEPS_MAX.
236	 *
237	 * As we must produce a period less than that requested, and for the
238	 * sake of creating a simple algorithm, disallow small values of tmp
239	 * that would need special handling.
240	 */
241	if (tmp < MCHPCOREPWM_PERIOD_STEPS_MAX + 1)
242		return -EINVAL;
243
244	/*
245	 * This "optimal" value for prescale is be calculated using the maximum
246	 * permitted value of period_steps, 0xfe.
247	 *
248	 *                period * clk_rate
249	 * prescale = ------------------------- - 1
250	 *            NSEC_PER_SEC * (0xfe + 1)
251	 *
252	 *
253	 *  period * clk_rate
254	 * ------------------- was precomputed as `tmp`
255	 *    NSEC_PER_SEC
256	 */
257	*prescale = ((u16)tmp) / (MCHPCOREPWM_PERIOD_STEPS_MAX + 1) - 1;
258
259	/*
260	 * period_steps can be computed from prescale:
261	 *                      period * clk_rate
262	 * period_steps = ----------------------------- - 1
263	 *                NSEC_PER_SEC * (prescale + 1)
264	 *
265	 * However, in this approximation, we simply use the maximum value that
266	 * was used to compute prescale.
267	 */
268	*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
269
270	return 0;
271}
272
273static int mchp_core_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
274				      const struct pwm_state *state)
275{
276	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
277	bool period_locked;
278	unsigned long clk_rate;
279	u64 duty_steps;
280	u16 prescale, period_steps;
281	int ret;
282
283	if (!state->enabled) {
284		mchp_core_pwm_enable(chip, pwm, false, pwm->state.period);
285		return 0;
286	}
287
288	/*
289	 * If clk_rate is too big, the following multiplication might overflow.
290	 * However this is implausible, as the fabric of current FPGAs cannot
291	 * provide clocks at a rate high enough.
292	 */
293	clk_rate = clk_get_rate(mchp_core_pwm->clk);
294	if (clk_rate >= NSEC_PER_SEC)
295		return -EINVAL;
296
297	ret = mchp_core_pwm_calc_period(state, clk_rate, &prescale, &period_steps);
298	if (ret)
299		return ret;
300
301	/*
302	 * If the only thing that has changed is the duty cycle or the polarity,
303	 * we can shortcut the calculations and just compute/apply the new duty
304	 * cycle pos & neg edges
305	 * As all the channels share the same period, do not allow it to be
306	 * changed if any other channels are enabled.
307	 * If the period is locked, it may not be possible to use a period
308	 * less than that requested. In that case, we just abort.
309	 */
310	period_locked = mchp_core_pwm->channel_enabled & ~(1 << pwm->hwpwm);
311
312	if (period_locked) {
313		u16 hw_prescale;
314		u16 hw_period_steps;
315
316		hw_prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
317		hw_period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
318
319		if ((period_steps + 1) * (prescale + 1) <
320		    (hw_period_steps + 1) * (hw_prescale + 1))
321			return -EINVAL;
322
323		/*
324		 * It is possible that something could have set the period_steps
325		 * register to 0xff, which would prevent us from setting a 100%
326		 * or 0% relative duty cycle, as explained above in
327		 * mchp_core_pwm_calc_period().
328		 * The period is locked and we cannot change this, so we abort.
329		 */
330		if (hw_period_steps == MCHPCOREPWM_PERIOD_STEPS_MAX)
331			return -EINVAL;
332
333		prescale = hw_prescale;
334		period_steps = hw_period_steps;
335	}
336
337	duty_steps = mchp_core_pwm_calc_duty(state, clk_rate, prescale, period_steps);
338
339	/*
340	 * Because the period is not per channel, it is possible that the
341	 * requested duty cycle is longer than the period, in which case cap it
342	 * to the period, IOW a 100% duty cycle.
343	 */
344	if (duty_steps > period_steps)
345		duty_steps = period_steps + 1;
346
347	if (!period_locked) {
348		writel_relaxed(prescale, mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
349		writel_relaxed(period_steps, mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
350	}
351
352	mchp_core_pwm_apply_duty(chip, pwm, state, duty_steps, period_steps);
353
354	mchp_core_pwm_enable(chip, pwm, true, pwm->state.period);
355
356	return 0;
357}
358
359static int mchp_core_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
360			       const struct pwm_state *state)
361{
362	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
363	int ret;
364
365	mutex_lock(&mchp_core_pwm->lock);
366
367	mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
368
369	ret = mchp_core_pwm_apply_locked(chip, pwm, state);
370
371	mutex_unlock(&mchp_core_pwm->lock);
372
373	return ret;
374}
375
376static int mchp_core_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
377				   struct pwm_state *state)
378{
379	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
380	u64 rate;
381	u16 prescale, period_steps;
382	u8 duty_steps, posedge, negedge;
383
384	mutex_lock(&mchp_core_pwm->lock);
385
386	mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
387
388	if (mchp_core_pwm->channel_enabled & (1 << pwm->hwpwm))
389		state->enabled = true;
390	else
391		state->enabled = false;
392
393	rate = clk_get_rate(mchp_core_pwm->clk);
394
395	/*
396	 * Calculating the period:
397	 * The registers are each 8 bits wide & multiplied to compute the period
398	 * using the formula:
399	 *           (prescale + 1) * (period_steps + 1)
400	 * period = -------------------------------------
401	 *                      clk_rate
402	 *
403	 * Note:
404	 * The prescale and period_steps registers operate similarly to
405	 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
406	 * in the register plus one.
407	 */
408	prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
409	period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
410
411	state->period = (period_steps + 1) * (prescale + 1);
412	state->period *= NSEC_PER_SEC;
413	state->period = DIV64_U64_ROUND_UP(state->period, rate);
414
415	posedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
416	negedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
417
418	mutex_unlock(&mchp_core_pwm->lock);
419
420	if (negedge == posedge) {
421		state->duty_cycle = state->period;
422		state->period *= 2;
423	} else {
424		duty_steps = abs((s16)posedge - (s16)negedge);
425		state->duty_cycle = duty_steps * (prescale + 1) * NSEC_PER_SEC;
426		state->duty_cycle = DIV64_U64_ROUND_UP(state->duty_cycle, rate);
427	}
428
429	state->polarity = negedge < posedge ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
430
431	return 0;
432}
433
434static const struct pwm_ops mchp_core_pwm_ops = {
435	.apply = mchp_core_pwm_apply,
436	.get_state = mchp_core_pwm_get_state,
437};
438
439static const struct of_device_id mchp_core_of_match[] = {
440	{
441		.compatible = "microchip,corepwm-rtl-v4",
442	},
443	{ /* sentinel */ }
444};
445MODULE_DEVICE_TABLE(of, mchp_core_of_match);
446
447static int mchp_core_pwm_probe(struct platform_device *pdev)
448{
449	struct pwm_chip *chip;
450	struct mchp_core_pwm_chip *mchp_core_pwm;
451	struct resource *regs;
452	int ret;
453
454	chip = devm_pwmchip_alloc(&pdev->dev, 16, sizeof(*mchp_core_pwm));
455	if (IS_ERR(chip))
456		return PTR_ERR(chip);
457	mchp_core_pwm = to_mchp_core_pwm(chip);
458
459	mchp_core_pwm->base = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
460	if (IS_ERR(mchp_core_pwm->base))
461		return PTR_ERR(mchp_core_pwm->base);
462
463	mchp_core_pwm->clk = devm_clk_get_enabled(&pdev->dev, NULL);
464	if (IS_ERR(mchp_core_pwm->clk))
465		return dev_err_probe(&pdev->dev, PTR_ERR(mchp_core_pwm->clk),
466				     "failed to get PWM clock\n");
467
468	if (of_property_read_u32(pdev->dev.of_node, "microchip,sync-update-mask",
469				 &mchp_core_pwm->sync_update_mask))
470		mchp_core_pwm->sync_update_mask = 0;
471
472	mutex_init(&mchp_core_pwm->lock);
473
474	chip->ops = &mchp_core_pwm_ops;
475
476	mchp_core_pwm->channel_enabled = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(0));
477	mchp_core_pwm->channel_enabled |=
478		readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(1)) << 8;
479
480	/*
481	 * Enable synchronous update mode for all channels for which shadow
482	 * registers have been synthesised.
483	 */
484	writel_relaxed(1U, mchp_core_pwm->base + MCHPCOREPWM_SYNC_UPD);
485	mchp_core_pwm->update_timestamp = ktime_get();
486
487	ret = devm_pwmchip_add(&pdev->dev, chip);
488	if (ret)
489		return dev_err_probe(&pdev->dev, ret, "Failed to add pwmchip\n");
490
491	return 0;
492}
493
494static struct platform_driver mchp_core_pwm_driver = {
495	.driver = {
496		.name = "mchp-core-pwm",
497		.of_match_table = mchp_core_of_match,
498	},
499	.probe = mchp_core_pwm_probe,
500};
501module_platform_driver(mchp_core_pwm_driver);
502
503MODULE_LICENSE("GPL");
504MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>");
505MODULE_DESCRIPTION("corePWM driver for Microchip FPGAs");
506