1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * PWM controller driver for Amlogic Meson SoCs.
4 *
5 * This PWM is only a set of Gates, Dividers and Counters:
6 * PWM output is achieved by calculating a clock that permits calculating
7 * two periods (low and high). The counter then has to be set to switch after
8 * N cycles for the first half period.
9 * The hardware has no "polarity" setting. This driver reverses the period
10 * cycles (the low length is inverted with the high length) for
11 * PWM_POLARITY_INVERSED. This means that .get_state cannot read the polarity
12 * from the hardware.
13 * Setting the duty cycle will disable and re-enable the PWM output.
14 * Disabling the PWM stops the output immediately (without waiting for the
15 * current period to complete first).
16 *
17 * The public S912 (GXM) datasheet contains some documentation for this PWM
18 * controller starting on page 543:
19 * https://dl.khadas.com/Hardware/VIM2/Datasheet/S912_Datasheet_V0.220170314publicversion-Wesion.pdf
20 * An updated version of this IP block is found in S922X (G12B) SoCs. The
21 * datasheet contains the description for this IP block revision starting at
22 * page 1084:
23 * https://dn.odroid.com/S922X/ODROID-N2/Datasheet/S922X_Public_Datasheet_V0.2.pdf
24 *
25 * Copyright (c) 2016 BayLibre, SAS.
26 * Author: Neil Armstrong <narmstrong@baylibre.com>
27 * Copyright (C) 2014 Amlogic, Inc.
28 */
29
30#include <linux/bitfield.h>
31#include <linux/bits.h>
32#include <linux/clk.h>
33#include <linux/clk-provider.h>
34#include <linux/err.h>
35#include <linux/io.h>
36#include <linux/kernel.h>
37#include <linux/math64.h>
38#include <linux/module.h>
39#include <linux/of.h>
40#include <linux/platform_device.h>
41#include <linux/pwm.h>
42#include <linux/slab.h>
43#include <linux/spinlock.h>
44
45#define REG_PWM_A		0x0
46#define REG_PWM_B		0x4
47#define PWM_LOW_MASK		GENMASK(15, 0)
48#define PWM_HIGH_MASK		GENMASK(31, 16)
49
50#define REG_MISC_AB		0x8
51#define MISC_B_CLK_EN_SHIFT	23
52#define MISC_A_CLK_EN_SHIFT	15
53#define MISC_CLK_DIV_WIDTH	7
54#define MISC_B_CLK_DIV_SHIFT	16
55#define MISC_A_CLK_DIV_SHIFT	8
56#define MISC_B_CLK_SEL_SHIFT	6
57#define MISC_A_CLK_SEL_SHIFT	4
58#define MISC_CLK_SEL_MASK	0x3
59#define MISC_B_EN		BIT(1)
60#define MISC_A_EN		BIT(0)
61
62#define MESON_NUM_PWMS		2
63#define MESON_NUM_MUX_PARENTS	4
64
65static struct meson_pwm_channel_data {
66	u8		reg_offset;
67	u8		clk_sel_shift;
68	u8		clk_div_shift;
69	u8		clk_en_shift;
70	u32		pwm_en_mask;
71} meson_pwm_per_channel_data[MESON_NUM_PWMS] = {
72	{
73		.reg_offset	= REG_PWM_A,
74		.clk_sel_shift	= MISC_A_CLK_SEL_SHIFT,
75		.clk_div_shift	= MISC_A_CLK_DIV_SHIFT,
76		.clk_en_shift	= MISC_A_CLK_EN_SHIFT,
77		.pwm_en_mask	= MISC_A_EN,
78	},
79	{
80		.reg_offset	= REG_PWM_B,
81		.clk_sel_shift	= MISC_B_CLK_SEL_SHIFT,
82		.clk_div_shift	= MISC_B_CLK_DIV_SHIFT,
83		.clk_en_shift	= MISC_B_CLK_EN_SHIFT,
84		.pwm_en_mask	= MISC_B_EN,
85	}
86};
87
88struct meson_pwm_channel {
89	unsigned long rate;
90	unsigned int hi;
91	unsigned int lo;
92
93	struct clk_mux mux;
94	struct clk_divider div;
95	struct clk_gate gate;
96	struct clk *clk;
97};
98
99struct meson_pwm_data {
100	const char *const parent_names[MESON_NUM_MUX_PARENTS];
101};
102
103struct meson_pwm {
104	const struct meson_pwm_data *data;
105	struct meson_pwm_channel channels[MESON_NUM_PWMS];
106	void __iomem *base;
107	/*
108	 * Protects register (write) access to the REG_MISC_AB register
109	 * that is shared between the two PWMs.
110	 */
111	spinlock_t lock;
112};
113
114static inline struct meson_pwm *to_meson_pwm(struct pwm_chip *chip)
115{
116	return pwmchip_get_drvdata(chip);
117}
118
119static int meson_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
120{
121	struct meson_pwm *meson = to_meson_pwm(chip);
122	struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
123	struct device *dev = pwmchip_parent(chip);
124	int err;
125
126	err = clk_prepare_enable(channel->clk);
127	if (err < 0) {
128		dev_err(dev, "failed to enable clock %s: %d\n",
129			__clk_get_name(channel->clk), err);
130		return err;
131	}
132
133	return 0;
134}
135
136static void meson_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
137{
138	struct meson_pwm *meson = to_meson_pwm(chip);
139	struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
140
141	clk_disable_unprepare(channel->clk);
142}
143
144static int meson_pwm_calc(struct pwm_chip *chip, struct pwm_device *pwm,
145			  const struct pwm_state *state)
146{
147	struct meson_pwm *meson = to_meson_pwm(chip);
148	struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
149	unsigned int cnt, duty_cnt;
150	unsigned long fin_freq;
151	u64 duty, period, freq;
152
153	duty = state->duty_cycle;
154	period = state->period;
155
156	/*
157	 * Note this is wrong. The result is an output wave that isn't really
158	 * inverted and so is wrongly identified by .get_state as normal.
159	 * Fixing this needs some care however as some machines might rely on
160	 * this.
161	 */
162	if (state->polarity == PWM_POLARITY_INVERSED)
163		duty = period - duty;
164
165	freq = div64_u64(NSEC_PER_SEC * 0xffffULL, period);
166	if (freq > ULONG_MAX)
167		freq = ULONG_MAX;
168
169	fin_freq = clk_round_rate(channel->clk, freq);
170	if (fin_freq == 0) {
171		dev_err(pwmchip_parent(chip), "invalid source clock frequency\n");
172		return -EINVAL;
173	}
174
175	dev_dbg(pwmchip_parent(chip), "fin_freq: %lu Hz\n", fin_freq);
176
177	cnt = div_u64(fin_freq * period, NSEC_PER_SEC);
178	if (cnt > 0xffff) {
179		dev_err(pwmchip_parent(chip), "unable to get period cnt\n");
180		return -EINVAL;
181	}
182
183	dev_dbg(pwmchip_parent(chip), "period=%llu cnt=%u\n", period, cnt);
184
185	if (duty == period) {
186		channel->hi = cnt;
187		channel->lo = 0;
188	} else if (duty == 0) {
189		channel->hi = 0;
190		channel->lo = cnt;
191	} else {
192		duty_cnt = div_u64(fin_freq * duty, NSEC_PER_SEC);
193
194		dev_dbg(pwmchip_parent(chip), "duty=%llu duty_cnt=%u\n", duty, duty_cnt);
195
196		channel->hi = duty_cnt;
197		channel->lo = cnt - duty_cnt;
198	}
199
200	channel->rate = fin_freq;
201
202	return 0;
203}
204
205static void meson_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
206{
207	struct meson_pwm *meson = to_meson_pwm(chip);
208	struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
209	struct meson_pwm_channel_data *channel_data;
210	unsigned long flags;
211	u32 value;
212	int err;
213
214	channel_data = &meson_pwm_per_channel_data[pwm->hwpwm];
215
216	err = clk_set_rate(channel->clk, channel->rate);
217	if (err)
218		dev_err(pwmchip_parent(chip), "setting clock rate failed\n");
219
220	spin_lock_irqsave(&meson->lock, flags);
221
222	value = FIELD_PREP(PWM_HIGH_MASK, channel->hi) |
223		FIELD_PREP(PWM_LOW_MASK, channel->lo);
224	writel(value, meson->base + channel_data->reg_offset);
225
226	value = readl(meson->base + REG_MISC_AB);
227	value |= channel_data->pwm_en_mask;
228	writel(value, meson->base + REG_MISC_AB);
229
230	spin_unlock_irqrestore(&meson->lock, flags);
231}
232
233static void meson_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
234{
235	struct meson_pwm *meson = to_meson_pwm(chip);
236	unsigned long flags;
237	u32 value;
238
239	spin_lock_irqsave(&meson->lock, flags);
240
241	value = readl(meson->base + REG_MISC_AB);
242	value &= ~meson_pwm_per_channel_data[pwm->hwpwm].pwm_en_mask;
243	writel(value, meson->base + REG_MISC_AB);
244
245	spin_unlock_irqrestore(&meson->lock, flags);
246}
247
248static int meson_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
249			   const struct pwm_state *state)
250{
251	struct meson_pwm *meson = to_meson_pwm(chip);
252	struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm];
253	int err = 0;
254
255	if (!state->enabled) {
256		if (state->polarity == PWM_POLARITY_INVERSED) {
257			/*
258			 * This IP block revision doesn't have an "always high"
259			 * setting which we can use for "inverted disabled".
260			 * Instead we achieve this by setting mux parent with
261			 * highest rate and minimum divider value, resulting
262			 * in the shortest possible duration for one "count"
263			 * and "period == duty_cycle". This results in a signal
264			 * which is LOW for one "count", while being HIGH for
265			 * the rest of the (so the signal is HIGH for slightly
266			 * less than 100% of the period, but this is the best
267			 * we can achieve).
268			 */
269			channel->rate = ULONG_MAX;
270			channel->hi = ~0;
271			channel->lo = 0;
272
273			meson_pwm_enable(chip, pwm);
274		} else {
275			meson_pwm_disable(chip, pwm);
276		}
277	} else {
278		err = meson_pwm_calc(chip, pwm, state);
279		if (err < 0)
280			return err;
281
282		meson_pwm_enable(chip, pwm);
283	}
284
285	return 0;
286}
287
288static u64 meson_pwm_cnt_to_ns(struct pwm_chip *chip, struct pwm_device *pwm,
289			       u32 cnt)
290{
291	struct meson_pwm *meson = to_meson_pwm(chip);
292	struct meson_pwm_channel *channel;
293	unsigned long fin_freq;
294
295	/* to_meson_pwm() can only be used after .get_state() is called */
296	channel = &meson->channels[pwm->hwpwm];
297
298	fin_freq = clk_get_rate(channel->clk);
299	if (fin_freq == 0)
300		return 0;
301
302	return div64_ul(NSEC_PER_SEC * (u64)cnt, fin_freq);
303}
304
305static int meson_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
306			       struct pwm_state *state)
307{
308	struct meson_pwm *meson = to_meson_pwm(chip);
309	struct meson_pwm_channel_data *channel_data;
310	struct meson_pwm_channel *channel;
311	u32 value;
312
313	if (!state)
314		return 0;
315
316	channel = &meson->channels[pwm->hwpwm];
317	channel_data = &meson_pwm_per_channel_data[pwm->hwpwm];
318
319	value = readl(meson->base + REG_MISC_AB);
320	state->enabled = value & channel_data->pwm_en_mask;
321
322	value = readl(meson->base + channel_data->reg_offset);
323	channel->lo = FIELD_GET(PWM_LOW_MASK, value);
324	channel->hi = FIELD_GET(PWM_HIGH_MASK, value);
325
326	state->period = meson_pwm_cnt_to_ns(chip, pwm, channel->lo + channel->hi);
327	state->duty_cycle = meson_pwm_cnt_to_ns(chip, pwm, channel->hi);
328
329	state->polarity = PWM_POLARITY_NORMAL;
330
331	return 0;
332}
333
334static const struct pwm_ops meson_pwm_ops = {
335	.request = meson_pwm_request,
336	.free = meson_pwm_free,
337	.apply = meson_pwm_apply,
338	.get_state = meson_pwm_get_state,
339};
340
341static const struct meson_pwm_data pwm_meson8b_data = {
342	.parent_names = { "xtal", NULL, "fclk_div4", "fclk_div3" },
343};
344
345/*
346 * Only the 2 first inputs of the GXBB AO PWMs are valid
347 * The last 2 are grounded
348 */
349static const struct meson_pwm_data pwm_gxbb_ao_data = {
350	.parent_names = { "xtal", "clk81", NULL, NULL },
351};
352
353static const struct meson_pwm_data pwm_axg_ee_data = {
354	.parent_names = { "xtal", "fclk_div5", "fclk_div4", "fclk_div3" },
355};
356
357static const struct meson_pwm_data pwm_axg_ao_data = {
358	.parent_names = { "xtal", "axg_ao_clk81", "fclk_div4", "fclk_div5" },
359};
360
361static const struct meson_pwm_data pwm_g12a_ao_ab_data = {
362	.parent_names = { "xtal", "g12a_ao_clk81", "fclk_div4", "fclk_div5" },
363};
364
365static const struct meson_pwm_data pwm_g12a_ao_cd_data = {
366	.parent_names = { "xtal", "g12a_ao_clk81", NULL, NULL },
367};
368
369static const struct of_device_id meson_pwm_matches[] = {
370	{
371		.compatible = "amlogic,meson8b-pwm",
372		.data = &pwm_meson8b_data
373	},
374	{
375		.compatible = "amlogic,meson-gxbb-pwm",
376		.data = &pwm_meson8b_data
377	},
378	{
379		.compatible = "amlogic,meson-gxbb-ao-pwm",
380		.data = &pwm_gxbb_ao_data
381	},
382	{
383		.compatible = "amlogic,meson-axg-ee-pwm",
384		.data = &pwm_axg_ee_data
385	},
386	{
387		.compatible = "amlogic,meson-axg-ao-pwm",
388		.data = &pwm_axg_ao_data
389	},
390	{
391		.compatible = "amlogic,meson-g12a-ee-pwm",
392		.data = &pwm_meson8b_data
393	},
394	{
395		.compatible = "amlogic,meson-g12a-ao-pwm-ab",
396		.data = &pwm_g12a_ao_ab_data
397	},
398	{
399		.compatible = "amlogic,meson-g12a-ao-pwm-cd",
400		.data = &pwm_g12a_ao_cd_data
401	},
402	{},
403};
404MODULE_DEVICE_TABLE(of, meson_pwm_matches);
405
406static int meson_pwm_init_channels(struct pwm_chip *chip)
407{
408	struct meson_pwm *meson = to_meson_pwm(chip);
409	struct clk_parent_data mux_parent_data[MESON_NUM_MUX_PARENTS] = {};
410	struct device *dev = pwmchip_parent(chip);
411	unsigned int i;
412	char name[255];
413	int err;
414
415	for (i = 0; i < MESON_NUM_MUX_PARENTS; i++) {
416		mux_parent_data[i].index = -1;
417		mux_parent_data[i].name = meson->data->parent_names[i];
418	}
419
420	for (i = 0; i < chip->npwm; i++) {
421		struct meson_pwm_channel *channel = &meson->channels[i];
422		struct clk_parent_data div_parent = {}, gate_parent = {};
423		struct clk_init_data init = {};
424
425		snprintf(name, sizeof(name), "%s#mux%u", dev_name(dev), i);
426
427		init.name = name;
428		init.ops = &clk_mux_ops;
429		init.flags = 0;
430		init.parent_data = mux_parent_data;
431		init.num_parents = MESON_NUM_MUX_PARENTS;
432
433		channel->mux.reg = meson->base + REG_MISC_AB;
434		channel->mux.shift =
435				meson_pwm_per_channel_data[i].clk_sel_shift;
436		channel->mux.mask = MISC_CLK_SEL_MASK;
437		channel->mux.flags = 0;
438		channel->mux.lock = &meson->lock;
439		channel->mux.table = NULL;
440		channel->mux.hw.init = &init;
441
442		err = devm_clk_hw_register(dev, &channel->mux.hw);
443		if (err)
444			return dev_err_probe(dev, err,
445					     "failed to register %s\n", name);
446
447		snprintf(name, sizeof(name), "%s#div%u", dev_name(dev), i);
448
449		init.name = name;
450		init.ops = &clk_divider_ops;
451		init.flags = CLK_SET_RATE_PARENT;
452		div_parent.index = -1;
453		div_parent.hw = &channel->mux.hw;
454		init.parent_data = &div_parent;
455		init.num_parents = 1;
456
457		channel->div.reg = meson->base + REG_MISC_AB;
458		channel->div.shift = meson_pwm_per_channel_data[i].clk_div_shift;
459		channel->div.width = MISC_CLK_DIV_WIDTH;
460		channel->div.hw.init = &init;
461		channel->div.flags = 0;
462		channel->div.lock = &meson->lock;
463
464		err = devm_clk_hw_register(dev, &channel->div.hw);
465		if (err)
466			return dev_err_probe(dev, err,
467					     "failed to register %s\n", name);
468
469		snprintf(name, sizeof(name), "%s#gate%u", dev_name(dev), i);
470
471		init.name = name;
472		init.ops = &clk_gate_ops;
473		init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
474		gate_parent.index = -1;
475		gate_parent.hw = &channel->div.hw;
476		init.parent_data = &gate_parent;
477		init.num_parents = 1;
478
479		channel->gate.reg = meson->base + REG_MISC_AB;
480		channel->gate.bit_idx = meson_pwm_per_channel_data[i].clk_en_shift;
481		channel->gate.hw.init = &init;
482		channel->gate.flags = 0;
483		channel->gate.lock = &meson->lock;
484
485		err = devm_clk_hw_register(dev, &channel->gate.hw);
486		if (err)
487			return dev_err_probe(dev, err, "failed to register %s\n", name);
488
489		channel->clk = devm_clk_hw_get_clk(dev, &channel->gate.hw, NULL);
490		if (IS_ERR(channel->clk))
491			return dev_err_probe(dev, PTR_ERR(channel->clk),
492					     "failed to register %s\n", name);
493	}
494
495	return 0;
496}
497
498static int meson_pwm_probe(struct platform_device *pdev)
499{
500	struct pwm_chip *chip;
501	struct meson_pwm *meson;
502	int err;
503
504	chip = devm_pwmchip_alloc(&pdev->dev, MESON_NUM_PWMS, sizeof(*meson));
505	if (IS_ERR(chip))
506		return PTR_ERR(chip);
507	meson = to_meson_pwm(chip);
508
509	meson->base = devm_platform_ioremap_resource(pdev, 0);
510	if (IS_ERR(meson->base))
511		return PTR_ERR(meson->base);
512
513	spin_lock_init(&meson->lock);
514	chip->ops = &meson_pwm_ops;
515
516	meson->data = of_device_get_match_data(&pdev->dev);
517
518	err = meson_pwm_init_channels(chip);
519	if (err < 0)
520		return err;
521
522	err = devm_pwmchip_add(&pdev->dev, chip);
523	if (err < 0)
524		return dev_err_probe(&pdev->dev, err,
525				     "failed to register PWM chip\n");
526
527	return 0;
528}
529
530static struct platform_driver meson_pwm_driver = {
531	.driver = {
532		.name = "meson-pwm",
533		.of_match_table = meson_pwm_matches,
534	},
535	.probe = meson_pwm_probe,
536};
537module_platform_driver(meson_pwm_driver);
538
539MODULE_DESCRIPTION("Amlogic Meson PWM Generator driver");
540MODULE_AUTHOR("Neil Armstrong <narmstrong@baylibre.com>");
541MODULE_LICENSE("Dual BSD/GPL");
542