1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Generic pwmlib implementation
4 *
5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6 * Copyright (C) 2011-2012 Avionic Design GmbH
7 */
8
9#include <linux/acpi.h>
10#include <linux/module.h>
11#include <linux/idr.h>
12#include <linux/of.h>
13#include <linux/pwm.h>
14#include <linux/list.h>
15#include <linux/mutex.h>
16#include <linux/err.h>
17#include <linux/slab.h>
18#include <linux/device.h>
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
21
22#include <dt-bindings/pwm/pwm.h>
23
24#define CREATE_TRACE_POINTS
25#include <trace/events/pwm.h>
26
27/* protects access to pwm_chips */
28static DEFINE_MUTEX(pwm_lock);
29
30static DEFINE_IDR(pwm_chips);
31
32static void pwm_apply_debug(struct pwm_device *pwm,
33			    const struct pwm_state *state)
34{
35	struct pwm_state *last = &pwm->last;
36	struct pwm_chip *chip = pwm->chip;
37	struct pwm_state s1 = { 0 }, s2 = { 0 };
38	int err;
39
40	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
41		return;
42
43	/* No reasonable diagnosis possible without .get_state() */
44	if (!chip->ops->get_state)
45		return;
46
47	/*
48	 * *state was just applied. Read out the hardware state and do some
49	 * checks.
50	 */
51
52	err = chip->ops->get_state(chip, pwm, &s1);
53	trace_pwm_get(pwm, &s1, err);
54	if (err)
55		/* If that failed there isn't much to debug */
56		return;
57
58	/*
59	 * The lowlevel driver either ignored .polarity (which is a bug) or as
60	 * best effort inverted .polarity and fixed .duty_cycle respectively.
61	 * Undo this inversion and fixup for further tests.
62	 */
63	if (s1.enabled && s1.polarity != state->polarity) {
64		s2.polarity = state->polarity;
65		s2.duty_cycle = s1.period - s1.duty_cycle;
66		s2.period = s1.period;
67		s2.enabled = s1.enabled;
68	} else {
69		s2 = s1;
70	}
71
72	if (s2.polarity != state->polarity &&
73	    state->duty_cycle < state->period)
74		dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
75
76	if (state->enabled &&
77	    last->polarity == state->polarity &&
78	    last->period > s2.period &&
79	    last->period <= state->period)
80		dev_warn(pwmchip_parent(chip),
81			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
82			 state->period, s2.period, last->period);
83
84	if (state->enabled && state->period < s2.period)
85		dev_warn(pwmchip_parent(chip),
86			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
87			 state->period, s2.period);
88
89	if (state->enabled &&
90	    last->polarity == state->polarity &&
91	    last->period == s2.period &&
92	    last->duty_cycle > s2.duty_cycle &&
93	    last->duty_cycle <= state->duty_cycle)
94		dev_warn(pwmchip_parent(chip),
95			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
96			 state->duty_cycle, state->period,
97			 s2.duty_cycle, s2.period,
98			 last->duty_cycle, last->period);
99
100	if (state->enabled && state->duty_cycle < s2.duty_cycle)
101		dev_warn(pwmchip_parent(chip),
102			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
103			 state->duty_cycle, state->period,
104			 s2.duty_cycle, s2.period);
105
106	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
107		dev_warn(pwmchip_parent(chip),
108			 "requested disabled, but yielded enabled with duty > 0\n");
109
110	/* reapply the state that the driver reported being configured. */
111	err = chip->ops->apply(chip, pwm, &s1);
112	trace_pwm_apply(pwm, &s1, err);
113	if (err) {
114		*last = s1;
115		dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
116		return;
117	}
118
119	*last = (struct pwm_state){ 0 };
120	err = chip->ops->get_state(chip, pwm, last);
121	trace_pwm_get(pwm, last, err);
122	if (err)
123		return;
124
125	/* reapplication of the current state should give an exact match */
126	if (s1.enabled != last->enabled ||
127	    s1.polarity != last->polarity ||
128	    (s1.enabled && s1.period != last->period) ||
129	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
130		dev_err(pwmchip_parent(chip),
131			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
132			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
133			last->enabled, last->polarity, last->duty_cycle,
134			last->period);
135	}
136}
137
138/**
139 * __pwm_apply() - atomically apply a new state to a PWM device
140 * @pwm: PWM device
141 * @state: new state to apply
142 */
143static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
144{
145	struct pwm_chip *chip;
146	int err;
147
148	if (!pwm || !state || !state->period ||
149	    state->duty_cycle > state->period)
150		return -EINVAL;
151
152	chip = pwm->chip;
153
154	if (state->period == pwm->state.period &&
155	    state->duty_cycle == pwm->state.duty_cycle &&
156	    state->polarity == pwm->state.polarity &&
157	    state->enabled == pwm->state.enabled &&
158	    state->usage_power == pwm->state.usage_power)
159		return 0;
160
161	err = chip->ops->apply(chip, pwm, state);
162	trace_pwm_apply(pwm, state, err);
163	if (err)
164		return err;
165
166	pwm->state = *state;
167
168	/*
169	 * only do this after pwm->state was applied as some
170	 * implementations of .get_state depend on this
171	 */
172	pwm_apply_debug(pwm, state);
173
174	return 0;
175}
176
177/**
178 * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
179 * Cannot be used in atomic context.
180 * @pwm: PWM device
181 * @state: new state to apply
182 */
183int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
184{
185	int err;
186
187	/*
188	 * Some lowlevel driver's implementations of .apply() make use of
189	 * mutexes, also with some drivers only returning when the new
190	 * configuration is active calling pwm_apply_might_sleep() from atomic context
191	 * is a bad idea. So make it explicit that calling this function might
192	 * sleep.
193	 */
194	might_sleep();
195
196	if (IS_ENABLED(CONFIG_PWM_DEBUG) && pwm->chip->atomic) {
197		/*
198		 * Catch any drivers that have been marked as atomic but
199		 * that will sleep anyway.
200		 */
201		non_block_start();
202		err = __pwm_apply(pwm, state);
203		non_block_end();
204	} else {
205		err = __pwm_apply(pwm, state);
206	}
207
208	return err;
209}
210EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
211
212/**
213 * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
214 * Not all PWM devices support this function, check with pwm_might_sleep().
215 * @pwm: PWM device
216 * @state: new state to apply
217 */
218int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
219{
220	WARN_ONCE(!pwm->chip->atomic,
221		  "sleeping PWM driver used in atomic context\n");
222
223	return __pwm_apply(pwm, state);
224}
225EXPORT_SYMBOL_GPL(pwm_apply_atomic);
226
227/**
228 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
229 * @pwm: PWM device
230 *
231 * This function will adjust the PWM config to the PWM arguments provided
232 * by the DT or PWM lookup table. This is particularly useful to adapt
233 * the bootloader config to the Linux one.
234 */
235int pwm_adjust_config(struct pwm_device *pwm)
236{
237	struct pwm_state state;
238	struct pwm_args pargs;
239
240	pwm_get_args(pwm, &pargs);
241	pwm_get_state(pwm, &state);
242
243	/*
244	 * If the current period is zero it means that either the PWM driver
245	 * does not support initial state retrieval or the PWM has not yet
246	 * been configured.
247	 *
248	 * In either case, we setup the new period and polarity, and assign a
249	 * duty cycle of 0.
250	 */
251	if (!state.period) {
252		state.duty_cycle = 0;
253		state.period = pargs.period;
254		state.polarity = pargs.polarity;
255
256		return pwm_apply_might_sleep(pwm, &state);
257	}
258
259	/*
260	 * Adjust the PWM duty cycle/period based on the period value provided
261	 * in PWM args.
262	 */
263	if (pargs.period != state.period) {
264		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
265
266		do_div(dutycycle, state.period);
267		state.duty_cycle = dutycycle;
268		state.period = pargs.period;
269	}
270
271	/*
272	 * If the polarity changed, we should also change the duty cycle.
273	 */
274	if (pargs.polarity != state.polarity) {
275		state.polarity = pargs.polarity;
276		state.duty_cycle = state.period - state.duty_cycle;
277	}
278
279	return pwm_apply_might_sleep(pwm, &state);
280}
281EXPORT_SYMBOL_GPL(pwm_adjust_config);
282
283/**
284 * pwm_capture() - capture and report a PWM signal
285 * @pwm: PWM device
286 * @result: structure to fill with capture result
287 * @timeout: time to wait, in milliseconds, before giving up on capture
288 *
289 * Returns: 0 on success or a negative error code on failure.
290 */
291int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
292		unsigned long timeout)
293{
294	int err;
295
296	if (!pwm || !pwm->chip->ops)
297		return -EINVAL;
298
299	if (!pwm->chip->ops->capture)
300		return -ENOSYS;
301
302	mutex_lock(&pwm_lock);
303	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
304	mutex_unlock(&pwm_lock);
305
306	return err;
307}
308EXPORT_SYMBOL_GPL(pwm_capture);
309
310static struct pwm_chip *pwmchip_find_by_name(const char *name)
311{
312	struct pwm_chip *chip;
313	unsigned long id, tmp;
314
315	if (!name)
316		return NULL;
317
318	mutex_lock(&pwm_lock);
319
320	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
321		const char *chip_name = dev_name(pwmchip_parent(chip));
322
323		if (chip_name && strcmp(chip_name, name) == 0) {
324			mutex_unlock(&pwm_lock);
325			return chip;
326		}
327	}
328
329	mutex_unlock(&pwm_lock);
330
331	return NULL;
332}
333
334static int pwm_device_request(struct pwm_device *pwm, const char *label)
335{
336	int err;
337	struct pwm_chip *chip = pwm->chip;
338	const struct pwm_ops *ops = chip->ops;
339
340	if (test_bit(PWMF_REQUESTED, &pwm->flags))
341		return -EBUSY;
342
343	if (!try_module_get(chip->owner))
344		return -ENODEV;
345
346	if (ops->request) {
347		err = ops->request(chip, pwm);
348		if (err) {
349			module_put(chip->owner);
350			return err;
351		}
352	}
353
354	if (ops->get_state) {
355		/*
356		 * Zero-initialize state because most drivers are unaware of
357		 * .usage_power. The other members of state are supposed to be
358		 * set by lowlevel drivers. We still initialize the whole
359		 * structure for simplicity even though this might paper over
360		 * faulty implementations of .get_state().
361		 */
362		struct pwm_state state = { 0, };
363
364		err = ops->get_state(chip, pwm, &state);
365		trace_pwm_get(pwm, &state, err);
366
367		if (!err)
368			pwm->state = state;
369
370		if (IS_ENABLED(CONFIG_PWM_DEBUG))
371			pwm->last = pwm->state;
372	}
373
374	set_bit(PWMF_REQUESTED, &pwm->flags);
375	pwm->label = label;
376
377	return 0;
378}
379
380/**
381 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
382 * @chip: PWM chip
383 * @index: per-chip index of the PWM to request
384 * @label: a literal description string of this PWM
385 *
386 * Returns: A pointer to the PWM device at the given index of the given PWM
387 * chip. A negative error code is returned if the index is not valid for the
388 * specified PWM chip or if the PWM device cannot be requested.
389 */
390struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
391					 unsigned int index,
392					 const char *label)
393{
394	struct pwm_device *pwm;
395	int err;
396
397	if (!chip || index >= chip->npwm)
398		return ERR_PTR(-EINVAL);
399
400	mutex_lock(&pwm_lock);
401	pwm = &chip->pwms[index];
402
403	err = pwm_device_request(pwm, label);
404	if (err < 0)
405		pwm = ERR_PTR(err);
406
407	mutex_unlock(&pwm_lock);
408	return pwm;
409}
410EXPORT_SYMBOL_GPL(pwm_request_from_chip);
411
412
413struct pwm_device *
414of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
415{
416	struct pwm_device *pwm;
417
418	/* period in the second cell and flags in the third cell are optional */
419	if (args->args_count < 1)
420		return ERR_PTR(-EINVAL);
421
422	pwm = pwm_request_from_chip(chip, args->args[0], NULL);
423	if (IS_ERR(pwm))
424		return pwm;
425
426	if (args->args_count > 1)
427		pwm->args.period = args->args[1];
428
429	pwm->args.polarity = PWM_POLARITY_NORMAL;
430	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
431		pwm->args.polarity = PWM_POLARITY_INVERSED;
432
433	return pwm;
434}
435EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
436
437struct pwm_device *
438of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
439{
440	struct pwm_device *pwm;
441
442	pwm = pwm_request_from_chip(chip, 0, NULL);
443	if (IS_ERR(pwm))
444		return pwm;
445
446	if (args->args_count > 0)
447		pwm->args.period = args->args[0];
448
449	pwm->args.polarity = PWM_POLARITY_NORMAL;
450	if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
451		pwm->args.polarity = PWM_POLARITY_INVERSED;
452
453	return pwm;
454}
455EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
456
457#define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
458
459static void *pwmchip_priv(struct pwm_chip *chip)
460{
461	return (void *)chip + ALIGN(sizeof(*chip), PWMCHIP_ALIGN);
462}
463
464/* This is the counterpart to pwmchip_alloc() */
465void pwmchip_put(struct pwm_chip *chip)
466{
467	kfree(chip);
468}
469EXPORT_SYMBOL_GPL(pwmchip_put);
470
471struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
472{
473	struct pwm_chip *chip;
474	size_t alloc_size;
475
476	alloc_size = size_add(ALIGN(sizeof(*chip), PWMCHIP_ALIGN), sizeof_priv);
477
478	chip = kzalloc(alloc_size, GFP_KERNEL);
479	if (!chip)
480		return ERR_PTR(-ENOMEM);
481
482	chip->dev = parent;
483	chip->npwm = npwm;
484
485	pwmchip_set_drvdata(chip, pwmchip_priv(chip));
486
487	return chip;
488}
489EXPORT_SYMBOL_GPL(pwmchip_alloc);
490
491static void devm_pwmchip_put(void *data)
492{
493	struct pwm_chip *chip = data;
494
495	pwmchip_put(chip);
496}
497
498struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
499{
500	struct pwm_chip *chip;
501	int ret;
502
503	chip = pwmchip_alloc(parent, npwm, sizeof_priv);
504	if (IS_ERR(chip))
505		return chip;
506
507	ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
508	if (ret)
509		return ERR_PTR(ret);
510
511	return chip;
512}
513EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
514
515static void of_pwmchip_add(struct pwm_chip *chip)
516{
517	if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
518		return;
519
520	if (!chip->of_xlate)
521		chip->of_xlate = of_pwm_xlate_with_flags;
522
523	of_node_get(pwmchip_parent(chip)->of_node);
524}
525
526static void of_pwmchip_remove(struct pwm_chip *chip)
527{
528	if (pwmchip_parent(chip))
529		of_node_put(pwmchip_parent(chip)->of_node);
530}
531
532static bool pwm_ops_check(const struct pwm_chip *chip)
533{
534	const struct pwm_ops *ops = chip->ops;
535
536	if (!ops->apply)
537		return false;
538
539	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
540		dev_warn(pwmchip_parent(chip),
541			 "Please implement the .get_state() callback\n");
542
543	return true;
544}
545
546/**
547 * __pwmchip_add() - register a new PWM chip
548 * @chip: the PWM chip to add
549 * @owner: reference to the module providing the chip.
550 *
551 * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
552 * pwmchip_add wrapper to do this right.
553 *
554 * Returns: 0 on success or a negative error code on failure.
555 */
556int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
557{
558	unsigned int i;
559	int ret;
560
561	if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
562		return -EINVAL;
563
564	if (!pwm_ops_check(chip))
565		return -EINVAL;
566
567	chip->owner = owner;
568
569	chip->pwms = kcalloc(chip->npwm, sizeof(*chip->pwms), GFP_KERNEL);
570	if (!chip->pwms)
571		return -ENOMEM;
572
573	mutex_lock(&pwm_lock);
574
575	ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
576	if (ret < 0) {
577		mutex_unlock(&pwm_lock);
578		kfree(chip->pwms);
579		return ret;
580	}
581
582	chip->id = ret;
583
584	for (i = 0; i < chip->npwm; i++) {
585		struct pwm_device *pwm = &chip->pwms[i];
586
587		pwm->chip = chip;
588		pwm->hwpwm = i;
589	}
590
591	mutex_unlock(&pwm_lock);
592
593	if (IS_ENABLED(CONFIG_OF))
594		of_pwmchip_add(chip);
595
596	pwmchip_sysfs_export(chip);
597
598	return 0;
599}
600EXPORT_SYMBOL_GPL(__pwmchip_add);
601
602/**
603 * pwmchip_remove() - remove a PWM chip
604 * @chip: the PWM chip to remove
605 *
606 * Removes a PWM chip.
607 */
608void pwmchip_remove(struct pwm_chip *chip)
609{
610	pwmchip_sysfs_unexport(chip);
611
612	if (IS_ENABLED(CONFIG_OF))
613		of_pwmchip_remove(chip);
614
615	mutex_lock(&pwm_lock);
616
617	idr_remove(&pwm_chips, chip->id);
618
619	mutex_unlock(&pwm_lock);
620
621	kfree(chip->pwms);
622}
623EXPORT_SYMBOL_GPL(pwmchip_remove);
624
625static void devm_pwmchip_remove(void *data)
626{
627	struct pwm_chip *chip = data;
628
629	pwmchip_remove(chip);
630}
631
632int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
633{
634	int ret;
635
636	ret = __pwmchip_add(chip, owner);
637	if (ret)
638		return ret;
639
640	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
641}
642EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
643
644static struct device_link *pwm_device_link_add(struct device *dev,
645					       struct pwm_device *pwm)
646{
647	struct device_link *dl;
648
649	if (!dev) {
650		/*
651		 * No device for the PWM consumer has been provided. It may
652		 * impact the PM sequence ordering: the PWM supplier may get
653		 * suspended before the consumer.
654		 */
655		dev_warn(pwmchip_parent(pwm->chip),
656			 "No consumer device specified to create a link to\n");
657		return NULL;
658	}
659
660	dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
661	if (!dl) {
662		dev_err(dev, "failed to create device link to %s\n",
663			dev_name(pwmchip_parent(pwm->chip)));
664		return ERR_PTR(-EINVAL);
665	}
666
667	return dl;
668}
669
670static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
671{
672	struct pwm_chip *chip;
673	unsigned long id, tmp;
674
675	mutex_lock(&pwm_lock);
676
677	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
678		if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode)) {
679			mutex_unlock(&pwm_lock);
680			return chip;
681		}
682
683	mutex_unlock(&pwm_lock);
684
685	return ERR_PTR(-EPROBE_DEFER);
686}
687
688/**
689 * of_pwm_get() - request a PWM via the PWM framework
690 * @dev: device for PWM consumer
691 * @np: device node to get the PWM from
692 * @con_id: consumer name
693 *
694 * Returns the PWM device parsed from the phandle and index specified in the
695 * "pwms" property of a device tree node or a negative error-code on failure.
696 * Values parsed from the device tree are stored in the returned PWM device
697 * object.
698 *
699 * If con_id is NULL, the first PWM device listed in the "pwms" property will
700 * be requested. Otherwise the "pwm-names" property is used to do a reverse
701 * lookup of the PWM index. This also means that the "pwm-names" property
702 * becomes mandatory for devices that look up the PWM device via the con_id
703 * parameter.
704 *
705 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
706 * error code on failure.
707 */
708static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
709				     const char *con_id)
710{
711	struct pwm_device *pwm = NULL;
712	struct of_phandle_args args;
713	struct device_link *dl;
714	struct pwm_chip *chip;
715	int index = 0;
716	int err;
717
718	if (con_id) {
719		index = of_property_match_string(np, "pwm-names", con_id);
720		if (index < 0)
721			return ERR_PTR(index);
722	}
723
724	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
725					 &args);
726	if (err) {
727		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
728		return ERR_PTR(err);
729	}
730
731	chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
732	if (IS_ERR(chip)) {
733		if (PTR_ERR(chip) != -EPROBE_DEFER)
734			pr_err("%s(): PWM chip not found\n", __func__);
735
736		pwm = ERR_CAST(chip);
737		goto put;
738	}
739
740	pwm = chip->of_xlate(chip, &args);
741	if (IS_ERR(pwm))
742		goto put;
743
744	dl = pwm_device_link_add(dev, pwm);
745	if (IS_ERR(dl)) {
746		/* of_xlate ended up calling pwm_request_from_chip() */
747		pwm_put(pwm);
748		pwm = ERR_CAST(dl);
749		goto put;
750	}
751
752	/*
753	 * If a consumer name was not given, try to look it up from the
754	 * "pwm-names" property if it exists. Otherwise use the name of
755	 * the user device node.
756	 */
757	if (!con_id) {
758		err = of_property_read_string_index(np, "pwm-names", index,
759						    &con_id);
760		if (err < 0)
761			con_id = np->name;
762	}
763
764	pwm->label = con_id;
765
766put:
767	of_node_put(args.np);
768
769	return pwm;
770}
771
772/**
773 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
774 * @fwnode: firmware node to get the "pwms" property from
775 *
776 * Returns the PWM device parsed from the fwnode and index specified in the
777 * "pwms" property or a negative error-code on failure.
778 * Values parsed from the device tree are stored in the returned PWM device
779 * object.
780 *
781 * This is analogous to of_pwm_get() except con_id is not yet supported.
782 * ACPI entries must look like
783 * Package () {"pwms", Package ()
784 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
785 *
786 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
787 * error code on failure.
788 */
789static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
790{
791	struct pwm_device *pwm;
792	struct fwnode_reference_args args;
793	struct pwm_chip *chip;
794	int ret;
795
796	memset(&args, 0, sizeof(args));
797
798	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
799	if (ret < 0)
800		return ERR_PTR(ret);
801
802	if (args.nargs < 2)
803		return ERR_PTR(-EPROTO);
804
805	chip = fwnode_to_pwmchip(args.fwnode);
806	if (IS_ERR(chip))
807		return ERR_CAST(chip);
808
809	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
810	if (IS_ERR(pwm))
811		return pwm;
812
813	pwm->args.period = args.args[1];
814	pwm->args.polarity = PWM_POLARITY_NORMAL;
815
816	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
817		pwm->args.polarity = PWM_POLARITY_INVERSED;
818
819	return pwm;
820}
821
822static DEFINE_MUTEX(pwm_lookup_lock);
823static LIST_HEAD(pwm_lookup_list);
824
825/**
826 * pwm_add_table() - register PWM device consumers
827 * @table: array of consumers to register
828 * @num: number of consumers in table
829 */
830void pwm_add_table(struct pwm_lookup *table, size_t num)
831{
832	mutex_lock(&pwm_lookup_lock);
833
834	while (num--) {
835		list_add_tail(&table->list, &pwm_lookup_list);
836		table++;
837	}
838
839	mutex_unlock(&pwm_lookup_lock);
840}
841
842/**
843 * pwm_remove_table() - unregister PWM device consumers
844 * @table: array of consumers to unregister
845 * @num: number of consumers in table
846 */
847void pwm_remove_table(struct pwm_lookup *table, size_t num)
848{
849	mutex_lock(&pwm_lookup_lock);
850
851	while (num--) {
852		list_del(&table->list);
853		table++;
854	}
855
856	mutex_unlock(&pwm_lookup_lock);
857}
858
859/**
860 * pwm_get() - look up and request a PWM device
861 * @dev: device for PWM consumer
862 * @con_id: consumer name
863 *
864 * Lookup is first attempted using DT. If the device was not instantiated from
865 * a device tree, a PWM chip and a relative index is looked up via a table
866 * supplied by board setup code (see pwm_add_table()).
867 *
868 * Once a PWM chip has been found the specified PWM device will be requested
869 * and is ready to be used.
870 *
871 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
872 * error code on failure.
873 */
874struct pwm_device *pwm_get(struct device *dev, const char *con_id)
875{
876	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
877	const char *dev_id = dev ? dev_name(dev) : NULL;
878	struct pwm_device *pwm;
879	struct pwm_chip *chip;
880	struct device_link *dl;
881	unsigned int best = 0;
882	struct pwm_lookup *p, *chosen = NULL;
883	unsigned int match;
884	int err;
885
886	/* look up via DT first */
887	if (is_of_node(fwnode))
888		return of_pwm_get(dev, to_of_node(fwnode), con_id);
889
890	/* then lookup via ACPI */
891	if (is_acpi_node(fwnode)) {
892		pwm = acpi_pwm_get(fwnode);
893		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
894			return pwm;
895	}
896
897	/*
898	 * We look up the provider in the static table typically provided by
899	 * board setup code. We first try to lookup the consumer device by
900	 * name. If the consumer device was passed in as NULL or if no match
901	 * was found, we try to find the consumer by directly looking it up
902	 * by name.
903	 *
904	 * If a match is found, the provider PWM chip is looked up by name
905	 * and a PWM device is requested using the PWM device per-chip index.
906	 *
907	 * The lookup algorithm was shamelessly taken from the clock
908	 * framework:
909	 *
910	 * We do slightly fuzzy matching here:
911	 *  An entry with a NULL ID is assumed to be a wildcard.
912	 *  If an entry has a device ID, it must match
913	 *  If an entry has a connection ID, it must match
914	 * Then we take the most specific entry - with the following order
915	 * of precedence: dev+con > dev only > con only.
916	 */
917	mutex_lock(&pwm_lookup_lock);
918
919	list_for_each_entry(p, &pwm_lookup_list, list) {
920		match = 0;
921
922		if (p->dev_id) {
923			if (!dev_id || strcmp(p->dev_id, dev_id))
924				continue;
925
926			match += 2;
927		}
928
929		if (p->con_id) {
930			if (!con_id || strcmp(p->con_id, con_id))
931				continue;
932
933			match += 1;
934		}
935
936		if (match > best) {
937			chosen = p;
938
939			if (match != 3)
940				best = match;
941			else
942				break;
943		}
944	}
945
946	mutex_unlock(&pwm_lookup_lock);
947
948	if (!chosen)
949		return ERR_PTR(-ENODEV);
950
951	chip = pwmchip_find_by_name(chosen->provider);
952
953	/*
954	 * If the lookup entry specifies a module, load the module and retry
955	 * the PWM chip lookup. This can be used to work around driver load
956	 * ordering issues if driver's can't be made to properly support the
957	 * deferred probe mechanism.
958	 */
959	if (!chip && chosen->module) {
960		err = request_module(chosen->module);
961		if (err == 0)
962			chip = pwmchip_find_by_name(chosen->provider);
963	}
964
965	if (!chip)
966		return ERR_PTR(-EPROBE_DEFER);
967
968	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
969	if (IS_ERR(pwm))
970		return pwm;
971
972	dl = pwm_device_link_add(dev, pwm);
973	if (IS_ERR(dl)) {
974		pwm_put(pwm);
975		return ERR_CAST(dl);
976	}
977
978	pwm->args.period = chosen->period;
979	pwm->args.polarity = chosen->polarity;
980
981	return pwm;
982}
983EXPORT_SYMBOL_GPL(pwm_get);
984
985/**
986 * pwm_put() - release a PWM device
987 * @pwm: PWM device
988 */
989void pwm_put(struct pwm_device *pwm)
990{
991	if (!pwm)
992		return;
993
994	mutex_lock(&pwm_lock);
995
996	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
997		pr_warn("PWM device already freed\n");
998		goto out;
999	}
1000
1001	if (pwm->chip->ops->free)
1002		pwm->chip->ops->free(pwm->chip, pwm);
1003
1004	pwm->label = NULL;
1005
1006	module_put(pwm->chip->owner);
1007out:
1008	mutex_unlock(&pwm_lock);
1009}
1010EXPORT_SYMBOL_GPL(pwm_put);
1011
1012static void devm_pwm_release(void *pwm)
1013{
1014	pwm_put(pwm);
1015}
1016
1017/**
1018 * devm_pwm_get() - resource managed pwm_get()
1019 * @dev: device for PWM consumer
1020 * @con_id: consumer name
1021 *
1022 * This function performs like pwm_get() but the acquired PWM device will
1023 * automatically be released on driver detach.
1024 *
1025 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1026 * error code on failure.
1027 */
1028struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1029{
1030	struct pwm_device *pwm;
1031	int ret;
1032
1033	pwm = pwm_get(dev, con_id);
1034	if (IS_ERR(pwm))
1035		return pwm;
1036
1037	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1038	if (ret)
1039		return ERR_PTR(ret);
1040
1041	return pwm;
1042}
1043EXPORT_SYMBOL_GPL(devm_pwm_get);
1044
1045/**
1046 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1047 * @dev: device for PWM consumer
1048 * @fwnode: firmware node to get the PWM from
1049 * @con_id: consumer name
1050 *
1051 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1052 * acpi_pwm_get() for a detailed description.
1053 *
1054 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1055 * error code on failure.
1056 */
1057struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1058				       struct fwnode_handle *fwnode,
1059				       const char *con_id)
1060{
1061	struct pwm_device *pwm = ERR_PTR(-ENODEV);
1062	int ret;
1063
1064	if (is_of_node(fwnode))
1065		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1066	else if (is_acpi_node(fwnode))
1067		pwm = acpi_pwm_get(fwnode);
1068	if (IS_ERR(pwm))
1069		return pwm;
1070
1071	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1072	if (ret)
1073		return ERR_PTR(ret);
1074
1075	return pwm;
1076}
1077EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1078
1079#ifdef CONFIG_DEBUG_FS
1080static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1081{
1082	unsigned int i;
1083
1084	for (i = 0; i < chip->npwm; i++) {
1085		struct pwm_device *pwm = &chip->pwms[i];
1086		struct pwm_state state;
1087
1088		pwm_get_state(pwm, &state);
1089
1090		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1091
1092		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1093			seq_puts(s, " requested");
1094
1095		if (state.enabled)
1096			seq_puts(s, " enabled");
1097
1098		seq_printf(s, " period: %llu ns", state.period);
1099		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1100		seq_printf(s, " polarity: %s",
1101			   state.polarity ? "inverse" : "normal");
1102
1103		if (state.usage_power)
1104			seq_puts(s, " usage_power");
1105
1106		seq_puts(s, "\n");
1107	}
1108}
1109
1110static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1111{
1112	unsigned long id = *pos;
1113	void *ret;
1114
1115	mutex_lock(&pwm_lock);
1116	s->private = "";
1117
1118	ret = idr_get_next_ul(&pwm_chips, &id);
1119	*pos = id;
1120	return ret;
1121}
1122
1123static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1124{
1125	unsigned long id = *pos + 1;
1126	void *ret;
1127
1128	s->private = "\n";
1129
1130	ret = idr_get_next_ul(&pwm_chips, &id);
1131	*pos = id;
1132	return ret;
1133}
1134
1135static void pwm_seq_stop(struct seq_file *s, void *v)
1136{
1137	mutex_unlock(&pwm_lock);
1138}
1139
1140static int pwm_seq_show(struct seq_file *s, void *v)
1141{
1142	struct pwm_chip *chip = v;
1143
1144	seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n",
1145		   (char *)s->private, chip->id,
1146		   pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
1147		   dev_name(pwmchip_parent(chip)), chip->npwm,
1148		   (chip->npwm != 1) ? "s" : "");
1149
1150	pwm_dbg_show(chip, s);
1151
1152	return 0;
1153}
1154
1155static const struct seq_operations pwm_debugfs_sops = {
1156	.start = pwm_seq_start,
1157	.next = pwm_seq_next,
1158	.stop = pwm_seq_stop,
1159	.show = pwm_seq_show,
1160};
1161
1162DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1163
1164static int __init pwm_debugfs_init(void)
1165{
1166	debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
1167
1168	return 0;
1169}
1170subsys_initcall(pwm_debugfs_init);
1171#endif /* CONFIG_DEBUG_FS */
1172