1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Core driver for the pin control subsystem
4 *
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
8 *
9 * Author: Linus Walleij <linus.walleij@linaro.org>
10 *
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 */
13#define pr_fmt(fmt) "pinctrl core: " fmt
14
15#include <linux/array_size.h>
16#include <linux/cleanup.h>
17#include <linux/debugfs.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/export.h>
21#include <linux/init.h>
22#include <linux/kref.h>
23#include <linux/list.h>
24#include <linux/seq_file.h>
25#include <linux/slab.h>
26
27#include <linux/gpio.h>
28#include <linux/gpio/driver.h>
29
30#include <linux/pinctrl/consumer.h>
31#include <linux/pinctrl/devinfo.h>
32#include <linux/pinctrl/machine.h>
33#include <linux/pinctrl/pinctrl.h>
34
35#include "core.h"
36#include "devicetree.h"
37#include "pinconf.h"
38#include "pinmux.h"
39
40static bool pinctrl_dummy_state;
41
42/* Mutex taken to protect pinctrl_list */
43static DEFINE_MUTEX(pinctrl_list_mutex);
44
45/* Mutex taken to protect pinctrl_maps */
46DEFINE_MUTEX(pinctrl_maps_mutex);
47
48/* Mutex taken to protect pinctrldev_list */
49static DEFINE_MUTEX(pinctrldev_list_mutex);
50
51/* Global list of pin control devices (struct pinctrl_dev) */
52static LIST_HEAD(pinctrldev_list);
53
54/* List of pin controller handles (struct pinctrl) */
55static LIST_HEAD(pinctrl_list);
56
57/* List of pinctrl maps (struct pinctrl_maps) */
58LIST_HEAD(pinctrl_maps);
59
60
61/**
62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63 *
64 * Usually this function is called by platforms without pinctrl driver support
65 * but run with some shared drivers using pinctrl APIs.
66 * After calling this function, the pinctrl core will return successfully
67 * with creating a dummy state for the driver to keep going smoothly.
68 */
69void pinctrl_provide_dummies(void)
70{
71	pinctrl_dummy_state = true;
72}
73
74const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75{
76	/* We're not allowed to register devices without name */
77	return pctldev->desc->name;
78}
79EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80
81const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82{
83	return dev_name(pctldev->dev);
84}
85EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86
87void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88{
89	return pctldev->driver_data;
90}
91EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
92
93/**
94 * get_pinctrl_dev_from_devname() - look up pin controller device
95 * @devname: the name of a device instance, as returned by dev_name()
96 *
97 * Looks up a pin control device matching a certain device name or pure device
98 * pointer, the pure device pointer will take precedence.
99 */
100struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101{
102	struct pinctrl_dev *pctldev;
103
104	if (!devname)
105		return NULL;
106
107	mutex_lock(&pinctrldev_list_mutex);
108
109	list_for_each_entry(pctldev, &pinctrldev_list, node) {
110		if (!strcmp(dev_name(pctldev->dev), devname)) {
111			/* Matched on device name */
112			mutex_unlock(&pinctrldev_list_mutex);
113			return pctldev;
114		}
115	}
116
117	mutex_unlock(&pinctrldev_list_mutex);
118
119	return NULL;
120}
121
122struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123{
124	struct pinctrl_dev *pctldev;
125
126	mutex_lock(&pinctrldev_list_mutex);
127
128	list_for_each_entry(pctldev, &pinctrldev_list, node)
129		if (device_match_of_node(pctldev->dev, np)) {
130			mutex_unlock(&pinctrldev_list_mutex);
131			return pctldev;
132		}
133
134	mutex_unlock(&pinctrldev_list_mutex);
135
136	return NULL;
137}
138
139/**
140 * pin_get_from_name() - look up a pin number from a name
141 * @pctldev: the pin control device to lookup the pin on
142 * @name: the name of the pin to look up
143 */
144int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
145{
146	unsigned int i, pin;
147
148	/* The pin number can be retrived from the pin controller descriptor */
149	for (i = 0; i < pctldev->desc->npins; i++) {
150		struct pin_desc *desc;
151
152		pin = pctldev->desc->pins[i].number;
153		desc = pin_desc_get(pctldev, pin);
154		/* Pin space may be sparse */
155		if (desc && !strcmp(name, desc->name))
156			return pin;
157	}
158
159	return -EINVAL;
160}
161
162/**
163 * pin_get_name() - look up a pin name from a pin id
164 * @pctldev: the pin control device to lookup the pin on
165 * @pin: pin number/id to look up
166 */
167const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned int pin)
168{
169	const struct pin_desc *desc;
170
171	desc = pin_desc_get(pctldev, pin);
172	if (!desc) {
173		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174			pin);
175		return NULL;
176	}
177
178	return desc->name;
179}
180EXPORT_SYMBOL_GPL(pin_get_name);
181
182/* Deletes a range of pin descriptors */
183static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
184				  const struct pinctrl_pin_desc *pins,
185				  unsigned int num_pins)
186{
187	int i;
188
189	for (i = 0; i < num_pins; i++) {
190		struct pin_desc *pindesc;
191
192		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
193					    pins[i].number);
194		if (pindesc) {
195			radix_tree_delete(&pctldev->pin_desc_tree,
196					  pins[i].number);
197			if (pindesc->dynamic_name)
198				kfree(pindesc->name);
199		}
200		kfree(pindesc);
201	}
202}
203
204static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
205				    const struct pinctrl_pin_desc *pin)
206{
207	struct pin_desc *pindesc;
208	int error;
209
210	pindesc = pin_desc_get(pctldev, pin->number);
211	if (pindesc) {
212		dev_err(pctldev->dev, "pin %d already registered\n",
213			pin->number);
214		return -EINVAL;
215	}
216
217	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
218	if (!pindesc)
219		return -ENOMEM;
220
221	/* Set owner */
222	pindesc->pctldev = pctldev;
223
224	/* Copy basic pin info */
225	if (pin->name) {
226		pindesc->name = pin->name;
227	} else {
228		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
229		if (!pindesc->name) {
230			error = -ENOMEM;
231			goto failed;
232		}
233		pindesc->dynamic_name = true;
234	}
235
236	pindesc->drv_data = pin->drv_data;
237
238	error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
239	if (error)
240		goto failed;
241
242	pr_debug("registered pin %d (%s) on %s\n",
243		 pin->number, pindesc->name, pctldev->desc->name);
244	return 0;
245
246failed:
247	kfree(pindesc);
248	return error;
249}
250
251static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
252				 const struct pinctrl_pin_desc *pins,
253				 unsigned int num_descs)
254{
255	unsigned int i;
256	int ret = 0;
257
258	for (i = 0; i < num_descs; i++) {
259		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
260		if (ret)
261			return ret;
262	}
263
264	return 0;
265}
266
267/**
268 * gpio_to_pin() - GPIO range GPIO number to pin number translation
269 * @range: GPIO range used for the translation
270 * @gc: GPIO chip structure from the GPIO subsystem
271 * @offset: hardware offset of the GPIO relative to the controller
272 *
273 * Finds the pin number for a given GPIO using the specified GPIO range
274 * as a base for translation. The distinction between linear GPIO ranges
275 * and pin list based GPIO ranges is managed correctly by this function.
276 *
277 * This function assumes the gpio is part of the specified GPIO range, use
278 * only after making sure this is the case (e.g. by calling it on the
279 * result of successful pinctrl_get_device_gpio_range calls)!
280 */
281static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
282			      struct gpio_chip *gc, unsigned int offset)
283{
284	unsigned int pin = gc->base + offset - range->base;
285	if (range->pins)
286		return range->pins[pin];
287	else
288		return range->pin_base + pin;
289}
290
291/**
292 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
293 * @pctldev: pin controller device to check
294 * @gc: GPIO chip structure from the GPIO subsystem
295 * @offset: hardware offset of the GPIO relative to the controller
296 *
297 * Tries to match a GPIO pin number to the ranges handled by a certain pin
298 * controller, return the range or NULL
299 */
300static struct pinctrl_gpio_range *
301pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, struct gpio_chip *gc,
302			 unsigned int offset)
303{
304	struct pinctrl_gpio_range *range;
305
306	mutex_lock(&pctldev->mutex);
307	/* Loop over the ranges */
308	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
309		/* Check if we're in the valid range */
310		if ((gc->base + offset) >= range->base &&
311		    (gc->base + offset) < range->base + range->npins) {
312			mutex_unlock(&pctldev->mutex);
313			return range;
314		}
315	}
316	mutex_unlock(&pctldev->mutex);
317	return NULL;
318}
319
320/**
321 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
322 * the same GPIO chip are in range
323 * @gc: GPIO chip structure from the GPIO subsystem
324 * @offset: hardware offset of the GPIO relative to the controller
325 *
326 * This function is complement of pinctrl_match_gpio_range(). If the return
327 * value of pinctrl_match_gpio_range() is NULL, this function could be used
328 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
329 * of the same GPIO chip don't have back-end pinctrl interface.
330 * If the return value is true, it means that pinctrl device is ready & the
331 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
332 * is false, it means that pinctrl device may not be ready.
333 */
334#ifdef CONFIG_GPIOLIB
335static bool pinctrl_ready_for_gpio_range(struct gpio_chip *gc,
336					 unsigned int offset)
337{
338	struct pinctrl_dev *pctldev;
339	struct pinctrl_gpio_range *range = NULL;
340
341	mutex_lock(&pinctrldev_list_mutex);
342
343	/* Loop over the pin controllers */
344	list_for_each_entry(pctldev, &pinctrldev_list, node) {
345		/* Loop over the ranges */
346		mutex_lock(&pctldev->mutex);
347		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
348			/* Check if any gpio range overlapped with gpio chip */
349			if (range->base + range->npins - 1 < gc->base ||
350			    range->base > gc->base + gc->ngpio - 1)
351				continue;
352			mutex_unlock(&pctldev->mutex);
353			mutex_unlock(&pinctrldev_list_mutex);
354			return true;
355		}
356		mutex_unlock(&pctldev->mutex);
357	}
358
359	mutex_unlock(&pinctrldev_list_mutex);
360
361	return false;
362}
363#else
364static inline bool
365pinctrl_ready_for_gpio_range(struct gpio_chip *gc, unsigned int offset)
366{
367	return true;
368}
369#endif
370
371/**
372 * pinctrl_get_device_gpio_range() - find device for GPIO range
373 * @gc: GPIO chip structure from the GPIO subsystem
374 * @offset: hardware offset of the GPIO relative to the controller
375 * @outdev: the pin control device if found
376 * @outrange: the GPIO range if found
377 *
378 * Find the pin controller handling a certain GPIO pin from the pinspace of
379 * the GPIO subsystem, return the device and the matching GPIO range. Returns
380 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
381 * may still have not been registered.
382 */
383static int pinctrl_get_device_gpio_range(struct gpio_chip *gc,
384					 unsigned int offset,
385					 struct pinctrl_dev **outdev,
386					 struct pinctrl_gpio_range **outrange)
387{
388	struct pinctrl_dev *pctldev;
389
390	mutex_lock(&pinctrldev_list_mutex);
391
392	/* Loop over the pin controllers */
393	list_for_each_entry(pctldev, &pinctrldev_list, node) {
394		struct pinctrl_gpio_range *range;
395
396		range = pinctrl_match_gpio_range(pctldev, gc, offset);
397		if (range) {
398			*outdev = pctldev;
399			*outrange = range;
400			mutex_unlock(&pinctrldev_list_mutex);
401			return 0;
402		}
403	}
404
405	mutex_unlock(&pinctrldev_list_mutex);
406
407	return -EPROBE_DEFER;
408}
409
410/**
411 * pinctrl_add_gpio_range() - register a GPIO range for a controller
412 * @pctldev: pin controller device to add the range to
413 * @range: the GPIO range to add
414 *
415 * DEPRECATED: Don't use this function in new code.  See section 2 of
416 * Documentation/devicetree/bindings/gpio/gpio.txt on how to bind pinctrl and
417 * gpio drivers.
418 *
419 * This adds a range of GPIOs to be handled by a certain pin controller. Call
420 * this to register handled ranges after registering your pin controller.
421 */
422void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
423			    struct pinctrl_gpio_range *range)
424{
425	mutex_lock(&pctldev->mutex);
426	list_add_tail(&range->node, &pctldev->gpio_ranges);
427	mutex_unlock(&pctldev->mutex);
428}
429EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
430
431void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
432			     struct pinctrl_gpio_range *ranges,
433			     unsigned int nranges)
434{
435	int i;
436
437	for (i = 0; i < nranges; i++)
438		pinctrl_add_gpio_range(pctldev, &ranges[i]);
439}
440EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
441
442struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
443		struct pinctrl_gpio_range *range)
444{
445	struct pinctrl_dev *pctldev;
446
447	pctldev = get_pinctrl_dev_from_devname(devname);
448
449	/*
450	 * If we can't find this device, let's assume that is because
451	 * it has not probed yet, so the driver trying to register this
452	 * range need to defer probing.
453	 */
454	if (!pctldev)
455		return ERR_PTR(-EPROBE_DEFER);
456
457	pinctrl_add_gpio_range(pctldev, range);
458
459	return pctldev;
460}
461EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
462
463int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
464			   const unsigned int **pins, unsigned int *num_pins)
465{
466	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
467	int gs;
468
469	if (!pctlops->get_group_pins)
470		return -EINVAL;
471
472	gs = pinctrl_get_group_selector(pctldev, pin_group);
473	if (gs < 0)
474		return gs;
475
476	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
477}
478EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
479
480struct pinctrl_gpio_range *
481pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
482					unsigned int pin)
483{
484	struct pinctrl_gpio_range *range;
485
486	/* Loop over the ranges */
487	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
488		/* Check if we're in the valid range */
489		if (range->pins) {
490			int a;
491			for (a = 0; a < range->npins; a++) {
492				if (range->pins[a] == pin)
493					return range;
494			}
495		} else if (pin >= range->pin_base &&
496			   pin < range->pin_base + range->npins)
497			return range;
498	}
499
500	return NULL;
501}
502EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
503
504/**
505 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
506 * @pctldev: the pin controller device to look in
507 * @pin: a controller-local number to find the range for
508 */
509struct pinctrl_gpio_range *
510pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
511				 unsigned int pin)
512{
513	struct pinctrl_gpio_range *range;
514
515	mutex_lock(&pctldev->mutex);
516	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
517	mutex_unlock(&pctldev->mutex);
518
519	return range;
520}
521EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
522
523/**
524 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
525 * @pctldev: pin controller device to remove the range from
526 * @range: the GPIO range to remove
527 */
528void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
529			       struct pinctrl_gpio_range *range)
530{
531	mutex_lock(&pctldev->mutex);
532	list_del(&range->node);
533	mutex_unlock(&pctldev->mutex);
534}
535EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
536
537#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
538
539/**
540 * pinctrl_generic_get_group_count() - returns the number of pin groups
541 * @pctldev: pin controller device
542 */
543int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
544{
545	return pctldev->num_groups;
546}
547EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
548
549/**
550 * pinctrl_generic_get_group_name() - returns the name of a pin group
551 * @pctldev: pin controller device
552 * @selector: group number
553 */
554const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
555					   unsigned int selector)
556{
557	struct group_desc *group;
558
559	group = radix_tree_lookup(&pctldev->pin_group_tree,
560				  selector);
561	if (!group)
562		return NULL;
563
564	return group->grp.name;
565}
566EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
567
568/**
569 * pinctrl_generic_get_group_pins() - gets the pin group pins
570 * @pctldev: pin controller device
571 * @selector: group number
572 * @pins: pins in the group
573 * @num_pins: number of pins in the group
574 */
575int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
576				   unsigned int selector,
577				   const unsigned int **pins,
578				   unsigned int *num_pins)
579{
580	struct group_desc *group;
581
582	group = radix_tree_lookup(&pctldev->pin_group_tree,
583				  selector);
584	if (!group) {
585		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
586			__func__, selector);
587		return -EINVAL;
588	}
589
590	*pins = group->grp.pins;
591	*num_pins = group->grp.npins;
592
593	return 0;
594}
595EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
596
597/**
598 * pinctrl_generic_get_group() - returns a pin group based on the number
599 * @pctldev: pin controller device
600 * @selector: group number
601 */
602struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
603					     unsigned int selector)
604{
605	struct group_desc *group;
606
607	group = radix_tree_lookup(&pctldev->pin_group_tree,
608				  selector);
609	if (!group)
610		return NULL;
611
612	return group;
613}
614EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
615
616static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
617						  const char *function)
618{
619	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
620	int ngroups = ops->get_groups_count(pctldev);
621	int selector = 0;
622
623	/* See if this pctldev has this group */
624	while (selector < ngroups) {
625		const char *gname = ops->get_group_name(pctldev, selector);
626
627		if (gname && !strcmp(function, gname))
628			return selector;
629
630		selector++;
631	}
632
633	return -EINVAL;
634}
635
636/**
637 * pinctrl_generic_add_group() - adds a new pin group
638 * @pctldev: pin controller device
639 * @name: name of the pin group
640 * @pins: pins in the pin group
641 * @num_pins: number of pins in the pin group
642 * @data: pin controller driver specific data
643 *
644 * Note that the caller must take care of locking.
645 */
646int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
647			      const unsigned int *pins, int num_pins, void *data)
648{
649	struct group_desc *group;
650	int selector, error;
651
652	if (!name)
653		return -EINVAL;
654
655	selector = pinctrl_generic_group_name_to_selector(pctldev, name);
656	if (selector >= 0)
657		return selector;
658
659	selector = pctldev->num_groups;
660
661	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
662	if (!group)
663		return -ENOMEM;
664
665	*group = PINCTRL_GROUP_DESC(name, pins, num_pins, data);
666
667	error = radix_tree_insert(&pctldev->pin_group_tree, selector, group);
668	if (error)
669		return error;
670
671	pctldev->num_groups++;
672
673	return selector;
674}
675EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
676
677/**
678 * pinctrl_generic_remove_group() - removes a numbered pin group
679 * @pctldev: pin controller device
680 * @selector: group number
681 *
682 * Note that the caller must take care of locking.
683 */
684int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
685				 unsigned int selector)
686{
687	struct group_desc *group;
688
689	group = radix_tree_lookup(&pctldev->pin_group_tree,
690				  selector);
691	if (!group)
692		return -ENOENT;
693
694	radix_tree_delete(&pctldev->pin_group_tree, selector);
695	devm_kfree(pctldev->dev, group);
696
697	pctldev->num_groups--;
698
699	return 0;
700}
701EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
702
703/**
704 * pinctrl_generic_free_groups() - removes all pin groups
705 * @pctldev: pin controller device
706 *
707 * Note that the caller must take care of locking. The pinctrl groups
708 * are allocated with devm_kzalloc() so no need to free them here.
709 */
710static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
711{
712	struct radix_tree_iter iter;
713	void __rcu **slot;
714
715	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
716		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
717
718	pctldev->num_groups = 0;
719}
720
721#else
722static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
723{
724}
725#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
726
727/**
728 * pinctrl_get_group_selector() - returns the group selector for a group
729 * @pctldev: the pin controller handling the group
730 * @pin_group: the pin group to look up
731 */
732int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
733			       const char *pin_group)
734{
735	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
736	unsigned int ngroups = pctlops->get_groups_count(pctldev);
737	unsigned int group_selector = 0;
738
739	while (group_selector < ngroups) {
740		const char *gname = pctlops->get_group_name(pctldev,
741							    group_selector);
742		if (gname && !strcmp(gname, pin_group)) {
743			dev_dbg(pctldev->dev,
744				"found group selector %u for %s\n",
745				group_selector,
746				pin_group);
747			return group_selector;
748		}
749
750		group_selector++;
751	}
752
753	dev_err(pctldev->dev, "does not have pin group %s\n",
754		pin_group);
755
756	return -EINVAL;
757}
758
759bool pinctrl_gpio_can_use_line(struct gpio_chip *gc, unsigned int offset)
760{
761	struct pinctrl_dev *pctldev;
762	struct pinctrl_gpio_range *range;
763	bool result;
764	int pin;
765
766	/*
767	 * Try to obtain GPIO range, if it fails
768	 * we're probably dealing with GPIO driver
769	 * without a backing pin controller - bail out.
770	 */
771	if (pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range))
772		return true;
773
774	mutex_lock(&pctldev->mutex);
775
776	/* Convert to the pin controllers number space */
777	pin = gpio_to_pin(range, gc, offset);
778
779	result = pinmux_can_be_used_for_gpio(pctldev, pin);
780
781	mutex_unlock(&pctldev->mutex);
782
783	return result;
784}
785EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
786
787/**
788 * pinctrl_gpio_request() - request a single pin to be used as GPIO
789 * @gc: GPIO chip structure from the GPIO subsystem
790 * @offset: hardware offset of the GPIO relative to the controller
791 *
792 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
793 * as part of their gpio_request() semantics, platforms and individual drivers
794 * shall *NOT* request GPIO pins to be muxed in.
795 */
796int pinctrl_gpio_request(struct gpio_chip *gc, unsigned int offset)
797{
798	struct pinctrl_gpio_range *range;
799	struct pinctrl_dev *pctldev;
800	int ret, pin;
801
802	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
803	if (ret) {
804		if (pinctrl_ready_for_gpio_range(gc, offset))
805			ret = 0;
806		return ret;
807	}
808
809	mutex_lock(&pctldev->mutex);
810
811	/* Convert to the pin controllers number space */
812	pin = gpio_to_pin(range, gc, offset);
813
814	ret = pinmux_request_gpio(pctldev, range, pin, gc->base + offset);
815
816	mutex_unlock(&pctldev->mutex);
817
818	return ret;
819}
820EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
821
822/**
823 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
824 * @gc: GPIO chip structure from the GPIO subsystem
825 * @offset: hardware offset of the GPIO relative to the controller
826 *
827 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
828 * as part of their gpio_request() semantics, platforms and individual drivers
829 * shall *NOT* request GPIO pins to be muxed in.
830 */
831void pinctrl_gpio_free(struct gpio_chip *gc, unsigned int offset)
832{
833	struct pinctrl_gpio_range *range;
834	struct pinctrl_dev *pctldev;
835	int ret, pin;
836
837	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
838	if (ret)
839		return;
840
841	mutex_lock(&pctldev->mutex);
842
843	/* Convert to the pin controllers number space */
844	pin = gpio_to_pin(range, gc, offset);
845
846	pinmux_free_gpio(pctldev, pin, range);
847
848	mutex_unlock(&pctldev->mutex);
849}
850EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
851
852static int pinctrl_gpio_direction(struct gpio_chip *gc, unsigned int offset,
853				  bool input)
854{
855	struct pinctrl_dev *pctldev;
856	struct pinctrl_gpio_range *range;
857	int ret;
858	int pin;
859
860	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
861	if (ret) {
862		return ret;
863	}
864
865	mutex_lock(&pctldev->mutex);
866
867	/* Convert to the pin controllers number space */
868	pin = gpio_to_pin(range, gc, offset);
869	ret = pinmux_gpio_direction(pctldev, range, pin, input);
870
871	mutex_unlock(&pctldev->mutex);
872
873	return ret;
874}
875
876/**
877 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
878 * @gc: GPIO chip structure from the GPIO subsystem
879 * @offset: hardware offset of the GPIO relative to the controller
880 *
881 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
882 * as part of their gpio_direction_input() semantics, platforms and individual
883 * drivers shall *NOT* touch pin control GPIO calls.
884 */
885int pinctrl_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
886{
887	return pinctrl_gpio_direction(gc, offset, true);
888}
889EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
890
891/**
892 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
893 * @gc: GPIO chip structure from the GPIO subsystem
894 * @offset: hardware offset of the GPIO relative to the controller
895 *
896 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
897 * as part of their gpio_direction_output() semantics, platforms and individual
898 * drivers shall *NOT* touch pin control GPIO calls.
899 */
900int pinctrl_gpio_direction_output(struct gpio_chip *gc, unsigned int offset)
901{
902	return pinctrl_gpio_direction(gc, offset, false);
903}
904EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
905
906/**
907 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
908 * @gc: GPIO chip structure from the GPIO subsystem
909 * @offset: hardware offset of the GPIO relative to the controller
910 * @config: the configuration to apply to the GPIO
911 *
912 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
913 * they need to call the underlying pin controller to change GPIO config
914 * (for example set debounce time).
915 */
916int pinctrl_gpio_set_config(struct gpio_chip *gc, unsigned int offset,
917				unsigned long config)
918{
919	unsigned long configs[] = { config };
920	struct pinctrl_gpio_range *range;
921	struct pinctrl_dev *pctldev;
922	int ret, pin;
923
924	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
925	if (ret)
926		return ret;
927
928	mutex_lock(&pctldev->mutex);
929	pin = gpio_to_pin(range, gc, offset);
930	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
931	mutex_unlock(&pctldev->mutex);
932
933	return ret;
934}
935EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
936
937static struct pinctrl_state *find_state(struct pinctrl *p,
938					const char *name)
939{
940	struct pinctrl_state *state;
941
942	list_for_each_entry(state, &p->states, node)
943		if (!strcmp(state->name, name))
944			return state;
945
946	return NULL;
947}
948
949static struct pinctrl_state *create_state(struct pinctrl *p,
950					  const char *name)
951{
952	struct pinctrl_state *state;
953
954	state = kzalloc(sizeof(*state), GFP_KERNEL);
955	if (!state)
956		return ERR_PTR(-ENOMEM);
957
958	state->name = name;
959	INIT_LIST_HEAD(&state->settings);
960
961	list_add_tail(&state->node, &p->states);
962
963	return state;
964}
965
966static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
967		       const struct pinctrl_map *map)
968{
969	struct pinctrl_state *state;
970	struct pinctrl_setting *setting;
971	int ret;
972
973	state = find_state(p, map->name);
974	if (!state)
975		state = create_state(p, map->name);
976	if (IS_ERR(state))
977		return PTR_ERR(state);
978
979	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
980		return 0;
981
982	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
983	if (!setting)
984		return -ENOMEM;
985
986	setting->type = map->type;
987
988	if (pctldev)
989		setting->pctldev = pctldev;
990	else
991		setting->pctldev =
992			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
993	if (!setting->pctldev) {
994		kfree(setting);
995		/* Do not defer probing of hogs (circular loop) */
996		if (!strcmp(map->ctrl_dev_name, map->dev_name))
997			return -ENODEV;
998		/*
999		 * OK let us guess that the driver is not there yet, and
1000		 * let's defer obtaining this pinctrl handle to later...
1001		 */
1002		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
1003			map->ctrl_dev_name);
1004		return -EPROBE_DEFER;
1005	}
1006
1007	setting->dev_name = map->dev_name;
1008
1009	switch (map->type) {
1010	case PIN_MAP_TYPE_MUX_GROUP:
1011		ret = pinmux_map_to_setting(map, setting);
1012		break;
1013	case PIN_MAP_TYPE_CONFIGS_PIN:
1014	case PIN_MAP_TYPE_CONFIGS_GROUP:
1015		ret = pinconf_map_to_setting(map, setting);
1016		break;
1017	default:
1018		ret = -EINVAL;
1019		break;
1020	}
1021	if (ret < 0) {
1022		kfree(setting);
1023		return ret;
1024	}
1025
1026	list_add_tail(&setting->node, &state->settings);
1027
1028	return 0;
1029}
1030
1031static struct pinctrl *find_pinctrl(struct device *dev)
1032{
1033	struct pinctrl *p;
1034
1035	mutex_lock(&pinctrl_list_mutex);
1036	list_for_each_entry(p, &pinctrl_list, node)
1037		if (p->dev == dev) {
1038			mutex_unlock(&pinctrl_list_mutex);
1039			return p;
1040		}
1041
1042	mutex_unlock(&pinctrl_list_mutex);
1043	return NULL;
1044}
1045
1046static void pinctrl_free(struct pinctrl *p, bool inlist);
1047
1048static struct pinctrl *create_pinctrl(struct device *dev,
1049				      struct pinctrl_dev *pctldev)
1050{
1051	struct pinctrl *p;
1052	const char *devname;
1053	struct pinctrl_maps *maps_node;
1054	const struct pinctrl_map *map;
1055	int ret;
1056
1057	/*
1058	 * create the state cookie holder struct pinctrl for each
1059	 * mapping, this is what consumers will get when requesting
1060	 * a pin control handle with pinctrl_get()
1061	 */
1062	p = kzalloc(sizeof(*p), GFP_KERNEL);
1063	if (!p)
1064		return ERR_PTR(-ENOMEM);
1065	p->dev = dev;
1066	INIT_LIST_HEAD(&p->states);
1067	INIT_LIST_HEAD(&p->dt_maps);
1068
1069	ret = pinctrl_dt_to_map(p, pctldev);
1070	if (ret < 0) {
1071		kfree(p);
1072		return ERR_PTR(ret);
1073	}
1074
1075	devname = dev_name(dev);
1076
1077	mutex_lock(&pinctrl_maps_mutex);
1078	/* Iterate over the pin control maps to locate the right ones */
1079	for_each_pin_map(maps_node, map) {
1080		/* Map must be for this device */
1081		if (strcmp(map->dev_name, devname))
1082			continue;
1083		/*
1084		 * If pctldev is not null, we are claiming hog for it,
1085		 * that means, setting that is served by pctldev by itself.
1086		 *
1087		 * Thus we must skip map that is for this device but is served
1088		 * by other device.
1089		 */
1090		if (pctldev &&
1091		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1092			continue;
1093
1094		ret = add_setting(p, pctldev, map);
1095		/*
1096		 * At this point the adding of a setting may:
1097		 *
1098		 * - Defer, if the pinctrl device is not yet available
1099		 * - Fail, if the pinctrl device is not yet available,
1100		 *   AND the setting is a hog. We cannot defer that, since
1101		 *   the hog will kick in immediately after the device
1102		 *   is registered.
1103		 *
1104		 * If the error returned was not -EPROBE_DEFER then we
1105		 * accumulate the errors to see if we end up with
1106		 * an -EPROBE_DEFER later, as that is the worst case.
1107		 */
1108		if (ret == -EPROBE_DEFER) {
1109			pinctrl_free(p, false);
1110			mutex_unlock(&pinctrl_maps_mutex);
1111			return ERR_PTR(ret);
1112		}
1113	}
1114	mutex_unlock(&pinctrl_maps_mutex);
1115
1116	if (ret < 0) {
1117		/* If some other error than deferral occurred, return here */
1118		pinctrl_free(p, false);
1119		return ERR_PTR(ret);
1120	}
1121
1122	kref_init(&p->users);
1123
1124	/* Add the pinctrl handle to the global list */
1125	mutex_lock(&pinctrl_list_mutex);
1126	list_add_tail(&p->node, &pinctrl_list);
1127	mutex_unlock(&pinctrl_list_mutex);
1128
1129	return p;
1130}
1131
1132/**
1133 * pinctrl_get() - retrieves the pinctrl handle for a device
1134 * @dev: the device to obtain the handle for
1135 */
1136struct pinctrl *pinctrl_get(struct device *dev)
1137{
1138	struct pinctrl *p;
1139
1140	if (WARN_ON(!dev))
1141		return ERR_PTR(-EINVAL);
1142
1143	/*
1144	 * See if somebody else (such as the device core) has already
1145	 * obtained a handle to the pinctrl for this device. In that case,
1146	 * return another pointer to it.
1147	 */
1148	p = find_pinctrl(dev);
1149	if (p) {
1150		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1151		kref_get(&p->users);
1152		return p;
1153	}
1154
1155	return create_pinctrl(dev, NULL);
1156}
1157EXPORT_SYMBOL_GPL(pinctrl_get);
1158
1159static void pinctrl_free_setting(bool disable_setting,
1160				 struct pinctrl_setting *setting)
1161{
1162	switch (setting->type) {
1163	case PIN_MAP_TYPE_MUX_GROUP:
1164		if (disable_setting)
1165			pinmux_disable_setting(setting);
1166		pinmux_free_setting(setting);
1167		break;
1168	case PIN_MAP_TYPE_CONFIGS_PIN:
1169	case PIN_MAP_TYPE_CONFIGS_GROUP:
1170		pinconf_free_setting(setting);
1171		break;
1172	default:
1173		break;
1174	}
1175}
1176
1177static void pinctrl_free(struct pinctrl *p, bool inlist)
1178{
1179	struct pinctrl_state *state, *n1;
1180	struct pinctrl_setting *setting, *n2;
1181
1182	mutex_lock(&pinctrl_list_mutex);
1183	list_for_each_entry_safe(state, n1, &p->states, node) {
1184		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1185			pinctrl_free_setting(state == p->state, setting);
1186			list_del(&setting->node);
1187			kfree(setting);
1188		}
1189		list_del(&state->node);
1190		kfree(state);
1191	}
1192
1193	pinctrl_dt_free_maps(p);
1194
1195	if (inlist)
1196		list_del(&p->node);
1197	kfree(p);
1198	mutex_unlock(&pinctrl_list_mutex);
1199}
1200
1201/**
1202 * pinctrl_release() - release the pinctrl handle
1203 * @kref: the kref in the pinctrl being released
1204 */
1205static void pinctrl_release(struct kref *kref)
1206{
1207	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1208
1209	pinctrl_free(p, true);
1210}
1211
1212/**
1213 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1214 * @p: the pinctrl handle to release
1215 */
1216void pinctrl_put(struct pinctrl *p)
1217{
1218	kref_put(&p->users, pinctrl_release);
1219}
1220EXPORT_SYMBOL_GPL(pinctrl_put);
1221
1222/**
1223 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1224 * @p: the pinctrl handle to retrieve the state from
1225 * @name: the state name to retrieve
1226 */
1227struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1228						 const char *name)
1229{
1230	struct pinctrl_state *state;
1231
1232	state = find_state(p, name);
1233	if (!state) {
1234		if (pinctrl_dummy_state) {
1235			/* create dummy state */
1236			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1237				name);
1238			state = create_state(p, name);
1239		} else
1240			state = ERR_PTR(-ENODEV);
1241	}
1242
1243	return state;
1244}
1245EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1246
1247static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1248			     struct device *consumer)
1249{
1250	if (pctldev->desc->link_consumers)
1251		device_link_add(consumer, pctldev->dev,
1252				DL_FLAG_PM_RUNTIME |
1253				DL_FLAG_AUTOREMOVE_CONSUMER);
1254}
1255
1256/**
1257 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1258 * @p: the pinctrl handle for the device that requests configuration
1259 * @state: the state handle to select/activate/program
1260 */
1261static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1262{
1263	struct pinctrl_setting *setting, *setting2;
1264	struct pinctrl_state *old_state = READ_ONCE(p->state);
1265	int ret;
1266
1267	if (old_state) {
1268		/*
1269		 * For each pinmux setting in the old state, forget SW's record
1270		 * of mux owner for that pingroup. Any pingroups which are
1271		 * still owned by the new state will be re-acquired by the call
1272		 * to pinmux_enable_setting() in the loop below.
1273		 */
1274		list_for_each_entry(setting, &old_state->settings, node) {
1275			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1276				continue;
1277			pinmux_disable_setting(setting);
1278		}
1279	}
1280
1281	p->state = NULL;
1282
1283	/* Apply all the settings for the new state - pinmux first */
1284	list_for_each_entry(setting, &state->settings, node) {
1285		switch (setting->type) {
1286		case PIN_MAP_TYPE_MUX_GROUP:
1287			ret = pinmux_enable_setting(setting);
1288			break;
1289		case PIN_MAP_TYPE_CONFIGS_PIN:
1290		case PIN_MAP_TYPE_CONFIGS_GROUP:
1291			ret = 0;
1292			break;
1293		default:
1294			ret = -EINVAL;
1295			break;
1296		}
1297
1298		if (ret < 0)
1299			goto unapply_new_state;
1300
1301		/* Do not link hogs (circular dependency) */
1302		if (p != setting->pctldev->p)
1303			pinctrl_link_add(setting->pctldev, p->dev);
1304	}
1305
1306	/* Apply all the settings for the new state - pinconf after */
1307	list_for_each_entry(setting, &state->settings, node) {
1308		switch (setting->type) {
1309		case PIN_MAP_TYPE_MUX_GROUP:
1310			ret = 0;
1311			break;
1312		case PIN_MAP_TYPE_CONFIGS_PIN:
1313		case PIN_MAP_TYPE_CONFIGS_GROUP:
1314			ret = pinconf_apply_setting(setting);
1315			break;
1316		default:
1317			ret = -EINVAL;
1318			break;
1319		}
1320
1321		if (ret < 0) {
1322			goto unapply_new_state;
1323		}
1324
1325		/* Do not link hogs (circular dependency) */
1326		if (p != setting->pctldev->p)
1327			pinctrl_link_add(setting->pctldev, p->dev);
1328	}
1329
1330	p->state = state;
1331
1332	return 0;
1333
1334unapply_new_state:
1335	dev_err(p->dev, "Error applying setting, reverse things back\n");
1336
1337	list_for_each_entry(setting2, &state->settings, node) {
1338		if (&setting2->node == &setting->node)
1339			break;
1340		/*
1341		 * All we can do here is pinmux_disable_setting.
1342		 * That means that some pins are muxed differently now
1343		 * than they were before applying the setting (We can't
1344		 * "unmux a pin"!), but it's not a big deal since the pins
1345		 * are free to be muxed by another apply_setting.
1346		 */
1347		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1348			pinmux_disable_setting(setting2);
1349	}
1350
1351	/* There's no infinite recursive loop here because p->state is NULL */
1352	if (old_state)
1353		pinctrl_select_state(p, old_state);
1354
1355	return ret;
1356}
1357
1358/**
1359 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1360 * @p: the pinctrl handle for the device that requests configuration
1361 * @state: the state handle to select/activate/program
1362 */
1363int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1364{
1365	if (p->state == state)
1366		return 0;
1367
1368	return pinctrl_commit_state(p, state);
1369}
1370EXPORT_SYMBOL_GPL(pinctrl_select_state);
1371
1372static void devm_pinctrl_release(struct device *dev, void *res)
1373{
1374	pinctrl_put(*(struct pinctrl **)res);
1375}
1376
1377/**
1378 * devm_pinctrl_get() - Resource managed pinctrl_get()
1379 * @dev: the device to obtain the handle for
1380 *
1381 * If there is a need to explicitly destroy the returned struct pinctrl,
1382 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1383 */
1384struct pinctrl *devm_pinctrl_get(struct device *dev)
1385{
1386	struct pinctrl **ptr, *p;
1387
1388	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1389	if (!ptr)
1390		return ERR_PTR(-ENOMEM);
1391
1392	p = pinctrl_get(dev);
1393	if (!IS_ERR(p)) {
1394		*ptr = p;
1395		devres_add(dev, ptr);
1396	} else {
1397		devres_free(ptr);
1398	}
1399
1400	return p;
1401}
1402EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1403
1404static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1405{
1406	struct pinctrl **p = res;
1407
1408	return *p == data;
1409}
1410
1411/**
1412 * devm_pinctrl_put() - Resource managed pinctrl_put()
1413 * @p: the pinctrl handle to release
1414 *
1415 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1416 * this function will not need to be called and the resource management
1417 * code will ensure that the resource is freed.
1418 */
1419void devm_pinctrl_put(struct pinctrl *p)
1420{
1421	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1422			       devm_pinctrl_match, p));
1423}
1424EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1425
1426/**
1427 * pinctrl_register_mappings() - register a set of pin controller mappings
1428 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1429 *	keeps a reference to the passed in maps, so they should _not_ be
1430 *	marked with __initdata.
1431 * @num_maps: the number of maps in the mapping table
1432 */
1433int pinctrl_register_mappings(const struct pinctrl_map *maps,
1434			      unsigned int num_maps)
1435{
1436	int i, ret;
1437	struct pinctrl_maps *maps_node;
1438
1439	pr_debug("add %u pinctrl maps\n", num_maps);
1440
1441	/* First sanity check the new mapping */
1442	for (i = 0; i < num_maps; i++) {
1443		if (!maps[i].dev_name) {
1444			pr_err("failed to register map %s (%d): no device given\n",
1445			       maps[i].name, i);
1446			return -EINVAL;
1447		}
1448
1449		if (!maps[i].name) {
1450			pr_err("failed to register map %d: no map name given\n",
1451			       i);
1452			return -EINVAL;
1453		}
1454
1455		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1456				!maps[i].ctrl_dev_name) {
1457			pr_err("failed to register map %s (%d): no pin control device given\n",
1458			       maps[i].name, i);
1459			return -EINVAL;
1460		}
1461
1462		switch (maps[i].type) {
1463		case PIN_MAP_TYPE_DUMMY_STATE:
1464			break;
1465		case PIN_MAP_TYPE_MUX_GROUP:
1466			ret = pinmux_validate_map(&maps[i], i);
1467			if (ret < 0)
1468				return ret;
1469			break;
1470		case PIN_MAP_TYPE_CONFIGS_PIN:
1471		case PIN_MAP_TYPE_CONFIGS_GROUP:
1472			ret = pinconf_validate_map(&maps[i], i);
1473			if (ret < 0)
1474				return ret;
1475			break;
1476		default:
1477			pr_err("failed to register map %s (%d): invalid type given\n",
1478			       maps[i].name, i);
1479			return -EINVAL;
1480		}
1481	}
1482
1483	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1484	if (!maps_node)
1485		return -ENOMEM;
1486
1487	maps_node->maps = maps;
1488	maps_node->num_maps = num_maps;
1489
1490	mutex_lock(&pinctrl_maps_mutex);
1491	list_add_tail(&maps_node->node, &pinctrl_maps);
1492	mutex_unlock(&pinctrl_maps_mutex);
1493
1494	return 0;
1495}
1496EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1497
1498/**
1499 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1500 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1501 *	when registering the mappings.
1502 */
1503void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1504{
1505	struct pinctrl_maps *maps_node;
1506
1507	mutex_lock(&pinctrl_maps_mutex);
1508	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1509		if (maps_node->maps == map) {
1510			list_del(&maps_node->node);
1511			kfree(maps_node);
1512			mutex_unlock(&pinctrl_maps_mutex);
1513			return;
1514		}
1515	}
1516	mutex_unlock(&pinctrl_maps_mutex);
1517}
1518EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1519
1520/**
1521 * pinctrl_force_sleep() - turn a given controller device into sleep state
1522 * @pctldev: pin controller device
1523 */
1524int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1525{
1526	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1527		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1528	return 0;
1529}
1530EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1531
1532/**
1533 * pinctrl_force_default() - turn a given controller device into default state
1534 * @pctldev: pin controller device
1535 */
1536int pinctrl_force_default(struct pinctrl_dev *pctldev)
1537{
1538	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1539		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1540	return 0;
1541}
1542EXPORT_SYMBOL_GPL(pinctrl_force_default);
1543
1544/**
1545 * pinctrl_init_done() - tell pinctrl probe is done
1546 *
1547 * We'll use this time to switch the pins from "init" to "default" unless the
1548 * driver selected some other state.
1549 *
1550 * @dev: device to that's done probing
1551 */
1552int pinctrl_init_done(struct device *dev)
1553{
1554	struct dev_pin_info *pins = dev->pins;
1555	int ret;
1556
1557	if (!pins)
1558		return 0;
1559
1560	if (IS_ERR(pins->init_state))
1561		return 0; /* No such state */
1562
1563	if (pins->p->state != pins->init_state)
1564		return 0; /* Not at init anyway */
1565
1566	if (IS_ERR(pins->default_state))
1567		return 0; /* No default state */
1568
1569	ret = pinctrl_select_state(pins->p, pins->default_state);
1570	if (ret)
1571		dev_err(dev, "failed to activate default pinctrl state\n");
1572
1573	return ret;
1574}
1575
1576static int pinctrl_select_bound_state(struct device *dev,
1577				      struct pinctrl_state *state)
1578{
1579	struct dev_pin_info *pins = dev->pins;
1580	int ret;
1581
1582	if (IS_ERR(state))
1583		return 0; /* No such state */
1584	ret = pinctrl_select_state(pins->p, state);
1585	if (ret)
1586		dev_err(dev, "failed to activate pinctrl state %s\n",
1587			state->name);
1588	return ret;
1589}
1590
1591/**
1592 * pinctrl_select_default_state() - select default pinctrl state
1593 * @dev: device to select default state for
1594 */
1595int pinctrl_select_default_state(struct device *dev)
1596{
1597	if (!dev->pins)
1598		return 0;
1599
1600	return pinctrl_select_bound_state(dev, dev->pins->default_state);
1601}
1602EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1603
1604#ifdef CONFIG_PM
1605
1606/**
1607 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1608 * @dev: device to select default state for
1609 */
1610int pinctrl_pm_select_default_state(struct device *dev)
1611{
1612	return pinctrl_select_default_state(dev);
1613}
1614EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1615
1616/**
1617 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1618 * @dev: device to select sleep state for
1619 */
1620int pinctrl_pm_select_sleep_state(struct device *dev)
1621{
1622	if (!dev->pins)
1623		return 0;
1624
1625	return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1626}
1627EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1628
1629/**
1630 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1631 * @dev: device to select idle state for
1632 */
1633int pinctrl_pm_select_idle_state(struct device *dev)
1634{
1635	if (!dev->pins)
1636		return 0;
1637
1638	return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1639}
1640EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1641#endif
1642
1643#ifdef CONFIG_DEBUG_FS
1644
1645static int pinctrl_pins_show(struct seq_file *s, void *what)
1646{
1647	struct pinctrl_dev *pctldev = s->private;
1648	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1649	unsigned int i, pin;
1650#ifdef CONFIG_GPIOLIB
1651	struct gpio_device *gdev = NULL;
1652	struct pinctrl_gpio_range *range;
1653	int gpio_num;
1654#endif
1655
1656	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1657
1658	mutex_lock(&pctldev->mutex);
1659
1660	/* The pin number can be retrived from the pin controller descriptor */
1661	for (i = 0; i < pctldev->desc->npins; i++) {
1662		struct pin_desc *desc;
1663
1664		pin = pctldev->desc->pins[i].number;
1665		desc = pin_desc_get(pctldev, pin);
1666		/* Pin space may be sparse */
1667		if (!desc)
1668			continue;
1669
1670		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1671
1672#ifdef CONFIG_GPIOLIB
1673		gpio_num = -1;
1674		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1675			if ((pin >= range->pin_base) &&
1676			    (pin < (range->pin_base + range->npins))) {
1677				gpio_num = range->base + (pin - range->pin_base);
1678				break;
1679			}
1680		}
1681		if (gpio_num >= 0)
1682			/*
1683			 * FIXME: gpio_num comes from the global GPIO numberspace.
1684			 * we need to get rid of the range->base eventually and
1685			 * get the descriptor directly from the gpio_chip.
1686			 */
1687			gdev = gpiod_to_gpio_device(gpio_to_desc(gpio_num));
1688		if (gdev)
1689			seq_printf(s, "%u:%s ",
1690				   gpio_num - gpio_device_get_base(gdev),
1691				   gpio_device_get_label(gdev));
1692		else
1693			seq_puts(s, "0:? ");
1694#endif
1695
1696		/* Driver-specific info per pin */
1697		if (ops->pin_dbg_show)
1698			ops->pin_dbg_show(pctldev, s, pin);
1699
1700		seq_puts(s, "\n");
1701	}
1702
1703	mutex_unlock(&pctldev->mutex);
1704
1705	return 0;
1706}
1707DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1708
1709static int pinctrl_groups_show(struct seq_file *s, void *what)
1710{
1711	struct pinctrl_dev *pctldev = s->private;
1712	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1713	unsigned int ngroups, selector = 0;
1714
1715	mutex_lock(&pctldev->mutex);
1716
1717	ngroups = ops->get_groups_count(pctldev);
1718
1719	seq_puts(s, "registered pin groups:\n");
1720	while (selector < ngroups) {
1721		const unsigned int *pins = NULL;
1722		unsigned int num_pins = 0;
1723		const char *gname = ops->get_group_name(pctldev, selector);
1724		const char *pname;
1725		int ret = 0;
1726		int i;
1727
1728		if (ops->get_group_pins)
1729			ret = ops->get_group_pins(pctldev, selector,
1730						  &pins, &num_pins);
1731		if (ret)
1732			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1733				   gname);
1734		else {
1735			seq_printf(s, "group: %s\n", gname);
1736			for (i = 0; i < num_pins; i++) {
1737				pname = pin_get_name(pctldev, pins[i]);
1738				if (WARN_ON(!pname)) {
1739					mutex_unlock(&pctldev->mutex);
1740					return -EINVAL;
1741				}
1742				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1743			}
1744			seq_puts(s, "\n");
1745		}
1746		selector++;
1747	}
1748
1749	mutex_unlock(&pctldev->mutex);
1750
1751	return 0;
1752}
1753DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1754
1755static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1756{
1757	struct pinctrl_dev *pctldev = s->private;
1758	struct pinctrl_gpio_range *range;
1759
1760	seq_puts(s, "GPIO ranges handled:\n");
1761
1762	mutex_lock(&pctldev->mutex);
1763
1764	/* Loop over the ranges */
1765	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1766		if (range->pins) {
1767			int a;
1768			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1769				range->id, range->name,
1770				range->base, (range->base + range->npins - 1));
1771			for (a = 0; a < range->npins - 1; a++)
1772				seq_printf(s, "%u, ", range->pins[a]);
1773			seq_printf(s, "%u}\n", range->pins[a]);
1774		}
1775		else
1776			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1777				range->id, range->name,
1778				range->base, (range->base + range->npins - 1),
1779				range->pin_base,
1780				(range->pin_base + range->npins - 1));
1781	}
1782
1783	mutex_unlock(&pctldev->mutex);
1784
1785	return 0;
1786}
1787DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1788
1789static int pinctrl_devices_show(struct seq_file *s, void *what)
1790{
1791	struct pinctrl_dev *pctldev;
1792
1793	seq_puts(s, "name [pinmux] [pinconf]\n");
1794
1795	mutex_lock(&pinctrldev_list_mutex);
1796
1797	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1798		seq_printf(s, "%s ", pctldev->desc->name);
1799		if (pctldev->desc->pmxops)
1800			seq_puts(s, "yes ");
1801		else
1802			seq_puts(s, "no ");
1803		if (pctldev->desc->confops)
1804			seq_puts(s, "yes");
1805		else
1806			seq_puts(s, "no");
1807		seq_puts(s, "\n");
1808	}
1809
1810	mutex_unlock(&pinctrldev_list_mutex);
1811
1812	return 0;
1813}
1814DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1815
1816static inline const char *map_type(enum pinctrl_map_type type)
1817{
1818	static const char * const names[] = {
1819		"INVALID",
1820		"DUMMY_STATE",
1821		"MUX_GROUP",
1822		"CONFIGS_PIN",
1823		"CONFIGS_GROUP",
1824	};
1825
1826	if (type >= ARRAY_SIZE(names))
1827		return "UNKNOWN";
1828
1829	return names[type];
1830}
1831
1832static int pinctrl_maps_show(struct seq_file *s, void *what)
1833{
1834	struct pinctrl_maps *maps_node;
1835	const struct pinctrl_map *map;
1836
1837	seq_puts(s, "Pinctrl maps:\n");
1838
1839	mutex_lock(&pinctrl_maps_mutex);
1840	for_each_pin_map(maps_node, map) {
1841		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1842			   map->dev_name, map->name, map_type(map->type),
1843			   map->type);
1844
1845		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1846			seq_printf(s, "controlling device %s\n",
1847				   map->ctrl_dev_name);
1848
1849		switch (map->type) {
1850		case PIN_MAP_TYPE_MUX_GROUP:
1851			pinmux_show_map(s, map);
1852			break;
1853		case PIN_MAP_TYPE_CONFIGS_PIN:
1854		case PIN_MAP_TYPE_CONFIGS_GROUP:
1855			pinconf_show_map(s, map);
1856			break;
1857		default:
1858			break;
1859		}
1860
1861		seq_putc(s, '\n');
1862	}
1863	mutex_unlock(&pinctrl_maps_mutex);
1864
1865	return 0;
1866}
1867DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1868
1869static int pinctrl_show(struct seq_file *s, void *what)
1870{
1871	struct pinctrl *p;
1872	struct pinctrl_state *state;
1873	struct pinctrl_setting *setting;
1874
1875	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1876
1877	mutex_lock(&pinctrl_list_mutex);
1878
1879	list_for_each_entry(p, &pinctrl_list, node) {
1880		seq_printf(s, "device: %s current state: %s\n",
1881			   dev_name(p->dev),
1882			   p->state ? p->state->name : "none");
1883
1884		list_for_each_entry(state, &p->states, node) {
1885			seq_printf(s, "  state: %s\n", state->name);
1886
1887			list_for_each_entry(setting, &state->settings, node) {
1888				struct pinctrl_dev *pctldev = setting->pctldev;
1889
1890				seq_printf(s, "    type: %s controller %s ",
1891					   map_type(setting->type),
1892					   pinctrl_dev_get_name(pctldev));
1893
1894				switch (setting->type) {
1895				case PIN_MAP_TYPE_MUX_GROUP:
1896					pinmux_show_setting(s, setting);
1897					break;
1898				case PIN_MAP_TYPE_CONFIGS_PIN:
1899				case PIN_MAP_TYPE_CONFIGS_GROUP:
1900					pinconf_show_setting(s, setting);
1901					break;
1902				default:
1903					break;
1904				}
1905			}
1906		}
1907	}
1908
1909	mutex_unlock(&pinctrl_list_mutex);
1910
1911	return 0;
1912}
1913DEFINE_SHOW_ATTRIBUTE(pinctrl);
1914
1915static struct dentry *debugfs_root;
1916
1917static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1918{
1919	struct dentry *device_root;
1920	const char *debugfs_name;
1921
1922	if (pctldev->desc->name &&
1923			strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1924		debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1925				"%s-%s", dev_name(pctldev->dev),
1926				pctldev->desc->name);
1927		if (!debugfs_name) {
1928			pr_warn("failed to determine debugfs dir name for %s\n",
1929				dev_name(pctldev->dev));
1930			return;
1931		}
1932	} else {
1933		debugfs_name = dev_name(pctldev->dev);
1934	}
1935
1936	device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1937	pctldev->device_root = device_root;
1938
1939	if (IS_ERR(device_root) || !device_root) {
1940		pr_warn("failed to create debugfs directory for %s\n",
1941			dev_name(pctldev->dev));
1942		return;
1943	}
1944	debugfs_create_file("pins", 0444,
1945			    device_root, pctldev, &pinctrl_pins_fops);
1946	debugfs_create_file("pingroups", 0444,
1947			    device_root, pctldev, &pinctrl_groups_fops);
1948	debugfs_create_file("gpio-ranges", 0444,
1949			    device_root, pctldev, &pinctrl_gpioranges_fops);
1950	if (pctldev->desc->pmxops)
1951		pinmux_init_device_debugfs(device_root, pctldev);
1952	if (pctldev->desc->confops)
1953		pinconf_init_device_debugfs(device_root, pctldev);
1954}
1955
1956static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1957{
1958	debugfs_remove_recursive(pctldev->device_root);
1959}
1960
1961static void pinctrl_init_debugfs(void)
1962{
1963	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1964	if (IS_ERR(debugfs_root) || !debugfs_root) {
1965		pr_warn("failed to create debugfs directory\n");
1966		debugfs_root = NULL;
1967		return;
1968	}
1969
1970	debugfs_create_file("pinctrl-devices", 0444,
1971			    debugfs_root, NULL, &pinctrl_devices_fops);
1972	debugfs_create_file("pinctrl-maps", 0444,
1973			    debugfs_root, NULL, &pinctrl_maps_fops);
1974	debugfs_create_file("pinctrl-handles", 0444,
1975			    debugfs_root, NULL, &pinctrl_fops);
1976}
1977
1978#else /* CONFIG_DEBUG_FS */
1979
1980static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1981{
1982}
1983
1984static void pinctrl_init_debugfs(void)
1985{
1986}
1987
1988static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1989{
1990}
1991
1992#endif
1993
1994static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1995{
1996	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1997
1998	if (!ops ||
1999	    !ops->get_groups_count ||
2000	    !ops->get_group_name)
2001		return -EINVAL;
2002
2003	return 0;
2004}
2005
2006/**
2007 * pinctrl_init_controller() - init a pin controller device
2008 * @pctldesc: descriptor for this pin controller
2009 * @dev: parent device for this pin controller
2010 * @driver_data: private pin controller data for this pin controller
2011 */
2012static struct pinctrl_dev *
2013pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
2014			void *driver_data)
2015{
2016	struct pinctrl_dev *pctldev;
2017	int ret;
2018
2019	if (!pctldesc)
2020		return ERR_PTR(-EINVAL);
2021	if (!pctldesc->name)
2022		return ERR_PTR(-EINVAL);
2023
2024	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
2025	if (!pctldev)
2026		return ERR_PTR(-ENOMEM);
2027
2028	/* Initialize pin control device struct */
2029	pctldev->owner = pctldesc->owner;
2030	pctldev->desc = pctldesc;
2031	pctldev->driver_data = driver_data;
2032	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2033#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2034	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2035#endif
2036#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2037	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2038#endif
2039	INIT_LIST_HEAD(&pctldev->gpio_ranges);
2040	INIT_LIST_HEAD(&pctldev->node);
2041	pctldev->dev = dev;
2042	mutex_init(&pctldev->mutex);
2043
2044	/* check core ops for sanity */
2045	ret = pinctrl_check_ops(pctldev);
2046	if (ret) {
2047		dev_err(dev, "pinctrl ops lacks necessary functions\n");
2048		goto out_err;
2049	}
2050
2051	/* If we're implementing pinmuxing, check the ops for sanity */
2052	if (pctldesc->pmxops) {
2053		ret = pinmux_check_ops(pctldev);
2054		if (ret)
2055			goto out_err;
2056	}
2057
2058	/* If we're implementing pinconfig, check the ops for sanity */
2059	if (pctldesc->confops) {
2060		ret = pinconf_check_ops(pctldev);
2061		if (ret)
2062			goto out_err;
2063	}
2064
2065	/* Register all the pins */
2066	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
2067	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2068	if (ret) {
2069		dev_err(dev, "error during pin registration\n");
2070		pinctrl_free_pindescs(pctldev, pctldesc->pins,
2071				      pctldesc->npins);
2072		goto out_err;
2073	}
2074
2075	return pctldev;
2076
2077out_err:
2078	mutex_destroy(&pctldev->mutex);
2079	kfree(pctldev);
2080	return ERR_PTR(ret);
2081}
2082
2083static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2084{
2085	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2086	if (PTR_ERR(pctldev->p) == -ENODEV) {
2087		dev_dbg(pctldev->dev, "no hogs found\n");
2088
2089		return 0;
2090	}
2091
2092	if (IS_ERR(pctldev->p)) {
2093		dev_err(pctldev->dev, "error claiming hogs: %li\n",
2094			PTR_ERR(pctldev->p));
2095
2096		return PTR_ERR(pctldev->p);
2097	}
2098
2099	pctldev->hog_default =
2100		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2101	if (IS_ERR(pctldev->hog_default)) {
2102		dev_dbg(pctldev->dev,
2103			"failed to lookup the default state\n");
2104	} else {
2105		if (pinctrl_select_state(pctldev->p,
2106					 pctldev->hog_default))
2107			dev_err(pctldev->dev,
2108				"failed to select default state\n");
2109	}
2110
2111	pctldev->hog_sleep =
2112		pinctrl_lookup_state(pctldev->p,
2113				     PINCTRL_STATE_SLEEP);
2114	if (IS_ERR(pctldev->hog_sleep))
2115		dev_dbg(pctldev->dev,
2116			"failed to lookup the sleep state\n");
2117
2118	return 0;
2119}
2120
2121int pinctrl_enable(struct pinctrl_dev *pctldev)
2122{
2123	int error;
2124
2125	error = pinctrl_claim_hogs(pctldev);
2126	if (error) {
2127		dev_err(pctldev->dev, "could not claim hogs: %i\n",
2128			error);
2129		pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2130				      pctldev->desc->npins);
2131		mutex_destroy(&pctldev->mutex);
2132		kfree(pctldev);
2133
2134		return error;
2135	}
2136
2137	mutex_lock(&pinctrldev_list_mutex);
2138	list_add_tail(&pctldev->node, &pinctrldev_list);
2139	mutex_unlock(&pinctrldev_list_mutex);
2140
2141	pinctrl_init_device_debugfs(pctldev);
2142
2143	return 0;
2144}
2145EXPORT_SYMBOL_GPL(pinctrl_enable);
2146
2147/**
2148 * pinctrl_register() - register a pin controller device
2149 * @pctldesc: descriptor for this pin controller
2150 * @dev: parent device for this pin controller
2151 * @driver_data: private pin controller data for this pin controller
2152 *
2153 * Note that pinctrl_register() is known to have problems as the pin
2154 * controller driver functions are called before the driver has a
2155 * struct pinctrl_dev handle. To avoid issues later on, please use the
2156 * new pinctrl_register_and_init() below instead.
2157 */
2158struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2159				    struct device *dev, void *driver_data)
2160{
2161	struct pinctrl_dev *pctldev;
2162	int error;
2163
2164	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2165	if (IS_ERR(pctldev))
2166		return pctldev;
2167
2168	error = pinctrl_enable(pctldev);
2169	if (error)
2170		return ERR_PTR(error);
2171
2172	return pctldev;
2173}
2174EXPORT_SYMBOL_GPL(pinctrl_register);
2175
2176/**
2177 * pinctrl_register_and_init() - register and init pin controller device
2178 * @pctldesc: descriptor for this pin controller
2179 * @dev: parent device for this pin controller
2180 * @driver_data: private pin controller data for this pin controller
2181 * @pctldev: pin controller device
2182 *
2183 * Note that pinctrl_enable() still needs to be manually called after
2184 * this once the driver is ready.
2185 */
2186int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2187			      struct device *dev, void *driver_data,
2188			      struct pinctrl_dev **pctldev)
2189{
2190	struct pinctrl_dev *p;
2191
2192	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2193	if (IS_ERR(p))
2194		return PTR_ERR(p);
2195
2196	/*
2197	 * We have pinctrl_start() call functions in the pin controller
2198	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2199	 * let's make sure pctldev is properly initialized for the
2200	 * pin controller driver before we do anything.
2201	 */
2202	*pctldev = p;
2203
2204	return 0;
2205}
2206EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2207
2208/**
2209 * pinctrl_unregister() - unregister pinmux
2210 * @pctldev: pin controller to unregister
2211 *
2212 * Called by pinmux drivers to unregister a pinmux.
2213 */
2214void pinctrl_unregister(struct pinctrl_dev *pctldev)
2215{
2216	struct pinctrl_gpio_range *range, *n;
2217
2218	if (!pctldev)
2219		return;
2220
2221	mutex_lock(&pctldev->mutex);
2222	pinctrl_remove_device_debugfs(pctldev);
2223	mutex_unlock(&pctldev->mutex);
2224
2225	if (!IS_ERR_OR_NULL(pctldev->p))
2226		pinctrl_put(pctldev->p);
2227
2228	mutex_lock(&pinctrldev_list_mutex);
2229	mutex_lock(&pctldev->mutex);
2230	/* TODO: check that no pinmuxes are still active? */
2231	list_del(&pctldev->node);
2232	pinmux_generic_free_functions(pctldev);
2233	pinctrl_generic_free_groups(pctldev);
2234	/* Destroy descriptor tree */
2235	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2236			      pctldev->desc->npins);
2237	/* remove gpio ranges map */
2238	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2239		list_del(&range->node);
2240
2241	mutex_unlock(&pctldev->mutex);
2242	mutex_destroy(&pctldev->mutex);
2243	kfree(pctldev);
2244	mutex_unlock(&pinctrldev_list_mutex);
2245}
2246EXPORT_SYMBOL_GPL(pinctrl_unregister);
2247
2248static void devm_pinctrl_dev_release(struct device *dev, void *res)
2249{
2250	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2251
2252	pinctrl_unregister(pctldev);
2253}
2254
2255static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2256{
2257	struct pctldev **r = res;
2258
2259	if (WARN_ON(!r || !*r))
2260		return 0;
2261
2262	return *r == data;
2263}
2264
2265/**
2266 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2267 * @dev: parent device for this pin controller
2268 * @pctldesc: descriptor for this pin controller
2269 * @driver_data: private pin controller data for this pin controller
2270 *
2271 * Returns an error pointer if pincontrol register failed. Otherwise
2272 * it returns valid pinctrl handle.
2273 *
2274 * The pinctrl device will be automatically released when the device is unbound.
2275 */
2276struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2277					  struct pinctrl_desc *pctldesc,
2278					  void *driver_data)
2279{
2280	struct pinctrl_dev **ptr, *pctldev;
2281
2282	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2283	if (!ptr)
2284		return ERR_PTR(-ENOMEM);
2285
2286	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2287	if (IS_ERR(pctldev)) {
2288		devres_free(ptr);
2289		return pctldev;
2290	}
2291
2292	*ptr = pctldev;
2293	devres_add(dev, ptr);
2294
2295	return pctldev;
2296}
2297EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2298
2299/**
2300 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2301 * @dev: parent device for this pin controller
2302 * @pctldesc: descriptor for this pin controller
2303 * @driver_data: private pin controller data for this pin controller
2304 * @pctldev: pin controller device
2305 *
2306 * Returns zero on success or an error number on failure.
2307 *
2308 * The pinctrl device will be automatically released when the device is unbound.
2309 */
2310int devm_pinctrl_register_and_init(struct device *dev,
2311				   struct pinctrl_desc *pctldesc,
2312				   void *driver_data,
2313				   struct pinctrl_dev **pctldev)
2314{
2315	struct pinctrl_dev **ptr;
2316	int error;
2317
2318	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2319	if (!ptr)
2320		return -ENOMEM;
2321
2322	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2323	if (error) {
2324		devres_free(ptr);
2325		return error;
2326	}
2327
2328	*ptr = *pctldev;
2329	devres_add(dev, ptr);
2330
2331	return 0;
2332}
2333EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2334
2335/**
2336 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2337 * @dev: device for which resource was allocated
2338 * @pctldev: the pinctrl device to unregister.
2339 */
2340void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2341{
2342	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2343			       devm_pinctrl_dev_match, pctldev));
2344}
2345EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2346
2347static int __init pinctrl_init(void)
2348{
2349	pr_info("initialized pinctrl subsystem\n");
2350	pinctrl_init_debugfs();
2351	return 0;
2352}
2353
2354/* init early since many drivers really need to initialized pinmux early */
2355core_initcall(pinctrl_init);
2356