1// SPDX-License-Identifier: GPL-2.0
2/*
3 * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
4 *
5 * Copyright (C) 2018-2020 Xilinx Inc.
6 *
7 * Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
8 * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
9 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10 *
11 * This driver is tested for USB, SGMII, SATA and Display Port currently.
12 * PCIe should also work but that is experimental as of now.
13 */
14
15#include <linux/clk.h>
16#include <linux/delay.h>
17#include <linux/io.h>
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/phy/phy.h>
22#include <linux/platform_device.h>
23#include <linux/pm_runtime.h>
24#include <linux/slab.h>
25
26#include <dt-bindings/phy/phy.h>
27
28/*
29 * Lane Registers
30 */
31
32/* TX De-emphasis parameters */
33#define L0_TX_ANA_TM_18			0x0048
34#define L0_TX_ANA_TM_118		0x01d8
35#define L0_TX_ANA_TM_118_FORCE_17_0	BIT(0)
36
37/* DN Resistor calibration code parameters */
38#define L0_TXPMA_ST_3			0x0b0c
39#define L0_DN_CALIB_CODE		0x3f
40
41/* PMA control parameters */
42#define L0_TXPMD_TM_45			0x0cb4
43#define L0_TXPMD_TM_48			0x0cc0
44#define L0_TXPMD_TM_45_OVER_DP_MAIN	BIT(0)
45#define L0_TXPMD_TM_45_ENABLE_DP_MAIN	BIT(1)
46#define L0_TXPMD_TM_45_OVER_DP_POST1	BIT(2)
47#define L0_TXPMD_TM_45_ENABLE_DP_POST1	BIT(3)
48#define L0_TXPMD_TM_45_OVER_DP_POST2	BIT(4)
49#define L0_TXPMD_TM_45_ENABLE_DP_POST2	BIT(5)
50
51/* PCS control parameters */
52#define L0_TM_DIG_6			0x106c
53#define L0_TM_DIS_DESCRAMBLE_DECODER	0x0f
54#define L0_TX_DIG_61			0x00f4
55#define L0_TM_DISABLE_SCRAMBLE_ENCODER	0x0f
56
57/* PLL Test Mode register parameters */
58#define L0_TM_PLL_DIG_37		0x2094
59#define L0_TM_COARSE_CODE_LIMIT		0x10
60
61/* PLL SSC step size offsets */
62#define L0_PLL_SS_STEPS_0_LSB		0x2368
63#define L0_PLL_SS_STEPS_1_MSB		0x236c
64#define L0_PLL_SS_STEP_SIZE_0_LSB	0x2370
65#define L0_PLL_SS_STEP_SIZE_1		0x2374
66#define L0_PLL_SS_STEP_SIZE_2		0x2378
67#define L0_PLL_SS_STEP_SIZE_3_MSB	0x237c
68#define L0_PLL_STATUS_READ_1		0x23e4
69
70/* SSC step size parameters */
71#define STEP_SIZE_0_MASK		0xff
72#define STEP_SIZE_1_MASK		0xff
73#define STEP_SIZE_2_MASK		0xff
74#define STEP_SIZE_3_MASK		0x3
75#define STEP_SIZE_SHIFT			8
76#define FORCE_STEP_SIZE			0x10
77#define FORCE_STEPS			0x20
78#define STEPS_0_MASK			0xff
79#define STEPS_1_MASK			0x07
80
81/* Reference clock selection parameters */
82#define L0_Ln_REF_CLK_SEL(n)		(0x2860 + (n) * 4)
83#define L0_REF_CLK_SEL_MASK		0x8f
84
85/* Calibration digital logic parameters */
86#define L3_TM_CALIB_DIG19		0xec4c
87#define L3_CALIB_DONE_STATUS		0xef14
88#define L3_TM_CALIB_DIG18		0xec48
89#define L3_TM_CALIB_DIG19_NSW		0x07
90#define L3_TM_CALIB_DIG18_NSW		0xe0
91#define L3_TM_OVERRIDE_NSW_CODE         0x20
92#define L3_CALIB_DONE			0x02
93#define L3_NSW_SHIFT			5
94#define L3_NSW_PIPE_SHIFT		4
95#define L3_NSW_CALIB_SHIFT		3
96
97#define PHY_REG_OFFSET			0x4000
98
99/*
100 * Global Registers
101 */
102
103/* Refclk selection parameters */
104#define PLL_REF_SEL(n)			(0x10000 + (n) * 4)
105#define PLL_FREQ_MASK			0x1f
106#define PLL_STATUS_LOCKED		0x10
107
108/* Inter Connect Matrix parameters */
109#define ICM_CFG0			0x10010
110#define ICM_CFG1			0x10014
111#define ICM_CFG0_L0_MASK		0x07
112#define ICM_CFG0_L1_MASK		0x70
113#define ICM_CFG1_L2_MASK		0x07
114#define ICM_CFG2_L3_MASK		0x70
115#define ICM_CFG_SHIFT			4
116
117/* Inter Connect Matrix allowed protocols */
118#define ICM_PROTOCOL_PD			0x0
119#define ICM_PROTOCOL_PCIE		0x1
120#define ICM_PROTOCOL_SATA		0x2
121#define ICM_PROTOCOL_USB		0x3
122#define ICM_PROTOCOL_DP			0x4
123#define ICM_PROTOCOL_SGMII		0x5
124
125/* Test Mode common reset control  parameters */
126#define TM_CMN_RST			0x10018
127#define TM_CMN_RST_EN			0x1
128#define TM_CMN_RST_SET			0x2
129#define TM_CMN_RST_MASK			0x3
130
131/* Bus width parameters */
132#define TX_PROT_BUS_WIDTH		0x10040
133#define RX_PROT_BUS_WIDTH		0x10044
134#define PROT_BUS_WIDTH_10		0x0
135#define PROT_BUS_WIDTH_20		0x1
136#define PROT_BUS_WIDTH_40		0x2
137#define PROT_BUS_WIDTH_SHIFT(n)		((n) * 2)
138#define PROT_BUS_WIDTH_MASK(n)		GENMASK((n) * 2 + 1, (n) * 2)
139
140/* Number of GT lanes */
141#define NUM_LANES			4
142
143/* SIOU SATA control register */
144#define SATA_CONTROL_OFFSET		0x0100
145
146/* Total number of controllers */
147#define CONTROLLERS_PER_LANE		5
148
149/* Protocol Type parameters */
150#define XPSGTR_TYPE_USB0		0  /* USB controller 0 */
151#define XPSGTR_TYPE_USB1		1  /* USB controller 1 */
152#define XPSGTR_TYPE_SATA_0		2  /* SATA controller lane 0 */
153#define XPSGTR_TYPE_SATA_1		3  /* SATA controller lane 1 */
154#define XPSGTR_TYPE_PCIE_0		4  /* PCIe controller lane 0 */
155#define XPSGTR_TYPE_PCIE_1		5  /* PCIe controller lane 1 */
156#define XPSGTR_TYPE_PCIE_2		6  /* PCIe controller lane 2 */
157#define XPSGTR_TYPE_PCIE_3		7  /* PCIe controller lane 3 */
158#define XPSGTR_TYPE_DP_0		8  /* Display Port controller lane 0 */
159#define XPSGTR_TYPE_DP_1		9  /* Display Port controller lane 1 */
160#define XPSGTR_TYPE_SGMII0		10 /* Ethernet SGMII controller 0 */
161#define XPSGTR_TYPE_SGMII1		11 /* Ethernet SGMII controller 1 */
162#define XPSGTR_TYPE_SGMII2		12 /* Ethernet SGMII controller 2 */
163#define XPSGTR_TYPE_SGMII3		13 /* Ethernet SGMII controller 3 */
164
165/* Timeout values */
166#define TIMEOUT_US			1000
167
168struct xpsgtr_dev;
169
170/**
171 * struct xpsgtr_ssc - structure to hold SSC settings for a lane
172 * @refclk_rate: PLL reference clock frequency
173 * @pll_ref_clk: value to be written to register for corresponding ref clk rate
174 * @steps: number of steps of SSC (Spread Spectrum Clock)
175 * @step_size: step size of each step
176 */
177struct xpsgtr_ssc {
178	u32 refclk_rate;
179	u8  pll_ref_clk;
180	u32 steps;
181	u32 step_size;
182};
183
184/**
185 * struct xpsgtr_phy - representation of a lane
186 * @phy: pointer to the kernel PHY device
187 * @type: controller which uses this lane
188 * @lane: lane number
189 * @protocol: protocol in which the lane operates
190 * @skip_phy_init: skip phy_init() if true
191 * @dev: pointer to the xpsgtr_dev instance
192 * @refclk: reference clock index
193 */
194struct xpsgtr_phy {
195	struct phy *phy;
196	u8 type;
197	u8 lane;
198	u8 protocol;
199	bool skip_phy_init;
200	struct xpsgtr_dev *dev;
201	unsigned int refclk;
202};
203
204/**
205 * struct xpsgtr_dev - representation of a ZynMP GT device
206 * @dev: pointer to device
207 * @serdes: serdes base address
208 * @siou: siou base address
209 * @gtr_mutex: mutex for locking
210 * @phys: PHY lanes
211 * @refclk_sscs: spread spectrum settings for the reference clocks
212 * @clk: reference clocks
213 * @tx_term_fix: fix for GT issue
214 * @saved_icm_cfg0: stored value of ICM CFG0 register
215 * @saved_icm_cfg1: stored value of ICM CFG1 register
216 */
217struct xpsgtr_dev {
218	struct device *dev;
219	void __iomem *serdes;
220	void __iomem *siou;
221	struct mutex gtr_mutex; /* mutex for locking */
222	struct xpsgtr_phy phys[NUM_LANES];
223	const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
224	struct clk *clk[NUM_LANES];
225	bool tx_term_fix;
226	unsigned int saved_icm_cfg0;
227	unsigned int saved_icm_cfg1;
228};
229
230/*
231 * Configuration Data
232 */
233
234/* lookup table to hold all settings needed for a ref clock frequency */
235static const struct xpsgtr_ssc ssc_lookup[] = {
236	{  19200000, 0x05,  608, 264020 },
237	{  20000000, 0x06,  634, 243454 },
238	{  24000000, 0x07,  760, 168973 },
239	{  26000000, 0x08,  824, 143860 },
240	{  27000000, 0x09,  856,  86551 },
241	{  38400000, 0x0a, 1218,  65896 },
242	{  40000000, 0x0b,  634, 243454 },
243	{  52000000, 0x0c,  824, 143860 },
244	{ 100000000, 0x0d, 1058,  87533 },
245	{ 108000000, 0x0e,  856,  86551 },
246	{ 125000000, 0x0f,  992, 119497 },
247	{ 135000000, 0x10, 1070,  55393 },
248	{ 150000000, 0x11,  792, 187091 }
249};
250
251/*
252 * I/O Accessors
253 */
254
255static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
256{
257	return readl(gtr_dev->serdes + reg);
258}
259
260static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
261{
262	writel(value, gtr_dev->serdes + reg);
263}
264
265static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
266				  u32 clr, u32 set)
267{
268	u32 value = xpsgtr_read(gtr_dev, reg);
269
270	value &= ~clr;
271	value |= set;
272	xpsgtr_write(gtr_dev, reg, value);
273}
274
275static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
276{
277	void __iomem *addr = gtr_phy->dev->serdes
278			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
279
280	return readl(addr);
281}
282
283static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
284				    u32 reg, u32 value)
285{
286	void __iomem *addr = gtr_phy->dev->serdes
287			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
288
289	writel(value, addr);
290}
291
292static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
293				      u32 reg, u32 clr, u32 set)
294{
295	void __iomem *addr = gtr_phy->dev->serdes
296			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
297
298	writel((readl(addr) & ~clr) | set, addr);
299}
300
301/*
302 * Hardware Configuration
303 */
304
305/* Wait for the PLL to lock (with a timeout). */
306static int xpsgtr_wait_pll_lock(struct phy *phy)
307{
308	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
309	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
310	unsigned int timeout = TIMEOUT_US;
311	int ret;
312
313	dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
314
315	while (1) {
316		u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
317
318		if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
319			ret = 0;
320			break;
321		}
322
323		if (--timeout == 0) {
324			ret = -ETIMEDOUT;
325			break;
326		}
327
328		udelay(1);
329	}
330
331	if (ret == -ETIMEDOUT)
332		dev_err(gtr_dev->dev,
333			"lane %u (type %u, protocol %u): PLL lock timeout\n",
334			gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
335
336	return ret;
337}
338
339/* Configure PLL and spread-sprectrum clock. */
340static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
341{
342	const struct xpsgtr_ssc *ssc;
343	u32 step_size;
344
345	ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
346	step_size = ssc->step_size;
347
348	xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
349		       PLL_FREQ_MASK, ssc->pll_ref_clk);
350
351	/* Enable lane clock sharing, if required */
352	if (gtr_phy->refclk != gtr_phy->lane) {
353		/* Lane3 Ref Clock Selection Register */
354		xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
355			       L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
356	}
357
358	/* SSC step size [7:0] */
359	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
360			   STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);
361
362	/* SSC step size [15:8] */
363	step_size >>= STEP_SIZE_SHIFT;
364	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
365			   STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);
366
367	/* SSC step size [23:16] */
368	step_size >>= STEP_SIZE_SHIFT;
369	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
370			   STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);
371
372	/* SSC steps [7:0] */
373	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
374			   STEPS_0_MASK, ssc->steps & STEPS_0_MASK);
375
376	/* SSC steps [10:8] */
377	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
378			   STEPS_1_MASK,
379			   (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
380
381	/* SSC step size [24:25] */
382	step_size >>= STEP_SIZE_SHIFT;
383	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
384			   STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
385			   FORCE_STEP_SIZE | FORCE_STEPS);
386}
387
388/* Configure the lane protocol. */
389static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
390{
391	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
392	u8 protocol = gtr_phy->protocol;
393
394	switch (gtr_phy->lane) {
395	case 0:
396		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
397		break;
398	case 1:
399		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
400			       protocol << ICM_CFG_SHIFT);
401		break;
402	case 2:
403		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
404		break;
405	case 3:
406		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
407			       protocol << ICM_CFG_SHIFT);
408		break;
409	default:
410		/* We already checked 0 <= lane <= 3 */
411		break;
412	}
413}
414
415/* Bypass (de)scrambler and 8b/10b decoder and encoder. */
416static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
417{
418	xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
419	xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
420}
421
422/* DP-specific initialization. */
423static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy)
424{
425	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45,
426			 L0_TXPMD_TM_45_OVER_DP_MAIN |
427			 L0_TXPMD_TM_45_ENABLE_DP_MAIN |
428			 L0_TXPMD_TM_45_OVER_DP_POST1 |
429			 L0_TXPMD_TM_45_OVER_DP_POST2 |
430			 L0_TXPMD_TM_45_ENABLE_DP_POST2);
431	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118,
432			 L0_TX_ANA_TM_118_FORCE_17_0);
433}
434
435/* SATA-specific initialization. */
436static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy)
437{
438	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
439
440	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
441
442	writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET);
443}
444
445/* SGMII-specific initialization. */
446static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
447{
448	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
449	u32 mask = PROT_BUS_WIDTH_MASK(gtr_phy->lane);
450	u32 val = PROT_BUS_WIDTH_10 << PROT_BUS_WIDTH_SHIFT(gtr_phy->lane);
451
452	/* Set SGMII protocol TX and RX bus width to 10 bits. */
453	xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, mask, val);
454	xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, mask, val);
455
456	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
457}
458
459/* Configure TX de-emphasis and margining for DP. */
460static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre,
461				    unsigned int voltage)
462{
463	static const u8 voltage_swing[4][4] = {
464		{ 0x2a, 0x27, 0x24, 0x20 },
465		{ 0x27, 0x23, 0x20, 0xff },
466		{ 0x24, 0x20, 0xff, 0xff },
467		{ 0xff, 0xff, 0xff, 0xff }
468	};
469	static const u8 pre_emphasis[4][4] = {
470		{ 0x02, 0x02, 0x02, 0x02 },
471		{ 0x01, 0x01, 0x01, 0xff },
472		{ 0x00, 0x00, 0xff, 0xff },
473		{ 0xff, 0xff, 0xff, 0xff }
474	};
475
476	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]);
477	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]);
478}
479
480/*
481 * PHY Operations
482 */
483
484static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy)
485{
486	/*
487	 * As USB may save the snapshot of the states during hibernation, doing
488	 * phy_init() will put the USB controller into reset, resulting in the
489	 * losing of the saved snapshot. So try to avoid phy_init() for USB
490	 * except when gtr_phy->skip_phy_init is false (this happens when FPD is
491	 * shutdown during suspend or when gt lane is changed from current one)
492	 */
493	if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init)
494		return false;
495	else
496		return true;
497}
498
499/*
500 * There is a functional issue in the GT. The TX termination resistance can be
501 * out of spec due to a issue in the calibration logic. This is the workaround
502 * to fix it, required for XCZU9EG silicon.
503 */
504static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy)
505{
506	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
507	u32 timeout = TIMEOUT_US;
508	u32 nsw;
509
510	/* Enabling Test Mode control for CMN Rest */
511	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
512
513	/* Set Test Mode reset */
514	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
515
516	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00);
517	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE);
518
519	/*
520	 * As a part of work around sequence for PMOS calibration fix,
521	 * we need to configure any lane ICM_CFG to valid protocol. This
522	 * will deassert the CMN_Resetn signal.
523	 */
524	xpsgtr_lane_set_protocol(gtr_phy);
525
526	/* Clear Test Mode reset */
527	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
528
529	dev_dbg(gtr_dev->dev, "calibrating...\n");
530
531	do {
532		u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS);
533
534		if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE)
535			break;
536
537		if (!--timeout) {
538			dev_err(gtr_dev->dev, "calibration time out\n");
539			return -ETIMEDOUT;
540		}
541
542		udelay(1);
543	} while (timeout > 0);
544
545	dev_dbg(gtr_dev->dev, "calibration done\n");
546
547	/* Reading NMOS Register Code */
548	nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE;
549
550	/* Set Test Mode reset */
551	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
552
553	/* Writing NMOS register values back [5:3] */
554	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT);
555
556	/* Writing NMOS register value [2:0] */
557	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18,
558		     ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) |
559		     (1 << L3_NSW_PIPE_SHIFT));
560
561	/* Clear Test Mode reset */
562	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
563
564	return 0;
565}
566
567static int xpsgtr_phy_init(struct phy *phy)
568{
569	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
570	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
571	int ret = 0;
572
573	mutex_lock(&gtr_dev->gtr_mutex);
574
575	/* Configure and enable the clock when peripheral phy_init call */
576	if (clk_prepare_enable(gtr_dev->clk[gtr_phy->lane]))
577		goto out;
578
579	/* Skip initialization if not required. */
580	if (!xpsgtr_phy_init_required(gtr_phy))
581		goto out;
582
583	if (gtr_dev->tx_term_fix) {
584		ret = xpsgtr_phy_tx_term_fix(gtr_phy);
585		if (ret < 0)
586			goto out;
587
588		gtr_dev->tx_term_fix = false;
589	}
590
591	/* Enable coarse code saturation limiting logic. */
592	xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
593
594	/*
595	 * Configure the PLL, the lane protocol, and perform protocol-specific
596	 * initialization.
597	 */
598	xpsgtr_configure_pll(gtr_phy);
599	xpsgtr_lane_set_protocol(gtr_phy);
600
601	switch (gtr_phy->protocol) {
602	case ICM_PROTOCOL_DP:
603		xpsgtr_phy_init_dp(gtr_phy);
604		break;
605
606	case ICM_PROTOCOL_SATA:
607		xpsgtr_phy_init_sata(gtr_phy);
608		break;
609
610	case ICM_PROTOCOL_SGMII:
611		xpsgtr_phy_init_sgmii(gtr_phy);
612		break;
613	}
614
615out:
616	mutex_unlock(&gtr_dev->gtr_mutex);
617	return ret;
618}
619
620static int xpsgtr_phy_exit(struct phy *phy)
621{
622	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
623	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
624
625	gtr_phy->skip_phy_init = false;
626
627	/* Ensure that disable clock only, which configure for lane */
628	clk_disable_unprepare(gtr_dev->clk[gtr_phy->lane]);
629
630	return 0;
631}
632
633static int xpsgtr_phy_power_on(struct phy *phy)
634{
635	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
636	int ret = 0;
637
638	/* Skip initialization if not required. */
639	if (!xpsgtr_phy_init_required(gtr_phy))
640		return ret;
641	/*
642	 * Wait for the PLL to lock. For DP, only wait on DP0 to avoid
643	 * cumulating waits for both lanes. The user is expected to initialize
644	 * lane 0 last.
645	 */
646	if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
647	    gtr_phy->type == XPSGTR_TYPE_DP_0)
648		ret = xpsgtr_wait_pll_lock(phy);
649
650	return ret;
651}
652
653static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts)
654{
655	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
656
657	if (gtr_phy->protocol != ICM_PROTOCOL_DP)
658		return 0;
659
660	xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]);
661
662	return 0;
663}
664
665static const struct phy_ops xpsgtr_phyops = {
666	.init		= xpsgtr_phy_init,
667	.exit		= xpsgtr_phy_exit,
668	.power_on	= xpsgtr_phy_power_on,
669	.configure	= xpsgtr_phy_configure,
670	.owner		= THIS_MODULE,
671};
672
673/*
674 * OF Xlate Support
675 */
676
677/* Set the lane type and protocol based on the PHY type and instance number. */
678static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
679				unsigned int phy_instance)
680{
681	unsigned int num_phy_types;
682	const int *phy_types;
683
684	switch (phy_type) {
685	case PHY_TYPE_SATA: {
686		static const int types[] = {
687			XPSGTR_TYPE_SATA_0,
688			XPSGTR_TYPE_SATA_1,
689		};
690
691		phy_types = types;
692		num_phy_types = ARRAY_SIZE(types);
693		gtr_phy->protocol = ICM_PROTOCOL_SATA;
694		break;
695	}
696	case PHY_TYPE_USB3: {
697		static const int types[] = {
698			XPSGTR_TYPE_USB0,
699			XPSGTR_TYPE_USB1,
700		};
701
702		phy_types = types;
703		num_phy_types = ARRAY_SIZE(types);
704		gtr_phy->protocol = ICM_PROTOCOL_USB;
705		break;
706	}
707	case PHY_TYPE_DP: {
708		static const int types[] = {
709			XPSGTR_TYPE_DP_0,
710			XPSGTR_TYPE_DP_1,
711		};
712
713		phy_types = types;
714		num_phy_types = ARRAY_SIZE(types);
715		gtr_phy->protocol = ICM_PROTOCOL_DP;
716		break;
717	}
718	case PHY_TYPE_PCIE: {
719		static const int types[] = {
720			XPSGTR_TYPE_PCIE_0,
721			XPSGTR_TYPE_PCIE_1,
722			XPSGTR_TYPE_PCIE_2,
723			XPSGTR_TYPE_PCIE_3,
724		};
725
726		phy_types = types;
727		num_phy_types = ARRAY_SIZE(types);
728		gtr_phy->protocol = ICM_PROTOCOL_PCIE;
729		break;
730	}
731	case PHY_TYPE_SGMII: {
732		static const int types[] = {
733			XPSGTR_TYPE_SGMII0,
734			XPSGTR_TYPE_SGMII1,
735			XPSGTR_TYPE_SGMII2,
736			XPSGTR_TYPE_SGMII3,
737		};
738
739		phy_types = types;
740		num_phy_types = ARRAY_SIZE(types);
741		gtr_phy->protocol = ICM_PROTOCOL_SGMII;
742		break;
743	}
744	default:
745		return -EINVAL;
746	}
747
748	if (phy_instance >= num_phy_types)
749		return -EINVAL;
750
751	gtr_phy->type = phy_types[phy_instance];
752	return 0;
753}
754
755/*
756 * Valid combinations of controllers and lanes (Interconnect Matrix).
757 */
758static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
759	{ XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
760		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
761	{ XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
762		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
763	{ XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
764		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
765	{ XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
766		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
767};
768
769/* Translate OF phandle and args to PHY instance. */
770static struct phy *xpsgtr_xlate(struct device *dev,
771				const struct of_phandle_args *args)
772{
773	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
774	struct xpsgtr_phy *gtr_phy;
775	unsigned int phy_instance;
776	unsigned int phy_lane;
777	unsigned int phy_type;
778	unsigned int refclk;
779	unsigned int i;
780	int ret;
781
782	if (args->args_count != 4) {
783		dev_err(dev, "Invalid number of cells in 'phy' property\n");
784		return ERR_PTR(-EINVAL);
785	}
786
787	/*
788	 * Get the PHY parameters from the OF arguments and derive the lane
789	 * type.
790	 */
791	phy_lane = args->args[0];
792	if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) {
793		dev_err(dev, "Invalid lane number %u\n", phy_lane);
794		return ERR_PTR(-ENODEV);
795	}
796
797	gtr_phy = &gtr_dev->phys[phy_lane];
798	phy_type = args->args[1];
799	phy_instance = args->args[2];
800
801	ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
802	if (ret < 0) {
803		dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n");
804		return ERR_PTR(ret);
805	}
806
807	refclk = args->args[3];
808	if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
809	    !gtr_dev->refclk_sscs[refclk]) {
810		dev_err(dev, "Invalid reference clock number %u\n", refclk);
811		return ERR_PTR(-EINVAL);
812	}
813
814	gtr_phy->refclk = refclk;
815
816	/*
817	 * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
818	 * is allowed to operate on the lane.
819	 */
820	for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
821		if (icm_matrix[phy_lane][i] == gtr_phy->type)
822			return gtr_phy->phy;
823	}
824
825	return ERR_PTR(-EINVAL);
826}
827
828/*
829 * Power Management
830 */
831
832static int xpsgtr_runtime_suspend(struct device *dev)
833{
834	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
835
836	/* Save the snapshot ICM_CFG registers. */
837	gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
838	gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
839
840	return 0;
841}
842
843static int xpsgtr_runtime_resume(struct device *dev)
844{
845	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
846	unsigned int icm_cfg0, icm_cfg1;
847	unsigned int i;
848	bool skip_phy_init;
849
850	icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
851	icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
852
853	/* Return if no GT lanes got configured before suspend. */
854	if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1)
855		return 0;
856
857	/* Check if the ICM configurations changed after suspend. */
858	if (icm_cfg0 == gtr_dev->saved_icm_cfg0 &&
859	    icm_cfg1 == gtr_dev->saved_icm_cfg1)
860		skip_phy_init = true;
861	else
862		skip_phy_init = false;
863
864	/* Update the skip_phy_init for all gtr_phy instances. */
865	for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++)
866		gtr_dev->phys[i].skip_phy_init = skip_phy_init;
867
868	return 0;
869}
870
871static DEFINE_RUNTIME_DEV_PM_OPS(xpsgtr_pm_ops, xpsgtr_runtime_suspend,
872				 xpsgtr_runtime_resume, NULL);
873/*
874 * Probe & Platform Driver
875 */
876
877static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev)
878{
879	unsigned int refclk;
880
881	for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) {
882		unsigned long rate;
883		unsigned int i;
884		struct clk *clk;
885		char name[8];
886
887		snprintf(name, sizeof(name), "ref%u", refclk);
888		clk = devm_clk_get_optional(gtr_dev->dev, name);
889		if (IS_ERR(clk)) {
890			return dev_err_probe(gtr_dev->dev, PTR_ERR(clk),
891					     "Failed to get ref clock %u\n",
892					     refclk);
893		}
894
895		if (!clk)
896			continue;
897
898		gtr_dev->clk[refclk] = clk;
899
900		/*
901		 * Get the spread spectrum (SSC) settings for the reference
902		 * clock rate.
903		 */
904		rate = clk_get_rate(clk);
905
906		for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
907			/* Allow an error of 100 ppm */
908			unsigned long error = ssc_lookup[i].refclk_rate / 10000;
909
910			if (abs(rate - ssc_lookup[i].refclk_rate) < error) {
911				gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
912				break;
913			}
914		}
915
916		if (i == ARRAY_SIZE(ssc_lookup)) {
917			dev_err(gtr_dev->dev,
918				"Invalid rate %lu for reference clock %u\n",
919				rate, refclk);
920			return -EINVAL;
921		}
922	}
923
924	return 0;
925}
926
927static int xpsgtr_probe(struct platform_device *pdev)
928{
929	struct device_node *np = pdev->dev.of_node;
930	struct xpsgtr_dev *gtr_dev;
931	struct phy_provider *provider;
932	unsigned int port;
933	int ret;
934
935	gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL);
936	if (!gtr_dev)
937		return -ENOMEM;
938
939	gtr_dev->dev = &pdev->dev;
940	platform_set_drvdata(pdev, gtr_dev);
941
942	mutex_init(&gtr_dev->gtr_mutex);
943
944	if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr"))
945		gtr_dev->tx_term_fix =
946			of_property_read_bool(np, "xlnx,tx-termination-fix");
947
948	/* Acquire resources. */
949	gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes");
950	if (IS_ERR(gtr_dev->serdes))
951		return PTR_ERR(gtr_dev->serdes);
952
953	gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou");
954	if (IS_ERR(gtr_dev->siou))
955		return PTR_ERR(gtr_dev->siou);
956
957	ret = xpsgtr_get_ref_clocks(gtr_dev);
958	if (ret)
959		return ret;
960
961	/* Create PHYs. */
962	for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) {
963		struct xpsgtr_phy *gtr_phy = &gtr_dev->phys[port];
964		struct phy *phy;
965
966		gtr_phy->lane = port;
967		gtr_phy->dev = gtr_dev;
968
969		phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops);
970		if (IS_ERR(phy)) {
971			dev_err(&pdev->dev, "failed to create PHY\n");
972			return PTR_ERR(phy);
973		}
974
975		gtr_phy->phy = phy;
976		phy_set_drvdata(phy, gtr_phy);
977	}
978
979	/* Register the PHY provider. */
980	provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate);
981	if (IS_ERR(provider)) {
982		dev_err(&pdev->dev, "registering provider failed\n");
983		return PTR_ERR(provider);
984	}
985
986	pm_runtime_set_active(gtr_dev->dev);
987	pm_runtime_enable(gtr_dev->dev);
988
989	ret = pm_runtime_resume_and_get(gtr_dev->dev);
990	if (ret < 0) {
991		pm_runtime_disable(gtr_dev->dev);
992		return ret;
993	}
994
995	return 0;
996}
997
998static int xpsgtr_remove(struct platform_device *pdev)
999{
1000	struct xpsgtr_dev *gtr_dev = platform_get_drvdata(pdev);
1001
1002	pm_runtime_disable(gtr_dev->dev);
1003	pm_runtime_put_noidle(gtr_dev->dev);
1004	pm_runtime_set_suspended(gtr_dev->dev);
1005
1006	return 0;
1007}
1008
1009static const struct of_device_id xpsgtr_of_match[] = {
1010	{ .compatible = "xlnx,zynqmp-psgtr", },
1011	{ .compatible = "xlnx,zynqmp-psgtr-v1.1", },
1012	{},
1013};
1014MODULE_DEVICE_TABLE(of, xpsgtr_of_match);
1015
1016static struct platform_driver xpsgtr_driver = {
1017	.probe = xpsgtr_probe,
1018	.remove	= xpsgtr_remove,
1019	.driver = {
1020		.name = "xilinx-psgtr",
1021		.of_match_table	= xpsgtr_of_match,
1022		.pm =  pm_ptr(&xpsgtr_pm_ops),
1023	},
1024};
1025
1026module_platform_driver(xpsgtr_driver);
1027
1028MODULE_AUTHOR("Xilinx Inc.");
1029MODULE_LICENSE("GPL v2");
1030MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver");
1031