1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * AppliedMicro X-Gene Multi-purpose PHY driver
4 *
5 * Copyright (c) 2014, Applied Micro Circuits Corporation
6 * Author: Loc Ho <lho@apm.com>
7 *         Tuan Phan <tphan@apm.com>
8 *         Suman Tripathi <stripathi@apm.com>
9 *
10 * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
11 * The first PLL clock macro is used for internal reference clock. The second
12 * PLL clock macro is used to generate the clock for the PHY. This driver
13 * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
14 * operate according to the mode of operation. The first PLL CMU is only
15 * required if internal clock is enabled.
16 *
17 * Logical Layer Out Of HW module units:
18 *
19 * -----------------
20 * | Internal      |    |------|
21 * | Ref PLL CMU   |----|      |     -------------    ---------
22 * ------------ ----    | MUX  |-----|PHY PLL CMU|----| Serdes|
23 *                      |      |     |           |    ---------
24 * External Clock ------|      |     -------------
25 *                      |------|
26 *
27 * The Ref PLL CMU CSR (Configuration System Registers) is accessed
28 * indirectly from the SDS offset at 0x2000. It is only required for
29 * internal reference clock.
30 * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
31 * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
32 *
33 * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
34 * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
35 * it is located outside the PHY IP. This is the case for the PHY located
36 * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
37 * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
38 *
39 * Currently, this driver only supports Gen3 SATA mode with external clock.
40 */
41#include <linux/module.h>
42#include <linux/of.h>
43#include <linux/platform_device.h>
44#include <linux/io.h>
45#include <linux/delay.h>
46#include <linux/phy/phy.h>
47#include <linux/clk.h>
48
49/* Max 2 lanes per a PHY unit */
50#define MAX_LANE			2
51
52/* Register offset inside the PHY */
53#define SERDES_PLL_INDIRECT_OFFSET	0x0000
54#define SERDES_PLL_REF_INDIRECT_OFFSET	0x2000
55#define SERDES_INDIRECT_OFFSET		0x0400
56#define SERDES_LANE_STRIDE		0x0200
57
58/* Some default Serdes parameters */
59#define DEFAULT_SATA_TXBOOST_GAIN	{ 0x1e, 0x1e, 0x1e }
60#define DEFAULT_SATA_TXEYEDIRECTION	{ 0x0, 0x0, 0x0 }
61#define DEFAULT_SATA_TXEYETUNING	{ 0xa, 0xa, 0xa }
62#define DEFAULT_SATA_SPD_SEL		{ 0x1, 0x3, 0x7 }
63#define DEFAULT_SATA_TXAMP		{ 0x8, 0x8, 0x8 }
64#define DEFAULT_SATA_TXCN1		{ 0x2, 0x2, 0x2 }
65#define DEFAULT_SATA_TXCN2		{ 0x0, 0x0, 0x0 }
66#define DEFAULT_SATA_TXCP1		{ 0xa, 0xa, 0xa }
67
68#define SATA_SPD_SEL_GEN3		0x7
69#define SATA_SPD_SEL_GEN2		0x3
70#define SATA_SPD_SEL_GEN1		0x1
71
72#define SSC_DISABLE			0
73#define SSC_ENABLE			1
74
75#define FBDIV_VAL_50M			0x77
76#define REFDIV_VAL_50M			0x1
77#define FBDIV_VAL_100M			0x3B
78#define REFDIV_VAL_100M			0x0
79
80/* SATA Clock/Reset CSR */
81#define SATACLKENREG			0x00000000
82#define  SATA0_CORE_CLKEN		0x00000002
83#define  SATA1_CORE_CLKEN		0x00000004
84#define SATASRESETREG			0x00000004
85#define  SATA_MEM_RESET_MASK		0x00000020
86#define  SATA_MEM_RESET_RD(src)		(((src) & 0x00000020) >> 5)
87#define  SATA_SDS_RESET_MASK		0x00000004
88#define  SATA_CSR_RESET_MASK		0x00000001
89#define  SATA_CORE_RESET_MASK		0x00000002
90#define  SATA_PMCLK_RESET_MASK		0x00000010
91#define  SATA_PCLK_RESET_MASK		0x00000008
92
93/* SDS CSR used for PHY Indirect access */
94#define SATA_ENET_SDS_PCS_CTL0		0x00000000
95#define  REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
96		(((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
97#define  REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
98		(((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
99#define SATA_ENET_SDS_CTL0		0x0000000c
100#define  REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
101		(((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
102#define SATA_ENET_SDS_CTL1		0x00000010
103#define  CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
104		(((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
105#define SATA_ENET_SDS_RST_CTL		0x00000024
106#define SATA_ENET_SDS_IND_CMD_REG	0x0000003c
107#define  CFG_IND_WR_CMD_MASK		0x00000001
108#define  CFG_IND_RD_CMD_MASK		0x00000002
109#define  CFG_IND_CMD_DONE_MASK		0x00000004
110#define  CFG_IND_ADDR_SET(dst, src) \
111		(((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
112#define SATA_ENET_SDS_IND_RDATA_REG	0x00000040
113#define SATA_ENET_SDS_IND_WDATA_REG	0x00000044
114#define SATA_ENET_CLK_MACRO_REG		0x0000004c
115#define  I_RESET_B_SET(dst, src) \
116		(((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
117#define  I_PLL_FBDIV_SET(dst, src) \
118		(((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
119#define  I_CUSTOMEROV_SET(dst, src) \
120		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
121#define  O_PLL_LOCK_RD(src)		(((src) & 0x40000000) >> 30)
122#define  O_PLL_READY_RD(src)		(((src) & 0x80000000) >> 31)
123
124/* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
125#define CMU_REG0			0x00000
126#define  CMU_REG0_PLL_REF_SEL_MASK	0x00002000
127#define  CMU_REG0_PLL_REF_SEL_SET(dst, src)	\
128		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
129#define  CMU_REG0_PDOWN_MASK		0x00004000
130#define  CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
131		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
132#define CMU_REG1			0x00002
133#define  CMU_REG1_PLL_CP_SET(dst, src) \
134		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
135#define  CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
136		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
137#define  CMU_REG1_PLL_CP_SEL_SET(dst, src) \
138		(((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
139#define  CMU_REG1_REFCLK_CMOS_SEL_MASK	0x00000001
140#define  CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src)	\
141		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
142#define CMU_REG2			0x00004
143#define  CMU_REG2_PLL_REFDIV_SET(dst, src) \
144		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
145#define  CMU_REG2_PLL_LFRES_SET(dst, src) \
146		(((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
147#define  CMU_REG2_PLL_FBDIV_SET(dst, src) \
148		(((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
149#define CMU_REG3			0x00006
150#define  CMU_REG3_VCOVARSEL_SET(dst, src) \
151		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
152#define  CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
153		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
154#define  CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
155		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
156#define CMU_REG4			0x00008
157#define CMU_REG5			0x0000a
158#define  CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
159		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
160#define  CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
161		(((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
162#define  CMU_REG5_PLL_LFCAP_SET(dst, src) \
163		(((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
164#define  CMU_REG5_PLL_RESETB_MASK	0x00000001
165#define CMU_REG6			0x0000c
166#define  CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
167		(((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
168#define  CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
169		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
170#define CMU_REG7			0x0000e
171#define  CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
172#define  CMU_REG7_VCO_CAL_FAIL_RD(src)	((0x00000c00 & (u32) (src)) >> 10)
173#define CMU_REG8			0x00010
174#define CMU_REG9			0x00012
175#define  CMU_REG9_WORD_LEN_8BIT		0x000
176#define  CMU_REG9_WORD_LEN_10BIT	0x001
177#define  CMU_REG9_WORD_LEN_16BIT	0x002
178#define  CMU_REG9_WORD_LEN_20BIT	0x003
179#define  CMU_REG9_WORD_LEN_32BIT	0x004
180#define  CMU_REG9_WORD_LEN_40BIT	0x005
181#define  CMU_REG9_WORD_LEN_64BIT	0x006
182#define  CMU_REG9_WORD_LEN_66BIT	0x007
183#define  CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
184		(((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
185#define  CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
186		(((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
187#define  CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
188		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
189#define  CMU_REG9_VBG_BYPASSB_SET(dst, src) \
190		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
191#define  CMU_REG9_IGEN_BYPASS_SET(dst, src) \
192		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
193#define CMU_REG10			0x00014
194#define  CMU_REG10_VREG_REFSEL_SET(dst, src) \
195		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
196#define CMU_REG11			0x00016
197#define CMU_REG12			0x00018
198#define  CMU_REG12_STATE_DELAY9_SET(dst, src) \
199		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
200#define CMU_REG13			0x0001a
201#define CMU_REG14			0x0001c
202#define CMU_REG15			0x0001e
203#define CMU_REG16			0x00020
204#define  CMU_REG16_PVT_DN_MAN_ENA_MASK	0x00000001
205#define  CMU_REG16_PVT_UP_MAN_ENA_MASK	0x00000002
206#define  CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
207		(((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
208#define  CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
209		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
210#define  CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
211		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
212#define CMU_REG17			0x00022
213#define  CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
214		(((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
215#define  CMU_REG17_RESERVED_7_SET(dst, src) \
216		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
217#define  CMU_REG17_PVT_TERM_MAN_ENA_MASK	0x00008000
218#define CMU_REG18			0x00024
219#define CMU_REG19			0x00026
220#define CMU_REG20			0x00028
221#define CMU_REG21			0x0002a
222#define CMU_REG22			0x0002c
223#define CMU_REG23			0x0002e
224#define CMU_REG24			0x00030
225#define CMU_REG25			0x00032
226#define CMU_REG26			0x00034
227#define  CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
228		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
229#define CMU_REG27			0x00036
230#define CMU_REG28			0x00038
231#define CMU_REG29			0x0003a
232#define CMU_REG30			0x0003c
233#define  CMU_REG30_LOCK_COUNT_SET(dst, src) \
234		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
235#define  CMU_REG30_PCIE_MODE_SET(dst, src) \
236		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
237#define CMU_REG31			0x0003e
238#define CMU_REG32			0x00040
239#define  CMU_REG32_FORCE_VCOCAL_START_MASK	0x00004000
240#define  CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
241		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
242#define  CMU_REG32_IREF_ADJ_SET(dst, src) \
243		(((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
244#define CMU_REG33			0x00042
245#define CMU_REG34			0x00044
246#define  CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
247		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
248#define  CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
249		(((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
250#define  CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
251		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
252#define  CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
253		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
254#define CMU_REG35			0x00046
255#define  CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
256		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
257#define CMU_REG36				0x00048
258#define  CMU_REG36_PLL_SSC_EN_SET(dst, src) \
259		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
260#define  CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
261		(((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
262#define  CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
263		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
264#define CMU_REG37			0x0004a
265#define CMU_REG38			0x0004c
266#define CMU_REG39			0x0004e
267
268/* PHY lane CSR accessing from SDS indirectly */
269#define RXTX_REG0			0x000
270#define  RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
271		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
272#define  RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
273		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
274#define  RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
275		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
276#define RXTX_REG1			0x002
277#define  RXTX_REG1_RXACVCM_SET(dst, src) \
278		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
279#define  RXTX_REG1_CTLE_EQ_SET(dst, src) \
280		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
281#define  RXTX_REG1_RXVREG1_SET(dst, src) \
282		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
283#define  RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
284		(((dst) & ~0x00000006) | (((u32) (src) << 1) &  0x00000006))
285#define RXTX_REG2			0x004
286#define  RXTX_REG2_VTT_ENA_SET(dst, src) \
287		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
288#define  RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
289		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
290#define  RXTX_REG2_VTT_SEL_SET(dst, src) \
291		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
292#define RXTX_REG4			0x008
293#define  RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK	0x00000040
294#define  RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
295		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
296#define  RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
297		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
298#define RXTX_REG5			0x00a
299#define  RXTX_REG5_TX_CN1_SET(dst, src) \
300		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
301#define  RXTX_REG5_TX_CP1_SET(dst, src) \
302		(((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
303#define  RXTX_REG5_TX_CN2_SET(dst, src) \
304		(((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
305#define RXTX_REG6			0x00c
306#define  RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
307		(((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
308#define  RXTX_REG6_TXAMP_ENA_SET(dst, src) \
309		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
310#define  RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
311		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
312#define  RXTX_REG6_TX_IDLE_SET(dst, src) \
313		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
314#define  RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
315		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
316#define RXTX_REG7			0x00e
317#define  RXTX_REG7_RESETB_RXD_MASK	0x00000100
318#define  RXTX_REG7_RESETB_RXA_MASK	0x00000080
319#define  RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
320		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
321#define  RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
322		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
323#define RXTX_REG8			0x010
324#define  RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
325		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
326#define  RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
327		(((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
328#define  RXTX_REG8_SSC_ENABLE_SET(dst, src) \
329		(((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
330#define  RXTX_REG8_SD_VREF_SET(dst, src) \
331		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
332#define  RXTX_REG8_SD_DISABLE_SET(dst, src) \
333		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
334#define RXTX_REG7			0x00e
335#define  RXTX_REG7_RESETB_RXD_SET(dst, src) \
336		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
337#define  RXTX_REG7_RESETB_RXA_SET(dst, src) \
338		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
339#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK	0x00004000
340#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
341		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
342#define RXTX_REG11			0x016
343#define  RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
344		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
345#define RXTX_REG12			0x018
346#define  RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
347		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
348#define  RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
349		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
350#define  RXTX_REG12_RX_DET_TERM_ENABLE_MASK	0x00000002
351#define  RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
352		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
353#define RXTX_REG13			0x01a
354#define RXTX_REG14			0x01c
355#define  RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
356		(((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
357#define  RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
358		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
359#define RXTX_REG26			0x034
360#define  RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
361		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
362#define  RXTX_REG26_BLWC_ENA_SET(dst, src) \
363		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
364#define RXTX_REG21			0x02a
365#define  RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
366#define  RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
367#define  RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src)	((0x0000000f & (u32)(src)))
368#define RXTX_REG22			0x02c
369#define  RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
370#define  RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
371#define  RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src)	((0x0000000f & (u32)(src)))
372#define RXTX_REG23			0x02e
373#define  RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
374#define  RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
375#define RXTX_REG24			0x030
376#define  RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
377#define  RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
378#define RXTX_REG27			0x036
379#define RXTX_REG28			0x038
380#define RXTX_REG31			0x03e
381#define RXTX_REG38			0x04c
382#define  RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
383		(((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
384#define RXTX_REG39			0x04e
385#define RXTX_REG40			0x050
386#define RXTX_REG41			0x052
387#define RXTX_REG42			0x054
388#define RXTX_REG43			0x056
389#define RXTX_REG44			0x058
390#define RXTX_REG45			0x05a
391#define RXTX_REG46			0x05c
392#define RXTX_REG47			0x05e
393#define RXTX_REG48			0x060
394#define RXTX_REG49			0x062
395#define RXTX_REG50			0x064
396#define RXTX_REG51			0x066
397#define RXTX_REG52			0x068
398#define RXTX_REG53			0x06a
399#define RXTX_REG54			0x06c
400#define RXTX_REG55			0x06e
401#define RXTX_REG61			0x07a
402#define  RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
403		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
404#define  RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
405		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
406#define  RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
407		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
408#define  RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
409		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
410#define RXTX_REG62			0x07c
411#define  RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
412		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
413#define RXTX_REG81			0x0a2
414#define  RXTX_REG89_MU_TH7_SET(dst, src) \
415		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
416#define  RXTX_REG89_MU_TH8_SET(dst, src) \
417		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
418#define  RXTX_REG89_MU_TH9_SET(dst, src) \
419		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
420#define RXTX_REG96			0x0c0
421#define  RXTX_REG96_MU_FREQ1_SET(dst, src) \
422		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
423#define  RXTX_REG96_MU_FREQ2_SET(dst, src) \
424		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
425#define  RXTX_REG96_MU_FREQ3_SET(dst, src) \
426		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
427#define RXTX_REG99			0x0c6
428#define  RXTX_REG99_MU_PHASE1_SET(dst, src) \
429		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
430#define  RXTX_REG99_MU_PHASE2_SET(dst, src) \
431		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
432#define  RXTX_REG99_MU_PHASE3_SET(dst, src) \
433		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
434#define RXTX_REG102			0x0cc
435#define  RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
436		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
437#define RXTX_REG114			0x0e4
438#define RXTX_REG121			0x0f2
439#define  RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
440#define RXTX_REG125			0x0fa
441#define  RXTX_REG125_PQ_REG_SET(dst, src) \
442		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
443#define  RXTX_REG125_SIGN_PQ_SET(dst, src) \
444		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
445#define  RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
446		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
447#define  RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
448		(((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
449#define  RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
450		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
451#define RXTX_REG127			0x0fe
452#define  RXTX_REG127_FORCE_SUM_CAL_START_MASK	0x00000002
453#define  RXTX_REG127_FORCE_LAT_CAL_START_MASK	0x00000004
454#define  RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
455		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
456#define  RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
457		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
458#define  RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
459		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
460#define  RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
461		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
462#define  RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
463		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
464#define RXTX_REG128			0x100
465#define  RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
466		(((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
467#define  RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
468		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
469#define  RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
470		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
471#define RXTX_REG129			0x102
472#define  RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
473		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
474#define  RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
475		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
476#define RXTX_REG130			0x104
477#define  RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
478		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
479#define  RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
480		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
481#define RXTX_REG145			0x122
482#define  RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
483		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
484#define  RXTX_REG145_RXES_ENA_SET(dst, src) \
485		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
486#define  RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
487		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
488#define  RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
489		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
490#define RXTX_REG147			0x126
491#define RXTX_REG148			0x128
492
493/* Clock macro type */
494enum cmu_type_t {
495	REF_CMU = 0,	/* Clock macro is the internal reference clock */
496	PHY_CMU = 1,	/* Clock macro is the PLL for the Serdes */
497};
498
499enum mux_type_t {
500	MUX_SELECT_ATA = 0,	/* Switch the MUX to ATA */
501	MUX_SELECT_SGMMII = 0,	/* Switch the MUX to SGMII */
502};
503
504enum clk_type_t {
505	CLK_EXT_DIFF = 0,	/* External differential */
506	CLK_INT_DIFF = 1,	/* Internal differential */
507	CLK_INT_SING = 2,	/* Internal single ended */
508};
509
510enum xgene_phy_mode {
511	MODE_SATA	= 0,	/* List them for simple reference */
512	MODE_SGMII	= 1,
513	MODE_PCIE	= 2,
514	MODE_USB	= 3,
515	MODE_XFI	= 4,
516	MODE_MAX
517};
518
519struct xgene_sata_override_param {
520	u32 speed[MAX_LANE]; /* Index for override parameter per lane */
521	u32 txspeed[3];			/* Tx speed */
522	u32 txboostgain[MAX_LANE*3];	/* Tx freq boost and gain control */
523	u32 txeyetuning[MAX_LANE*3];	/* Tx eye tuning */
524	u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
525	u32 txamplitude[MAX_LANE*3];	/* Tx amplitude control */
526	u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
527	u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
528	u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
529};
530
531struct xgene_phy_ctx {
532	struct device *dev;
533	struct phy *phy;
534	enum xgene_phy_mode mode;		/* Mode of operation */
535	enum clk_type_t clk_type;	/* Input clock selection */
536	void __iomem *sds_base;		/* PHY CSR base addr */
537	struct clk *clk;		/* Optional clock */
538
539	/* Override Serdes parameters */
540	struct xgene_sata_override_param sata_param;
541};
542
543/*
544 * For chip earlier than A3 version, enable this flag.
545 * To enable, pass boot argument phy_xgene.preA3Chip=1
546 */
547static int preA3Chip;
548MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
549module_param_named(preA3Chip, preA3Chip, int, 0444);
550
551static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
552		   u32 indirect_data_reg, u32 addr, u32 data)
553{
554	unsigned long deadline = jiffies + HZ;
555	u32 val;
556	u32 cmd;
557
558	cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
559	cmd = CFG_IND_ADDR_SET(cmd, addr);
560	writel(data, csr_base + indirect_data_reg);
561	readl(csr_base + indirect_data_reg); /* Force a barrier */
562	writel(cmd, csr_base + indirect_cmd_reg);
563	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
564	do {
565		val = readl(csr_base + indirect_cmd_reg);
566	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
567		 time_before(jiffies, deadline));
568	if (!(val & CFG_IND_CMD_DONE_MASK))
569		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
570		       csr_base + indirect_cmd_reg, addr, data);
571}
572
573static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
574		   u32 indirect_data_reg, u32 addr, u32 *data)
575{
576	unsigned long deadline = jiffies + HZ;
577	u32 val;
578	u32 cmd;
579
580	cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
581	cmd = CFG_IND_ADDR_SET(cmd, addr);
582	writel(cmd, csr_base + indirect_cmd_reg);
583	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
584	do {
585		val = readl(csr_base + indirect_cmd_reg);
586	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
587		 time_before(jiffies, deadline));
588	*data = readl(csr_base + indirect_data_reg);
589	if (!(val & CFG_IND_CMD_DONE_MASK))
590		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
591		       csr_base + indirect_cmd_reg, addr, *data);
592}
593
594static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
595		   u32 reg, u32 data)
596{
597	void __iomem *sds_base = ctx->sds_base;
598	u32 val;
599
600	if (cmu_type == REF_CMU)
601		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
602	else
603		reg += SERDES_PLL_INDIRECT_OFFSET;
604	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
605		SATA_ENET_SDS_IND_WDATA_REG, reg, data);
606	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
607		SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
608	pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
609}
610
611static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
612		   u32 reg, u32 *data)
613{
614	void __iomem *sds_base = ctx->sds_base;
615
616	if (cmu_type == REF_CMU)
617		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
618	else
619		reg += SERDES_PLL_INDIRECT_OFFSET;
620	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
621		SATA_ENET_SDS_IND_RDATA_REG, reg, data);
622	pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
623}
624
625static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
626			   u32 reg, u32 bits)
627{
628	u32 val;
629
630	cmu_rd(ctx, cmu_type, reg, &val);
631	val |= bits;
632	cmu_wr(ctx, cmu_type, reg, val);
633	cmu_rd(ctx, cmu_type, reg, &val);
634	val &= ~bits;
635	cmu_wr(ctx, cmu_type, reg, val);
636}
637
638static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
639			u32 reg, u32 bits)
640{
641	u32 val;
642
643	cmu_rd(ctx, cmu_type, reg, &val);
644	val &= ~bits;
645	cmu_wr(ctx, cmu_type, reg, val);
646}
647
648static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
649			u32 reg, u32 bits)
650{
651	u32 val;
652
653	cmu_rd(ctx, cmu_type, reg, &val);
654	val |= bits;
655	cmu_wr(ctx, cmu_type, reg, val);
656}
657
658static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
659{
660	void __iomem *sds_base = ctx->sds_base;
661	u32 val;
662
663	reg += SERDES_INDIRECT_OFFSET;
664	reg += lane * SERDES_LANE_STRIDE;
665	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
666	       SATA_ENET_SDS_IND_WDATA_REG, reg, data);
667	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
668	       SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
669	pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
670		 val);
671}
672
673static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
674{
675	void __iomem *sds_base = ctx->sds_base;
676
677	reg += SERDES_INDIRECT_OFFSET;
678	reg += lane * SERDES_LANE_STRIDE;
679	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
680	       SATA_ENET_SDS_IND_RDATA_REG, reg, data);
681	pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
682}
683
684static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
685			   u32 bits)
686{
687	u32 val;
688
689	serdes_rd(ctx, lane, reg, &val);
690	val &= ~bits;
691	serdes_wr(ctx, lane, reg, val);
692}
693
694static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
695			   u32 bits)
696{
697	u32 val;
698
699	serdes_rd(ctx, lane, reg, &val);
700	val |= bits;
701	serdes_wr(ctx, lane, reg, val);
702}
703
704static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
705				       enum cmu_type_t cmu_type,
706				       enum clk_type_t clk_type)
707{
708	u32 val;
709
710	/* Set the reset sequence delay for TX ready assertion */
711	cmu_rd(ctx, cmu_type, CMU_REG12, &val);
712	val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
713	cmu_wr(ctx, cmu_type, CMU_REG12, val);
714	/* Set the programmable stage delays between various enable stages */
715	cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222);
716	cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225);
717
718	/* Configure clock type */
719	if (clk_type == CLK_EXT_DIFF) {
720		/* Select external clock mux */
721		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
722		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
723		cmu_wr(ctx, cmu_type, CMU_REG0, val);
724		/* Select CMOS as reference clock  */
725		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
726		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
727		cmu_wr(ctx, cmu_type, CMU_REG1, val);
728		dev_dbg(ctx->dev, "Set external reference clock\n");
729	} else if (clk_type == CLK_INT_DIFF) {
730		/* Select internal clock mux */
731		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
732		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
733		cmu_wr(ctx, cmu_type, CMU_REG0, val);
734		/* Select CMOS as reference clock  */
735		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
736		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
737		cmu_wr(ctx, cmu_type, CMU_REG1, val);
738		dev_dbg(ctx->dev, "Set internal reference clock\n");
739	} else if (clk_type == CLK_INT_SING) {
740		/*
741		 * NOTE: This clock type is NOT support for controller
742		 *	 whose internal clock shared in the PCIe controller
743		 *
744		 * Select internal clock mux
745		 */
746		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
747		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
748		cmu_wr(ctx, cmu_type, CMU_REG1, val);
749		/* Select CML as reference clock */
750		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
751		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
752		cmu_wr(ctx, cmu_type, CMU_REG1, val);
753		dev_dbg(ctx->dev,
754			"Set internal single ended reference clock\n");
755	}
756}
757
758static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
759					enum cmu_type_t cmu_type,
760					enum clk_type_t clk_type)
761{
762	u32 val;
763	int ref_100MHz;
764
765	if (cmu_type == REF_CMU) {
766		/* Set VCO calibration voltage threshold */
767		cmu_rd(ctx, cmu_type, CMU_REG34, &val);
768		val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
769		val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
770		val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
771		val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
772		cmu_wr(ctx, cmu_type, CMU_REG34, val);
773	}
774
775	/* Set the VCO calibration counter */
776	cmu_rd(ctx, cmu_type, CMU_REG0, &val);
777	if (cmu_type == REF_CMU || preA3Chip)
778		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
779	else
780		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
781	cmu_wr(ctx, cmu_type, CMU_REG0, val);
782
783	/* Configure PLL for calibration */
784	cmu_rd(ctx, cmu_type, CMU_REG1, &val);
785	val = CMU_REG1_PLL_CP_SET(val, 0x1);
786	if (cmu_type == REF_CMU || preA3Chip)
787		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
788	else
789		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
790	if (cmu_type == REF_CMU)
791		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
792	else
793		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
794	cmu_wr(ctx, cmu_type, CMU_REG1, val);
795
796	if (cmu_type != REF_CMU)
797		cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
798
799	/* Configure the PLL for either 100MHz or 50MHz */
800	cmu_rd(ctx, cmu_type, CMU_REG2, &val);
801	if (cmu_type == REF_CMU) {
802		val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
803		ref_100MHz = 1;
804	} else {
805		val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
806		if (clk_type == CLK_EXT_DIFF)
807			ref_100MHz = 0;
808		else
809			ref_100MHz = 1;
810	}
811	if (ref_100MHz) {
812		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
813		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
814	} else {
815		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
816		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
817	}
818	cmu_wr(ctx, cmu_type, CMU_REG2, val);
819
820	/* Configure the VCO */
821	cmu_rd(ctx, cmu_type, CMU_REG3, &val);
822	if (cmu_type == REF_CMU) {
823		val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
824		val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
825	} else {
826		val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
827		if (preA3Chip)
828			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
829		else
830			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
831		val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
832	}
833	cmu_wr(ctx, cmu_type, CMU_REG3, val);
834
835	/* Disable force PLL lock */
836	cmu_rd(ctx, cmu_type, CMU_REG26, &val);
837	val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
838	cmu_wr(ctx, cmu_type, CMU_REG26, val);
839
840	/* Setup PLL loop filter */
841	cmu_rd(ctx, cmu_type, CMU_REG5, &val);
842	val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
843	val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
844	if (cmu_type == REF_CMU || !preA3Chip)
845		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
846	else
847		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
848	cmu_wr(ctx, cmu_type, CMU_REG5, val);
849
850	/* Enable or disable manual calibration */
851	cmu_rd(ctx, cmu_type, CMU_REG6, &val);
852	val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
853	val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
854	cmu_wr(ctx, cmu_type, CMU_REG6, val);
855
856	/* Configure lane for 20-bits */
857	if (cmu_type == PHY_CMU) {
858		cmu_rd(ctx, cmu_type, CMU_REG9, &val);
859		val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
860						    CMU_REG9_WORD_LEN_20BIT);
861		val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
862						    CMU_REG9_WORD_LEN_20BIT);
863		val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
864		if (!preA3Chip) {
865			val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
866			val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
867		}
868		cmu_wr(ctx, cmu_type, CMU_REG9, val);
869
870		if (!preA3Chip) {
871			cmu_rd(ctx, cmu_type, CMU_REG10, &val);
872			val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
873			cmu_wr(ctx, cmu_type, CMU_REG10, val);
874		}
875	}
876
877	cmu_rd(ctx, cmu_type, CMU_REG16, &val);
878	val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
879	val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
880	if (cmu_type == REF_CMU || preA3Chip)
881		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
882	else
883		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
884	cmu_wr(ctx, cmu_type, CMU_REG16, val);
885
886	/* Configure for SATA */
887	cmu_rd(ctx, cmu_type, CMU_REG30, &val);
888	val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
889	val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
890	cmu_wr(ctx, cmu_type, CMU_REG30, val);
891
892	/* Disable state machine bypass */
893	cmu_wr(ctx, cmu_type, CMU_REG31, 0xF);
894
895	cmu_rd(ctx, cmu_type, CMU_REG32, &val);
896	val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
897	if (cmu_type == REF_CMU || preA3Chip)
898		val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
899	else
900		val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
901	cmu_wr(ctx, cmu_type, CMU_REG32, val);
902
903	/* Set VCO calibration threshold */
904	if (cmu_type != REF_CMU && preA3Chip)
905		cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27);
906	else
907		cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c);
908
909	/* Set CTLE Override and override waiting from state machine */
910	cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F);
911}
912
913static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
914				 enum cmu_type_t cmu_type)
915{
916	u32 val;
917
918	/* Set SSC modulation value */
919	cmu_rd(ctx, cmu_type, CMU_REG35, &val);
920	val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
921	cmu_wr(ctx, cmu_type, CMU_REG35, val);
922
923	/* Enable SSC, set vertical step and DSM value */
924	cmu_rd(ctx, cmu_type, CMU_REG36, &val);
925	val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
926	val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
927	val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
928	cmu_wr(ctx, cmu_type, CMU_REG36, val);
929
930	/* Reset the PLL */
931	cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
932	cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
933
934	/* Force VCO calibration to restart */
935	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
936		       CMU_REG32_FORCE_VCOCAL_START_MASK);
937}
938
939static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
940{
941	u32 val;
942	u32 reg;
943	int i;
944	int lane;
945
946	for (lane = 0; lane < MAX_LANE; lane++) {
947		serdes_wr(ctx, lane, RXTX_REG147, 0x6);
948
949		/* Set boost control for quarter, half, and full rate */
950		serdes_rd(ctx, lane, RXTX_REG0, &val);
951		val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
952		val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
953		val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
954		serdes_wr(ctx, lane, RXTX_REG0, val);
955
956		/* Set boost control value */
957		serdes_rd(ctx, lane, RXTX_REG1, &val);
958		val = RXTX_REG1_RXACVCM_SET(val, 0x7);
959		val = RXTX_REG1_CTLE_EQ_SET(val,
960			ctx->sata_param.txboostgain[lane * 3 +
961			ctx->sata_param.speed[lane]]);
962		serdes_wr(ctx, lane, RXTX_REG1, val);
963
964		/* Latch VTT value based on the termination to ground and
965		 * enable TX FIFO
966		 */
967		serdes_rd(ctx, lane, RXTX_REG2, &val);
968		val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
969		val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
970		val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
971		serdes_wr(ctx, lane, RXTX_REG2, val);
972
973		/* Configure Tx for 20-bits */
974		serdes_rd(ctx, lane, RXTX_REG4, &val);
975		val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
976		serdes_wr(ctx, lane, RXTX_REG4, val);
977
978		if (!preA3Chip) {
979			serdes_rd(ctx, lane, RXTX_REG1, &val);
980			val = RXTX_REG1_RXVREG1_SET(val, 0x2);
981			val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
982			serdes_wr(ctx, lane, RXTX_REG1, val);
983		}
984
985		/* Set pre-emphasis first 1 and 2, and post-emphasis values */
986		serdes_rd(ctx, lane, RXTX_REG5, &val);
987		val = RXTX_REG5_TX_CN1_SET(val,
988			ctx->sata_param.txprecursor_cn1[lane * 3 +
989			ctx->sata_param.speed[lane]]);
990		val = RXTX_REG5_TX_CP1_SET(val,
991			ctx->sata_param.txpostcursor_cp1[lane * 3 +
992			ctx->sata_param.speed[lane]]);
993		val = RXTX_REG5_TX_CN2_SET(val,
994			ctx->sata_param.txprecursor_cn2[lane * 3 +
995			ctx->sata_param.speed[lane]]);
996		serdes_wr(ctx, lane, RXTX_REG5, val);
997
998		/* Set TX amplitude value */
999		serdes_rd(ctx, lane, RXTX_REG6, &val);
1000		val = RXTX_REG6_TXAMP_CNTL_SET(val,
1001			ctx->sata_param.txamplitude[lane * 3 +
1002			ctx->sata_param.speed[lane]]);
1003		val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
1004		val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
1005		val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
1006		val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
1007		serdes_wr(ctx, lane, RXTX_REG6, val);
1008
1009		/* Configure Rx for 20-bits */
1010		serdes_rd(ctx, lane, RXTX_REG7, &val);
1011		val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
1012		val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
1013		serdes_wr(ctx, lane, RXTX_REG7, val);
1014
1015		/* Set CDR and LOS values and enable Rx SSC */
1016		serdes_rd(ctx, lane, RXTX_REG8, &val);
1017		val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
1018		val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
1019		val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
1020		val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
1021		val = RXTX_REG8_SD_VREF_SET(val, 0x4);
1022		serdes_wr(ctx, lane, RXTX_REG8, val);
1023
1024		/* Set phase adjust upper/lower limits */
1025		serdes_rd(ctx, lane, RXTX_REG11, &val);
1026		val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
1027		serdes_wr(ctx, lane, RXTX_REG11, val);
1028
1029		/* Enable Latch Off; disable SUMOS and Tx termination */
1030		serdes_rd(ctx, lane, RXTX_REG12, &val);
1031		val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
1032		val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
1033		val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
1034		serdes_wr(ctx, lane, RXTX_REG12, val);
1035
1036		/* Set period error latch to 512T and enable BWL */
1037		serdes_rd(ctx, lane, RXTX_REG26, &val);
1038		val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
1039		val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
1040		serdes_wr(ctx, lane, RXTX_REG26, val);
1041
1042		serdes_wr(ctx, lane, RXTX_REG28, 0x0);
1043
1044		/* Set DFE loop preset value */
1045		serdes_wr(ctx, lane, RXTX_REG31, 0x0);
1046
1047		/* Set Eye Monitor counter width to 12-bit */
1048		serdes_rd(ctx, lane, RXTX_REG61, &val);
1049		val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
1050		val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
1051		val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
1052		serdes_wr(ctx, lane, RXTX_REG61, val);
1053
1054		serdes_rd(ctx, lane, RXTX_REG62, &val);
1055		val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
1056		serdes_wr(ctx, lane, RXTX_REG62, val);
1057
1058		/* Set BW select tap X for DFE loop */
1059		for (i = 0; i < 9; i++) {
1060			reg = RXTX_REG81 + i * 2;
1061			serdes_rd(ctx, lane, reg, &val);
1062			val = RXTX_REG89_MU_TH7_SET(val, 0xe);
1063			val = RXTX_REG89_MU_TH8_SET(val, 0xe);
1064			val = RXTX_REG89_MU_TH9_SET(val, 0xe);
1065			serdes_wr(ctx, lane, reg, val);
1066		}
1067
1068		/* Set BW select tap X for frequency adjust loop */
1069		for (i = 0; i < 3; i++) {
1070			reg = RXTX_REG96 + i * 2;
1071			serdes_rd(ctx, lane, reg, &val);
1072			val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
1073			val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
1074			val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
1075			serdes_wr(ctx, lane, reg, val);
1076		}
1077
1078		/* Set BW select tap X for phase adjust loop */
1079		for (i = 0; i < 3; i++) {
1080			reg = RXTX_REG99 + i * 2;
1081			serdes_rd(ctx, lane, reg, &val);
1082			val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
1083			val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
1084			val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
1085			serdes_wr(ctx, lane, reg, val);
1086		}
1087
1088		serdes_rd(ctx, lane, RXTX_REG102, &val);
1089		val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
1090		serdes_wr(ctx, lane, RXTX_REG102, val);
1091
1092		serdes_wr(ctx, lane, RXTX_REG114, 0xffe0);
1093
1094		serdes_rd(ctx, lane, RXTX_REG125, &val);
1095		val = RXTX_REG125_SIGN_PQ_SET(val,
1096			ctx->sata_param.txeyedirection[lane * 3 +
1097			ctx->sata_param.speed[lane]]);
1098		val = RXTX_REG125_PQ_REG_SET(val,
1099			ctx->sata_param.txeyetuning[lane * 3 +
1100			ctx->sata_param.speed[lane]]);
1101		val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
1102		serdes_wr(ctx, lane, RXTX_REG125, val);
1103
1104		serdes_rd(ctx, lane, RXTX_REG127, &val);
1105		val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
1106		serdes_wr(ctx, lane, RXTX_REG127, val);
1107
1108		serdes_rd(ctx, lane, RXTX_REG128, &val);
1109		val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
1110		serdes_wr(ctx, lane, RXTX_REG128, val);
1111
1112		serdes_rd(ctx, lane, RXTX_REG145, &val);
1113		val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
1114		val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
1115		if (preA3Chip) {
1116			val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
1117			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
1118		} else {
1119			val = RXTX_REG145_RXES_ENA_SET(val, 0x0);
1120			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0);
1121		}
1122		serdes_wr(ctx, lane, RXTX_REG145, val);
1123
1124		/*
1125		 * Set Rx LOS filter clock rate, sample rate, and threshold
1126		 * windows
1127		 */
1128		for (i = 0; i < 4; i++) {
1129			reg = RXTX_REG148 + i * 2;
1130			serdes_wr(ctx, lane, reg, 0xFFFF);
1131		}
1132	}
1133}
1134
1135static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
1136				 enum cmu_type_t cmu_type,
1137				 enum clk_type_t clk_type)
1138{
1139	void __iomem *csr_serdes = ctx->sds_base;
1140	int loop;
1141	u32 val;
1142
1143	/* Release PHY main reset */
1144	writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL);
1145	readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1146
1147	if (cmu_type != REF_CMU) {
1148		cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
1149		/*
1150		 * As per PHY design spec, the PLL reset requires a minimum
1151		 * of 800us.
1152		 */
1153		usleep_range(800, 1000);
1154
1155		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
1156		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
1157		cmu_wr(ctx, cmu_type, CMU_REG1, val);
1158		/*
1159		 * As per PHY design spec, the PLL auto calibration requires
1160		 * a minimum of 800us.
1161		 */
1162		usleep_range(800, 1000);
1163
1164		cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1165			       CMU_REG32_FORCE_VCOCAL_START_MASK);
1166		/*
1167		 * As per PHY design spec, the PLL requires a minimum of
1168		 * 800us to settle.
1169		 */
1170		usleep_range(800, 1000);
1171	}
1172
1173	if (!preA3Chip)
1174		goto skip_manual_cal;
1175
1176	/*
1177	 * Configure the termination resister calibration
1178	 * The serial receive pins, RXP/RXN, have TERMination resistor
1179	 * that is required to be calibrated.
1180	 */
1181	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1182	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
1183	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1184	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1185	cmu_toggle1to0(ctx, cmu_type, CMU_REG17,
1186		       CMU_REG17_PVT_TERM_MAN_ENA_MASK);
1187	/*
1188	 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
1189	 * resistors that are required to the calibrated.
1190	 * Configure the pull DOWN calibration
1191	 */
1192	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1193	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
1194	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1195	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1196	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1197		       CMU_REG16_PVT_DN_MAN_ENA_MASK);
1198	/* Configure the pull UP calibration */
1199	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1200	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
1201	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1202	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1203	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1204		       CMU_REG16_PVT_UP_MAN_ENA_MASK);
1205
1206skip_manual_cal:
1207	/* Poll the PLL calibration completion status for at least 1 ms */
1208	loop = 100;
1209	do {
1210		cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1211		if (CMU_REG7_PLL_CALIB_DONE_RD(val))
1212			break;
1213		/*
1214		 * As per PHY design spec, PLL calibration status requires
1215		 * a minimum of 10us to be updated.
1216		 */
1217		usleep_range(10, 100);
1218	} while (--loop > 0);
1219
1220	cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1221	dev_dbg(ctx->dev, "PLL calibration %s\n",
1222		CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
1223	if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
1224		dev_err(ctx->dev,
1225			"PLL calibration failed due to VCO failure\n");
1226		return -1;
1227	}
1228	dev_dbg(ctx->dev, "PLL calibration successful\n");
1229
1230	cmu_rd(ctx, cmu_type, CMU_REG15, &val);
1231	dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
1232	return 0;
1233}
1234
1235static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
1236				     enum cmu_type_t cmu_type,
1237				     enum clk_type_t clk_type)
1238{
1239	u32 val;
1240
1241	dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
1242	if (cmu_type == PHY_CMU) {
1243		cmu_rd(ctx, cmu_type, CMU_REG16, &val);
1244		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
1245		cmu_wr(ctx, cmu_type, CMU_REG16, val);
1246	}
1247
1248	cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK);
1249	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1250		       CMU_REG32_FORCE_VCOCAL_START_MASK);
1251}
1252
1253static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
1254				  enum clk_type_t clk_type, int ssc_enable)
1255{
1256	void __iomem *sds_base = ctx->sds_base;
1257	u32 val;
1258	int i;
1259
1260	/* Configure the PHY for operation */
1261	dev_dbg(ctx->dev, "Reset PHY\n");
1262	/* Place PHY into reset */
1263	writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL);
1264	val = readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1265	/* Release PHY lane from reset (active high) */
1266	writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL);
1267	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1268	/* Release all PHY module out of reset except PHY main reset */
1269	writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL);
1270	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1271
1272	/* Set the operation speed */
1273	val = readl(sds_base + SATA_ENET_SDS_CTL1);
1274	val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
1275		ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
1276	writel(val, sds_base + SATA_ENET_SDS_CTL1);
1277
1278	dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
1279	val = readl(sds_base + SATA_ENET_SDS_CTL0);
1280	val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
1281	writel(val, sds_base + SATA_ENET_SDS_CTL0);
1282
1283	/* Configure the clock macro unit (CMU) clock type */
1284	xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type);
1285
1286	/* Configure the clock macro */
1287	xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type);
1288
1289	/* Enable SSC if enabled */
1290	if (ssc_enable)
1291		xgene_phy_ssc_enable(ctx, PHY_CMU);
1292
1293	/* Configure PHY lanes */
1294	xgene_phy_sata_cfg_lanes(ctx);
1295
1296	/* Set Rx/Tx 20-bit */
1297	val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0);
1298	val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
1299	val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
1300	writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0);
1301
1302	/* Start PLL calibration and try for three times */
1303	i = 10;
1304	do {
1305		if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type))
1306			break;
1307		/* If failed, toggle the VCO power signal and start again */
1308		xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type);
1309	} while (--i > 0);
1310	/* Even on failure, allow to continue any way */
1311	if (i <= 0)
1312		dev_err(ctx->dev, "PLL calibration failed\n");
1313
1314	return 0;
1315}
1316
1317static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
1318				   enum clk_type_t clk_type,
1319				   int ssc_enable)
1320{
1321	int rc;
1322
1323	dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
1324
1325	if (ctx->mode == MODE_SATA) {
1326		rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
1327		if (rc)
1328			return rc;
1329	} else {
1330		dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
1331			ctx->mode);
1332		return -ENODEV;
1333	}
1334
1335	return 0;
1336}
1337
1338/*
1339 * Receiver Offset Calibration:
1340 *
1341 * Calibrate the receiver signal path offset in two steps - summar and
1342 * latch calibrations
1343 */
1344static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
1345{
1346	int i;
1347	static const struct {
1348		u32 reg;
1349		u32 val;
1350	} serdes_reg[] = {
1351		{RXTX_REG38, 0x0},
1352		{RXTX_REG39, 0xff00},
1353		{RXTX_REG40, 0xffff},
1354		{RXTX_REG41, 0xffff},
1355		{RXTX_REG42, 0xffff},
1356		{RXTX_REG43, 0xffff},
1357		{RXTX_REG44, 0xffff},
1358		{RXTX_REG45, 0xffff},
1359		{RXTX_REG46, 0xffff},
1360		{RXTX_REG47, 0xfffc},
1361		{RXTX_REG48, 0x0},
1362		{RXTX_REG49, 0x0},
1363		{RXTX_REG50, 0x0},
1364		{RXTX_REG51, 0x0},
1365		{RXTX_REG52, 0x0},
1366		{RXTX_REG53, 0x0},
1367		{RXTX_REG54, 0x0},
1368		{RXTX_REG55, 0x0},
1369	};
1370
1371	/* Start SUMMER calibration */
1372	serdes_setbits(ctx, lane, RXTX_REG127,
1373		       RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1374	/*
1375	 * As per PHY design spec, the Summer calibration requires a minimum
1376	 * of 100us to complete.
1377	 */
1378	usleep_range(100, 500);
1379	serdes_clrbits(ctx, lane, RXTX_REG127,
1380			RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1381	/*
1382	 * As per PHY design spec, the auto calibration requires a minimum
1383	 * of 100us to complete.
1384	 */
1385	usleep_range(100, 500);
1386
1387	/* Start latch calibration */
1388	serdes_setbits(ctx, lane, RXTX_REG127,
1389		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1390	/*
1391	 * As per PHY design spec, the latch calibration requires a minimum
1392	 * of 100us to complete.
1393	 */
1394	usleep_range(100, 500);
1395	serdes_clrbits(ctx, lane, RXTX_REG127,
1396		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1397
1398	/* Configure the PHY lane for calibration */
1399	serdes_wr(ctx, lane, RXTX_REG28, 0x7);
1400	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1401	serdes_clrbits(ctx, lane, RXTX_REG4,
1402		       RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
1403	serdes_clrbits(ctx, lane, RXTX_REG7,
1404		       RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
1405	for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
1406		serdes_wr(ctx, lane, serdes_reg[i].reg,
1407			  serdes_reg[i].val);
1408}
1409
1410static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
1411{
1412	/* Reset digital Rx */
1413	serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1414	/* As per PHY design spec, the reset requires a minimum of 100us. */
1415	usleep_range(100, 150);
1416	serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1417}
1418
1419static int xgene_phy_get_avg(int accum, int samples)
1420{
1421	return (accum + (samples / 2)) / samples;
1422}
1423
1424static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
1425{
1426	int max_loop = 10;
1427	int avg_loop = 0;
1428	int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
1429	int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
1430	int sum_cal = 0;
1431	int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
1432	int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
1433	int sum_cal_itr;
1434	int fail_even;
1435	int fail_odd;
1436	u32 val;
1437
1438	dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
1439		lane);
1440
1441	/* Enable RX Hi-Z termination */
1442	serdes_setbits(ctx, lane, RXTX_REG12,
1443			RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
1444	/* Turn off DFE */
1445	serdes_wr(ctx, lane, RXTX_REG28, 0x0000);
1446	/* DFE Presets to zero */
1447	serdes_wr(ctx, lane, RXTX_REG31, 0x0000);
1448
1449	/*
1450	 * Receiver Offset Calibration:
1451	 * Calibrate the receiver signal path offset in two steps - summar
1452	 * and latch calibration.
1453	 * Runs the "Receiver Offset Calibration multiple times to determine
1454	 * the average value to use.
1455	 */
1456	while (avg_loop < max_loop) {
1457		/* Start the calibration */
1458		xgene_phy_force_lat_summer_cal(ctx, lane);
1459
1460		serdes_rd(ctx, lane, RXTX_REG21, &val);
1461		lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
1462		lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
1463		fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
1464
1465		serdes_rd(ctx, lane, RXTX_REG22, &val);
1466		lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
1467		lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
1468		fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
1469
1470		serdes_rd(ctx, lane, RXTX_REG23, &val);
1471		lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
1472		lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
1473
1474		serdes_rd(ctx, lane, RXTX_REG24, &val);
1475		lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
1476		lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
1477
1478		serdes_rd(ctx, lane, RXTX_REG121, &val);
1479		sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
1480
1481		/* Check for failure. If passed, sum them for averaging */
1482		if ((fail_even == 0 || fail_even == 1) &&
1483		    (fail_odd == 0 || fail_odd == 1)) {
1484			lat_do += lat_do_itr;
1485			lat_xo += lat_xo_itr;
1486			lat_eo += lat_eo_itr;
1487			lat_so += lat_so_itr;
1488			lat_de += lat_de_itr;
1489			lat_xe += lat_xe_itr;
1490			lat_ee += lat_ee_itr;
1491			lat_se += lat_se_itr;
1492			sum_cal += sum_cal_itr;
1493
1494			dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
1495			dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1496				lat_do_itr, lat_xo_itr, lat_eo_itr,
1497				lat_so_itr);
1498			dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1499				lat_de_itr, lat_xe_itr, lat_ee_itr,
1500				lat_se_itr);
1501			dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
1502			++avg_loop;
1503		} else {
1504			dev_err(ctx->dev,
1505				"Receiver calibration failed at %d loop\n",
1506				avg_loop);
1507		}
1508		xgene_phy_reset_rxd(ctx, lane);
1509	}
1510
1511	/* Update latch manual calibration with average value */
1512	serdes_rd(ctx, lane, RXTX_REG127, &val);
1513	val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
1514		xgene_phy_get_avg(lat_do, max_loop));
1515	val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
1516		xgene_phy_get_avg(lat_xo, max_loop));
1517	serdes_wr(ctx, lane, RXTX_REG127, val);
1518
1519	serdes_rd(ctx, lane, RXTX_REG128, &val);
1520	val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
1521		xgene_phy_get_avg(lat_eo, max_loop));
1522	val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
1523		xgene_phy_get_avg(lat_so, max_loop));
1524	serdes_wr(ctx, lane, RXTX_REG128, val);
1525
1526	serdes_rd(ctx, lane, RXTX_REG129, &val);
1527	val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
1528		xgene_phy_get_avg(lat_de, max_loop));
1529	val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
1530		xgene_phy_get_avg(lat_xe, max_loop));
1531	serdes_wr(ctx, lane, RXTX_REG129, val);
1532
1533	serdes_rd(ctx, lane, RXTX_REG130, &val);
1534	val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
1535		xgene_phy_get_avg(lat_ee, max_loop));
1536	val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
1537		xgene_phy_get_avg(lat_se, max_loop));
1538	serdes_wr(ctx, lane, RXTX_REG130, val);
1539
1540	/* Update SUMMER calibration with average value */
1541	serdes_rd(ctx, lane, RXTX_REG14, &val);
1542	val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
1543		xgene_phy_get_avg(sum_cal, max_loop));
1544	serdes_wr(ctx, lane, RXTX_REG14, val);
1545
1546	dev_dbg(ctx->dev, "Average Value:\n");
1547	dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1548		 xgene_phy_get_avg(lat_do, max_loop),
1549		 xgene_phy_get_avg(lat_xo, max_loop),
1550		 xgene_phy_get_avg(lat_eo, max_loop),
1551		 xgene_phy_get_avg(lat_so, max_loop));
1552	dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1553		 xgene_phy_get_avg(lat_de, max_loop),
1554		 xgene_phy_get_avg(lat_xe, max_loop),
1555		 xgene_phy_get_avg(lat_ee, max_loop),
1556		 xgene_phy_get_avg(lat_se, max_loop));
1557	dev_dbg(ctx->dev, "SUM 0x%x\n",
1558		xgene_phy_get_avg(sum_cal, max_loop));
1559
1560	serdes_rd(ctx, lane, RXTX_REG14, &val);
1561	val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
1562	serdes_wr(ctx, lane, RXTX_REG14, val);
1563	dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
1564
1565	serdes_rd(ctx, lane, RXTX_REG127, &val);
1566	val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
1567	dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
1568	serdes_wr(ctx, lane, RXTX_REG127, val);
1569
1570	/* Disable RX Hi-Z termination */
1571	serdes_rd(ctx, lane, RXTX_REG12, &val);
1572	val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
1573	serdes_wr(ctx, lane, RXTX_REG12, val);
1574	/* Turn on DFE */
1575	serdes_wr(ctx, lane, RXTX_REG28, 0x0007);
1576	/* Set DFE preset */
1577	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1578}
1579
1580static int xgene_phy_hw_init(struct phy *phy)
1581{
1582	struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
1583	int rc;
1584	int i;
1585
1586	rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE);
1587	if (rc) {
1588		dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
1589		return rc;
1590	}
1591
1592	/* Setup clock properly after PHY configuration */
1593	if (!IS_ERR(ctx->clk)) {
1594		/* HW requires an toggle of the clock */
1595		clk_prepare_enable(ctx->clk);
1596		clk_disable_unprepare(ctx->clk);
1597		clk_prepare_enable(ctx->clk);
1598	}
1599
1600	/* Compute average value */
1601	for (i = 0; i < MAX_LANE; i++)
1602		xgene_phy_gen_avg_val(ctx, i);
1603
1604	dev_dbg(ctx->dev, "PHY initialized\n");
1605	return 0;
1606}
1607
1608static const struct phy_ops xgene_phy_ops = {
1609	.init		= xgene_phy_hw_init,
1610	.owner		= THIS_MODULE,
1611};
1612
1613static struct phy *xgene_phy_xlate(struct device *dev,
1614				   const struct of_phandle_args *args)
1615{
1616	struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
1617
1618	if (args->args_count <= 0)
1619		return ERR_PTR(-EINVAL);
1620	if (args->args[0] >= MODE_MAX)
1621		return ERR_PTR(-EINVAL);
1622
1623	ctx->mode = args->args[0];
1624	return ctx->phy;
1625}
1626
1627static void xgene_phy_get_param(struct platform_device *pdev,
1628				const char *name, u32 *buffer,
1629				int count, u32 *default_val,
1630				u32 conv_factor)
1631{
1632	int i;
1633
1634	if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer,
1635					count)) {
1636		for (i = 0; i < count; i++)
1637			buffer[i] /= conv_factor;
1638		return;
1639	}
1640	/* Does not exist, load default */
1641	for (i = 0; i < count; i++)
1642		buffer[i] = default_val[i % 3];
1643}
1644
1645static int xgene_phy_probe(struct platform_device *pdev)
1646{
1647	struct phy_provider *phy_provider;
1648	struct xgene_phy_ctx *ctx;
1649	u32 default_spd[] = DEFAULT_SATA_SPD_SEL;
1650	u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN;
1651	u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION;
1652	u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING;
1653	u32 default_txamp[] = DEFAULT_SATA_TXAMP;
1654	u32 default_txcn1[] = DEFAULT_SATA_TXCN1;
1655	u32 default_txcn2[] = DEFAULT_SATA_TXCN2;
1656	u32 default_txcp1[] = DEFAULT_SATA_TXCP1;
1657	int i;
1658
1659	ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
1660	if (!ctx)
1661		return -ENOMEM;
1662
1663	ctx->dev = &pdev->dev;
1664
1665	ctx->sds_base = devm_platform_ioremap_resource(pdev, 0);
1666	if (IS_ERR(ctx->sds_base))
1667		return PTR_ERR(ctx->sds_base);
1668
1669	/* Retrieve optional clock */
1670	ctx->clk = clk_get(&pdev->dev, NULL);
1671
1672	/* Load override paramaters */
1673	xgene_phy_get_param(pdev, "apm,tx-eye-tuning",
1674		ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1);
1675	xgene_phy_get_param(pdev, "apm,tx-eye-direction",
1676		ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1);
1677	xgene_phy_get_param(pdev, "apm,tx-boost-gain",
1678		ctx->sata_param.txboostgain, 6, default_txboost_gain, 1);
1679	xgene_phy_get_param(pdev, "apm,tx-amplitude",
1680		ctx->sata_param.txamplitude, 6, default_txamp, 13300);
1681	xgene_phy_get_param(pdev, "apm,tx-pre-cursor1",
1682		ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200);
1683	xgene_phy_get_param(pdev, "apm,tx-pre-cursor2",
1684		ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200);
1685	xgene_phy_get_param(pdev, "apm,tx-post-cursor",
1686		ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200);
1687	xgene_phy_get_param(pdev, "apm,tx-speed",
1688		ctx->sata_param.txspeed, 3, default_spd, 1);
1689	for (i = 0; i < MAX_LANE; i++)
1690		ctx->sata_param.speed[i] = 2; /* Default to Gen3 */
1691
1692	platform_set_drvdata(pdev, ctx);
1693
1694	ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops);
1695	if (IS_ERR(ctx->phy)) {
1696		dev_dbg(&pdev->dev, "Failed to create PHY\n");
1697		return PTR_ERR(ctx->phy);
1698	}
1699	phy_set_drvdata(ctx->phy, ctx);
1700
1701	phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate);
1702	return PTR_ERR_OR_ZERO(phy_provider);
1703}
1704
1705static const struct of_device_id xgene_phy_of_match[] = {
1706	{.compatible = "apm,xgene-phy",},
1707	{},
1708};
1709MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
1710
1711static struct platform_driver xgene_phy_driver = {
1712	.probe = xgene_phy_probe,
1713	.driver = {
1714		   .name = "xgene-phy",
1715		   .of_match_table = xgene_phy_of_match,
1716	},
1717};
1718module_platform_driver(xgene_phy_driver);
1719
1720MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
1721MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1722MODULE_LICENSE("GPL v2");
1723MODULE_VERSION("0.1");
1724