1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 *	Nishanth Menon
7 *	Romit Dasgupta
8 *	Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/device.h>
17#include <linux/export.h>
18#include <linux/pm_domain.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/xarray.h>
22
23#include "opp.h"
24
25/*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30LIST_HEAD(opp_tables);
31
32/* Lock to allow exclusive modification to the device and opp lists */
33DEFINE_MUTEX(opp_table_lock);
34/* Flag indicating that opp_tables list is being updated at the moment */
35static bool opp_tables_busy;
36
37/* OPP ID allocator */
38static DEFINE_XARRAY_ALLOC1(opp_configs);
39
40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41{
42	struct opp_device *opp_dev;
43	bool found = false;
44
45	mutex_lock(&opp_table->lock);
46	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47		if (opp_dev->dev == dev) {
48			found = true;
49			break;
50		}
51
52	mutex_unlock(&opp_table->lock);
53	return found;
54}
55
56static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57{
58	struct opp_table *opp_table;
59
60	list_for_each_entry(opp_table, &opp_tables, node) {
61		if (_find_opp_dev(dev, opp_table)) {
62			_get_opp_table_kref(opp_table);
63			return opp_table;
64		}
65	}
66
67	return ERR_PTR(-ENODEV);
68}
69
70/**
71 * _find_opp_table() - find opp_table struct using device pointer
72 * @dev:	device pointer used to lookup OPP table
73 *
74 * Search OPP table for one containing matching device.
75 *
76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77 * -EINVAL based on type of error.
78 *
79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80 */
81struct opp_table *_find_opp_table(struct device *dev)
82{
83	struct opp_table *opp_table;
84
85	if (IS_ERR_OR_NULL(dev)) {
86		pr_err("%s: Invalid parameters\n", __func__);
87		return ERR_PTR(-EINVAL);
88	}
89
90	mutex_lock(&opp_table_lock);
91	opp_table = _find_opp_table_unlocked(dev);
92	mutex_unlock(&opp_table_lock);
93
94	return opp_table;
95}
96
97/*
98 * Returns true if multiple clocks aren't there, else returns false with WARN.
99 *
100 * We don't force clk_count == 1 here as there are users who don't have a clock
101 * representation in the OPP table and manage the clock configuration themselves
102 * in an platform specific way.
103 */
104static bool assert_single_clk(struct opp_table *opp_table)
105{
106	return !WARN_ON(opp_table->clk_count > 1);
107}
108
109/**
110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
111 * @opp:	opp for which voltage has to be returned for
112 *
113 * Return: voltage in micro volt corresponding to the opp, else
114 * return 0
115 *
116 * This is useful only for devices with single power supply.
117 */
118unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
119{
120	if (IS_ERR_OR_NULL(opp)) {
121		pr_err("%s: Invalid parameters\n", __func__);
122		return 0;
123	}
124
125	return opp->supplies[0].u_volt;
126}
127EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
128
129/**
130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
131 * @opp:	opp for which voltage has to be returned for
132 * @supplies:	Placeholder for copying the supply information.
133 *
134 * Return: negative error number on failure, 0 otherwise on success after
135 * setting @supplies.
136 *
137 * This can be used for devices with any number of power supplies. The caller
138 * must ensure the @supplies array must contain space for each regulator.
139 */
140int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
141			    struct dev_pm_opp_supply *supplies)
142{
143	if (IS_ERR_OR_NULL(opp) || !supplies) {
144		pr_err("%s: Invalid parameters\n", __func__);
145		return -EINVAL;
146	}
147
148	memcpy(supplies, opp->supplies,
149	       sizeof(*supplies) * opp->opp_table->regulator_count);
150	return 0;
151}
152EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
153
154/**
155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
156 * @opp:	opp for which power has to be returned for
157 *
158 * Return: power in micro watt corresponding to the opp, else
159 * return 0
160 *
161 * This is useful only for devices with single power supply.
162 */
163unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
164{
165	unsigned long opp_power = 0;
166	int i;
167
168	if (IS_ERR_OR_NULL(opp)) {
169		pr_err("%s: Invalid parameters\n", __func__);
170		return 0;
171	}
172	for (i = 0; i < opp->opp_table->regulator_count; i++)
173		opp_power += opp->supplies[i].u_watt;
174
175	return opp_power;
176}
177EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
178
179/**
180 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
181 *				   available opp with specified index
182 * @opp: opp for which frequency has to be returned for
183 * @index: index of the frequency within the required opp
184 *
185 * Return: frequency in hertz corresponding to the opp with specified index,
186 * else return 0
187 */
188unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
189{
190	if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
191		pr_err("%s: Invalid parameters\n", __func__);
192		return 0;
193	}
194
195	return opp->rates[index];
196}
197EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
198
199/**
200 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
201 * @opp:	opp for which level value has to be returned for
202 *
203 * Return: level read from device tree corresponding to the opp, else
204 * return U32_MAX.
205 */
206unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
207{
208	if (IS_ERR_OR_NULL(opp) || !opp->available) {
209		pr_err("%s: Invalid parameters\n", __func__);
210		return 0;
211	}
212
213	return opp->level;
214}
215EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
216
217/**
218 * dev_pm_opp_get_required_pstate() - Gets the required performance state
219 *                                    corresponding to an available opp
220 * @opp:	opp for which performance state has to be returned for
221 * @index:	index of the required opp
222 *
223 * Return: performance state read from device tree corresponding to the
224 * required opp, else return U32_MAX.
225 */
226unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
227					    unsigned int index)
228{
229	if (IS_ERR_OR_NULL(opp) || !opp->available ||
230	    index >= opp->opp_table->required_opp_count) {
231		pr_err("%s: Invalid parameters\n", __func__);
232		return 0;
233	}
234
235	/* required-opps not fully initialized yet */
236	if (lazy_linking_pending(opp->opp_table))
237		return 0;
238
239	/* The required OPP table must belong to a genpd */
240	if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
241		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
242		return 0;
243	}
244
245	return opp->required_opps[index]->level;
246}
247EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
248
249/**
250 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
251 * @opp: opp for which turbo mode is being verified
252 *
253 * Turbo OPPs are not for normal use, and can be enabled (under certain
254 * conditions) for short duration of times to finish high throughput work
255 * quickly. Running on them for longer times may overheat the chip.
256 *
257 * Return: true if opp is turbo opp, else false.
258 */
259bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
260{
261	if (IS_ERR_OR_NULL(opp) || !opp->available) {
262		pr_err("%s: Invalid parameters\n", __func__);
263		return false;
264	}
265
266	return opp->turbo;
267}
268EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
269
270/**
271 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
272 * @dev:	device for which we do this operation
273 *
274 * Return: This function returns the max clock latency in nanoseconds.
275 */
276unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
277{
278	struct opp_table *opp_table;
279	unsigned long clock_latency_ns;
280
281	opp_table = _find_opp_table(dev);
282	if (IS_ERR(opp_table))
283		return 0;
284
285	clock_latency_ns = opp_table->clock_latency_ns_max;
286
287	dev_pm_opp_put_opp_table(opp_table);
288
289	return clock_latency_ns;
290}
291EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
292
293/**
294 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
295 * @dev: device for which we do this operation
296 *
297 * Return: This function returns the max voltage latency in nanoseconds.
298 */
299unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
300{
301	struct opp_table *opp_table;
302	struct dev_pm_opp *opp;
303	struct regulator *reg;
304	unsigned long latency_ns = 0;
305	int ret, i, count;
306	struct {
307		unsigned long min;
308		unsigned long max;
309	} *uV;
310
311	opp_table = _find_opp_table(dev);
312	if (IS_ERR(opp_table))
313		return 0;
314
315	/* Regulator may not be required for the device */
316	if (!opp_table->regulators)
317		goto put_opp_table;
318
319	count = opp_table->regulator_count;
320
321	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
322	if (!uV)
323		goto put_opp_table;
324
325	mutex_lock(&opp_table->lock);
326
327	for (i = 0; i < count; i++) {
328		uV[i].min = ~0;
329		uV[i].max = 0;
330
331		list_for_each_entry(opp, &opp_table->opp_list, node) {
332			if (!opp->available)
333				continue;
334
335			if (opp->supplies[i].u_volt_min < uV[i].min)
336				uV[i].min = opp->supplies[i].u_volt_min;
337			if (opp->supplies[i].u_volt_max > uV[i].max)
338				uV[i].max = opp->supplies[i].u_volt_max;
339		}
340	}
341
342	mutex_unlock(&opp_table->lock);
343
344	/*
345	 * The caller needs to ensure that opp_table (and hence the regulator)
346	 * isn't freed, while we are executing this routine.
347	 */
348	for (i = 0; i < count; i++) {
349		reg = opp_table->regulators[i];
350		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
351		if (ret > 0)
352			latency_ns += ret * 1000;
353	}
354
355	kfree(uV);
356put_opp_table:
357	dev_pm_opp_put_opp_table(opp_table);
358
359	return latency_ns;
360}
361EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
362
363/**
364 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
365 *					     nanoseconds
366 * @dev: device for which we do this operation
367 *
368 * Return: This function returns the max transition latency, in nanoseconds, to
369 * switch from one OPP to other.
370 */
371unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
372{
373	return dev_pm_opp_get_max_volt_latency(dev) +
374		dev_pm_opp_get_max_clock_latency(dev);
375}
376EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
377
378/**
379 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
380 * @dev:	device for which we do this operation
381 *
382 * Return: This function returns the frequency of the OPP marked as suspend_opp
383 * if one is available, else returns 0;
384 */
385unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
386{
387	struct opp_table *opp_table;
388	unsigned long freq = 0;
389
390	opp_table = _find_opp_table(dev);
391	if (IS_ERR(opp_table))
392		return 0;
393
394	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
395		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
396
397	dev_pm_opp_put_opp_table(opp_table);
398
399	return freq;
400}
401EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
402
403int _get_opp_count(struct opp_table *opp_table)
404{
405	struct dev_pm_opp *opp;
406	int count = 0;
407
408	mutex_lock(&opp_table->lock);
409
410	list_for_each_entry(opp, &opp_table->opp_list, node) {
411		if (opp->available)
412			count++;
413	}
414
415	mutex_unlock(&opp_table->lock);
416
417	return count;
418}
419
420/**
421 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
422 * @dev:	device for which we do this operation
423 *
424 * Return: This function returns the number of available opps if there are any,
425 * else returns 0 if none or the corresponding error value.
426 */
427int dev_pm_opp_get_opp_count(struct device *dev)
428{
429	struct opp_table *opp_table;
430	int count;
431
432	opp_table = _find_opp_table(dev);
433	if (IS_ERR(opp_table)) {
434		count = PTR_ERR(opp_table);
435		dev_dbg(dev, "%s: OPP table not found (%d)\n",
436			__func__, count);
437		return count;
438	}
439
440	count = _get_opp_count(opp_table);
441	dev_pm_opp_put_opp_table(opp_table);
442
443	return count;
444}
445EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
446
447/* Helpers to read keys */
448static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
449{
450	return opp->rates[index];
451}
452
453static unsigned long _read_level(struct dev_pm_opp *opp, int index)
454{
455	return opp->level;
456}
457
458static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
459{
460	return opp->bandwidth[index].peak;
461}
462
463/* Generic comparison helpers */
464static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
465			   unsigned long opp_key, unsigned long key)
466{
467	if (opp_key == key) {
468		*opp = temp_opp;
469		return true;
470	}
471
472	return false;
473}
474
475static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
476			  unsigned long opp_key, unsigned long key)
477{
478	if (opp_key >= key) {
479		*opp = temp_opp;
480		return true;
481	}
482
483	return false;
484}
485
486static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
487			   unsigned long opp_key, unsigned long key)
488{
489	if (opp_key > key)
490		return true;
491
492	*opp = temp_opp;
493	return false;
494}
495
496/* Generic key finding helpers */
497static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
498		unsigned long *key, int index, bool available,
499		unsigned long (*read)(struct dev_pm_opp *opp, int index),
500		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
501				unsigned long opp_key, unsigned long key),
502		bool (*assert)(struct opp_table *opp_table))
503{
504	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
505
506	/* Assert that the requirement is met */
507	if (assert && !assert(opp_table))
508		return ERR_PTR(-EINVAL);
509
510	mutex_lock(&opp_table->lock);
511
512	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
513		if (temp_opp->available == available) {
514			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
515				break;
516		}
517	}
518
519	/* Increment the reference count of OPP */
520	if (!IS_ERR(opp)) {
521		*key = read(opp, index);
522		dev_pm_opp_get(opp);
523	}
524
525	mutex_unlock(&opp_table->lock);
526
527	return opp;
528}
529
530static struct dev_pm_opp *
531_find_key(struct device *dev, unsigned long *key, int index, bool available,
532	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
533	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
534			  unsigned long opp_key, unsigned long key),
535	  bool (*assert)(struct opp_table *opp_table))
536{
537	struct opp_table *opp_table;
538	struct dev_pm_opp *opp;
539
540	opp_table = _find_opp_table(dev);
541	if (IS_ERR(opp_table)) {
542		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
543			PTR_ERR(opp_table));
544		return ERR_CAST(opp_table);
545	}
546
547	opp = _opp_table_find_key(opp_table, key, index, available, read,
548				  compare, assert);
549
550	dev_pm_opp_put_opp_table(opp_table);
551
552	return opp;
553}
554
555static struct dev_pm_opp *_find_key_exact(struct device *dev,
556		unsigned long key, int index, bool available,
557		unsigned long (*read)(struct dev_pm_opp *opp, int index),
558		bool (*assert)(struct opp_table *opp_table))
559{
560	/*
561	 * The value of key will be updated here, but will be ignored as the
562	 * caller doesn't need it.
563	 */
564	return _find_key(dev, &key, index, available, read, _compare_exact,
565			 assert);
566}
567
568static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
569		unsigned long *key, int index, bool available,
570		unsigned long (*read)(struct dev_pm_opp *opp, int index),
571		bool (*assert)(struct opp_table *opp_table))
572{
573	return _opp_table_find_key(opp_table, key, index, available, read,
574				   _compare_ceil, assert);
575}
576
577static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
578		int index, bool available,
579		unsigned long (*read)(struct dev_pm_opp *opp, int index),
580		bool (*assert)(struct opp_table *opp_table))
581{
582	return _find_key(dev, key, index, available, read, _compare_ceil,
583			 assert);
584}
585
586static struct dev_pm_opp *_find_key_floor(struct device *dev,
587		unsigned long *key, int index, bool available,
588		unsigned long (*read)(struct dev_pm_opp *opp, int index),
589		bool (*assert)(struct opp_table *opp_table))
590{
591	return _find_key(dev, key, index, available, read, _compare_floor,
592			 assert);
593}
594
595/**
596 * dev_pm_opp_find_freq_exact() - search for an exact frequency
597 * @dev:		device for which we do this operation
598 * @freq:		frequency to search for
599 * @available:		true/false - match for available opp
600 *
601 * Return: Searches for exact match in the opp table and returns pointer to the
602 * matching opp if found, else returns ERR_PTR in case of error and should
603 * be handled using IS_ERR. Error return values can be:
604 * EINVAL:	for bad pointer
605 * ERANGE:	no match found for search
606 * ENODEV:	if device not found in list of registered devices
607 *
608 * Note: available is a modifier for the search. if available=true, then the
609 * match is for exact matching frequency and is available in the stored OPP
610 * table. if false, the match is for exact frequency which is not available.
611 *
612 * This provides a mechanism to enable an opp which is not available currently
613 * or the opposite as well.
614 *
615 * The callers are required to call dev_pm_opp_put() for the returned OPP after
616 * use.
617 */
618struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
619		unsigned long freq, bool available)
620{
621	return _find_key_exact(dev, freq, 0, available, _read_freq,
622			       assert_single_clk);
623}
624EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
625
626/**
627 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
628 *					 clock corresponding to the index
629 * @dev:	Device for which we do this operation
630 * @freq:	frequency to search for
631 * @index:	Clock index
632 * @available:	true/false - match for available opp
633 *
634 * Search for the matching exact OPP for the clock corresponding to the
635 * specified index from a starting freq for a device.
636 *
637 * Return: matching *opp , else returns ERR_PTR in case of error and should be
638 * handled using IS_ERR. Error return values can be:
639 * EINVAL:	for bad pointer
640 * ERANGE:	no match found for search
641 * ENODEV:	if device not found in list of registered devices
642 *
643 * The callers are required to call dev_pm_opp_put() for the returned OPP after
644 * use.
645 */
646struct dev_pm_opp *
647dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
648				   u32 index, bool available)
649{
650	return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
651}
652EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
653
654static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
655						   unsigned long *freq)
656{
657	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
658					assert_single_clk);
659}
660
661/**
662 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
663 * @dev:	device for which we do this operation
664 * @freq:	Start frequency
665 *
666 * Search for the matching ceil *available* OPP from a starting freq
667 * for a device.
668 *
669 * Return: matching *opp and refreshes *freq accordingly, else returns
670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
671 * values can be:
672 * EINVAL:	for bad pointer
673 * ERANGE:	no match found for search
674 * ENODEV:	if device not found in list of registered devices
675 *
676 * The callers are required to call dev_pm_opp_put() for the returned OPP after
677 * use.
678 */
679struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
680					     unsigned long *freq)
681{
682	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
683}
684EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
685
686/**
687 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
688 *					 clock corresponding to the index
689 * @dev:	Device for which we do this operation
690 * @freq:	Start frequency
691 * @index:	Clock index
692 *
693 * Search for the matching ceil *available* OPP for the clock corresponding to
694 * the specified index from a starting freq for a device.
695 *
696 * Return: matching *opp and refreshes *freq accordingly, else returns
697 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
698 * values can be:
699 * EINVAL:	for bad pointer
700 * ERANGE:	no match found for search
701 * ENODEV:	if device not found in list of registered devices
702 *
703 * The callers are required to call dev_pm_opp_put() for the returned OPP after
704 * use.
705 */
706struct dev_pm_opp *
707dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
708				  u32 index)
709{
710	return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
711}
712EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
713
714/**
715 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
716 * @dev:	device for which we do this operation
717 * @freq:	Start frequency
718 *
719 * Search for the matching floor *available* OPP from a starting freq
720 * for a device.
721 *
722 * Return: matching *opp and refreshes *freq accordingly, else returns
723 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
724 * values can be:
725 * EINVAL:	for bad pointer
726 * ERANGE:	no match found for search
727 * ENODEV:	if device not found in list of registered devices
728 *
729 * The callers are required to call dev_pm_opp_put() for the returned OPP after
730 * use.
731 */
732struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
733					      unsigned long *freq)
734{
735	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
736}
737EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
738
739/**
740 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
741 *					  clock corresponding to the index
742 * @dev:	Device for which we do this operation
743 * @freq:	Start frequency
744 * @index:	Clock index
745 *
746 * Search for the matching floor *available* OPP for the clock corresponding to
747 * the specified index from a starting freq for a device.
748 *
749 * Return: matching *opp and refreshes *freq accordingly, else returns
750 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
751 * values can be:
752 * EINVAL:	for bad pointer
753 * ERANGE:	no match found for search
754 * ENODEV:	if device not found in list of registered devices
755 *
756 * The callers are required to call dev_pm_opp_put() for the returned OPP after
757 * use.
758 */
759struct dev_pm_opp *
760dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
761				   u32 index)
762{
763	return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
764}
765EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
766
767/**
768 * dev_pm_opp_find_level_exact() - search for an exact level
769 * @dev:		device for which we do this operation
770 * @level:		level to search for
771 *
772 * Return: Searches for exact match in the opp table and returns pointer to the
773 * matching opp if found, else returns ERR_PTR in case of error and should
774 * be handled using IS_ERR. Error return values can be:
775 * EINVAL:	for bad pointer
776 * ERANGE:	no match found for search
777 * ENODEV:	if device not found in list of registered devices
778 *
779 * The callers are required to call dev_pm_opp_put() for the returned OPP after
780 * use.
781 */
782struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
783					       unsigned int level)
784{
785	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
786}
787EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
788
789/**
790 * dev_pm_opp_find_level_ceil() - search for an rounded up level
791 * @dev:		device for which we do this operation
792 * @level:		level to search for
793 *
794 * Return: Searches for rounded up match in the opp table and returns pointer
795 * to the  matching opp if found, else returns ERR_PTR in case of error and
796 * should be handled using IS_ERR. Error return values can be:
797 * EINVAL:	for bad pointer
798 * ERANGE:	no match found for search
799 * ENODEV:	if device not found in list of registered devices
800 *
801 * The callers are required to call dev_pm_opp_put() for the returned OPP after
802 * use.
803 */
804struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
805					      unsigned int *level)
806{
807	unsigned long temp = *level;
808	struct dev_pm_opp *opp;
809
810	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
811	if (IS_ERR(opp))
812		return opp;
813
814	/* False match */
815	if (temp == OPP_LEVEL_UNSET) {
816		dev_err(dev, "%s: OPP levels aren't available\n", __func__);
817		dev_pm_opp_put(opp);
818		return ERR_PTR(-ENODEV);
819	}
820
821	*level = temp;
822	return opp;
823}
824EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
825
826/**
827 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
828 * @dev:	device for which we do this operation
829 * @level:	Start level
830 *
831 * Search for the matching floor *available* OPP from a starting level
832 * for a device.
833 *
834 * Return: matching *opp and refreshes *level accordingly, else returns
835 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
836 * values can be:
837 * EINVAL:	for bad pointer
838 * ERANGE:	no match found for search
839 * ENODEV:	if device not found in list of registered devices
840 *
841 * The callers are required to call dev_pm_opp_put() for the returned OPP after
842 * use.
843 */
844struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
845					       unsigned int *level)
846{
847	unsigned long temp = *level;
848	struct dev_pm_opp *opp;
849
850	opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
851	*level = temp;
852	return opp;
853}
854EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
855
856/**
857 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
858 * @dev:	device for which we do this operation
859 * @bw:	start bandwidth
860 * @index:	which bandwidth to compare, in case of OPPs with several values
861 *
862 * Search for the matching floor *available* OPP from a starting bandwidth
863 * for a device.
864 *
865 * Return: matching *opp and refreshes *bw accordingly, else returns
866 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
867 * values can be:
868 * EINVAL:	for bad pointer
869 * ERANGE:	no match found for search
870 * ENODEV:	if device not found in list of registered devices
871 *
872 * The callers are required to call dev_pm_opp_put() for the returned OPP after
873 * use.
874 */
875struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
876					   int index)
877{
878	unsigned long temp = *bw;
879	struct dev_pm_opp *opp;
880
881	opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
882	*bw = temp;
883	return opp;
884}
885EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
886
887/**
888 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
889 * @dev:	device for which we do this operation
890 * @bw:	start bandwidth
891 * @index:	which bandwidth to compare, in case of OPPs with several values
892 *
893 * Search for the matching floor *available* OPP from a starting bandwidth
894 * for a device.
895 *
896 * Return: matching *opp and refreshes *bw accordingly, else returns
897 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
898 * values can be:
899 * EINVAL:	for bad pointer
900 * ERANGE:	no match found for search
901 * ENODEV:	if device not found in list of registered devices
902 *
903 * The callers are required to call dev_pm_opp_put() for the returned OPP after
904 * use.
905 */
906struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
907					    unsigned int *bw, int index)
908{
909	unsigned long temp = *bw;
910	struct dev_pm_opp *opp;
911
912	opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
913	*bw = temp;
914	return opp;
915}
916EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
917
918static int _set_opp_voltage(struct device *dev, struct regulator *reg,
919			    struct dev_pm_opp_supply *supply)
920{
921	int ret;
922
923	/* Regulator not available for device */
924	if (IS_ERR(reg)) {
925		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
926			PTR_ERR(reg));
927		return 0;
928	}
929
930	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
931		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
932
933	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
934					    supply->u_volt, supply->u_volt_max);
935	if (ret)
936		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
937			__func__, supply->u_volt_min, supply->u_volt,
938			supply->u_volt_max, ret);
939
940	return ret;
941}
942
943static int
944_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
945		       struct dev_pm_opp *opp, void *data, bool scaling_down)
946{
947	unsigned long *target = data;
948	unsigned long freq;
949	int ret;
950
951	/* One of target and opp must be available */
952	if (target) {
953		freq = *target;
954	} else if (opp) {
955		freq = opp->rates[0];
956	} else {
957		WARN_ON(1);
958		return -EINVAL;
959	}
960
961	ret = clk_set_rate(opp_table->clk, freq);
962	if (ret) {
963		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
964			ret);
965	} else {
966		opp_table->current_rate_single_clk = freq;
967	}
968
969	return ret;
970}
971
972/*
973 * Simple implementation for configuring multiple clocks. Configure clocks in
974 * the order in which they are present in the array while scaling up.
975 */
976int dev_pm_opp_config_clks_simple(struct device *dev,
977		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
978		bool scaling_down)
979{
980	int ret, i;
981
982	if (scaling_down) {
983		for (i = opp_table->clk_count - 1; i >= 0; i--) {
984			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
985			if (ret) {
986				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
987					ret);
988				return ret;
989			}
990		}
991	} else {
992		for (i = 0; i < opp_table->clk_count; i++) {
993			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
994			if (ret) {
995				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
996					ret);
997				return ret;
998			}
999		}
1000	}
1001
1002	return 0;
1003}
1004EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1005
1006static int _opp_config_regulator_single(struct device *dev,
1007			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1008			struct regulator **regulators, unsigned int count)
1009{
1010	struct regulator *reg = regulators[0];
1011	int ret;
1012
1013	/* This function only supports single regulator per device */
1014	if (WARN_ON(count > 1)) {
1015		dev_err(dev, "multiple regulators are not supported\n");
1016		return -EINVAL;
1017	}
1018
1019	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1020	if (ret)
1021		return ret;
1022
1023	/*
1024	 * Enable the regulator after setting its voltages, otherwise it breaks
1025	 * some boot-enabled regulators.
1026	 */
1027	if (unlikely(!new_opp->opp_table->enabled)) {
1028		ret = regulator_enable(reg);
1029		if (ret < 0)
1030			dev_warn(dev, "Failed to enable regulator: %d", ret);
1031	}
1032
1033	return 0;
1034}
1035
1036static int _set_opp_bw(const struct opp_table *opp_table,
1037		       struct dev_pm_opp *opp, struct device *dev)
1038{
1039	u32 avg, peak;
1040	int i, ret;
1041
1042	if (!opp_table->paths)
1043		return 0;
1044
1045	for (i = 0; i < opp_table->path_count; i++) {
1046		if (!opp) {
1047			avg = 0;
1048			peak = 0;
1049		} else {
1050			avg = opp->bandwidth[i].avg;
1051			peak = opp->bandwidth[i].peak;
1052		}
1053		ret = icc_set_bw(opp_table->paths[i], avg, peak);
1054		if (ret) {
1055			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1056				opp ? "set" : "remove", i, ret);
1057			return ret;
1058		}
1059	}
1060
1061	return 0;
1062}
1063
1064/* This is only called for PM domain for now */
1065static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1066			      struct dev_pm_opp *opp, bool up)
1067{
1068	struct device **devs = opp_table->required_devs;
1069	struct dev_pm_opp *required_opp;
1070	int index, target, delta, ret;
1071
1072	if (!devs)
1073		return 0;
1074
1075	/* required-opps not fully initialized yet */
1076	if (lazy_linking_pending(opp_table))
1077		return -EBUSY;
1078
1079	/* Scaling up? Set required OPPs in normal order, else reverse */
1080	if (up) {
1081		index = 0;
1082		target = opp_table->required_opp_count;
1083		delta = 1;
1084	} else {
1085		index = opp_table->required_opp_count - 1;
1086		target = -1;
1087		delta = -1;
1088	}
1089
1090	while (index != target) {
1091		if (devs[index]) {
1092			required_opp = opp ? opp->required_opps[index] : NULL;
1093
1094			ret = dev_pm_opp_set_opp(devs[index], required_opp);
1095			if (ret)
1096				return ret;
1097		}
1098
1099		index += delta;
1100	}
1101
1102	return 0;
1103}
1104
1105static int _set_opp_level(struct device *dev, struct opp_table *opp_table,
1106			  struct dev_pm_opp *opp)
1107{
1108	unsigned int level = 0;
1109	int ret = 0;
1110
1111	if (opp) {
1112		if (opp->level == OPP_LEVEL_UNSET)
1113			return 0;
1114
1115		level = opp->level;
1116	}
1117
1118	/* Request a new performance state through the device's PM domain. */
1119	ret = dev_pm_domain_set_performance_state(dev, level);
1120	if (ret)
1121		dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1122			ret);
1123
1124	return ret;
1125}
1126
1127static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1128{
1129	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1130	unsigned long freq;
1131
1132	if (!IS_ERR(opp_table->clk)) {
1133		freq = clk_get_rate(opp_table->clk);
1134		opp = _find_freq_ceil(opp_table, &freq);
1135	}
1136
1137	/*
1138	 * Unable to find the current OPP ? Pick the first from the list since
1139	 * it is in ascending order, otherwise rest of the code will need to
1140	 * make special checks to validate current_opp.
1141	 */
1142	if (IS_ERR(opp)) {
1143		mutex_lock(&opp_table->lock);
1144		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1145		dev_pm_opp_get(opp);
1146		mutex_unlock(&opp_table->lock);
1147	}
1148
1149	opp_table->current_opp = opp;
1150}
1151
1152static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1153{
1154	int ret;
1155
1156	if (!opp_table->enabled)
1157		return 0;
1158
1159	/*
1160	 * Some drivers need to support cases where some platforms may
1161	 * have OPP table for the device, while others don't and
1162	 * opp_set_rate() just needs to behave like clk_set_rate().
1163	 */
1164	if (!_get_opp_count(opp_table))
1165		return 0;
1166
1167	ret = _set_opp_bw(opp_table, NULL, dev);
1168	if (ret)
1169		return ret;
1170
1171	if (opp_table->regulators)
1172		regulator_disable(opp_table->regulators[0]);
1173
1174	ret = _set_opp_level(dev, opp_table, NULL);
1175	if (ret)
1176		goto out;
1177
1178	ret = _set_required_opps(dev, opp_table, NULL, false);
1179
1180out:
1181	opp_table->enabled = false;
1182	return ret;
1183}
1184
1185static int _set_opp(struct device *dev, struct opp_table *opp_table,
1186		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1187{
1188	struct dev_pm_opp *old_opp;
1189	int scaling_down, ret;
1190
1191	if (unlikely(!opp))
1192		return _disable_opp_table(dev, opp_table);
1193
1194	/* Find the currently set OPP if we don't know already */
1195	if (unlikely(!opp_table->current_opp))
1196		_find_current_opp(dev, opp_table);
1197
1198	old_opp = opp_table->current_opp;
1199
1200	/* Return early if nothing to do */
1201	if (!forced && old_opp == opp && opp_table->enabled) {
1202		dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1203		return 0;
1204	}
1205
1206	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1207		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1208		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1209		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1210
1211	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1212	if (scaling_down == -1)
1213		scaling_down = 0;
1214
1215	/* Scaling up? Configure required OPPs before frequency */
1216	if (!scaling_down) {
1217		ret = _set_required_opps(dev, opp_table, opp, true);
1218		if (ret) {
1219			dev_err(dev, "Failed to set required opps: %d\n", ret);
1220			return ret;
1221		}
1222
1223		ret = _set_opp_level(dev, opp_table, opp);
1224		if (ret)
1225			return ret;
1226
1227		ret = _set_opp_bw(opp_table, opp, dev);
1228		if (ret) {
1229			dev_err(dev, "Failed to set bw: %d\n", ret);
1230			return ret;
1231		}
1232
1233		if (opp_table->config_regulators) {
1234			ret = opp_table->config_regulators(dev, old_opp, opp,
1235							   opp_table->regulators,
1236							   opp_table->regulator_count);
1237			if (ret) {
1238				dev_err(dev, "Failed to set regulator voltages: %d\n",
1239					ret);
1240				return ret;
1241			}
1242		}
1243	}
1244
1245	if (opp_table->config_clks) {
1246		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1247		if (ret)
1248			return ret;
1249	}
1250
1251	/* Scaling down? Configure required OPPs after frequency */
1252	if (scaling_down) {
1253		if (opp_table->config_regulators) {
1254			ret = opp_table->config_regulators(dev, old_opp, opp,
1255							   opp_table->regulators,
1256							   opp_table->regulator_count);
1257			if (ret) {
1258				dev_err(dev, "Failed to set regulator voltages: %d\n",
1259					ret);
1260				return ret;
1261			}
1262		}
1263
1264		ret = _set_opp_bw(opp_table, opp, dev);
1265		if (ret) {
1266			dev_err(dev, "Failed to set bw: %d\n", ret);
1267			return ret;
1268		}
1269
1270		ret = _set_opp_level(dev, opp_table, opp);
1271		if (ret)
1272			return ret;
1273
1274		ret = _set_required_opps(dev, opp_table, opp, false);
1275		if (ret) {
1276			dev_err(dev, "Failed to set required opps: %d\n", ret);
1277			return ret;
1278		}
1279	}
1280
1281	opp_table->enabled = true;
1282	dev_pm_opp_put(old_opp);
1283
1284	/* Make sure current_opp doesn't get freed */
1285	dev_pm_opp_get(opp);
1286	opp_table->current_opp = opp;
1287
1288	return ret;
1289}
1290
1291/**
1292 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1293 * @dev:	 device for which we do this operation
1294 * @target_freq: frequency to achieve
1295 *
1296 * This configures the power-supplies to the levels specified by the OPP
1297 * corresponding to the target_freq, and programs the clock to a value <=
1298 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1299 * provided by the opp, should have already rounded to the target OPP's
1300 * frequency.
1301 */
1302int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1303{
1304	struct opp_table *opp_table;
1305	unsigned long freq = 0, temp_freq;
1306	struct dev_pm_opp *opp = NULL;
1307	bool forced = false;
1308	int ret;
1309
1310	opp_table = _find_opp_table(dev);
1311	if (IS_ERR(opp_table)) {
1312		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1313		return PTR_ERR(opp_table);
1314	}
1315
1316	if (target_freq) {
1317		/*
1318		 * For IO devices which require an OPP on some platforms/SoCs
1319		 * while just needing to scale the clock on some others
1320		 * we look for empty OPP tables with just a clock handle and
1321		 * scale only the clk. This makes dev_pm_opp_set_rate()
1322		 * equivalent to a clk_set_rate()
1323		 */
1324		if (!_get_opp_count(opp_table)) {
1325			ret = opp_table->config_clks(dev, opp_table, NULL,
1326						     &target_freq, false);
1327			goto put_opp_table;
1328		}
1329
1330		freq = clk_round_rate(opp_table->clk, target_freq);
1331		if ((long)freq <= 0)
1332			freq = target_freq;
1333
1334		/*
1335		 * The clock driver may support finer resolution of the
1336		 * frequencies than the OPP table, don't update the frequency we
1337		 * pass to clk_set_rate() here.
1338		 */
1339		temp_freq = freq;
1340		opp = _find_freq_ceil(opp_table, &temp_freq);
1341		if (IS_ERR(opp)) {
1342			ret = PTR_ERR(opp);
1343			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1344				__func__, freq, ret);
1345			goto put_opp_table;
1346		}
1347
1348		/*
1349		 * An OPP entry specifies the highest frequency at which other
1350		 * properties of the OPP entry apply. Even if the new OPP is
1351		 * same as the old one, we may still reach here for a different
1352		 * value of the frequency. In such a case, do not abort but
1353		 * configure the hardware to the desired frequency forcefully.
1354		 */
1355		forced = opp_table->current_rate_single_clk != freq;
1356	}
1357
1358	ret = _set_opp(dev, opp_table, opp, &freq, forced);
1359
1360	if (freq)
1361		dev_pm_opp_put(opp);
1362
1363put_opp_table:
1364	dev_pm_opp_put_opp_table(opp_table);
1365	return ret;
1366}
1367EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1368
1369/**
1370 * dev_pm_opp_set_opp() - Configure device for OPP
1371 * @dev: device for which we do this operation
1372 * @opp: OPP to set to
1373 *
1374 * This configures the device based on the properties of the OPP passed to this
1375 * routine.
1376 *
1377 * Return: 0 on success, a negative error number otherwise.
1378 */
1379int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1380{
1381	struct opp_table *opp_table;
1382	int ret;
1383
1384	opp_table = _find_opp_table(dev);
1385	if (IS_ERR(opp_table)) {
1386		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1387		return PTR_ERR(opp_table);
1388	}
1389
1390	ret = _set_opp(dev, opp_table, opp, NULL, false);
1391	dev_pm_opp_put_opp_table(opp_table);
1392
1393	return ret;
1394}
1395EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1396
1397/* OPP-dev Helpers */
1398static void _remove_opp_dev(struct opp_device *opp_dev,
1399			    struct opp_table *opp_table)
1400{
1401	opp_debug_unregister(opp_dev, opp_table);
1402	list_del(&opp_dev->node);
1403	kfree(opp_dev);
1404}
1405
1406struct opp_device *_add_opp_dev(const struct device *dev,
1407				struct opp_table *opp_table)
1408{
1409	struct opp_device *opp_dev;
1410
1411	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1412	if (!opp_dev)
1413		return NULL;
1414
1415	/* Initialize opp-dev */
1416	opp_dev->dev = dev;
1417
1418	mutex_lock(&opp_table->lock);
1419	list_add(&opp_dev->node, &opp_table->dev_list);
1420	mutex_unlock(&opp_table->lock);
1421
1422	/* Create debugfs entries for the opp_table */
1423	opp_debug_register(opp_dev, opp_table);
1424
1425	return opp_dev;
1426}
1427
1428static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1429{
1430	struct opp_table *opp_table;
1431	struct opp_device *opp_dev;
1432	int ret;
1433
1434	/*
1435	 * Allocate a new OPP table. In the infrequent case where a new
1436	 * device is needed to be added, we pay this penalty.
1437	 */
1438	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1439	if (!opp_table)
1440		return ERR_PTR(-ENOMEM);
1441
1442	mutex_init(&opp_table->lock);
1443	INIT_LIST_HEAD(&opp_table->dev_list);
1444	INIT_LIST_HEAD(&opp_table->lazy);
1445
1446	opp_table->clk = ERR_PTR(-ENODEV);
1447
1448	/* Mark regulator count uninitialized */
1449	opp_table->regulator_count = -1;
1450
1451	opp_dev = _add_opp_dev(dev, opp_table);
1452	if (!opp_dev) {
1453		ret = -ENOMEM;
1454		goto err;
1455	}
1456
1457	_of_init_opp_table(opp_table, dev, index);
1458
1459	/* Find interconnect path(s) for the device */
1460	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1461	if (ret) {
1462		if (ret == -EPROBE_DEFER)
1463			goto remove_opp_dev;
1464
1465		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1466			 __func__, ret);
1467	}
1468
1469	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1470	INIT_LIST_HEAD(&opp_table->opp_list);
1471	kref_init(&opp_table->kref);
1472
1473	return opp_table;
1474
1475remove_opp_dev:
1476	_of_clear_opp_table(opp_table);
1477	_remove_opp_dev(opp_dev, opp_table);
1478	mutex_destroy(&opp_table->lock);
1479err:
1480	kfree(opp_table);
1481	return ERR_PTR(ret);
1482}
1483
1484void _get_opp_table_kref(struct opp_table *opp_table)
1485{
1486	kref_get(&opp_table->kref);
1487}
1488
1489static struct opp_table *_update_opp_table_clk(struct device *dev,
1490					       struct opp_table *opp_table,
1491					       bool getclk)
1492{
1493	int ret;
1494
1495	/*
1496	 * Return early if we don't need to get clk or we have already done it
1497	 * earlier.
1498	 */
1499	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1500	    opp_table->clks)
1501		return opp_table;
1502
1503	/* Find clk for the device */
1504	opp_table->clk = clk_get(dev, NULL);
1505
1506	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1507	if (!ret) {
1508		opp_table->config_clks = _opp_config_clk_single;
1509		opp_table->clk_count = 1;
1510		return opp_table;
1511	}
1512
1513	if (ret == -ENOENT) {
1514		/*
1515		 * There are few platforms which don't want the OPP core to
1516		 * manage device's clock settings. In such cases neither the
1517		 * platform provides the clks explicitly to us, nor the DT
1518		 * contains a valid clk entry. The OPP nodes in DT may still
1519		 * contain "opp-hz" property though, which we need to parse and
1520		 * allow the platform to find an OPP based on freq later on.
1521		 *
1522		 * This is a simple solution to take care of such corner cases,
1523		 * i.e. make the clk_count 1, which lets us allocate space for
1524		 * frequency in opp->rates and also parse the entries in DT.
1525		 */
1526		opp_table->clk_count = 1;
1527
1528		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1529		return opp_table;
1530	}
1531
1532	dev_pm_opp_put_opp_table(opp_table);
1533	dev_err_probe(dev, ret, "Couldn't find clock\n");
1534
1535	return ERR_PTR(ret);
1536}
1537
1538/*
1539 * We need to make sure that the OPP table for a device doesn't get added twice,
1540 * if this routine gets called in parallel with the same device pointer.
1541 *
1542 * The simplest way to enforce that is to perform everything (find existing
1543 * table and if not found, create a new one) under the opp_table_lock, so only
1544 * one creator gets access to the same. But that expands the critical section
1545 * under the lock and may end up causing circular dependencies with frameworks
1546 * like debugfs, interconnect or clock framework as they may be direct or
1547 * indirect users of OPP core.
1548 *
1549 * And for that reason we have to go for a bit tricky implementation here, which
1550 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1551 * of adding an OPP table and others should wait for it to finish.
1552 */
1553struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1554					 bool getclk)
1555{
1556	struct opp_table *opp_table;
1557
1558again:
1559	mutex_lock(&opp_table_lock);
1560
1561	opp_table = _find_opp_table_unlocked(dev);
1562	if (!IS_ERR(opp_table))
1563		goto unlock;
1564
1565	/*
1566	 * The opp_tables list or an OPP table's dev_list is getting updated by
1567	 * another user, wait for it to finish.
1568	 */
1569	if (unlikely(opp_tables_busy)) {
1570		mutex_unlock(&opp_table_lock);
1571		cpu_relax();
1572		goto again;
1573	}
1574
1575	opp_tables_busy = true;
1576	opp_table = _managed_opp(dev, index);
1577
1578	/* Drop the lock to reduce the size of critical section */
1579	mutex_unlock(&opp_table_lock);
1580
1581	if (opp_table) {
1582		if (!_add_opp_dev(dev, opp_table)) {
1583			dev_pm_opp_put_opp_table(opp_table);
1584			opp_table = ERR_PTR(-ENOMEM);
1585		}
1586
1587		mutex_lock(&opp_table_lock);
1588	} else {
1589		opp_table = _allocate_opp_table(dev, index);
1590
1591		mutex_lock(&opp_table_lock);
1592		if (!IS_ERR(opp_table))
1593			list_add(&opp_table->node, &opp_tables);
1594	}
1595
1596	opp_tables_busy = false;
1597
1598unlock:
1599	mutex_unlock(&opp_table_lock);
1600
1601	return _update_opp_table_clk(dev, opp_table, getclk);
1602}
1603
1604static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1605{
1606	return _add_opp_table_indexed(dev, 0, getclk);
1607}
1608
1609struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1610{
1611	return _find_opp_table(dev);
1612}
1613EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1614
1615static void _opp_table_kref_release(struct kref *kref)
1616{
1617	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1618	struct opp_device *opp_dev, *temp;
1619	int i;
1620
1621	/* Drop the lock as soon as we can */
1622	list_del(&opp_table->node);
1623	mutex_unlock(&opp_table_lock);
1624
1625	if (opp_table->current_opp)
1626		dev_pm_opp_put(opp_table->current_opp);
1627
1628	_of_clear_opp_table(opp_table);
1629
1630	/* Release automatically acquired single clk */
1631	if (!IS_ERR(opp_table->clk))
1632		clk_put(opp_table->clk);
1633
1634	if (opp_table->paths) {
1635		for (i = 0; i < opp_table->path_count; i++)
1636			icc_put(opp_table->paths[i]);
1637		kfree(opp_table->paths);
1638	}
1639
1640	WARN_ON(!list_empty(&opp_table->opp_list));
1641
1642	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1643		_remove_opp_dev(opp_dev, opp_table);
1644
1645	mutex_destroy(&opp_table->lock);
1646	kfree(opp_table);
1647}
1648
1649void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1650{
1651	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1652		       &opp_table_lock);
1653}
1654EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1655
1656void _opp_free(struct dev_pm_opp *opp)
1657{
1658	kfree(opp);
1659}
1660
1661static void _opp_kref_release(struct kref *kref)
1662{
1663	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1664	struct opp_table *opp_table = opp->opp_table;
1665
1666	list_del(&opp->node);
1667	mutex_unlock(&opp_table->lock);
1668
1669	/*
1670	 * Notify the changes in the availability of the operable
1671	 * frequency/voltage list.
1672	 */
1673	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1674	_of_clear_opp(opp_table, opp);
1675	opp_debug_remove_one(opp);
1676	kfree(opp);
1677}
1678
1679void dev_pm_opp_get(struct dev_pm_opp *opp)
1680{
1681	kref_get(&opp->kref);
1682}
1683
1684void dev_pm_opp_put(struct dev_pm_opp *opp)
1685{
1686	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1687}
1688EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1689
1690/**
1691 * dev_pm_opp_remove()  - Remove an OPP from OPP table
1692 * @dev:	device for which we do this operation
1693 * @freq:	OPP to remove with matching 'freq'
1694 *
1695 * This function removes an opp from the opp table.
1696 */
1697void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1698{
1699	struct dev_pm_opp *opp = NULL, *iter;
1700	struct opp_table *opp_table;
1701
1702	opp_table = _find_opp_table(dev);
1703	if (IS_ERR(opp_table))
1704		return;
1705
1706	if (!assert_single_clk(opp_table))
1707		goto put_table;
1708
1709	mutex_lock(&opp_table->lock);
1710
1711	list_for_each_entry(iter, &opp_table->opp_list, node) {
1712		if (iter->rates[0] == freq) {
1713			opp = iter;
1714			break;
1715		}
1716	}
1717
1718	mutex_unlock(&opp_table->lock);
1719
1720	if (opp) {
1721		dev_pm_opp_put(opp);
1722
1723		/* Drop the reference taken by dev_pm_opp_add() */
1724		dev_pm_opp_put_opp_table(opp_table);
1725	} else {
1726		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1727			 __func__, freq);
1728	}
1729
1730put_table:
1731	/* Drop the reference taken by _find_opp_table() */
1732	dev_pm_opp_put_opp_table(opp_table);
1733}
1734EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1735
1736static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1737					bool dynamic)
1738{
1739	struct dev_pm_opp *opp = NULL, *temp;
1740
1741	mutex_lock(&opp_table->lock);
1742	list_for_each_entry(temp, &opp_table->opp_list, node) {
1743		/*
1744		 * Refcount must be dropped only once for each OPP by OPP core,
1745		 * do that with help of "removed" flag.
1746		 */
1747		if (!temp->removed && dynamic == temp->dynamic) {
1748			opp = temp;
1749			break;
1750		}
1751	}
1752
1753	mutex_unlock(&opp_table->lock);
1754	return opp;
1755}
1756
1757/*
1758 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1759 * happen lock less to avoid circular dependency issues. This routine must be
1760 * called without the opp_table->lock held.
1761 */
1762static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1763{
1764	struct dev_pm_opp *opp;
1765
1766	while ((opp = _opp_get_next(opp_table, dynamic))) {
1767		opp->removed = true;
1768		dev_pm_opp_put(opp);
1769
1770		/* Drop the references taken by dev_pm_opp_add() */
1771		if (dynamic)
1772			dev_pm_opp_put_opp_table(opp_table);
1773	}
1774}
1775
1776bool _opp_remove_all_static(struct opp_table *opp_table)
1777{
1778	mutex_lock(&opp_table->lock);
1779
1780	if (!opp_table->parsed_static_opps) {
1781		mutex_unlock(&opp_table->lock);
1782		return false;
1783	}
1784
1785	if (--opp_table->parsed_static_opps) {
1786		mutex_unlock(&opp_table->lock);
1787		return true;
1788	}
1789
1790	mutex_unlock(&opp_table->lock);
1791
1792	_opp_remove_all(opp_table, false);
1793	return true;
1794}
1795
1796/**
1797 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1798 * @dev:	device for which we do this operation
1799 *
1800 * This function removes all dynamically created OPPs from the opp table.
1801 */
1802void dev_pm_opp_remove_all_dynamic(struct device *dev)
1803{
1804	struct opp_table *opp_table;
1805
1806	opp_table = _find_opp_table(dev);
1807	if (IS_ERR(opp_table))
1808		return;
1809
1810	_opp_remove_all(opp_table, true);
1811
1812	/* Drop the reference taken by _find_opp_table() */
1813	dev_pm_opp_put_opp_table(opp_table);
1814}
1815EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1816
1817struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1818{
1819	struct dev_pm_opp *opp;
1820	int supply_count, supply_size, icc_size, clk_size;
1821
1822	/* Allocate space for at least one supply */
1823	supply_count = opp_table->regulator_count > 0 ?
1824			opp_table->regulator_count : 1;
1825	supply_size = sizeof(*opp->supplies) * supply_count;
1826	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1827	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1828
1829	/* allocate new OPP node and supplies structures */
1830	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1831	if (!opp)
1832		return NULL;
1833
1834	/* Put the supplies, bw and clock at the end of the OPP structure */
1835	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1836
1837	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1838
1839	if (icc_size)
1840		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1841
1842	INIT_LIST_HEAD(&opp->node);
1843
1844	opp->level = OPP_LEVEL_UNSET;
1845
1846	return opp;
1847}
1848
1849static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1850					 struct opp_table *opp_table)
1851{
1852	struct regulator *reg;
1853	int i;
1854
1855	if (!opp_table->regulators)
1856		return true;
1857
1858	for (i = 0; i < opp_table->regulator_count; i++) {
1859		reg = opp_table->regulators[i];
1860
1861		if (!regulator_is_supported_voltage(reg,
1862					opp->supplies[i].u_volt_min,
1863					opp->supplies[i].u_volt_max)) {
1864			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1865				__func__, opp->supplies[i].u_volt_min,
1866				opp->supplies[i].u_volt_max);
1867			return false;
1868		}
1869	}
1870
1871	return true;
1872}
1873
1874static int _opp_compare_rate(struct opp_table *opp_table,
1875			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1876{
1877	int i;
1878
1879	for (i = 0; i < opp_table->clk_count; i++) {
1880		if (opp1->rates[i] != opp2->rates[i])
1881			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1882	}
1883
1884	/* Same rates for both OPPs */
1885	return 0;
1886}
1887
1888static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1889			   struct dev_pm_opp *opp2)
1890{
1891	int i;
1892
1893	for (i = 0; i < opp_table->path_count; i++) {
1894		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1895			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1896	}
1897
1898	/* Same bw for both OPPs */
1899	return 0;
1900}
1901
1902/*
1903 * Returns
1904 * 0: opp1 == opp2
1905 * 1: opp1 > opp2
1906 * -1: opp1 < opp2
1907 */
1908int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1909		     struct dev_pm_opp *opp2)
1910{
1911	int ret;
1912
1913	ret = _opp_compare_rate(opp_table, opp1, opp2);
1914	if (ret)
1915		return ret;
1916
1917	ret = _opp_compare_bw(opp_table, opp1, opp2);
1918	if (ret)
1919		return ret;
1920
1921	if (opp1->level != opp2->level)
1922		return opp1->level < opp2->level ? -1 : 1;
1923
1924	/* Duplicate OPPs */
1925	return 0;
1926}
1927
1928static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1929			     struct opp_table *opp_table,
1930			     struct list_head **head)
1931{
1932	struct dev_pm_opp *opp;
1933	int opp_cmp;
1934
1935	/*
1936	 * Insert new OPP in order of increasing frequency and discard if
1937	 * already present.
1938	 *
1939	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1940	 * loop, don't replace it with head otherwise it will become an infinite
1941	 * loop.
1942	 */
1943	list_for_each_entry(opp, &opp_table->opp_list, node) {
1944		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1945		if (opp_cmp > 0) {
1946			*head = &opp->node;
1947			continue;
1948		}
1949
1950		if (opp_cmp < 0)
1951			return 0;
1952
1953		/* Duplicate OPPs */
1954		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1955			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1956			 opp->available, new_opp->rates[0],
1957			 new_opp->supplies[0].u_volt, new_opp->available);
1958
1959		/* Should we compare voltages for all regulators here ? */
1960		return opp->available &&
1961		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1962	}
1963
1964	return 0;
1965}
1966
1967void _required_opps_available(struct dev_pm_opp *opp, int count)
1968{
1969	int i;
1970
1971	for (i = 0; i < count; i++) {
1972		if (opp->required_opps[i]->available)
1973			continue;
1974
1975		opp->available = false;
1976		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1977			 __func__, opp->required_opps[i]->np, opp->rates[0]);
1978		return;
1979	}
1980}
1981
1982/*
1983 * Returns:
1984 * 0: On success. And appropriate error message for duplicate OPPs.
1985 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1986 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1987 *  sure we don't print error messages unnecessarily if different parts of
1988 *  kernel try to initialize the OPP table.
1989 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1990 *  should be considered an error by the callers of _opp_add().
1991 */
1992int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1993	     struct opp_table *opp_table)
1994{
1995	struct list_head *head;
1996	int ret;
1997
1998	mutex_lock(&opp_table->lock);
1999	head = &opp_table->opp_list;
2000
2001	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2002	if (ret) {
2003		mutex_unlock(&opp_table->lock);
2004		return ret;
2005	}
2006
2007	list_add(&new_opp->node, head);
2008	mutex_unlock(&opp_table->lock);
2009
2010	new_opp->opp_table = opp_table;
2011	kref_init(&new_opp->kref);
2012
2013	opp_debug_create_one(new_opp, opp_table);
2014
2015	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2016		new_opp->available = false;
2017		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2018			 __func__, new_opp->rates[0]);
2019	}
2020
2021	/* required-opps not fully initialized yet */
2022	if (lazy_linking_pending(opp_table))
2023		return 0;
2024
2025	_required_opps_available(new_opp, opp_table->required_opp_count);
2026
2027	return 0;
2028}
2029
2030/**
2031 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2032 * @opp_table:	OPP table
2033 * @dev:	device for which we do this operation
2034 * @data:	The OPP data for the OPP to add
2035 * @dynamic:	Dynamically added OPPs.
2036 *
2037 * This function adds an opp definition to the opp table and returns status.
2038 * The opp is made available by default and it can be controlled using
2039 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2040 *
2041 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2042 * and freed by dev_pm_opp_of_remove_table.
2043 *
2044 * Return:
2045 * 0		On success OR
2046 *		Duplicate OPPs (both freq and volt are same) and opp->available
2047 * -EEXIST	Freq are same and volt are different OR
2048 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2049 * -ENOMEM	Memory allocation failure
2050 */
2051int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2052		struct dev_pm_opp_data *data, bool dynamic)
2053{
2054	struct dev_pm_opp *new_opp;
2055	unsigned long tol, u_volt = data->u_volt;
2056	int ret;
2057
2058	if (!assert_single_clk(opp_table))
2059		return -EINVAL;
2060
2061	new_opp = _opp_allocate(opp_table);
2062	if (!new_opp)
2063		return -ENOMEM;
2064
2065	/* populate the opp table */
2066	new_opp->rates[0] = data->freq;
2067	new_opp->level = data->level;
2068	new_opp->turbo = data->turbo;
2069	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2070	new_opp->supplies[0].u_volt = u_volt;
2071	new_opp->supplies[0].u_volt_min = u_volt - tol;
2072	new_opp->supplies[0].u_volt_max = u_volt + tol;
2073	new_opp->available = true;
2074	new_opp->dynamic = dynamic;
2075
2076	ret = _opp_add(dev, new_opp, opp_table);
2077	if (ret) {
2078		/* Don't return error for duplicate OPPs */
2079		if (ret == -EBUSY)
2080			ret = 0;
2081		goto free_opp;
2082	}
2083
2084	/*
2085	 * Notify the changes in the availability of the operable
2086	 * frequency/voltage list.
2087	 */
2088	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2089	return 0;
2090
2091free_opp:
2092	_opp_free(new_opp);
2093
2094	return ret;
2095}
2096
2097/*
2098 * This is required only for the V2 bindings, and it enables a platform to
2099 * specify the hierarchy of versions it supports. OPP layer will then enable
2100 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2101 * property.
2102 */
2103static int _opp_set_supported_hw(struct opp_table *opp_table,
2104				 const u32 *versions, unsigned int count)
2105{
2106	/* Another CPU that shares the OPP table has set the property ? */
2107	if (opp_table->supported_hw)
2108		return 0;
2109
2110	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2111					GFP_KERNEL);
2112	if (!opp_table->supported_hw)
2113		return -ENOMEM;
2114
2115	opp_table->supported_hw_count = count;
2116
2117	return 0;
2118}
2119
2120static void _opp_put_supported_hw(struct opp_table *opp_table)
2121{
2122	if (opp_table->supported_hw) {
2123		kfree(opp_table->supported_hw);
2124		opp_table->supported_hw = NULL;
2125		opp_table->supported_hw_count = 0;
2126	}
2127}
2128
2129/*
2130 * This is required only for the V2 bindings, and it enables a platform to
2131 * specify the extn to be used for certain property names. The properties to
2132 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2133 * should postfix the property name with -<name> while looking for them.
2134 */
2135static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2136{
2137	/* Another CPU that shares the OPP table has set the property ? */
2138	if (!opp_table->prop_name) {
2139		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2140		if (!opp_table->prop_name)
2141			return -ENOMEM;
2142	}
2143
2144	return 0;
2145}
2146
2147static void _opp_put_prop_name(struct opp_table *opp_table)
2148{
2149	if (opp_table->prop_name) {
2150		kfree(opp_table->prop_name);
2151		opp_table->prop_name = NULL;
2152	}
2153}
2154
2155/*
2156 * In order to support OPP switching, OPP layer needs to know the name of the
2157 * device's regulators, as the core would be required to switch voltages as
2158 * well.
2159 *
2160 * This must be called before any OPPs are initialized for the device.
2161 */
2162static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2163			       const char * const names[])
2164{
2165	const char * const *temp = names;
2166	struct regulator *reg;
2167	int count = 0, ret, i;
2168
2169	/* Count number of regulators */
2170	while (*temp++)
2171		count++;
2172
2173	if (!count)
2174		return -EINVAL;
2175
2176	/* Another CPU that shares the OPP table has set the regulators ? */
2177	if (opp_table->regulators)
2178		return 0;
2179
2180	opp_table->regulators = kmalloc_array(count,
2181					      sizeof(*opp_table->regulators),
2182					      GFP_KERNEL);
2183	if (!opp_table->regulators)
2184		return -ENOMEM;
2185
2186	for (i = 0; i < count; i++) {
2187		reg = regulator_get_optional(dev, names[i]);
2188		if (IS_ERR(reg)) {
2189			ret = dev_err_probe(dev, PTR_ERR(reg),
2190					    "%s: no regulator (%s) found\n",
2191					    __func__, names[i]);
2192			goto free_regulators;
2193		}
2194
2195		opp_table->regulators[i] = reg;
2196	}
2197
2198	opp_table->regulator_count = count;
2199
2200	/* Set generic config_regulators() for single regulators here */
2201	if (count == 1)
2202		opp_table->config_regulators = _opp_config_regulator_single;
2203
2204	return 0;
2205
2206free_regulators:
2207	while (i != 0)
2208		regulator_put(opp_table->regulators[--i]);
2209
2210	kfree(opp_table->regulators);
2211	opp_table->regulators = NULL;
2212	opp_table->regulator_count = -1;
2213
2214	return ret;
2215}
2216
2217static void _opp_put_regulators(struct opp_table *opp_table)
2218{
2219	int i;
2220
2221	if (!opp_table->regulators)
2222		return;
2223
2224	if (opp_table->enabled) {
2225		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2226			regulator_disable(opp_table->regulators[i]);
2227	}
2228
2229	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2230		regulator_put(opp_table->regulators[i]);
2231
2232	kfree(opp_table->regulators);
2233	opp_table->regulators = NULL;
2234	opp_table->regulator_count = -1;
2235}
2236
2237static void _put_clks(struct opp_table *opp_table, int count)
2238{
2239	int i;
2240
2241	for (i = count - 1; i >= 0; i--)
2242		clk_put(opp_table->clks[i]);
2243
2244	kfree(opp_table->clks);
2245	opp_table->clks = NULL;
2246}
2247
2248/*
2249 * In order to support OPP switching, OPP layer needs to get pointers to the
2250 * clocks for the device. Simple cases work fine without using this routine
2251 * (i.e. by passing connection-id as NULL), but for a device with multiple
2252 * clocks available, the OPP core needs to know the exact names of the clks to
2253 * use.
2254 *
2255 * This must be called before any OPPs are initialized for the device.
2256 */
2257static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2258			     const char * const names[],
2259			     config_clks_t config_clks)
2260{
2261	const char * const *temp = names;
2262	int count = 0, ret, i;
2263	struct clk *clk;
2264
2265	/* Count number of clks */
2266	while (*temp++)
2267		count++;
2268
2269	/*
2270	 * This is a special case where we have a single clock, whose connection
2271	 * id name is NULL, i.e. first two entries are NULL in the array.
2272	 */
2273	if (!count && !names[1])
2274		count = 1;
2275
2276	/* Fail early for invalid configurations */
2277	if (!count || (!config_clks && count > 1))
2278		return -EINVAL;
2279
2280	/* Another CPU that shares the OPP table has set the clkname ? */
2281	if (opp_table->clks)
2282		return 0;
2283
2284	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2285					GFP_KERNEL);
2286	if (!opp_table->clks)
2287		return -ENOMEM;
2288
2289	/* Find clks for the device */
2290	for (i = 0; i < count; i++) {
2291		clk = clk_get(dev, names[i]);
2292		if (IS_ERR(clk)) {
2293			ret = dev_err_probe(dev, PTR_ERR(clk),
2294					    "%s: Couldn't find clock with name: %s\n",
2295					    __func__, names[i]);
2296			goto free_clks;
2297		}
2298
2299		opp_table->clks[i] = clk;
2300	}
2301
2302	opp_table->clk_count = count;
2303	opp_table->config_clks = config_clks;
2304
2305	/* Set generic single clk set here */
2306	if (count == 1) {
2307		if (!opp_table->config_clks)
2308			opp_table->config_clks = _opp_config_clk_single;
2309
2310		/*
2311		 * We could have just dropped the "clk" field and used "clks"
2312		 * everywhere. Instead we kept the "clk" field around for
2313		 * following reasons:
2314		 *
2315		 * - avoiding clks[0] everywhere else.
2316		 * - not running single clk helpers for multiple clk usecase by
2317		 *   mistake.
2318		 *
2319		 * Since this is single-clk case, just update the clk pointer
2320		 * too.
2321		 */
2322		opp_table->clk = opp_table->clks[0];
2323	}
2324
2325	return 0;
2326
2327free_clks:
2328	_put_clks(opp_table, i);
2329	return ret;
2330}
2331
2332static void _opp_put_clknames(struct opp_table *opp_table)
2333{
2334	if (!opp_table->clks)
2335		return;
2336
2337	opp_table->config_clks = NULL;
2338	opp_table->clk = ERR_PTR(-ENODEV);
2339
2340	_put_clks(opp_table, opp_table->clk_count);
2341}
2342
2343/*
2344 * This is useful to support platforms with multiple regulators per device.
2345 *
2346 * This must be called before any OPPs are initialized for the device.
2347 */
2348static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2349		struct device *dev, config_regulators_t config_regulators)
2350{
2351	/* Another CPU that shares the OPP table has set the helper ? */
2352	if (!opp_table->config_regulators)
2353		opp_table->config_regulators = config_regulators;
2354
2355	return 0;
2356}
2357
2358static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2359{
2360	if (opp_table->config_regulators)
2361		opp_table->config_regulators = NULL;
2362}
2363
2364static void _opp_detach_genpd(struct opp_table *opp_table)
2365{
2366	int index;
2367
2368	for (index = 0; index < opp_table->required_opp_count; index++) {
2369		if (!opp_table->required_devs[index])
2370			continue;
2371
2372		dev_pm_domain_detach(opp_table->required_devs[index], false);
2373		opp_table->required_devs[index] = NULL;
2374	}
2375}
2376
2377/*
2378 * Multiple generic power domains for a device are supported with the help of
2379 * virtual genpd devices, which are created for each consumer device - genpd
2380 * pair. These are the device structures which are attached to the power domain
2381 * and are required by the OPP core to set the performance state of the genpd.
2382 * The same API also works for the case where single genpd is available and so
2383 * we don't need to support that separately.
2384 *
2385 * This helper will normally be called by the consumer driver of the device
2386 * "dev", as only that has details of the genpd names.
2387 *
2388 * This helper needs to be called once with a list of all genpd to attach.
2389 * Otherwise the original device structure will be used instead by the OPP core.
2390 *
2391 * The order of entries in the names array must match the order in which
2392 * "required-opps" are added in DT.
2393 */
2394static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2395			const char * const *names, struct device ***virt_devs)
2396{
2397	struct device *virt_dev;
2398	int index = 0, ret = -EINVAL;
2399	const char * const *name = names;
2400
2401	if (!opp_table->required_devs) {
2402		dev_err(dev, "Required OPPs not available, can't attach genpd\n");
2403		return -EINVAL;
2404	}
2405
2406	/* Genpd core takes care of propagation to parent genpd */
2407	if (opp_table->is_genpd) {
2408		dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2409		return -EOPNOTSUPP;
2410	}
2411
2412	/* Checking only the first one is enough ? */
2413	if (opp_table->required_devs[0])
2414		return 0;
2415
2416	while (*name) {
2417		if (index >= opp_table->required_opp_count) {
2418			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2419				*name, opp_table->required_opp_count, index);
2420			goto err;
2421		}
2422
2423		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2424		if (IS_ERR_OR_NULL(virt_dev)) {
2425			ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2426			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2427			goto err;
2428		}
2429
2430		/*
2431		 * Add the virtual genpd device as a user of the OPP table, so
2432		 * we can call dev_pm_opp_set_opp() on it directly.
2433		 *
2434		 * This will be automatically removed when the OPP table is
2435		 * removed, don't need to handle that here.
2436		 */
2437		if (!_add_opp_dev(virt_dev, opp_table->required_opp_tables[index])) {
2438			ret = -ENOMEM;
2439			goto err;
2440		}
2441
2442		opp_table->required_devs[index] = virt_dev;
2443		index++;
2444		name++;
2445	}
2446
2447	if (virt_devs)
2448		*virt_devs = opp_table->required_devs;
2449
2450	return 0;
2451
2452err:
2453	_opp_detach_genpd(opp_table);
2454	return ret;
2455
2456}
2457
2458static int _opp_set_required_devs(struct opp_table *opp_table,
2459				  struct device *dev,
2460				  struct device **required_devs)
2461{
2462	int i;
2463
2464	if (!opp_table->required_devs) {
2465		dev_err(dev, "Required OPPs not available, can't set required devs\n");
2466		return -EINVAL;
2467	}
2468
2469	/* Another device that shares the OPP table has set the required devs ? */
2470	if (opp_table->required_devs[0])
2471		return 0;
2472
2473	for (i = 0; i < opp_table->required_opp_count; i++) {
2474		/* Genpd core takes care of propagation to parent genpd */
2475		if (required_devs[i] && opp_table->is_genpd &&
2476		    opp_table->required_opp_tables[i]->is_genpd) {
2477			dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2478			return -EOPNOTSUPP;
2479		}
2480
2481		opp_table->required_devs[i] = required_devs[i];
2482	}
2483
2484	return 0;
2485}
2486
2487static void _opp_put_required_devs(struct opp_table *opp_table)
2488{
2489	int i;
2490
2491	for (i = 0; i < opp_table->required_opp_count; i++)
2492		opp_table->required_devs[i] = NULL;
2493}
2494
2495static void _opp_clear_config(struct opp_config_data *data)
2496{
2497	if (data->flags & OPP_CONFIG_REQUIRED_DEVS)
2498		_opp_put_required_devs(data->opp_table);
2499	else if (data->flags & OPP_CONFIG_GENPD)
2500		_opp_detach_genpd(data->opp_table);
2501
2502	if (data->flags & OPP_CONFIG_REGULATOR)
2503		_opp_put_regulators(data->opp_table);
2504	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2505		_opp_put_supported_hw(data->opp_table);
2506	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2507		_opp_put_config_regulators_helper(data->opp_table);
2508	if (data->flags & OPP_CONFIG_PROP_NAME)
2509		_opp_put_prop_name(data->opp_table);
2510	if (data->flags & OPP_CONFIG_CLK)
2511		_opp_put_clknames(data->opp_table);
2512
2513	dev_pm_opp_put_opp_table(data->opp_table);
2514	kfree(data);
2515}
2516
2517/**
2518 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2519 * @dev: Device for which configuration is being set.
2520 * @config: OPP configuration.
2521 *
2522 * This allows all device OPP configurations to be performed at once.
2523 *
2524 * This must be called before any OPPs are initialized for the device. This may
2525 * be called multiple times for the same OPP table, for example once for each
2526 * CPU that share the same table. This must be balanced by the same number of
2527 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2528 *
2529 * This returns a token to the caller, which must be passed to
2530 * dev_pm_opp_clear_config() to free the resources later. The value of the
2531 * returned token will be >= 1 for success and negative for errors. The minimum
2532 * value of 1 is chosen here to make it easy for callers to manage the resource.
2533 */
2534int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2535{
2536	struct opp_table *opp_table;
2537	struct opp_config_data *data;
2538	unsigned int id;
2539	int ret;
2540
2541	data = kmalloc(sizeof(*data), GFP_KERNEL);
2542	if (!data)
2543		return -ENOMEM;
2544
2545	opp_table = _add_opp_table(dev, false);
2546	if (IS_ERR(opp_table)) {
2547		kfree(data);
2548		return PTR_ERR(opp_table);
2549	}
2550
2551	data->opp_table = opp_table;
2552	data->flags = 0;
2553
2554	/* This should be called before OPPs are initialized */
2555	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2556		ret = -EBUSY;
2557		goto err;
2558	}
2559
2560	/* Configure clocks */
2561	if (config->clk_names) {
2562		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2563					config->config_clks);
2564		if (ret)
2565			goto err;
2566
2567		data->flags |= OPP_CONFIG_CLK;
2568	} else if (config->config_clks) {
2569		/* Don't allow config callback without clocks */
2570		ret = -EINVAL;
2571		goto err;
2572	}
2573
2574	/* Configure property names */
2575	if (config->prop_name) {
2576		ret = _opp_set_prop_name(opp_table, config->prop_name);
2577		if (ret)
2578			goto err;
2579
2580		data->flags |= OPP_CONFIG_PROP_NAME;
2581	}
2582
2583	/* Configure config_regulators helper */
2584	if (config->config_regulators) {
2585		ret = _opp_set_config_regulators_helper(opp_table, dev,
2586						config->config_regulators);
2587		if (ret)
2588			goto err;
2589
2590		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2591	}
2592
2593	/* Configure supported hardware */
2594	if (config->supported_hw) {
2595		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2596					    config->supported_hw_count);
2597		if (ret)
2598			goto err;
2599
2600		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2601	}
2602
2603	/* Configure supplies */
2604	if (config->regulator_names) {
2605		ret = _opp_set_regulators(opp_table, dev,
2606					  config->regulator_names);
2607		if (ret)
2608			goto err;
2609
2610		data->flags |= OPP_CONFIG_REGULATOR;
2611	}
2612
2613	/* Attach genpds */
2614	if (config->genpd_names) {
2615		if (config->required_devs)
2616			goto err;
2617
2618		ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2619					config->virt_devs);
2620		if (ret)
2621			goto err;
2622
2623		data->flags |= OPP_CONFIG_GENPD;
2624	} else if (config->required_devs) {
2625		ret = _opp_set_required_devs(opp_table, dev,
2626					     config->required_devs);
2627		if (ret)
2628			goto err;
2629
2630		data->flags |= OPP_CONFIG_REQUIRED_DEVS;
2631	}
2632
2633	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2634		       GFP_KERNEL);
2635	if (ret)
2636		goto err;
2637
2638	return id;
2639
2640err:
2641	_opp_clear_config(data);
2642	return ret;
2643}
2644EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2645
2646/**
2647 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2648 * @token: The token returned by dev_pm_opp_set_config() previously.
2649 *
2650 * This allows all device OPP configurations to be cleared at once. This must be
2651 * called once for each call made to dev_pm_opp_set_config(), in order to free
2652 * the OPPs properly.
2653 *
2654 * Currently the first call itself ends up freeing all the OPP configurations,
2655 * while the later ones only drop the OPP table reference. This works well for
2656 * now as we would never want to use an half initialized OPP table and want to
2657 * remove the configurations together.
2658 */
2659void dev_pm_opp_clear_config(int token)
2660{
2661	struct opp_config_data *data;
2662
2663	/*
2664	 * This lets the callers call this unconditionally and keep their code
2665	 * simple.
2666	 */
2667	if (unlikely(token <= 0))
2668		return;
2669
2670	data = xa_erase(&opp_configs, token);
2671	if (WARN_ON(!data))
2672		return;
2673
2674	_opp_clear_config(data);
2675}
2676EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2677
2678static void devm_pm_opp_config_release(void *token)
2679{
2680	dev_pm_opp_clear_config((unsigned long)token);
2681}
2682
2683/**
2684 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2685 * @dev: Device for which configuration is being set.
2686 * @config: OPP configuration.
2687 *
2688 * This allows all device OPP configurations to be performed at once.
2689 * This is a resource-managed variant of dev_pm_opp_set_config().
2690 *
2691 * Return: 0 on success and errorno otherwise.
2692 */
2693int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2694{
2695	int token = dev_pm_opp_set_config(dev, config);
2696
2697	if (token < 0)
2698		return token;
2699
2700	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2701					(void *) ((unsigned long) token));
2702}
2703EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2704
2705/**
2706 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2707 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2708 * @dst_table: Required OPP table of the @src_table.
2709 * @src_opp: OPP from the @src_table.
2710 *
2711 * This function returns the OPP (present in @dst_table) pointed out by the
2712 * "required-opps" property of the @src_opp (present in @src_table).
2713 *
2714 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2715 * use.
2716 *
2717 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2718 */
2719struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2720						 struct opp_table *dst_table,
2721						 struct dev_pm_opp *src_opp)
2722{
2723	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2724	int i;
2725
2726	if (!src_table || !dst_table || !src_opp ||
2727	    !src_table->required_opp_tables)
2728		return ERR_PTR(-EINVAL);
2729
2730	/* required-opps not fully initialized yet */
2731	if (lazy_linking_pending(src_table))
2732		return ERR_PTR(-EBUSY);
2733
2734	for (i = 0; i < src_table->required_opp_count; i++) {
2735		if (src_table->required_opp_tables[i] == dst_table) {
2736			mutex_lock(&src_table->lock);
2737
2738			list_for_each_entry(opp, &src_table->opp_list, node) {
2739				if (opp == src_opp) {
2740					dest_opp = opp->required_opps[i];
2741					dev_pm_opp_get(dest_opp);
2742					break;
2743				}
2744			}
2745
2746			mutex_unlock(&src_table->lock);
2747			break;
2748		}
2749	}
2750
2751	if (IS_ERR(dest_opp)) {
2752		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2753		       src_table, dst_table);
2754	}
2755
2756	return dest_opp;
2757}
2758EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2759
2760/**
2761 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2762 * @src_table: OPP table which has dst_table as one of its required OPP table.
2763 * @dst_table: Required OPP table of the src_table.
2764 * @pstate: Current performance state of the src_table.
2765 *
2766 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2767 * "required-opps" property of the OPP (present in @src_table) which has
2768 * performance state set to @pstate.
2769 *
2770 * Return: Zero or positive performance state on success, otherwise negative
2771 * value on errors.
2772 */
2773int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2774				       struct opp_table *dst_table,
2775				       unsigned int pstate)
2776{
2777	struct dev_pm_opp *opp;
2778	int dest_pstate = -EINVAL;
2779	int i;
2780
2781	/*
2782	 * Normally the src_table will have the "required_opps" property set to
2783	 * point to one of the OPPs in the dst_table, but in some cases the
2784	 * genpd and its master have one to one mapping of performance states
2785	 * and so none of them have the "required-opps" property set. Return the
2786	 * pstate of the src_table as it is in such cases.
2787	 */
2788	if (!src_table || !src_table->required_opp_count)
2789		return pstate;
2790
2791	/* Both OPP tables must belong to genpds */
2792	if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2793		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2794		return -EINVAL;
2795	}
2796
2797	/* required-opps not fully initialized yet */
2798	if (lazy_linking_pending(src_table))
2799		return -EBUSY;
2800
2801	for (i = 0; i < src_table->required_opp_count; i++) {
2802		if (src_table->required_opp_tables[i]->np == dst_table->np)
2803			break;
2804	}
2805
2806	if (unlikely(i == src_table->required_opp_count)) {
2807		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2808		       __func__, src_table, dst_table);
2809		return -EINVAL;
2810	}
2811
2812	mutex_lock(&src_table->lock);
2813
2814	list_for_each_entry(opp, &src_table->opp_list, node) {
2815		if (opp->level == pstate) {
2816			dest_pstate = opp->required_opps[i]->level;
2817			goto unlock;
2818		}
2819	}
2820
2821	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2822	       dst_table);
2823
2824unlock:
2825	mutex_unlock(&src_table->lock);
2826
2827	return dest_pstate;
2828}
2829
2830/**
2831 * dev_pm_opp_add_dynamic()  - Add an OPP table from a table definitions
2832 * @dev:	The device for which we do this operation
2833 * @data:	The OPP data for the OPP to add
2834 *
2835 * This function adds an opp definition to the opp table and returns status.
2836 * The opp is made available by default and it can be controlled using
2837 * dev_pm_opp_enable/disable functions.
2838 *
2839 * Return:
2840 * 0		On success OR
2841 *		Duplicate OPPs (both freq and volt are same) and opp->available
2842 * -EEXIST	Freq are same and volt are different OR
2843 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2844 * -ENOMEM	Memory allocation failure
2845 */
2846int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2847{
2848	struct opp_table *opp_table;
2849	int ret;
2850
2851	opp_table = _add_opp_table(dev, true);
2852	if (IS_ERR(opp_table))
2853		return PTR_ERR(opp_table);
2854
2855	/* Fix regulator count for dynamic OPPs */
2856	opp_table->regulator_count = 1;
2857
2858	ret = _opp_add_v1(opp_table, dev, data, true);
2859	if (ret)
2860		dev_pm_opp_put_opp_table(opp_table);
2861
2862	return ret;
2863}
2864EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2865
2866/**
2867 * _opp_set_availability() - helper to set the availability of an opp
2868 * @dev:		device for which we do this operation
2869 * @freq:		OPP frequency to modify availability
2870 * @availability_req:	availability status requested for this opp
2871 *
2872 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2873 * which is isolated here.
2874 *
2875 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2876 * copy operation, returns 0 if no modification was done OR modification was
2877 * successful.
2878 */
2879static int _opp_set_availability(struct device *dev, unsigned long freq,
2880				 bool availability_req)
2881{
2882	struct opp_table *opp_table;
2883	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2884	int r = 0;
2885
2886	/* Find the opp_table */
2887	opp_table = _find_opp_table(dev);
2888	if (IS_ERR(opp_table)) {
2889		r = PTR_ERR(opp_table);
2890		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2891		return r;
2892	}
2893
2894	if (!assert_single_clk(opp_table)) {
2895		r = -EINVAL;
2896		goto put_table;
2897	}
2898
2899	mutex_lock(&opp_table->lock);
2900
2901	/* Do we have the frequency? */
2902	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2903		if (tmp_opp->rates[0] == freq) {
2904			opp = tmp_opp;
2905			break;
2906		}
2907	}
2908
2909	if (IS_ERR(opp)) {
2910		r = PTR_ERR(opp);
2911		goto unlock;
2912	}
2913
2914	/* Is update really needed? */
2915	if (opp->available == availability_req)
2916		goto unlock;
2917
2918	opp->available = availability_req;
2919
2920	dev_pm_opp_get(opp);
2921	mutex_unlock(&opp_table->lock);
2922
2923	/* Notify the change of the OPP availability */
2924	if (availability_req)
2925		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2926					     opp);
2927	else
2928		blocking_notifier_call_chain(&opp_table->head,
2929					     OPP_EVENT_DISABLE, opp);
2930
2931	dev_pm_opp_put(opp);
2932	goto put_table;
2933
2934unlock:
2935	mutex_unlock(&opp_table->lock);
2936put_table:
2937	dev_pm_opp_put_opp_table(opp_table);
2938	return r;
2939}
2940
2941/**
2942 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2943 * @dev:		device for which we do this operation
2944 * @freq:		OPP frequency to adjust voltage of
2945 * @u_volt:		new OPP target voltage
2946 * @u_volt_min:		new OPP min voltage
2947 * @u_volt_max:		new OPP max voltage
2948 *
2949 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2950 * copy operation, returns 0 if no modifcation was done OR modification was
2951 * successful.
2952 */
2953int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2954			      unsigned long u_volt, unsigned long u_volt_min,
2955			      unsigned long u_volt_max)
2956
2957{
2958	struct opp_table *opp_table;
2959	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2960	int r = 0;
2961
2962	/* Find the opp_table */
2963	opp_table = _find_opp_table(dev);
2964	if (IS_ERR(opp_table)) {
2965		r = PTR_ERR(opp_table);
2966		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2967		return r;
2968	}
2969
2970	if (!assert_single_clk(opp_table)) {
2971		r = -EINVAL;
2972		goto put_table;
2973	}
2974
2975	mutex_lock(&opp_table->lock);
2976
2977	/* Do we have the frequency? */
2978	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2979		if (tmp_opp->rates[0] == freq) {
2980			opp = tmp_opp;
2981			break;
2982		}
2983	}
2984
2985	if (IS_ERR(opp)) {
2986		r = PTR_ERR(opp);
2987		goto adjust_unlock;
2988	}
2989
2990	/* Is update really needed? */
2991	if (opp->supplies->u_volt == u_volt)
2992		goto adjust_unlock;
2993
2994	opp->supplies->u_volt = u_volt;
2995	opp->supplies->u_volt_min = u_volt_min;
2996	opp->supplies->u_volt_max = u_volt_max;
2997
2998	dev_pm_opp_get(opp);
2999	mutex_unlock(&opp_table->lock);
3000
3001	/* Notify the voltage change of the OPP */
3002	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
3003				     opp);
3004
3005	dev_pm_opp_put(opp);
3006	goto put_table;
3007
3008adjust_unlock:
3009	mutex_unlock(&opp_table->lock);
3010put_table:
3011	dev_pm_opp_put_opp_table(opp_table);
3012	return r;
3013}
3014EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3015
3016/**
3017 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3018 * @dev:	device for which we do this operation
3019 *
3020 * Sync voltage state of the OPP table regulators.
3021 *
3022 * Return: 0 on success or a negative error value.
3023 */
3024int dev_pm_opp_sync_regulators(struct device *dev)
3025{
3026	struct opp_table *opp_table;
3027	struct regulator *reg;
3028	int i, ret = 0;
3029
3030	/* Device may not have OPP table */
3031	opp_table = _find_opp_table(dev);
3032	if (IS_ERR(opp_table))
3033		return 0;
3034
3035	/* Regulator may not be required for the device */
3036	if (unlikely(!opp_table->regulators))
3037		goto put_table;
3038
3039	/* Nothing to sync if voltage wasn't changed */
3040	if (!opp_table->enabled)
3041		goto put_table;
3042
3043	for (i = 0; i < opp_table->regulator_count; i++) {
3044		reg = opp_table->regulators[i];
3045		ret = regulator_sync_voltage(reg);
3046		if (ret)
3047			break;
3048	}
3049put_table:
3050	/* Drop reference taken by _find_opp_table() */
3051	dev_pm_opp_put_opp_table(opp_table);
3052
3053	return ret;
3054}
3055EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3056
3057/**
3058 * dev_pm_opp_enable() - Enable a specific OPP
3059 * @dev:	device for which we do this operation
3060 * @freq:	OPP frequency to enable
3061 *
3062 * Enables a provided opp. If the operation is valid, this returns 0, else the
3063 * corresponding error value. It is meant to be used for users an OPP available
3064 * after being temporarily made unavailable with dev_pm_opp_disable.
3065 *
3066 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3067 * copy operation, returns 0 if no modification was done OR modification was
3068 * successful.
3069 */
3070int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3071{
3072	return _opp_set_availability(dev, freq, true);
3073}
3074EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3075
3076/**
3077 * dev_pm_opp_disable() - Disable a specific OPP
3078 * @dev:	device for which we do this operation
3079 * @freq:	OPP frequency to disable
3080 *
3081 * Disables a provided opp. If the operation is valid, this returns
3082 * 0, else the corresponding error value. It is meant to be a temporary
3083 * control by users to make this OPP not available until the circumstances are
3084 * right to make it available again (with a call to dev_pm_opp_enable).
3085 *
3086 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3087 * copy operation, returns 0 if no modification was done OR modification was
3088 * successful.
3089 */
3090int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3091{
3092	return _opp_set_availability(dev, freq, false);
3093}
3094EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3095
3096/**
3097 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3098 * @dev:	Device for which notifier needs to be registered
3099 * @nb:		Notifier block to be registered
3100 *
3101 * Return: 0 on success or a negative error value.
3102 */
3103int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3104{
3105	struct opp_table *opp_table;
3106	int ret;
3107
3108	opp_table = _find_opp_table(dev);
3109	if (IS_ERR(opp_table))
3110		return PTR_ERR(opp_table);
3111
3112	ret = blocking_notifier_chain_register(&opp_table->head, nb);
3113
3114	dev_pm_opp_put_opp_table(opp_table);
3115
3116	return ret;
3117}
3118EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3119
3120/**
3121 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3122 * @dev:	Device for which notifier needs to be unregistered
3123 * @nb:		Notifier block to be unregistered
3124 *
3125 * Return: 0 on success or a negative error value.
3126 */
3127int dev_pm_opp_unregister_notifier(struct device *dev,
3128				   struct notifier_block *nb)
3129{
3130	struct opp_table *opp_table;
3131	int ret;
3132
3133	opp_table = _find_opp_table(dev);
3134	if (IS_ERR(opp_table))
3135		return PTR_ERR(opp_table);
3136
3137	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3138
3139	dev_pm_opp_put_opp_table(opp_table);
3140
3141	return ret;
3142}
3143EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3144
3145/**
3146 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3147 * @dev:	device pointer used to lookup OPP table.
3148 *
3149 * Free both OPPs created using static entries present in DT and the
3150 * dynamically added entries.
3151 */
3152void dev_pm_opp_remove_table(struct device *dev)
3153{
3154	struct opp_table *opp_table;
3155
3156	/* Check for existing table for 'dev' */
3157	opp_table = _find_opp_table(dev);
3158	if (IS_ERR(opp_table)) {
3159		int error = PTR_ERR(opp_table);
3160
3161		if (error != -ENODEV)
3162			WARN(1, "%s: opp_table: %d\n",
3163			     IS_ERR_OR_NULL(dev) ?
3164					"Invalid device" : dev_name(dev),
3165			     error);
3166		return;
3167	}
3168
3169	/*
3170	 * Drop the extra reference only if the OPP table was successfully added
3171	 * with dev_pm_opp_of_add_table() earlier.
3172	 **/
3173	if (_opp_remove_all_static(opp_table))
3174		dev_pm_opp_put_opp_table(opp_table);
3175
3176	/* Drop reference taken by _find_opp_table() */
3177	dev_pm_opp_put_opp_table(opp_table);
3178}
3179EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3180