1// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt)	"OF: " fmt
3
4#include <linux/device.h>
5#include <linux/fwnode.h>
6#include <linux/io.h>
7#include <linux/ioport.h>
8#include <linux/logic_pio.h>
9#include <linux/module.h>
10#include <linux/of_address.h>
11#include <linux/pci.h>
12#include <linux/pci_regs.h>
13#include <linux/sizes.h>
14#include <linux/slab.h>
15#include <linux/string.h>
16#include <linux/dma-direct.h> /* for bus_dma_region */
17
18#include "of_private.h"
19
20/* Max address size we deal with */
21#define OF_MAX_ADDR_CELLS	4
22#define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
23#define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
24
25/* Debug utility */
26#ifdef DEBUG
27static void of_dump_addr(const char *s, const __be32 *addr, int na)
28{
29	pr_debug("%s", s);
30	while (na--)
31		pr_cont(" %08x", be32_to_cpu(*(addr++)));
32	pr_cont("\n");
33}
34#else
35static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
36#endif
37
38/* Callbacks for bus specific translators */
39struct of_bus {
40	const char	*name;
41	const char	*addresses;
42	int		(*match)(struct device_node *parent);
43	void		(*count_cells)(struct device_node *child,
44				       int *addrc, int *sizec);
45	u64		(*map)(__be32 *addr, const __be32 *range,
46				int na, int ns, int pna, int fna);
47	int		(*translate)(__be32 *addr, u64 offset, int na);
48	int		flag_cells;
49	unsigned int	(*get_flags)(const __be32 *addr);
50};
51
52/*
53 * Default translator (generic bus)
54 */
55
56static void of_bus_default_count_cells(struct device_node *dev,
57				       int *addrc, int *sizec)
58{
59	if (addrc)
60		*addrc = of_n_addr_cells(dev);
61	if (sizec)
62		*sizec = of_n_size_cells(dev);
63}
64
65static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
66		int na, int ns, int pna, int fna)
67{
68	u64 cp, s, da;
69
70	cp = of_read_number(range + fna, na - fna);
71	s  = of_read_number(range + na + pna, ns);
72	da = of_read_number(addr + fna, na - fna);
73
74	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
75
76	if (da < cp || da >= (cp + s))
77		return OF_BAD_ADDR;
78	return da - cp;
79}
80
81static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
82{
83	u64 a = of_read_number(addr, na);
84	memset(addr, 0, na * 4);
85	a += offset;
86	if (na > 1)
87		addr[na - 2] = cpu_to_be32(a >> 32);
88	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
89
90	return 0;
91}
92
93static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
94{
95	return of_read_number(addr, 1);
96}
97
98static unsigned int of_bus_default_get_flags(const __be32 *addr)
99{
100	return IORESOURCE_MEM;
101}
102
103static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
104				    int ns, int pna, int fna)
105{
106	/* Check that flags match */
107	if (*addr != *range)
108		return OF_BAD_ADDR;
109
110	return of_bus_default_map(addr, range, na, ns, pna, fna);
111}
112
113static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
114{
115	/* Keep "flags" part (high cell) in translated address */
116	return of_bus_default_translate(addr + 1, offset, na - 1);
117}
118
119#ifdef CONFIG_PCI
120static unsigned int of_bus_pci_get_flags(const __be32 *addr)
121{
122	unsigned int flags = 0;
123	u32 w = be32_to_cpup(addr);
124
125	if (!IS_ENABLED(CONFIG_PCI))
126		return 0;
127
128	switch((w >> 24) & 0x03) {
129	case 0x01:
130		flags |= IORESOURCE_IO;
131		break;
132	case 0x02: /* 32 bits */
133		flags |= IORESOURCE_MEM;
134		break;
135
136	case 0x03: /* 64 bits */
137		flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
138		break;
139	}
140	if (w & 0x40000000)
141		flags |= IORESOURCE_PREFETCH;
142	return flags;
143}
144
145/*
146 * PCI bus specific translator
147 */
148
149static bool of_node_is_pcie(struct device_node *np)
150{
151	bool is_pcie = of_node_name_eq(np, "pcie");
152
153	if (is_pcie)
154		pr_warn_once("%pOF: Missing device_type\n", np);
155
156	return is_pcie;
157}
158
159static int of_bus_pci_match(struct device_node *np)
160{
161	/*
162 	 * "pciex" is PCI Express
163	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
164	 * "ht" is hypertransport
165	 *
166	 * If none of the device_type match, and that the node name is
167	 * "pcie", accept the device as PCI (with a warning).
168	 */
169	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
170		of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
171		of_node_is_pcie(np);
172}
173
174static void of_bus_pci_count_cells(struct device_node *np,
175				   int *addrc, int *sizec)
176{
177	if (addrc)
178		*addrc = 3;
179	if (sizec)
180		*sizec = 2;
181}
182
183static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
184		int pna, int fna)
185{
186	unsigned int af, rf;
187
188	af = of_bus_pci_get_flags(addr);
189	rf = of_bus_pci_get_flags(range);
190
191	/* Check address type match */
192	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
193		return OF_BAD_ADDR;
194
195	return of_bus_default_map(addr, range, na, ns, pna, fna);
196}
197
198#endif /* CONFIG_PCI */
199
200/*
201 * of_pci_range_to_resource - Create a resource from an of_pci_range
202 * @range:	the PCI range that describes the resource
203 * @np:		device node where the range belongs to
204 * @res:	pointer to a valid resource that will be updated to
205 *              reflect the values contained in the range.
206 *
207 * Returns -EINVAL if the range cannot be converted to resource.
208 *
209 * Note that if the range is an IO range, the resource will be converted
210 * using pci_address_to_pio() which can fail if it is called too early or
211 * if the range cannot be matched to any host bridge IO space (our case here).
212 * To guard against that we try to register the IO range first.
213 * If that fails we know that pci_address_to_pio() will do too.
214 */
215int of_pci_range_to_resource(struct of_pci_range *range,
216			     struct device_node *np, struct resource *res)
217{
218	int err;
219	res->flags = range->flags;
220	res->parent = res->child = res->sibling = NULL;
221	res->name = np->full_name;
222
223	if (res->flags & IORESOURCE_IO) {
224		unsigned long port;
225		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
226				range->size);
227		if (err)
228			goto invalid_range;
229		port = pci_address_to_pio(range->cpu_addr);
230		if (port == (unsigned long)-1) {
231			err = -EINVAL;
232			goto invalid_range;
233		}
234		res->start = port;
235	} else {
236		if ((sizeof(resource_size_t) < 8) &&
237		    upper_32_bits(range->cpu_addr)) {
238			err = -EINVAL;
239			goto invalid_range;
240		}
241
242		res->start = range->cpu_addr;
243	}
244	res->end = res->start + range->size - 1;
245	return 0;
246
247invalid_range:
248	res->start = (resource_size_t)OF_BAD_ADDR;
249	res->end = (resource_size_t)OF_BAD_ADDR;
250	return err;
251}
252EXPORT_SYMBOL(of_pci_range_to_resource);
253
254/*
255 * of_range_to_resource - Create a resource from a ranges entry
256 * @np:		device node where the range belongs to
257 * @index:	the 'ranges' index to convert to a resource
258 * @res:	pointer to a valid resource that will be updated to
259 *              reflect the values contained in the range.
260 *
261 * Returns ENOENT if the entry is not found or EINVAL if the range cannot be
262 * converted to resource.
263 */
264int of_range_to_resource(struct device_node *np, int index, struct resource *res)
265{
266	int ret, i = 0;
267	struct of_range_parser parser;
268	struct of_range range;
269
270	ret = of_range_parser_init(&parser, np);
271	if (ret)
272		return ret;
273
274	for_each_of_range(&parser, &range)
275		if (i++ == index)
276			return of_pci_range_to_resource(&range, np, res);
277
278	return -ENOENT;
279}
280EXPORT_SYMBOL(of_range_to_resource);
281
282/*
283 * ISA bus specific translator
284 */
285
286static int of_bus_isa_match(struct device_node *np)
287{
288	return of_node_name_eq(np, "isa");
289}
290
291static void of_bus_isa_count_cells(struct device_node *child,
292				   int *addrc, int *sizec)
293{
294	if (addrc)
295		*addrc = 2;
296	if (sizec)
297		*sizec = 1;
298}
299
300static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
301		int pna, int fna)
302{
303	/* Check address type match */
304	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
305		return OF_BAD_ADDR;
306
307	return of_bus_default_map(addr, range, na, ns, pna, fna);
308}
309
310static unsigned int of_bus_isa_get_flags(const __be32 *addr)
311{
312	unsigned int flags = 0;
313	u32 w = be32_to_cpup(addr);
314
315	if (w & 1)
316		flags |= IORESOURCE_IO;
317	else
318		flags |= IORESOURCE_MEM;
319	return flags;
320}
321
322static int of_bus_default_flags_match(struct device_node *np)
323{
324	return of_bus_n_addr_cells(np) == 3;
325}
326
327/*
328 * Array of bus specific translators
329 */
330
331static struct of_bus of_busses[] = {
332#ifdef CONFIG_PCI
333	/* PCI */
334	{
335		.name = "pci",
336		.addresses = "assigned-addresses",
337		.match = of_bus_pci_match,
338		.count_cells = of_bus_pci_count_cells,
339		.map = of_bus_pci_map,
340		.translate = of_bus_default_flags_translate,
341		.flag_cells = 1,
342		.get_flags = of_bus_pci_get_flags,
343	},
344#endif /* CONFIG_PCI */
345	/* ISA */
346	{
347		.name = "isa",
348		.addresses = "reg",
349		.match = of_bus_isa_match,
350		.count_cells = of_bus_isa_count_cells,
351		.map = of_bus_isa_map,
352		.translate = of_bus_default_flags_translate,
353		.flag_cells = 1,
354		.get_flags = of_bus_isa_get_flags,
355	},
356	/* Default with flags cell */
357	{
358		.name = "default-flags",
359		.addresses = "reg",
360		.match = of_bus_default_flags_match,
361		.count_cells = of_bus_default_count_cells,
362		.map = of_bus_default_flags_map,
363		.translate = of_bus_default_flags_translate,
364		.flag_cells = 1,
365		.get_flags = of_bus_default_flags_get_flags,
366	},
367	/* Default */
368	{
369		.name = "default",
370		.addresses = "reg",
371		.match = NULL,
372		.count_cells = of_bus_default_count_cells,
373		.map = of_bus_default_map,
374		.translate = of_bus_default_translate,
375		.get_flags = of_bus_default_get_flags,
376	},
377};
378
379static struct of_bus *of_match_bus(struct device_node *np)
380{
381	int i;
382
383	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
384		if (!of_busses[i].match || of_busses[i].match(np))
385			return &of_busses[i];
386	BUG();
387	return NULL;
388}
389
390static int of_empty_ranges_quirk(struct device_node *np)
391{
392	if (IS_ENABLED(CONFIG_PPC)) {
393		/* To save cycles, we cache the result for global "Mac" setting */
394		static int quirk_state = -1;
395
396		/* PA-SEMI sdc DT bug */
397		if (of_device_is_compatible(np, "1682m-sdc"))
398			return true;
399
400		/* Make quirk cached */
401		if (quirk_state < 0)
402			quirk_state =
403				of_machine_is_compatible("Power Macintosh") ||
404				of_machine_is_compatible("MacRISC");
405		return quirk_state;
406	}
407	return false;
408}
409
410static int of_translate_one(struct device_node *parent, struct of_bus *bus,
411			    struct of_bus *pbus, __be32 *addr,
412			    int na, int ns, int pna, const char *rprop)
413{
414	const __be32 *ranges;
415	unsigned int rlen;
416	int rone;
417	u64 offset = OF_BAD_ADDR;
418
419	/*
420	 * Normally, an absence of a "ranges" property means we are
421	 * crossing a non-translatable boundary, and thus the addresses
422	 * below the current cannot be converted to CPU physical ones.
423	 * Unfortunately, while this is very clear in the spec, it's not
424	 * what Apple understood, and they do have things like /uni-n or
425	 * /ht nodes with no "ranges" property and a lot of perfectly
426	 * useable mapped devices below them. Thus we treat the absence of
427	 * "ranges" as equivalent to an empty "ranges" property which means
428	 * a 1:1 translation at that level. It's up to the caller not to try
429	 * to translate addresses that aren't supposed to be translated in
430	 * the first place. --BenH.
431	 *
432	 * As far as we know, this damage only exists on Apple machines, so
433	 * This code is only enabled on powerpc. --gcl
434	 *
435	 * This quirk also applies for 'dma-ranges' which frequently exist in
436	 * child nodes without 'dma-ranges' in the parent nodes. --RobH
437	 */
438	ranges = of_get_property(parent, rprop, &rlen);
439	if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
440	    strcmp(rprop, "dma-ranges")) {
441		pr_debug("no ranges; cannot translate\n");
442		return 1;
443	}
444	if (ranges == NULL || rlen == 0) {
445		offset = of_read_number(addr, na);
446		memset(addr, 0, pna * 4);
447		pr_debug("empty ranges; 1:1 translation\n");
448		goto finish;
449	}
450
451	pr_debug("walking ranges...\n");
452
453	/* Now walk through the ranges */
454	rlen /= 4;
455	rone = na + pna + ns;
456	for (; rlen >= rone; rlen -= rone, ranges += rone) {
457		offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells);
458		if (offset != OF_BAD_ADDR)
459			break;
460	}
461	if (offset == OF_BAD_ADDR) {
462		pr_debug("not found !\n");
463		return 1;
464	}
465	memcpy(addr, ranges + na, 4 * pna);
466
467 finish:
468	of_dump_addr("parent translation for:", addr, pna);
469	pr_debug("with offset: %llx\n", offset);
470
471	/* Translate it into parent bus space */
472	return pbus->translate(addr, offset, pna);
473}
474
475/*
476 * Translate an address from the device-tree into a CPU physical address,
477 * this walks up the tree and applies the various bus mappings on the
478 * way.
479 *
480 * Note: We consider that crossing any level with #size-cells == 0 to mean
481 * that translation is impossible (that is we are not dealing with a value
482 * that can be mapped to a cpu physical address). This is not really specified
483 * that way, but this is traditionally the way IBM at least do things
484 *
485 * Whenever the translation fails, the *host pointer will be set to the
486 * device that had registered logical PIO mapping, and the return code is
487 * relative to that node.
488 */
489static u64 __of_translate_address(struct device_node *dev,
490				  struct device_node *(*get_parent)(const struct device_node *),
491				  const __be32 *in_addr, const char *rprop,
492				  struct device_node **host)
493{
494	struct device_node *parent = NULL;
495	struct of_bus *bus, *pbus;
496	__be32 addr[OF_MAX_ADDR_CELLS];
497	int na, ns, pna, pns;
498	u64 result = OF_BAD_ADDR;
499
500	pr_debug("** translation for device %pOF **\n", dev);
501
502	/* Increase refcount at current level */
503	of_node_get(dev);
504
505	*host = NULL;
506	/* Get parent & match bus type */
507	parent = get_parent(dev);
508	if (parent == NULL)
509		goto bail;
510	bus = of_match_bus(parent);
511
512	/* Count address cells & copy address locally */
513	bus->count_cells(dev, &na, &ns);
514	if (!OF_CHECK_COUNTS(na, ns)) {
515		pr_debug("Bad cell count for %pOF\n", dev);
516		goto bail;
517	}
518	memcpy(addr, in_addr, na * 4);
519
520	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
521	    bus->name, na, ns, parent);
522	of_dump_addr("translating address:", addr, na);
523
524	/* Translate */
525	for (;;) {
526		struct logic_pio_hwaddr *iorange;
527
528		/* Switch to parent bus */
529		of_node_put(dev);
530		dev = parent;
531		parent = get_parent(dev);
532
533		/* If root, we have finished */
534		if (parent == NULL) {
535			pr_debug("reached root node\n");
536			result = of_read_number(addr, na);
537			break;
538		}
539
540		/*
541		 * For indirectIO device which has no ranges property, get
542		 * the address from reg directly.
543		 */
544		iorange = find_io_range_by_fwnode(&dev->fwnode);
545		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
546			result = of_read_number(addr + 1, na - 1);
547			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
548				 dev, result);
549			*host = of_node_get(dev);
550			break;
551		}
552
553		/* Get new parent bus and counts */
554		pbus = of_match_bus(parent);
555		pbus->count_cells(dev, &pna, &pns);
556		if (!OF_CHECK_COUNTS(pna, pns)) {
557			pr_err("Bad cell count for %pOF\n", dev);
558			break;
559		}
560
561		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
562		    pbus->name, pna, pns, parent);
563
564		/* Apply bus translation */
565		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
566			break;
567
568		/* Complete the move up one level */
569		na = pna;
570		ns = pns;
571		bus = pbus;
572
573		of_dump_addr("one level translation:", addr, na);
574	}
575 bail:
576	of_node_put(parent);
577	of_node_put(dev);
578
579	return result;
580}
581
582u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
583{
584	struct device_node *host;
585	u64 ret;
586
587	ret = __of_translate_address(dev, of_get_parent,
588				     in_addr, "ranges", &host);
589	if (host) {
590		of_node_put(host);
591		return OF_BAD_ADDR;
592	}
593
594	return ret;
595}
596EXPORT_SYMBOL(of_translate_address);
597
598#ifdef CONFIG_HAS_DMA
599struct device_node *__of_get_dma_parent(const struct device_node *np)
600{
601	struct of_phandle_args args;
602	int ret, index;
603
604	index = of_property_match_string(np, "interconnect-names", "dma-mem");
605	if (index < 0)
606		return of_get_parent(np);
607
608	ret = of_parse_phandle_with_args(np, "interconnects",
609					 "#interconnect-cells",
610					 index, &args);
611	if (ret < 0)
612		return of_get_parent(np);
613
614	return of_node_get(args.np);
615}
616#endif
617
618static struct device_node *of_get_next_dma_parent(struct device_node *np)
619{
620	struct device_node *parent;
621
622	parent = __of_get_dma_parent(np);
623	of_node_put(np);
624
625	return parent;
626}
627
628u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
629{
630	struct device_node *host;
631	u64 ret;
632
633	ret = __of_translate_address(dev, __of_get_dma_parent,
634				     in_addr, "dma-ranges", &host);
635
636	if (host) {
637		of_node_put(host);
638		return OF_BAD_ADDR;
639	}
640
641	return ret;
642}
643EXPORT_SYMBOL(of_translate_dma_address);
644
645/**
646 * of_translate_dma_region - Translate device tree address and size tuple
647 * @dev: device tree node for which to translate
648 * @prop: pointer into array of cells
649 * @start: return value for the start of the DMA range
650 * @length: return value for the length of the DMA range
651 *
652 * Returns a pointer to the cell immediately following the translated DMA region.
653 */
654const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
655				      phys_addr_t *start, size_t *length)
656{
657	struct device_node *parent;
658	u64 address, size;
659	int na, ns;
660
661	parent = __of_get_dma_parent(dev);
662	if (!parent)
663		return NULL;
664
665	na = of_bus_n_addr_cells(parent);
666	ns = of_bus_n_size_cells(parent);
667
668	of_node_put(parent);
669
670	address = of_translate_dma_address(dev, prop);
671	if (address == OF_BAD_ADDR)
672		return NULL;
673
674	size = of_read_number(prop + na, ns);
675
676	if (start)
677		*start = address;
678
679	if (length)
680		*length = size;
681
682	return prop + na + ns;
683}
684EXPORT_SYMBOL(of_translate_dma_region);
685
686const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
687			       u64 *size, unsigned int *flags)
688{
689	const __be32 *prop;
690	unsigned int psize;
691	struct device_node *parent;
692	struct of_bus *bus;
693	int onesize, i, na, ns;
694
695	/* Get parent & match bus type */
696	parent = of_get_parent(dev);
697	if (parent == NULL)
698		return NULL;
699	bus = of_match_bus(parent);
700	if (strcmp(bus->name, "pci") && (bar_no >= 0)) {
701		of_node_put(parent);
702		return NULL;
703	}
704	bus->count_cells(dev, &na, &ns);
705	of_node_put(parent);
706	if (!OF_CHECK_ADDR_COUNT(na))
707		return NULL;
708
709	/* Get "reg" or "assigned-addresses" property */
710	prop = of_get_property(dev, bus->addresses, &psize);
711	if (prop == NULL)
712		return NULL;
713	psize /= 4;
714
715	onesize = na + ns;
716	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
717		u32 val = be32_to_cpu(prop[0]);
718		/* PCI bus matches on BAR number instead of index */
719		if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
720		    ((index >= 0) && (i == index))) {
721			if (size)
722				*size = of_read_number(prop + na, ns);
723			if (flags)
724				*flags = bus->get_flags(prop);
725			return prop;
726		}
727	}
728	return NULL;
729}
730EXPORT_SYMBOL(__of_get_address);
731
732/**
733 * of_property_read_reg - Retrieve the specified "reg" entry index without translating
734 * @np: device tree node for which to retrieve "reg" from
735 * @idx: "reg" entry index to read
736 * @addr: return value for the untranslated address
737 * @size: return value for the entry size
738 *
739 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
740 * size values filled in.
741 */
742int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
743{
744	const __be32 *prop = of_get_address(np, idx, size, NULL);
745
746	if (!prop)
747		return -EINVAL;
748
749	*addr = of_read_number(prop, of_n_addr_cells(np));
750
751	return 0;
752}
753EXPORT_SYMBOL(of_property_read_reg);
754
755static int parser_init(struct of_pci_range_parser *parser,
756			struct device_node *node, const char *name)
757{
758	int rlen;
759
760	parser->node = node;
761	parser->pna = of_n_addr_cells(node);
762	parser->na = of_bus_n_addr_cells(node);
763	parser->ns = of_bus_n_size_cells(node);
764	parser->dma = !strcmp(name, "dma-ranges");
765	parser->bus = of_match_bus(node);
766
767	parser->range = of_get_property(node, name, &rlen);
768	if (parser->range == NULL)
769		return -ENOENT;
770
771	parser->end = parser->range + rlen / sizeof(__be32);
772
773	return 0;
774}
775
776int of_pci_range_parser_init(struct of_pci_range_parser *parser,
777				struct device_node *node)
778{
779	return parser_init(parser, node, "ranges");
780}
781EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
782
783int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
784				struct device_node *node)
785{
786	return parser_init(parser, node, "dma-ranges");
787}
788EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
789#define of_dma_range_parser_init of_pci_dma_range_parser_init
790
791struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
792						struct of_pci_range *range)
793{
794	int na = parser->na;
795	int ns = parser->ns;
796	int np = parser->pna + na + ns;
797	int busflag_na = parser->bus->flag_cells;
798
799	if (!range)
800		return NULL;
801
802	if (!parser->range || parser->range + np > parser->end)
803		return NULL;
804
805	range->flags = parser->bus->get_flags(parser->range);
806
807	range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
808
809	if (parser->dma)
810		range->cpu_addr = of_translate_dma_address(parser->node,
811				parser->range + na);
812	else
813		range->cpu_addr = of_translate_address(parser->node,
814				parser->range + na);
815	range->size = of_read_number(parser->range + parser->pna + na, ns);
816
817	parser->range += np;
818
819	/* Now consume following elements while they are contiguous */
820	while (parser->range + np <= parser->end) {
821		u32 flags = 0;
822		u64 bus_addr, cpu_addr, size;
823
824		flags = parser->bus->get_flags(parser->range);
825		bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
826		if (parser->dma)
827			cpu_addr = of_translate_dma_address(parser->node,
828					parser->range + na);
829		else
830			cpu_addr = of_translate_address(parser->node,
831					parser->range + na);
832		size = of_read_number(parser->range + parser->pna + na, ns);
833
834		if (flags != range->flags)
835			break;
836		if (bus_addr != range->bus_addr + range->size ||
837		    cpu_addr != range->cpu_addr + range->size)
838			break;
839
840		range->size += size;
841		parser->range += np;
842	}
843
844	return range;
845}
846EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
847
848static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
849			u64 size)
850{
851	u64 taddr;
852	unsigned long port;
853	struct device_node *host;
854
855	taddr = __of_translate_address(dev, of_get_parent,
856				       in_addr, "ranges", &host);
857	if (host) {
858		/* host-specific port access */
859		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
860		of_node_put(host);
861	} else {
862		/* memory-mapped I/O range */
863		port = pci_address_to_pio(taddr);
864	}
865
866	if (port == (unsigned long)-1)
867		return OF_BAD_ADDR;
868
869	return port;
870}
871
872#ifdef CONFIG_HAS_DMA
873/**
874 * of_dma_get_range - Get DMA range info and put it into a map array
875 * @np:		device node to get DMA range info
876 * @map:	dma range structure to return
877 *
878 * Look in bottom up direction for the first "dma-ranges" property
879 * and parse it.  Put the information into a DMA offset map array.
880 *
881 * dma-ranges format:
882 *	DMA addr (dma_addr)	: naddr cells
883 *	CPU addr (phys_addr_t)	: pna cells
884 *	size			: nsize cells
885 *
886 * It returns -ENODEV if "dma-ranges" property was not found for this
887 * device in the DT.
888 */
889int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
890{
891	struct device_node *node = of_node_get(np);
892	const __be32 *ranges = NULL;
893	bool found_dma_ranges = false;
894	struct of_range_parser parser;
895	struct of_range range;
896	struct bus_dma_region *r;
897	int len, num_ranges = 0;
898	int ret = 0;
899
900	while (node) {
901		ranges = of_get_property(node, "dma-ranges", &len);
902
903		/* Ignore empty ranges, they imply no translation required */
904		if (ranges && len > 0)
905			break;
906
907		/* Once we find 'dma-ranges', then a missing one is an error */
908		if (found_dma_ranges && !ranges) {
909			ret = -ENODEV;
910			goto out;
911		}
912		found_dma_ranges = true;
913
914		node = of_get_next_dma_parent(node);
915	}
916
917	if (!node || !ranges) {
918		pr_debug("no dma-ranges found for node(%pOF)\n", np);
919		ret = -ENODEV;
920		goto out;
921	}
922
923	of_dma_range_parser_init(&parser, node);
924	for_each_of_range(&parser, &range) {
925		if (range.cpu_addr == OF_BAD_ADDR) {
926			pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
927			       range.bus_addr, node);
928			continue;
929		}
930		num_ranges++;
931	}
932
933	if (!num_ranges) {
934		ret = -EINVAL;
935		goto out;
936	}
937
938	r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
939	if (!r) {
940		ret = -ENOMEM;
941		goto out;
942	}
943
944	/*
945	 * Record all info in the generic DMA ranges array for struct device,
946	 * returning an error if we don't find any parsable ranges.
947	 */
948	*map = r;
949	of_dma_range_parser_init(&parser, node);
950	for_each_of_range(&parser, &range) {
951		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
952			 range.bus_addr, range.cpu_addr, range.size);
953		if (range.cpu_addr == OF_BAD_ADDR)
954			continue;
955		r->cpu_start = range.cpu_addr;
956		r->dma_start = range.bus_addr;
957		r->size = range.size;
958		r++;
959	}
960out:
961	of_node_put(node);
962	return ret;
963}
964#endif /* CONFIG_HAS_DMA */
965
966/**
967 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
968 * @np: The node to start searching from or NULL to start from the root
969 *
970 * Gets the highest CPU physical address that is addressable by all DMA masters
971 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
972 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
973 */
974phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
975{
976	phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
977	struct of_range_parser parser;
978	phys_addr_t subtree_max_addr;
979	struct device_node *child;
980	struct of_range range;
981	const __be32 *ranges;
982	u64 cpu_end = 0;
983	int len;
984
985	if (!np)
986		np = of_root;
987
988	ranges = of_get_property(np, "dma-ranges", &len);
989	if (ranges && len) {
990		of_dma_range_parser_init(&parser, np);
991		for_each_of_range(&parser, &range)
992			if (range.cpu_addr + range.size > cpu_end)
993				cpu_end = range.cpu_addr + range.size - 1;
994
995		if (max_cpu_addr > cpu_end)
996			max_cpu_addr = cpu_end;
997	}
998
999	for_each_available_child_of_node(np, child) {
1000		subtree_max_addr = of_dma_get_max_cpu_address(child);
1001		if (max_cpu_addr > subtree_max_addr)
1002			max_cpu_addr = subtree_max_addr;
1003	}
1004
1005	return max_cpu_addr;
1006}
1007
1008/**
1009 * of_dma_is_coherent - Check if device is coherent
1010 * @np:	device node
1011 *
1012 * It returns true if "dma-coherent" property was found
1013 * for this device in the DT, or if DMA is coherent by
1014 * default for OF devices on the current platform and no
1015 * "dma-noncoherent" property was found for this device.
1016 */
1017bool of_dma_is_coherent(struct device_node *np)
1018{
1019	struct device_node *node;
1020	bool is_coherent = dma_default_coherent;
1021
1022	node = of_node_get(np);
1023
1024	while (node) {
1025		if (of_property_read_bool(node, "dma-coherent")) {
1026			is_coherent = true;
1027			break;
1028		}
1029		if (of_property_read_bool(node, "dma-noncoherent")) {
1030			is_coherent = false;
1031			break;
1032		}
1033		node = of_get_next_dma_parent(node);
1034	}
1035	of_node_put(node);
1036	return is_coherent;
1037}
1038EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1039
1040/**
1041 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1042 * @np:	device node
1043 *
1044 * Returns true if the "nonposted-mmio" property was found for
1045 * the device's bus.
1046 *
1047 * This is currently only enabled on builds that support Apple ARM devices, as
1048 * an optimization.
1049 */
1050static bool of_mmio_is_nonposted(struct device_node *np)
1051{
1052	struct device_node *parent;
1053	bool nonposted;
1054
1055	if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1056		return false;
1057
1058	parent = of_get_parent(np);
1059	if (!parent)
1060		return false;
1061
1062	nonposted = of_property_read_bool(parent, "nonposted-mmio");
1063
1064	of_node_put(parent);
1065	return nonposted;
1066}
1067
1068static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1069		struct resource *r)
1070{
1071	u64 taddr;
1072	const __be32	*addrp;
1073	u64		size;
1074	unsigned int	flags;
1075	const char	*name = NULL;
1076
1077	addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1078	if (addrp == NULL)
1079		return -EINVAL;
1080
1081	/* Get optional "reg-names" property to add a name to a resource */
1082	if (index >= 0)
1083		of_property_read_string_index(dev, "reg-names",	index, &name);
1084
1085	if (flags & IORESOURCE_MEM)
1086		taddr = of_translate_address(dev, addrp);
1087	else if (flags & IORESOURCE_IO)
1088		taddr = of_translate_ioport(dev, addrp, size);
1089	else
1090		return -EINVAL;
1091
1092	if (taddr == OF_BAD_ADDR)
1093		return -EINVAL;
1094	memset(r, 0, sizeof(struct resource));
1095
1096	if (of_mmio_is_nonposted(dev))
1097		flags |= IORESOURCE_MEM_NONPOSTED;
1098
1099	r->start = taddr;
1100	r->end = taddr + size - 1;
1101	r->flags = flags;
1102	r->name = name ? name : dev->full_name;
1103
1104	return 0;
1105}
1106
1107/**
1108 * of_address_to_resource - Translate device tree address and return as resource
1109 * @dev:	Caller's Device Node
1110 * @index:	Index into the array
1111 * @r:		Pointer to resource array
1112 *
1113 * Returns -EINVAL if the range cannot be converted to resource.
1114 *
1115 * Note that if your address is a PIO address, the conversion will fail if
1116 * the physical address can't be internally converted to an IO token with
1117 * pci_address_to_pio(), that is because it's either called too early or it
1118 * can't be matched to any host bridge IO space
1119 */
1120int of_address_to_resource(struct device_node *dev, int index,
1121			   struct resource *r)
1122{
1123	return __of_address_to_resource(dev, index, -1, r);
1124}
1125EXPORT_SYMBOL_GPL(of_address_to_resource);
1126
1127int of_pci_address_to_resource(struct device_node *dev, int bar,
1128			       struct resource *r)
1129{
1130
1131	if (!IS_ENABLED(CONFIG_PCI))
1132		return -ENOSYS;
1133
1134	return __of_address_to_resource(dev, -1, bar, r);
1135}
1136EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1137
1138/**
1139 * of_iomap - Maps the memory mapped IO for a given device_node
1140 * @np:		the device whose io range will be mapped
1141 * @index:	index of the io range
1142 *
1143 * Returns a pointer to the mapped memory
1144 */
1145void __iomem *of_iomap(struct device_node *np, int index)
1146{
1147	struct resource res;
1148
1149	if (of_address_to_resource(np, index, &res))
1150		return NULL;
1151
1152	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1153		return ioremap_np(res.start, resource_size(&res));
1154	else
1155		return ioremap(res.start, resource_size(&res));
1156}
1157EXPORT_SYMBOL(of_iomap);
1158
1159/*
1160 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1161 *			   for a given device_node
1162 * @device:	the device whose io range will be mapped
1163 * @index:	index of the io range
1164 * @name:	name "override" for the memory region request or NULL
1165 *
1166 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1167 * error code on failure. Usage example:
1168 *
1169 *	base = of_io_request_and_map(node, 0, "foo");
1170 *	if (IS_ERR(base))
1171 *		return PTR_ERR(base);
1172 */
1173void __iomem *of_io_request_and_map(struct device_node *np, int index,
1174				    const char *name)
1175{
1176	struct resource res;
1177	void __iomem *mem;
1178
1179	if (of_address_to_resource(np, index, &res))
1180		return IOMEM_ERR_PTR(-EINVAL);
1181
1182	if (!name)
1183		name = res.name;
1184	if (!request_mem_region(res.start, resource_size(&res), name))
1185		return IOMEM_ERR_PTR(-EBUSY);
1186
1187	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1188		mem = ioremap_np(res.start, resource_size(&res));
1189	else
1190		mem = ioremap(res.start, resource_size(&res));
1191
1192	if (!mem) {
1193		release_mem_region(res.start, resource_size(&res));
1194		return IOMEM_ERR_PTR(-ENOMEM);
1195	}
1196
1197	return mem;
1198}
1199EXPORT_SYMBOL(of_io_request_and_map);
1200