1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7#include <linux/module.h>
8#include <linux/init.h>
9#include <linux/slab.h>
10#include <linux/err.h>
11#include <linux/key.h>
12#include <linux/nvme-tcp.h>
13#include <linux/nvme-keyring.h>
14#include <net/sock.h>
15#include <net/tcp.h>
16#include <net/tls.h>
17#include <net/tls_prot.h>
18#include <net/handshake.h>
19#include <linux/blk-mq.h>
20#include <crypto/hash.h>
21#include <net/busy_poll.h>
22#include <trace/events/sock.h>
23
24#include "nvme.h"
25#include "fabrics.h"
26
27struct nvme_tcp_queue;
28
29/* Define the socket priority to use for connections were it is desirable
30 * that the NIC consider performing optimized packet processing or filtering.
31 * A non-zero value being sufficient to indicate general consideration of any
32 * possible optimization.  Making it a module param allows for alternative
33 * values that may be unique for some NIC implementations.
34 */
35static int so_priority;
36module_param(so_priority, int, 0644);
37MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
38
39/*
40 * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity
41 * from sysfs.
42 */
43static bool wq_unbound;
44module_param(wq_unbound, bool, 0644);
45MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)");
46
47/*
48 * TLS handshake timeout
49 */
50static int tls_handshake_timeout = 10;
51#ifdef CONFIG_NVME_TCP_TLS
52module_param(tls_handshake_timeout, int, 0644);
53MODULE_PARM_DESC(tls_handshake_timeout,
54		 "nvme TLS handshake timeout in seconds (default 10)");
55#endif
56
57#ifdef CONFIG_DEBUG_LOCK_ALLOC
58/* lockdep can detect a circular dependency of the form
59 *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
60 * because dependencies are tracked for both nvme-tcp and user contexts. Using
61 * a separate class prevents lockdep from conflating nvme-tcp socket use with
62 * user-space socket API use.
63 */
64static struct lock_class_key nvme_tcp_sk_key[2];
65static struct lock_class_key nvme_tcp_slock_key[2];
66
67static void nvme_tcp_reclassify_socket(struct socket *sock)
68{
69	struct sock *sk = sock->sk;
70
71	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
72		return;
73
74	switch (sk->sk_family) {
75	case AF_INET:
76		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
77					      &nvme_tcp_slock_key[0],
78					      "sk_lock-AF_INET-NVME",
79					      &nvme_tcp_sk_key[0]);
80		break;
81	case AF_INET6:
82		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
83					      &nvme_tcp_slock_key[1],
84					      "sk_lock-AF_INET6-NVME",
85					      &nvme_tcp_sk_key[1]);
86		break;
87	default:
88		WARN_ON_ONCE(1);
89	}
90}
91#else
92static void nvme_tcp_reclassify_socket(struct socket *sock) { }
93#endif
94
95enum nvme_tcp_send_state {
96	NVME_TCP_SEND_CMD_PDU = 0,
97	NVME_TCP_SEND_H2C_PDU,
98	NVME_TCP_SEND_DATA,
99	NVME_TCP_SEND_DDGST,
100};
101
102struct nvme_tcp_request {
103	struct nvme_request	req;
104	void			*pdu;
105	struct nvme_tcp_queue	*queue;
106	u32			data_len;
107	u32			pdu_len;
108	u32			pdu_sent;
109	u32			h2cdata_left;
110	u32			h2cdata_offset;
111	u16			ttag;
112	__le16			status;
113	struct list_head	entry;
114	struct llist_node	lentry;
115	__le32			ddgst;
116
117	struct bio		*curr_bio;
118	struct iov_iter		iter;
119
120	/* send state */
121	size_t			offset;
122	size_t			data_sent;
123	enum nvme_tcp_send_state state;
124};
125
126enum nvme_tcp_queue_flags {
127	NVME_TCP_Q_ALLOCATED	= 0,
128	NVME_TCP_Q_LIVE		= 1,
129	NVME_TCP_Q_POLLING	= 2,
130};
131
132enum nvme_tcp_recv_state {
133	NVME_TCP_RECV_PDU = 0,
134	NVME_TCP_RECV_DATA,
135	NVME_TCP_RECV_DDGST,
136};
137
138struct nvme_tcp_ctrl;
139struct nvme_tcp_queue {
140	struct socket		*sock;
141	struct work_struct	io_work;
142	int			io_cpu;
143
144	struct mutex		queue_lock;
145	struct mutex		send_mutex;
146	struct llist_head	req_list;
147	struct list_head	send_list;
148
149	/* recv state */
150	void			*pdu;
151	int			pdu_remaining;
152	int			pdu_offset;
153	size_t			data_remaining;
154	size_t			ddgst_remaining;
155	unsigned int		nr_cqe;
156
157	/* send state */
158	struct nvme_tcp_request *request;
159
160	u32			maxh2cdata;
161	size_t			cmnd_capsule_len;
162	struct nvme_tcp_ctrl	*ctrl;
163	unsigned long		flags;
164	bool			rd_enabled;
165
166	bool			hdr_digest;
167	bool			data_digest;
168	struct ahash_request	*rcv_hash;
169	struct ahash_request	*snd_hash;
170	__le32			exp_ddgst;
171	__le32			recv_ddgst;
172	struct completion       tls_complete;
173	int                     tls_err;
174	struct page_frag_cache	pf_cache;
175
176	void (*state_change)(struct sock *);
177	void (*data_ready)(struct sock *);
178	void (*write_space)(struct sock *);
179};
180
181struct nvme_tcp_ctrl {
182	/* read only in the hot path */
183	struct nvme_tcp_queue	*queues;
184	struct blk_mq_tag_set	tag_set;
185
186	/* other member variables */
187	struct list_head	list;
188	struct blk_mq_tag_set	admin_tag_set;
189	struct sockaddr_storage addr;
190	struct sockaddr_storage src_addr;
191	struct nvme_ctrl	ctrl;
192
193	struct work_struct	err_work;
194	struct delayed_work	connect_work;
195	struct nvme_tcp_request async_req;
196	u32			io_queues[HCTX_MAX_TYPES];
197};
198
199static LIST_HEAD(nvme_tcp_ctrl_list);
200static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
201static struct workqueue_struct *nvme_tcp_wq;
202static const struct blk_mq_ops nvme_tcp_mq_ops;
203static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
204static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
205
206static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
207{
208	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
209}
210
211static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
212{
213	return queue - queue->ctrl->queues;
214}
215
216static inline bool nvme_tcp_tls(struct nvme_ctrl *ctrl)
217{
218	if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
219		return 0;
220
221	return ctrl->opts->tls;
222}
223
224static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
225{
226	u32 queue_idx = nvme_tcp_queue_id(queue);
227
228	if (queue_idx == 0)
229		return queue->ctrl->admin_tag_set.tags[queue_idx];
230	return queue->ctrl->tag_set.tags[queue_idx - 1];
231}
232
233static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
234{
235	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
236}
237
238static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
239{
240	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
241}
242
243static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
244{
245	return req->pdu;
246}
247
248static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
249{
250	/* use the pdu space in the back for the data pdu */
251	return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
252		sizeof(struct nvme_tcp_data_pdu);
253}
254
255static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
256{
257	if (nvme_is_fabrics(req->req.cmd))
258		return NVME_TCP_ADMIN_CCSZ;
259	return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
260}
261
262static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
263{
264	return req == &req->queue->ctrl->async_req;
265}
266
267static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
268{
269	struct request *rq;
270
271	if (unlikely(nvme_tcp_async_req(req)))
272		return false; /* async events don't have a request */
273
274	rq = blk_mq_rq_from_pdu(req);
275
276	return rq_data_dir(rq) == WRITE && req->data_len &&
277		req->data_len <= nvme_tcp_inline_data_size(req);
278}
279
280static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
281{
282	return req->iter.bvec->bv_page;
283}
284
285static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
286{
287	return req->iter.bvec->bv_offset + req->iter.iov_offset;
288}
289
290static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
291{
292	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
293			req->pdu_len - req->pdu_sent);
294}
295
296static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
297{
298	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
299			req->pdu_len - req->pdu_sent : 0;
300}
301
302static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
303		int len)
304{
305	return nvme_tcp_pdu_data_left(req) <= len;
306}
307
308static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
309		unsigned int dir)
310{
311	struct request *rq = blk_mq_rq_from_pdu(req);
312	struct bio_vec *vec;
313	unsigned int size;
314	int nr_bvec;
315	size_t offset;
316
317	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
318		vec = &rq->special_vec;
319		nr_bvec = 1;
320		size = blk_rq_payload_bytes(rq);
321		offset = 0;
322	} else {
323		struct bio *bio = req->curr_bio;
324		struct bvec_iter bi;
325		struct bio_vec bv;
326
327		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
328		nr_bvec = 0;
329		bio_for_each_bvec(bv, bio, bi) {
330			nr_bvec++;
331		}
332		size = bio->bi_iter.bi_size;
333		offset = bio->bi_iter.bi_bvec_done;
334	}
335
336	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
337	req->iter.iov_offset = offset;
338}
339
340static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
341		int len)
342{
343	req->data_sent += len;
344	req->pdu_sent += len;
345	iov_iter_advance(&req->iter, len);
346	if (!iov_iter_count(&req->iter) &&
347	    req->data_sent < req->data_len) {
348		req->curr_bio = req->curr_bio->bi_next;
349		nvme_tcp_init_iter(req, ITER_SOURCE);
350	}
351}
352
353static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
354{
355	int ret;
356
357	/* drain the send queue as much as we can... */
358	do {
359		ret = nvme_tcp_try_send(queue);
360	} while (ret > 0);
361}
362
363static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
364{
365	return !list_empty(&queue->send_list) ||
366		!llist_empty(&queue->req_list);
367}
368
369static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
370		bool sync, bool last)
371{
372	struct nvme_tcp_queue *queue = req->queue;
373	bool empty;
374
375	empty = llist_add(&req->lentry, &queue->req_list) &&
376		list_empty(&queue->send_list) && !queue->request;
377
378	/*
379	 * if we're the first on the send_list and we can try to send
380	 * directly, otherwise queue io_work. Also, only do that if we
381	 * are on the same cpu, so we don't introduce contention.
382	 */
383	if (queue->io_cpu == raw_smp_processor_id() &&
384	    sync && empty && mutex_trylock(&queue->send_mutex)) {
385		nvme_tcp_send_all(queue);
386		mutex_unlock(&queue->send_mutex);
387	}
388
389	if (last && nvme_tcp_queue_more(queue))
390		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
391}
392
393static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
394{
395	struct nvme_tcp_request *req;
396	struct llist_node *node;
397
398	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
399		req = llist_entry(node, struct nvme_tcp_request, lentry);
400		list_add(&req->entry, &queue->send_list);
401	}
402}
403
404static inline struct nvme_tcp_request *
405nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
406{
407	struct nvme_tcp_request *req;
408
409	req = list_first_entry_or_null(&queue->send_list,
410			struct nvme_tcp_request, entry);
411	if (!req) {
412		nvme_tcp_process_req_list(queue);
413		req = list_first_entry_or_null(&queue->send_list,
414				struct nvme_tcp_request, entry);
415		if (unlikely(!req))
416			return NULL;
417	}
418
419	list_del(&req->entry);
420	return req;
421}
422
423static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
424		__le32 *dgst)
425{
426	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
427	crypto_ahash_final(hash);
428}
429
430static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
431		struct page *page, off_t off, size_t len)
432{
433	struct scatterlist sg;
434
435	sg_init_table(&sg, 1);
436	sg_set_page(&sg, page, len, off);
437	ahash_request_set_crypt(hash, &sg, NULL, len);
438	crypto_ahash_update(hash);
439}
440
441static inline void nvme_tcp_hdgst(struct ahash_request *hash,
442		void *pdu, size_t len)
443{
444	struct scatterlist sg;
445
446	sg_init_one(&sg, pdu, len);
447	ahash_request_set_crypt(hash, &sg, pdu + len, len);
448	crypto_ahash_digest(hash);
449}
450
451static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
452		void *pdu, size_t pdu_len)
453{
454	struct nvme_tcp_hdr *hdr = pdu;
455	__le32 recv_digest;
456	__le32 exp_digest;
457
458	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
459		dev_err(queue->ctrl->ctrl.device,
460			"queue %d: header digest flag is cleared\n",
461			nvme_tcp_queue_id(queue));
462		return -EPROTO;
463	}
464
465	recv_digest = *(__le32 *)(pdu + hdr->hlen);
466	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
467	exp_digest = *(__le32 *)(pdu + hdr->hlen);
468	if (recv_digest != exp_digest) {
469		dev_err(queue->ctrl->ctrl.device,
470			"header digest error: recv %#x expected %#x\n",
471			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
472		return -EIO;
473	}
474
475	return 0;
476}
477
478static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
479{
480	struct nvme_tcp_hdr *hdr = pdu;
481	u8 digest_len = nvme_tcp_hdgst_len(queue);
482	u32 len;
483
484	len = le32_to_cpu(hdr->plen) - hdr->hlen -
485		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
486
487	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
488		dev_err(queue->ctrl->ctrl.device,
489			"queue %d: data digest flag is cleared\n",
490		nvme_tcp_queue_id(queue));
491		return -EPROTO;
492	}
493	crypto_ahash_init(queue->rcv_hash);
494
495	return 0;
496}
497
498static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
499		struct request *rq, unsigned int hctx_idx)
500{
501	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
502
503	page_frag_free(req->pdu);
504}
505
506static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
507		struct request *rq, unsigned int hctx_idx,
508		unsigned int numa_node)
509{
510	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
511	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
512	struct nvme_tcp_cmd_pdu *pdu;
513	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
514	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
515	u8 hdgst = nvme_tcp_hdgst_len(queue);
516
517	req->pdu = page_frag_alloc(&queue->pf_cache,
518		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
519		GFP_KERNEL | __GFP_ZERO);
520	if (!req->pdu)
521		return -ENOMEM;
522
523	pdu = req->pdu;
524	req->queue = queue;
525	nvme_req(rq)->ctrl = &ctrl->ctrl;
526	nvme_req(rq)->cmd = &pdu->cmd;
527
528	return 0;
529}
530
531static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
532		unsigned int hctx_idx)
533{
534	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
535	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
536
537	hctx->driver_data = queue;
538	return 0;
539}
540
541static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
542		unsigned int hctx_idx)
543{
544	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
545	struct nvme_tcp_queue *queue = &ctrl->queues[0];
546
547	hctx->driver_data = queue;
548	return 0;
549}
550
551static enum nvme_tcp_recv_state
552nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
553{
554	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
555		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
556		NVME_TCP_RECV_DATA;
557}
558
559static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
560{
561	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
562				nvme_tcp_hdgst_len(queue);
563	queue->pdu_offset = 0;
564	queue->data_remaining = -1;
565	queue->ddgst_remaining = 0;
566}
567
568static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
569{
570	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
571		return;
572
573	dev_warn(ctrl->device, "starting error recovery\n");
574	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
575}
576
577static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
578		struct nvme_completion *cqe)
579{
580	struct nvme_tcp_request *req;
581	struct request *rq;
582
583	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
584	if (!rq) {
585		dev_err(queue->ctrl->ctrl.device,
586			"got bad cqe.command_id %#x on queue %d\n",
587			cqe->command_id, nvme_tcp_queue_id(queue));
588		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
589		return -EINVAL;
590	}
591
592	req = blk_mq_rq_to_pdu(rq);
593	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
594		req->status = cqe->status;
595
596	if (!nvme_try_complete_req(rq, req->status, cqe->result))
597		nvme_complete_rq(rq);
598	queue->nr_cqe++;
599
600	return 0;
601}
602
603static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
604		struct nvme_tcp_data_pdu *pdu)
605{
606	struct request *rq;
607
608	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
609	if (!rq) {
610		dev_err(queue->ctrl->ctrl.device,
611			"got bad c2hdata.command_id %#x on queue %d\n",
612			pdu->command_id, nvme_tcp_queue_id(queue));
613		return -ENOENT;
614	}
615
616	if (!blk_rq_payload_bytes(rq)) {
617		dev_err(queue->ctrl->ctrl.device,
618			"queue %d tag %#x unexpected data\n",
619			nvme_tcp_queue_id(queue), rq->tag);
620		return -EIO;
621	}
622
623	queue->data_remaining = le32_to_cpu(pdu->data_length);
624
625	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
626	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
627		dev_err(queue->ctrl->ctrl.device,
628			"queue %d tag %#x SUCCESS set but not last PDU\n",
629			nvme_tcp_queue_id(queue), rq->tag);
630		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
631		return -EPROTO;
632	}
633
634	return 0;
635}
636
637static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
638		struct nvme_tcp_rsp_pdu *pdu)
639{
640	struct nvme_completion *cqe = &pdu->cqe;
641	int ret = 0;
642
643	/*
644	 * AEN requests are special as they don't time out and can
645	 * survive any kind of queue freeze and often don't respond to
646	 * aborts.  We don't even bother to allocate a struct request
647	 * for them but rather special case them here.
648	 */
649	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
650				     cqe->command_id)))
651		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
652				&cqe->result);
653	else
654		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
655
656	return ret;
657}
658
659static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
660{
661	struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
662	struct nvme_tcp_queue *queue = req->queue;
663	struct request *rq = blk_mq_rq_from_pdu(req);
664	u32 h2cdata_sent = req->pdu_len;
665	u8 hdgst = nvme_tcp_hdgst_len(queue);
666	u8 ddgst = nvme_tcp_ddgst_len(queue);
667
668	req->state = NVME_TCP_SEND_H2C_PDU;
669	req->offset = 0;
670	req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
671	req->pdu_sent = 0;
672	req->h2cdata_left -= req->pdu_len;
673	req->h2cdata_offset += h2cdata_sent;
674
675	memset(data, 0, sizeof(*data));
676	data->hdr.type = nvme_tcp_h2c_data;
677	if (!req->h2cdata_left)
678		data->hdr.flags = NVME_TCP_F_DATA_LAST;
679	if (queue->hdr_digest)
680		data->hdr.flags |= NVME_TCP_F_HDGST;
681	if (queue->data_digest)
682		data->hdr.flags |= NVME_TCP_F_DDGST;
683	data->hdr.hlen = sizeof(*data);
684	data->hdr.pdo = data->hdr.hlen + hdgst;
685	data->hdr.plen =
686		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
687	data->ttag = req->ttag;
688	data->command_id = nvme_cid(rq);
689	data->data_offset = cpu_to_le32(req->h2cdata_offset);
690	data->data_length = cpu_to_le32(req->pdu_len);
691}
692
693static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
694		struct nvme_tcp_r2t_pdu *pdu)
695{
696	struct nvme_tcp_request *req;
697	struct request *rq;
698	u32 r2t_length = le32_to_cpu(pdu->r2t_length);
699	u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
700
701	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
702	if (!rq) {
703		dev_err(queue->ctrl->ctrl.device,
704			"got bad r2t.command_id %#x on queue %d\n",
705			pdu->command_id, nvme_tcp_queue_id(queue));
706		return -ENOENT;
707	}
708	req = blk_mq_rq_to_pdu(rq);
709
710	if (unlikely(!r2t_length)) {
711		dev_err(queue->ctrl->ctrl.device,
712			"req %d r2t len is %u, probably a bug...\n",
713			rq->tag, r2t_length);
714		return -EPROTO;
715	}
716
717	if (unlikely(req->data_sent + r2t_length > req->data_len)) {
718		dev_err(queue->ctrl->ctrl.device,
719			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
720			rq->tag, r2t_length, req->data_len, req->data_sent);
721		return -EPROTO;
722	}
723
724	if (unlikely(r2t_offset < req->data_sent)) {
725		dev_err(queue->ctrl->ctrl.device,
726			"req %d unexpected r2t offset %u (expected %zu)\n",
727			rq->tag, r2t_offset, req->data_sent);
728		return -EPROTO;
729	}
730
731	req->pdu_len = 0;
732	req->h2cdata_left = r2t_length;
733	req->h2cdata_offset = r2t_offset;
734	req->ttag = pdu->ttag;
735
736	nvme_tcp_setup_h2c_data_pdu(req);
737	nvme_tcp_queue_request(req, false, true);
738
739	return 0;
740}
741
742static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
743		unsigned int *offset, size_t *len)
744{
745	struct nvme_tcp_hdr *hdr;
746	char *pdu = queue->pdu;
747	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
748	int ret;
749
750	ret = skb_copy_bits(skb, *offset,
751		&pdu[queue->pdu_offset], rcv_len);
752	if (unlikely(ret))
753		return ret;
754
755	queue->pdu_remaining -= rcv_len;
756	queue->pdu_offset += rcv_len;
757	*offset += rcv_len;
758	*len -= rcv_len;
759	if (queue->pdu_remaining)
760		return 0;
761
762	hdr = queue->pdu;
763	if (queue->hdr_digest) {
764		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
765		if (unlikely(ret))
766			return ret;
767	}
768
769
770	if (queue->data_digest) {
771		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
772		if (unlikely(ret))
773			return ret;
774	}
775
776	switch (hdr->type) {
777	case nvme_tcp_c2h_data:
778		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
779	case nvme_tcp_rsp:
780		nvme_tcp_init_recv_ctx(queue);
781		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
782	case nvme_tcp_r2t:
783		nvme_tcp_init_recv_ctx(queue);
784		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
785	default:
786		dev_err(queue->ctrl->ctrl.device,
787			"unsupported pdu type (%d)\n", hdr->type);
788		return -EINVAL;
789	}
790}
791
792static inline void nvme_tcp_end_request(struct request *rq, u16 status)
793{
794	union nvme_result res = {};
795
796	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
797		nvme_complete_rq(rq);
798}
799
800static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
801			      unsigned int *offset, size_t *len)
802{
803	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
804	struct request *rq =
805		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
806	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
807
808	while (true) {
809		int recv_len, ret;
810
811		recv_len = min_t(size_t, *len, queue->data_remaining);
812		if (!recv_len)
813			break;
814
815		if (!iov_iter_count(&req->iter)) {
816			req->curr_bio = req->curr_bio->bi_next;
817
818			/*
819			 * If we don`t have any bios it means that controller
820			 * sent more data than we requested, hence error
821			 */
822			if (!req->curr_bio) {
823				dev_err(queue->ctrl->ctrl.device,
824					"queue %d no space in request %#x",
825					nvme_tcp_queue_id(queue), rq->tag);
826				nvme_tcp_init_recv_ctx(queue);
827				return -EIO;
828			}
829			nvme_tcp_init_iter(req, ITER_DEST);
830		}
831
832		/* we can read only from what is left in this bio */
833		recv_len = min_t(size_t, recv_len,
834				iov_iter_count(&req->iter));
835
836		if (queue->data_digest)
837			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
838				&req->iter, recv_len, queue->rcv_hash);
839		else
840			ret = skb_copy_datagram_iter(skb, *offset,
841					&req->iter, recv_len);
842		if (ret) {
843			dev_err(queue->ctrl->ctrl.device,
844				"queue %d failed to copy request %#x data",
845				nvme_tcp_queue_id(queue), rq->tag);
846			return ret;
847		}
848
849		*len -= recv_len;
850		*offset += recv_len;
851		queue->data_remaining -= recv_len;
852	}
853
854	if (!queue->data_remaining) {
855		if (queue->data_digest) {
856			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
857			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
858		} else {
859			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
860				nvme_tcp_end_request(rq,
861						le16_to_cpu(req->status));
862				queue->nr_cqe++;
863			}
864			nvme_tcp_init_recv_ctx(queue);
865		}
866	}
867
868	return 0;
869}
870
871static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
872		struct sk_buff *skb, unsigned int *offset, size_t *len)
873{
874	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
875	char *ddgst = (char *)&queue->recv_ddgst;
876	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
877	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
878	int ret;
879
880	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
881	if (unlikely(ret))
882		return ret;
883
884	queue->ddgst_remaining -= recv_len;
885	*offset += recv_len;
886	*len -= recv_len;
887	if (queue->ddgst_remaining)
888		return 0;
889
890	if (queue->recv_ddgst != queue->exp_ddgst) {
891		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
892					pdu->command_id);
893		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
894
895		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
896
897		dev_err(queue->ctrl->ctrl.device,
898			"data digest error: recv %#x expected %#x\n",
899			le32_to_cpu(queue->recv_ddgst),
900			le32_to_cpu(queue->exp_ddgst));
901	}
902
903	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
904		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
905					pdu->command_id);
906		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
907
908		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
909		queue->nr_cqe++;
910	}
911
912	nvme_tcp_init_recv_ctx(queue);
913	return 0;
914}
915
916static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
917			     unsigned int offset, size_t len)
918{
919	struct nvme_tcp_queue *queue = desc->arg.data;
920	size_t consumed = len;
921	int result;
922
923	if (unlikely(!queue->rd_enabled))
924		return -EFAULT;
925
926	while (len) {
927		switch (nvme_tcp_recv_state(queue)) {
928		case NVME_TCP_RECV_PDU:
929			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
930			break;
931		case NVME_TCP_RECV_DATA:
932			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
933			break;
934		case NVME_TCP_RECV_DDGST:
935			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
936			break;
937		default:
938			result = -EFAULT;
939		}
940		if (result) {
941			dev_err(queue->ctrl->ctrl.device,
942				"receive failed:  %d\n", result);
943			queue->rd_enabled = false;
944			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
945			return result;
946		}
947	}
948
949	return consumed;
950}
951
952static void nvme_tcp_data_ready(struct sock *sk)
953{
954	struct nvme_tcp_queue *queue;
955
956	trace_sk_data_ready(sk);
957
958	read_lock_bh(&sk->sk_callback_lock);
959	queue = sk->sk_user_data;
960	if (likely(queue && queue->rd_enabled) &&
961	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
962		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
963	read_unlock_bh(&sk->sk_callback_lock);
964}
965
966static void nvme_tcp_write_space(struct sock *sk)
967{
968	struct nvme_tcp_queue *queue;
969
970	read_lock_bh(&sk->sk_callback_lock);
971	queue = sk->sk_user_data;
972	if (likely(queue && sk_stream_is_writeable(sk))) {
973		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
974		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
975	}
976	read_unlock_bh(&sk->sk_callback_lock);
977}
978
979static void nvme_tcp_state_change(struct sock *sk)
980{
981	struct nvme_tcp_queue *queue;
982
983	read_lock_bh(&sk->sk_callback_lock);
984	queue = sk->sk_user_data;
985	if (!queue)
986		goto done;
987
988	switch (sk->sk_state) {
989	case TCP_CLOSE:
990	case TCP_CLOSE_WAIT:
991	case TCP_LAST_ACK:
992	case TCP_FIN_WAIT1:
993	case TCP_FIN_WAIT2:
994		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
995		break;
996	default:
997		dev_info(queue->ctrl->ctrl.device,
998			"queue %d socket state %d\n",
999			nvme_tcp_queue_id(queue), sk->sk_state);
1000	}
1001
1002	queue->state_change(sk);
1003done:
1004	read_unlock_bh(&sk->sk_callback_lock);
1005}
1006
1007static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1008{
1009	queue->request = NULL;
1010}
1011
1012static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1013{
1014	if (nvme_tcp_async_req(req)) {
1015		union nvme_result res = {};
1016
1017		nvme_complete_async_event(&req->queue->ctrl->ctrl,
1018				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1019	} else {
1020		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1021				NVME_SC_HOST_PATH_ERROR);
1022	}
1023}
1024
1025static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1026{
1027	struct nvme_tcp_queue *queue = req->queue;
1028	int req_data_len = req->data_len;
1029	u32 h2cdata_left = req->h2cdata_left;
1030
1031	while (true) {
1032		struct bio_vec bvec;
1033		struct msghdr msg = {
1034			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1035		};
1036		struct page *page = nvme_tcp_req_cur_page(req);
1037		size_t offset = nvme_tcp_req_cur_offset(req);
1038		size_t len = nvme_tcp_req_cur_length(req);
1039		bool last = nvme_tcp_pdu_last_send(req, len);
1040		int req_data_sent = req->data_sent;
1041		int ret;
1042
1043		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1044			msg.msg_flags |= MSG_EOR;
1045		else
1046			msg.msg_flags |= MSG_MORE;
1047
1048		if (!sendpage_ok(page))
1049			msg.msg_flags &= ~MSG_SPLICE_PAGES;
1050
1051		bvec_set_page(&bvec, page, len, offset);
1052		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1053		ret = sock_sendmsg(queue->sock, &msg);
1054		if (ret <= 0)
1055			return ret;
1056
1057		if (queue->data_digest)
1058			nvme_tcp_ddgst_update(queue->snd_hash, page,
1059					offset, ret);
1060
1061		/*
1062		 * update the request iterator except for the last payload send
1063		 * in the request where we don't want to modify it as we may
1064		 * compete with the RX path completing the request.
1065		 */
1066		if (req_data_sent + ret < req_data_len)
1067			nvme_tcp_advance_req(req, ret);
1068
1069		/* fully successful last send in current PDU */
1070		if (last && ret == len) {
1071			if (queue->data_digest) {
1072				nvme_tcp_ddgst_final(queue->snd_hash,
1073					&req->ddgst);
1074				req->state = NVME_TCP_SEND_DDGST;
1075				req->offset = 0;
1076			} else {
1077				if (h2cdata_left)
1078					nvme_tcp_setup_h2c_data_pdu(req);
1079				else
1080					nvme_tcp_done_send_req(queue);
1081			}
1082			return 1;
1083		}
1084	}
1085	return -EAGAIN;
1086}
1087
1088static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1089{
1090	struct nvme_tcp_queue *queue = req->queue;
1091	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1092	struct bio_vec bvec;
1093	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1094	bool inline_data = nvme_tcp_has_inline_data(req);
1095	u8 hdgst = nvme_tcp_hdgst_len(queue);
1096	int len = sizeof(*pdu) + hdgst - req->offset;
1097	int ret;
1098
1099	if (inline_data || nvme_tcp_queue_more(queue))
1100		msg.msg_flags |= MSG_MORE;
1101	else
1102		msg.msg_flags |= MSG_EOR;
1103
1104	if (queue->hdr_digest && !req->offset)
1105		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1106
1107	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1108	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1109	ret = sock_sendmsg(queue->sock, &msg);
1110	if (unlikely(ret <= 0))
1111		return ret;
1112
1113	len -= ret;
1114	if (!len) {
1115		if (inline_data) {
1116			req->state = NVME_TCP_SEND_DATA;
1117			if (queue->data_digest)
1118				crypto_ahash_init(queue->snd_hash);
1119		} else {
1120			nvme_tcp_done_send_req(queue);
1121		}
1122		return 1;
1123	}
1124	req->offset += ret;
1125
1126	return -EAGAIN;
1127}
1128
1129static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1130{
1131	struct nvme_tcp_queue *queue = req->queue;
1132	struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1133	struct bio_vec bvec;
1134	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1135	u8 hdgst = nvme_tcp_hdgst_len(queue);
1136	int len = sizeof(*pdu) - req->offset + hdgst;
1137	int ret;
1138
1139	if (queue->hdr_digest && !req->offset)
1140		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1141
1142	if (!req->h2cdata_left)
1143		msg.msg_flags |= MSG_SPLICE_PAGES;
1144
1145	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1146	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1147	ret = sock_sendmsg(queue->sock, &msg);
1148	if (unlikely(ret <= 0))
1149		return ret;
1150
1151	len -= ret;
1152	if (!len) {
1153		req->state = NVME_TCP_SEND_DATA;
1154		if (queue->data_digest)
1155			crypto_ahash_init(queue->snd_hash);
1156		return 1;
1157	}
1158	req->offset += ret;
1159
1160	return -EAGAIN;
1161}
1162
1163static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1164{
1165	struct nvme_tcp_queue *queue = req->queue;
1166	size_t offset = req->offset;
1167	u32 h2cdata_left = req->h2cdata_left;
1168	int ret;
1169	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1170	struct kvec iov = {
1171		.iov_base = (u8 *)&req->ddgst + req->offset,
1172		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1173	};
1174
1175	if (nvme_tcp_queue_more(queue))
1176		msg.msg_flags |= MSG_MORE;
1177	else
1178		msg.msg_flags |= MSG_EOR;
1179
1180	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1181	if (unlikely(ret <= 0))
1182		return ret;
1183
1184	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1185		if (h2cdata_left)
1186			nvme_tcp_setup_h2c_data_pdu(req);
1187		else
1188			nvme_tcp_done_send_req(queue);
1189		return 1;
1190	}
1191
1192	req->offset += ret;
1193	return -EAGAIN;
1194}
1195
1196static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1197{
1198	struct nvme_tcp_request *req;
1199	unsigned int noreclaim_flag;
1200	int ret = 1;
1201
1202	if (!queue->request) {
1203		queue->request = nvme_tcp_fetch_request(queue);
1204		if (!queue->request)
1205			return 0;
1206	}
1207	req = queue->request;
1208
1209	noreclaim_flag = memalloc_noreclaim_save();
1210	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1211		ret = nvme_tcp_try_send_cmd_pdu(req);
1212		if (ret <= 0)
1213			goto done;
1214		if (!nvme_tcp_has_inline_data(req))
1215			goto out;
1216	}
1217
1218	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1219		ret = nvme_tcp_try_send_data_pdu(req);
1220		if (ret <= 0)
1221			goto done;
1222	}
1223
1224	if (req->state == NVME_TCP_SEND_DATA) {
1225		ret = nvme_tcp_try_send_data(req);
1226		if (ret <= 0)
1227			goto done;
1228	}
1229
1230	if (req->state == NVME_TCP_SEND_DDGST)
1231		ret = nvme_tcp_try_send_ddgst(req);
1232done:
1233	if (ret == -EAGAIN) {
1234		ret = 0;
1235	} else if (ret < 0) {
1236		dev_err(queue->ctrl->ctrl.device,
1237			"failed to send request %d\n", ret);
1238		nvme_tcp_fail_request(queue->request);
1239		nvme_tcp_done_send_req(queue);
1240	}
1241out:
1242	memalloc_noreclaim_restore(noreclaim_flag);
1243	return ret;
1244}
1245
1246static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1247{
1248	struct socket *sock = queue->sock;
1249	struct sock *sk = sock->sk;
1250	read_descriptor_t rd_desc;
1251	int consumed;
1252
1253	rd_desc.arg.data = queue;
1254	rd_desc.count = 1;
1255	lock_sock(sk);
1256	queue->nr_cqe = 0;
1257	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1258	release_sock(sk);
1259	return consumed;
1260}
1261
1262static void nvme_tcp_io_work(struct work_struct *w)
1263{
1264	struct nvme_tcp_queue *queue =
1265		container_of(w, struct nvme_tcp_queue, io_work);
1266	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1267
1268	do {
1269		bool pending = false;
1270		int result;
1271
1272		if (mutex_trylock(&queue->send_mutex)) {
1273			result = nvme_tcp_try_send(queue);
1274			mutex_unlock(&queue->send_mutex);
1275			if (result > 0)
1276				pending = true;
1277			else if (unlikely(result < 0))
1278				break;
1279		}
1280
1281		result = nvme_tcp_try_recv(queue);
1282		if (result > 0)
1283			pending = true;
1284		else if (unlikely(result < 0))
1285			return;
1286
1287		if (!pending || !queue->rd_enabled)
1288			return;
1289
1290	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1291
1292	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1293}
1294
1295static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1296{
1297	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1298
1299	ahash_request_free(queue->rcv_hash);
1300	ahash_request_free(queue->snd_hash);
1301	crypto_free_ahash(tfm);
1302}
1303
1304static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1305{
1306	struct crypto_ahash *tfm;
1307
1308	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1309	if (IS_ERR(tfm))
1310		return PTR_ERR(tfm);
1311
1312	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1313	if (!queue->snd_hash)
1314		goto free_tfm;
1315	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1316
1317	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1318	if (!queue->rcv_hash)
1319		goto free_snd_hash;
1320	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1321
1322	return 0;
1323free_snd_hash:
1324	ahash_request_free(queue->snd_hash);
1325free_tfm:
1326	crypto_free_ahash(tfm);
1327	return -ENOMEM;
1328}
1329
1330static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1331{
1332	struct nvme_tcp_request *async = &ctrl->async_req;
1333
1334	page_frag_free(async->pdu);
1335}
1336
1337static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1338{
1339	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1340	struct nvme_tcp_request *async = &ctrl->async_req;
1341	u8 hdgst = nvme_tcp_hdgst_len(queue);
1342
1343	async->pdu = page_frag_alloc(&queue->pf_cache,
1344		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1345		GFP_KERNEL | __GFP_ZERO);
1346	if (!async->pdu)
1347		return -ENOMEM;
1348
1349	async->queue = &ctrl->queues[0];
1350	return 0;
1351}
1352
1353static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1354{
1355	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1356	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1357	unsigned int noreclaim_flag;
1358
1359	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1360		return;
1361
1362	if (queue->hdr_digest || queue->data_digest)
1363		nvme_tcp_free_crypto(queue);
1364
1365	page_frag_cache_drain(&queue->pf_cache);
1366
1367	noreclaim_flag = memalloc_noreclaim_save();
1368	/* ->sock will be released by fput() */
1369	fput(queue->sock->file);
1370	queue->sock = NULL;
1371	memalloc_noreclaim_restore(noreclaim_flag);
1372
1373	kfree(queue->pdu);
1374	mutex_destroy(&queue->send_mutex);
1375	mutex_destroy(&queue->queue_lock);
1376}
1377
1378static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1379{
1380	struct nvme_tcp_icreq_pdu *icreq;
1381	struct nvme_tcp_icresp_pdu *icresp;
1382	char cbuf[CMSG_LEN(sizeof(char))] = {};
1383	u8 ctype;
1384	struct msghdr msg = {};
1385	struct kvec iov;
1386	bool ctrl_hdgst, ctrl_ddgst;
1387	u32 maxh2cdata;
1388	int ret;
1389
1390	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1391	if (!icreq)
1392		return -ENOMEM;
1393
1394	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1395	if (!icresp) {
1396		ret = -ENOMEM;
1397		goto free_icreq;
1398	}
1399
1400	icreq->hdr.type = nvme_tcp_icreq;
1401	icreq->hdr.hlen = sizeof(*icreq);
1402	icreq->hdr.pdo = 0;
1403	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1404	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1405	icreq->maxr2t = 0; /* single inflight r2t supported */
1406	icreq->hpda = 0; /* no alignment constraint */
1407	if (queue->hdr_digest)
1408		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1409	if (queue->data_digest)
1410		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1411
1412	iov.iov_base = icreq;
1413	iov.iov_len = sizeof(*icreq);
1414	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1415	if (ret < 0) {
1416		pr_warn("queue %d: failed to send icreq, error %d\n",
1417			nvme_tcp_queue_id(queue), ret);
1418		goto free_icresp;
1419	}
1420
1421	memset(&msg, 0, sizeof(msg));
1422	iov.iov_base = icresp;
1423	iov.iov_len = sizeof(*icresp);
1424	if (nvme_tcp_tls(&queue->ctrl->ctrl)) {
1425		msg.msg_control = cbuf;
1426		msg.msg_controllen = sizeof(cbuf);
1427	}
1428	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1429			iov.iov_len, msg.msg_flags);
1430	if (ret < 0) {
1431		pr_warn("queue %d: failed to receive icresp, error %d\n",
1432			nvme_tcp_queue_id(queue), ret);
1433		goto free_icresp;
1434	}
1435	ret = -ENOTCONN;
1436	if (nvme_tcp_tls(&queue->ctrl->ctrl)) {
1437		ctype = tls_get_record_type(queue->sock->sk,
1438					    (struct cmsghdr *)cbuf);
1439		if (ctype != TLS_RECORD_TYPE_DATA) {
1440			pr_err("queue %d: unhandled TLS record %d\n",
1441			       nvme_tcp_queue_id(queue), ctype);
1442			goto free_icresp;
1443		}
1444	}
1445	ret = -EINVAL;
1446	if (icresp->hdr.type != nvme_tcp_icresp) {
1447		pr_err("queue %d: bad type returned %d\n",
1448			nvme_tcp_queue_id(queue), icresp->hdr.type);
1449		goto free_icresp;
1450	}
1451
1452	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1453		pr_err("queue %d: bad pdu length returned %d\n",
1454			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1455		goto free_icresp;
1456	}
1457
1458	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1459		pr_err("queue %d: bad pfv returned %d\n",
1460			nvme_tcp_queue_id(queue), icresp->pfv);
1461		goto free_icresp;
1462	}
1463
1464	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1465	if ((queue->data_digest && !ctrl_ddgst) ||
1466	    (!queue->data_digest && ctrl_ddgst)) {
1467		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1468			nvme_tcp_queue_id(queue),
1469			queue->data_digest ? "enabled" : "disabled",
1470			ctrl_ddgst ? "enabled" : "disabled");
1471		goto free_icresp;
1472	}
1473
1474	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1475	if ((queue->hdr_digest && !ctrl_hdgst) ||
1476	    (!queue->hdr_digest && ctrl_hdgst)) {
1477		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1478			nvme_tcp_queue_id(queue),
1479			queue->hdr_digest ? "enabled" : "disabled",
1480			ctrl_hdgst ? "enabled" : "disabled");
1481		goto free_icresp;
1482	}
1483
1484	if (icresp->cpda != 0) {
1485		pr_err("queue %d: unsupported cpda returned %d\n",
1486			nvme_tcp_queue_id(queue), icresp->cpda);
1487		goto free_icresp;
1488	}
1489
1490	maxh2cdata = le32_to_cpu(icresp->maxdata);
1491	if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1492		pr_err("queue %d: invalid maxh2cdata returned %u\n",
1493		       nvme_tcp_queue_id(queue), maxh2cdata);
1494		goto free_icresp;
1495	}
1496	queue->maxh2cdata = maxh2cdata;
1497
1498	ret = 0;
1499free_icresp:
1500	kfree(icresp);
1501free_icreq:
1502	kfree(icreq);
1503	return ret;
1504}
1505
1506static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1507{
1508	return nvme_tcp_queue_id(queue) == 0;
1509}
1510
1511static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1512{
1513	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1514	int qid = nvme_tcp_queue_id(queue);
1515
1516	return !nvme_tcp_admin_queue(queue) &&
1517		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1518}
1519
1520static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1521{
1522	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1523	int qid = nvme_tcp_queue_id(queue);
1524
1525	return !nvme_tcp_admin_queue(queue) &&
1526		!nvme_tcp_default_queue(queue) &&
1527		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1528			  ctrl->io_queues[HCTX_TYPE_READ];
1529}
1530
1531static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1532{
1533	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1534	int qid = nvme_tcp_queue_id(queue);
1535
1536	return !nvme_tcp_admin_queue(queue) &&
1537		!nvme_tcp_default_queue(queue) &&
1538		!nvme_tcp_read_queue(queue) &&
1539		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1540			  ctrl->io_queues[HCTX_TYPE_READ] +
1541			  ctrl->io_queues[HCTX_TYPE_POLL];
1542}
1543
1544static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1545{
1546	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1547	int qid = nvme_tcp_queue_id(queue);
1548	int n = 0;
1549
1550	if (nvme_tcp_default_queue(queue))
1551		n = qid - 1;
1552	else if (nvme_tcp_read_queue(queue))
1553		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1554	else if (nvme_tcp_poll_queue(queue))
1555		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1556				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1557	if (wq_unbound)
1558		queue->io_cpu = WORK_CPU_UNBOUND;
1559	else
1560		queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1561}
1562
1563static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1564{
1565	struct nvme_tcp_queue *queue = data;
1566	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1567	int qid = nvme_tcp_queue_id(queue);
1568	struct key *tls_key;
1569
1570	dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1571		qid, pskid, status);
1572
1573	if (status) {
1574		queue->tls_err = -status;
1575		goto out_complete;
1576	}
1577
1578	tls_key = key_lookup(pskid);
1579	if (IS_ERR(tls_key)) {
1580		dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1581			 qid, pskid);
1582		queue->tls_err = -ENOKEY;
1583	} else {
1584		ctrl->ctrl.tls_key = tls_key;
1585		queue->tls_err = 0;
1586	}
1587
1588out_complete:
1589	complete(&queue->tls_complete);
1590}
1591
1592static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1593			      struct nvme_tcp_queue *queue,
1594			      key_serial_t pskid)
1595{
1596	int qid = nvme_tcp_queue_id(queue);
1597	int ret;
1598	struct tls_handshake_args args;
1599	unsigned long tmo = tls_handshake_timeout * HZ;
1600	key_serial_t keyring = nvme_keyring_id();
1601
1602	dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1603		qid, pskid);
1604	memset(&args, 0, sizeof(args));
1605	args.ta_sock = queue->sock;
1606	args.ta_done = nvme_tcp_tls_done;
1607	args.ta_data = queue;
1608	args.ta_my_peerids[0] = pskid;
1609	args.ta_num_peerids = 1;
1610	if (nctrl->opts->keyring)
1611		keyring = key_serial(nctrl->opts->keyring);
1612	args.ta_keyring = keyring;
1613	args.ta_timeout_ms = tls_handshake_timeout * 1000;
1614	queue->tls_err = -EOPNOTSUPP;
1615	init_completion(&queue->tls_complete);
1616	ret = tls_client_hello_psk(&args, GFP_KERNEL);
1617	if (ret) {
1618		dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1619			qid, ret);
1620		return ret;
1621	}
1622	ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1623	if (ret <= 0) {
1624		if (ret == 0)
1625			ret = -ETIMEDOUT;
1626
1627		dev_err(nctrl->device,
1628			"queue %d: TLS handshake failed, error %d\n",
1629			qid, ret);
1630		tls_handshake_cancel(queue->sock->sk);
1631	} else {
1632		dev_dbg(nctrl->device,
1633			"queue %d: TLS handshake complete, error %d\n",
1634			qid, queue->tls_err);
1635		ret = queue->tls_err;
1636	}
1637	return ret;
1638}
1639
1640static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1641				key_serial_t pskid)
1642{
1643	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1644	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1645	int ret, rcv_pdu_size;
1646	struct file *sock_file;
1647
1648	mutex_init(&queue->queue_lock);
1649	queue->ctrl = ctrl;
1650	init_llist_head(&queue->req_list);
1651	INIT_LIST_HEAD(&queue->send_list);
1652	mutex_init(&queue->send_mutex);
1653	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1654
1655	if (qid > 0)
1656		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1657	else
1658		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1659						NVME_TCP_ADMIN_CCSZ;
1660
1661	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1662			IPPROTO_TCP, &queue->sock);
1663	if (ret) {
1664		dev_err(nctrl->device,
1665			"failed to create socket: %d\n", ret);
1666		goto err_destroy_mutex;
1667	}
1668
1669	sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1670	if (IS_ERR(sock_file)) {
1671		ret = PTR_ERR(sock_file);
1672		goto err_destroy_mutex;
1673	}
1674	nvme_tcp_reclassify_socket(queue->sock);
1675
1676	/* Single syn retry */
1677	tcp_sock_set_syncnt(queue->sock->sk, 1);
1678
1679	/* Set TCP no delay */
1680	tcp_sock_set_nodelay(queue->sock->sk);
1681
1682	/*
1683	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1684	 * close. This is done to prevent stale data from being sent should
1685	 * the network connection be restored before TCP times out.
1686	 */
1687	sock_no_linger(queue->sock->sk);
1688
1689	if (so_priority > 0)
1690		sock_set_priority(queue->sock->sk, so_priority);
1691
1692	/* Set socket type of service */
1693	if (nctrl->opts->tos >= 0)
1694		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1695
1696	/* Set 10 seconds timeout for icresp recvmsg */
1697	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1698
1699	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1700	queue->sock->sk->sk_use_task_frag = false;
1701	nvme_tcp_set_queue_io_cpu(queue);
1702	queue->request = NULL;
1703	queue->data_remaining = 0;
1704	queue->ddgst_remaining = 0;
1705	queue->pdu_remaining = 0;
1706	queue->pdu_offset = 0;
1707	sk_set_memalloc(queue->sock->sk);
1708
1709	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1710		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1711			sizeof(ctrl->src_addr));
1712		if (ret) {
1713			dev_err(nctrl->device,
1714				"failed to bind queue %d socket %d\n",
1715				qid, ret);
1716			goto err_sock;
1717		}
1718	}
1719
1720	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1721		char *iface = nctrl->opts->host_iface;
1722		sockptr_t optval = KERNEL_SOCKPTR(iface);
1723
1724		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1725				      optval, strlen(iface));
1726		if (ret) {
1727			dev_err(nctrl->device,
1728			  "failed to bind to interface %s queue %d err %d\n",
1729			  iface, qid, ret);
1730			goto err_sock;
1731		}
1732	}
1733
1734	queue->hdr_digest = nctrl->opts->hdr_digest;
1735	queue->data_digest = nctrl->opts->data_digest;
1736	if (queue->hdr_digest || queue->data_digest) {
1737		ret = nvme_tcp_alloc_crypto(queue);
1738		if (ret) {
1739			dev_err(nctrl->device,
1740				"failed to allocate queue %d crypto\n", qid);
1741			goto err_sock;
1742		}
1743	}
1744
1745	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1746			nvme_tcp_hdgst_len(queue);
1747	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1748	if (!queue->pdu) {
1749		ret = -ENOMEM;
1750		goto err_crypto;
1751	}
1752
1753	dev_dbg(nctrl->device, "connecting queue %d\n",
1754			nvme_tcp_queue_id(queue));
1755
1756	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1757		sizeof(ctrl->addr), 0);
1758	if (ret) {
1759		dev_err(nctrl->device,
1760			"failed to connect socket: %d\n", ret);
1761		goto err_rcv_pdu;
1762	}
1763
1764	/* If PSKs are configured try to start TLS */
1765	if (IS_ENABLED(CONFIG_NVME_TCP_TLS) && pskid) {
1766		ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1767		if (ret)
1768			goto err_init_connect;
1769	}
1770
1771	ret = nvme_tcp_init_connection(queue);
1772	if (ret)
1773		goto err_init_connect;
1774
1775	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1776
1777	return 0;
1778
1779err_init_connect:
1780	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1781err_rcv_pdu:
1782	kfree(queue->pdu);
1783err_crypto:
1784	if (queue->hdr_digest || queue->data_digest)
1785		nvme_tcp_free_crypto(queue);
1786err_sock:
1787	/* ->sock will be released by fput() */
1788	fput(queue->sock->file);
1789	queue->sock = NULL;
1790err_destroy_mutex:
1791	mutex_destroy(&queue->send_mutex);
1792	mutex_destroy(&queue->queue_lock);
1793	return ret;
1794}
1795
1796static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1797{
1798	struct socket *sock = queue->sock;
1799
1800	write_lock_bh(&sock->sk->sk_callback_lock);
1801	sock->sk->sk_user_data  = NULL;
1802	sock->sk->sk_data_ready = queue->data_ready;
1803	sock->sk->sk_state_change = queue->state_change;
1804	sock->sk->sk_write_space  = queue->write_space;
1805	write_unlock_bh(&sock->sk->sk_callback_lock);
1806}
1807
1808static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1809{
1810	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1811	nvme_tcp_restore_sock_ops(queue);
1812	cancel_work_sync(&queue->io_work);
1813}
1814
1815static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1816{
1817	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1818	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1819
1820	if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1821		return;
1822
1823	mutex_lock(&queue->queue_lock);
1824	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1825		__nvme_tcp_stop_queue(queue);
1826	mutex_unlock(&queue->queue_lock);
1827}
1828
1829static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1830{
1831	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1832	queue->sock->sk->sk_user_data = queue;
1833	queue->state_change = queue->sock->sk->sk_state_change;
1834	queue->data_ready = queue->sock->sk->sk_data_ready;
1835	queue->write_space = queue->sock->sk->sk_write_space;
1836	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1837	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1838	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1839#ifdef CONFIG_NET_RX_BUSY_POLL
1840	queue->sock->sk->sk_ll_usec = 1;
1841#endif
1842	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1843}
1844
1845static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1846{
1847	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1848	struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1849	int ret;
1850
1851	queue->rd_enabled = true;
1852	nvme_tcp_init_recv_ctx(queue);
1853	nvme_tcp_setup_sock_ops(queue);
1854
1855	if (idx)
1856		ret = nvmf_connect_io_queue(nctrl, idx);
1857	else
1858		ret = nvmf_connect_admin_queue(nctrl);
1859
1860	if (!ret) {
1861		set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1862	} else {
1863		if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1864			__nvme_tcp_stop_queue(queue);
1865		dev_err(nctrl->device,
1866			"failed to connect queue: %d ret=%d\n", idx, ret);
1867	}
1868	return ret;
1869}
1870
1871static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1872{
1873	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1874		cancel_work_sync(&ctrl->async_event_work);
1875		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1876		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1877	}
1878
1879	nvme_tcp_free_queue(ctrl, 0);
1880}
1881
1882static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1883{
1884	int i;
1885
1886	for (i = 1; i < ctrl->queue_count; i++)
1887		nvme_tcp_free_queue(ctrl, i);
1888}
1889
1890static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1891{
1892	int i;
1893
1894	for (i = 1; i < ctrl->queue_count; i++)
1895		nvme_tcp_stop_queue(ctrl, i);
1896}
1897
1898static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1899				    int first, int last)
1900{
1901	int i, ret;
1902
1903	for (i = first; i < last; i++) {
1904		ret = nvme_tcp_start_queue(ctrl, i);
1905		if (ret)
1906			goto out_stop_queues;
1907	}
1908
1909	return 0;
1910
1911out_stop_queues:
1912	for (i--; i >= first; i--)
1913		nvme_tcp_stop_queue(ctrl, i);
1914	return ret;
1915}
1916
1917static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1918{
1919	int ret;
1920	key_serial_t pskid = 0;
1921
1922	if (nvme_tcp_tls(ctrl)) {
1923		if (ctrl->opts->tls_key)
1924			pskid = key_serial(ctrl->opts->tls_key);
1925		else
1926			pskid = nvme_tls_psk_default(ctrl->opts->keyring,
1927						      ctrl->opts->host->nqn,
1928						      ctrl->opts->subsysnqn);
1929		if (!pskid) {
1930			dev_err(ctrl->device, "no valid PSK found\n");
1931			return -ENOKEY;
1932		}
1933	}
1934
1935	ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
1936	if (ret)
1937		return ret;
1938
1939	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1940	if (ret)
1941		goto out_free_queue;
1942
1943	return 0;
1944
1945out_free_queue:
1946	nvme_tcp_free_queue(ctrl, 0);
1947	return ret;
1948}
1949
1950static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1951{
1952	int i, ret;
1953
1954	if (nvme_tcp_tls(ctrl) && !ctrl->tls_key) {
1955		dev_err(ctrl->device, "no PSK negotiated\n");
1956		return -ENOKEY;
1957	}
1958	for (i = 1; i < ctrl->queue_count; i++) {
1959		ret = nvme_tcp_alloc_queue(ctrl, i,
1960				key_serial(ctrl->tls_key));
1961		if (ret)
1962			goto out_free_queues;
1963	}
1964
1965	return 0;
1966
1967out_free_queues:
1968	for (i--; i >= 1; i--)
1969		nvme_tcp_free_queue(ctrl, i);
1970
1971	return ret;
1972}
1973
1974static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1975{
1976	unsigned int nr_io_queues;
1977	int ret;
1978
1979	nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
1980	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1981	if (ret)
1982		return ret;
1983
1984	if (nr_io_queues == 0) {
1985		dev_err(ctrl->device,
1986			"unable to set any I/O queues\n");
1987		return -ENOMEM;
1988	}
1989
1990	ctrl->queue_count = nr_io_queues + 1;
1991	dev_info(ctrl->device,
1992		"creating %d I/O queues.\n", nr_io_queues);
1993
1994	nvmf_set_io_queues(ctrl->opts, nr_io_queues,
1995			   to_tcp_ctrl(ctrl)->io_queues);
1996	return __nvme_tcp_alloc_io_queues(ctrl);
1997}
1998
1999static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
2000{
2001	nvme_tcp_stop_io_queues(ctrl);
2002	if (remove)
2003		nvme_remove_io_tag_set(ctrl);
2004	nvme_tcp_free_io_queues(ctrl);
2005}
2006
2007static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2008{
2009	int ret, nr_queues;
2010
2011	ret = nvme_tcp_alloc_io_queues(ctrl);
2012	if (ret)
2013		return ret;
2014
2015	if (new) {
2016		ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2017				&nvme_tcp_mq_ops,
2018				ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2019				sizeof(struct nvme_tcp_request));
2020		if (ret)
2021			goto out_free_io_queues;
2022	}
2023
2024	/*
2025	 * Only start IO queues for which we have allocated the tagset
2026	 * and limitted it to the available queues. On reconnects, the
2027	 * queue number might have changed.
2028	 */
2029	nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2030	ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2031	if (ret)
2032		goto out_cleanup_connect_q;
2033
2034	if (!new) {
2035		nvme_start_freeze(ctrl);
2036		nvme_unquiesce_io_queues(ctrl);
2037		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2038			/*
2039			 * If we timed out waiting for freeze we are likely to
2040			 * be stuck.  Fail the controller initialization just
2041			 * to be safe.
2042			 */
2043			ret = -ENODEV;
2044			nvme_unfreeze(ctrl);
2045			goto out_wait_freeze_timed_out;
2046		}
2047		blk_mq_update_nr_hw_queues(ctrl->tagset,
2048			ctrl->queue_count - 1);
2049		nvme_unfreeze(ctrl);
2050	}
2051
2052	/*
2053	 * If the number of queues has increased (reconnect case)
2054	 * start all new queues now.
2055	 */
2056	ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2057				       ctrl->tagset->nr_hw_queues + 1);
2058	if (ret)
2059		goto out_wait_freeze_timed_out;
2060
2061	return 0;
2062
2063out_wait_freeze_timed_out:
2064	nvme_quiesce_io_queues(ctrl);
2065	nvme_sync_io_queues(ctrl);
2066	nvme_tcp_stop_io_queues(ctrl);
2067out_cleanup_connect_q:
2068	nvme_cancel_tagset(ctrl);
2069	if (new)
2070		nvme_remove_io_tag_set(ctrl);
2071out_free_io_queues:
2072	nvme_tcp_free_io_queues(ctrl);
2073	return ret;
2074}
2075
2076static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
2077{
2078	nvme_tcp_stop_queue(ctrl, 0);
2079	if (remove)
2080		nvme_remove_admin_tag_set(ctrl);
2081	nvme_tcp_free_admin_queue(ctrl);
2082}
2083
2084static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2085{
2086	int error;
2087
2088	error = nvme_tcp_alloc_admin_queue(ctrl);
2089	if (error)
2090		return error;
2091
2092	if (new) {
2093		error = nvme_alloc_admin_tag_set(ctrl,
2094				&to_tcp_ctrl(ctrl)->admin_tag_set,
2095				&nvme_tcp_admin_mq_ops,
2096				sizeof(struct nvme_tcp_request));
2097		if (error)
2098			goto out_free_queue;
2099	}
2100
2101	error = nvme_tcp_start_queue(ctrl, 0);
2102	if (error)
2103		goto out_cleanup_tagset;
2104
2105	error = nvme_enable_ctrl(ctrl);
2106	if (error)
2107		goto out_stop_queue;
2108
2109	nvme_unquiesce_admin_queue(ctrl);
2110
2111	error = nvme_init_ctrl_finish(ctrl, false);
2112	if (error)
2113		goto out_quiesce_queue;
2114
2115	return 0;
2116
2117out_quiesce_queue:
2118	nvme_quiesce_admin_queue(ctrl);
2119	blk_sync_queue(ctrl->admin_q);
2120out_stop_queue:
2121	nvme_tcp_stop_queue(ctrl, 0);
2122	nvme_cancel_admin_tagset(ctrl);
2123out_cleanup_tagset:
2124	if (new)
2125		nvme_remove_admin_tag_set(ctrl);
2126out_free_queue:
2127	nvme_tcp_free_admin_queue(ctrl);
2128	return error;
2129}
2130
2131static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2132		bool remove)
2133{
2134	nvme_quiesce_admin_queue(ctrl);
2135	blk_sync_queue(ctrl->admin_q);
2136	nvme_tcp_stop_queue(ctrl, 0);
2137	nvme_cancel_admin_tagset(ctrl);
2138	if (remove)
2139		nvme_unquiesce_admin_queue(ctrl);
2140	nvme_tcp_destroy_admin_queue(ctrl, remove);
2141}
2142
2143static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2144		bool remove)
2145{
2146	if (ctrl->queue_count <= 1)
2147		return;
2148	nvme_quiesce_admin_queue(ctrl);
2149	nvme_quiesce_io_queues(ctrl);
2150	nvme_sync_io_queues(ctrl);
2151	nvme_tcp_stop_io_queues(ctrl);
2152	nvme_cancel_tagset(ctrl);
2153	if (remove)
2154		nvme_unquiesce_io_queues(ctrl);
2155	nvme_tcp_destroy_io_queues(ctrl, remove);
2156}
2157
2158static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2159{
2160	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2161
2162	/* If we are resetting/deleting then do nothing */
2163	if (state != NVME_CTRL_CONNECTING) {
2164		WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2165		return;
2166	}
2167
2168	if (nvmf_should_reconnect(ctrl)) {
2169		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2170			ctrl->opts->reconnect_delay);
2171		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2172				ctrl->opts->reconnect_delay * HZ);
2173	} else {
2174		dev_info(ctrl->device, "Removing controller...\n");
2175		nvme_delete_ctrl(ctrl);
2176	}
2177}
2178
2179static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2180{
2181	struct nvmf_ctrl_options *opts = ctrl->opts;
2182	int ret;
2183
2184	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2185	if (ret)
2186		return ret;
2187
2188	if (ctrl->icdoff) {
2189		ret = -EOPNOTSUPP;
2190		dev_err(ctrl->device, "icdoff is not supported!\n");
2191		goto destroy_admin;
2192	}
2193
2194	if (!nvme_ctrl_sgl_supported(ctrl)) {
2195		ret = -EOPNOTSUPP;
2196		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2197		goto destroy_admin;
2198	}
2199
2200	if (opts->queue_size > ctrl->sqsize + 1)
2201		dev_warn(ctrl->device,
2202			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2203			opts->queue_size, ctrl->sqsize + 1);
2204
2205	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2206		dev_warn(ctrl->device,
2207			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2208			ctrl->sqsize + 1, ctrl->maxcmd);
2209		ctrl->sqsize = ctrl->maxcmd - 1;
2210	}
2211
2212	if (ctrl->queue_count > 1) {
2213		ret = nvme_tcp_configure_io_queues(ctrl, new);
2214		if (ret)
2215			goto destroy_admin;
2216	}
2217
2218	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2219		/*
2220		 * state change failure is ok if we started ctrl delete,
2221		 * unless we're during creation of a new controller to
2222		 * avoid races with teardown flow.
2223		 */
2224		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2225
2226		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2227			     state != NVME_CTRL_DELETING_NOIO);
2228		WARN_ON_ONCE(new);
2229		ret = -EINVAL;
2230		goto destroy_io;
2231	}
2232
2233	nvme_start_ctrl(ctrl);
2234	return 0;
2235
2236destroy_io:
2237	if (ctrl->queue_count > 1) {
2238		nvme_quiesce_io_queues(ctrl);
2239		nvme_sync_io_queues(ctrl);
2240		nvme_tcp_stop_io_queues(ctrl);
2241		nvme_cancel_tagset(ctrl);
2242		nvme_tcp_destroy_io_queues(ctrl, new);
2243	}
2244destroy_admin:
2245	nvme_stop_keep_alive(ctrl);
2246	nvme_tcp_teardown_admin_queue(ctrl, false);
2247	return ret;
2248}
2249
2250static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2251{
2252	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2253			struct nvme_tcp_ctrl, connect_work);
2254	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2255
2256	++ctrl->nr_reconnects;
2257
2258	if (nvme_tcp_setup_ctrl(ctrl, false))
2259		goto requeue;
2260
2261	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2262			ctrl->nr_reconnects);
2263
2264	ctrl->nr_reconnects = 0;
2265
2266	return;
2267
2268requeue:
2269	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2270			ctrl->nr_reconnects);
2271	nvme_tcp_reconnect_or_remove(ctrl);
2272}
2273
2274static void nvme_tcp_error_recovery_work(struct work_struct *work)
2275{
2276	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2277				struct nvme_tcp_ctrl, err_work);
2278	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2279
2280	nvme_stop_keep_alive(ctrl);
2281	flush_work(&ctrl->async_event_work);
2282	nvme_tcp_teardown_io_queues(ctrl, false);
2283	/* unquiesce to fail fast pending requests */
2284	nvme_unquiesce_io_queues(ctrl);
2285	nvme_tcp_teardown_admin_queue(ctrl, false);
2286	nvme_unquiesce_admin_queue(ctrl);
2287	nvme_auth_stop(ctrl);
2288
2289	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2290		/* state change failure is ok if we started ctrl delete */
2291		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2292
2293		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2294			     state != NVME_CTRL_DELETING_NOIO);
2295		return;
2296	}
2297
2298	nvme_tcp_reconnect_or_remove(ctrl);
2299}
2300
2301static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2302{
2303	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2304	nvme_quiesce_admin_queue(ctrl);
2305	nvme_disable_ctrl(ctrl, shutdown);
2306	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2307}
2308
2309static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2310{
2311	nvme_tcp_teardown_ctrl(ctrl, true);
2312}
2313
2314static void nvme_reset_ctrl_work(struct work_struct *work)
2315{
2316	struct nvme_ctrl *ctrl =
2317		container_of(work, struct nvme_ctrl, reset_work);
2318
2319	nvme_stop_ctrl(ctrl);
2320	nvme_tcp_teardown_ctrl(ctrl, false);
2321
2322	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2323		/* state change failure is ok if we started ctrl delete */
2324		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2325
2326		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2327			     state != NVME_CTRL_DELETING_NOIO);
2328		return;
2329	}
2330
2331	if (nvme_tcp_setup_ctrl(ctrl, false))
2332		goto out_fail;
2333
2334	return;
2335
2336out_fail:
2337	++ctrl->nr_reconnects;
2338	nvme_tcp_reconnect_or_remove(ctrl);
2339}
2340
2341static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2342{
2343	flush_work(&to_tcp_ctrl(ctrl)->err_work);
2344	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2345}
2346
2347static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2348{
2349	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2350
2351	if (list_empty(&ctrl->list))
2352		goto free_ctrl;
2353
2354	mutex_lock(&nvme_tcp_ctrl_mutex);
2355	list_del(&ctrl->list);
2356	mutex_unlock(&nvme_tcp_ctrl_mutex);
2357
2358	nvmf_free_options(nctrl->opts);
2359free_ctrl:
2360	kfree(ctrl->queues);
2361	kfree(ctrl);
2362}
2363
2364static void nvme_tcp_set_sg_null(struct nvme_command *c)
2365{
2366	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2367
2368	sg->addr = 0;
2369	sg->length = 0;
2370	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2371			NVME_SGL_FMT_TRANSPORT_A;
2372}
2373
2374static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2375		struct nvme_command *c, u32 data_len)
2376{
2377	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2378
2379	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2380	sg->length = cpu_to_le32(data_len);
2381	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2382}
2383
2384static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2385		u32 data_len)
2386{
2387	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2388
2389	sg->addr = 0;
2390	sg->length = cpu_to_le32(data_len);
2391	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2392			NVME_SGL_FMT_TRANSPORT_A;
2393}
2394
2395static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2396{
2397	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2398	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2399	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2400	struct nvme_command *cmd = &pdu->cmd;
2401	u8 hdgst = nvme_tcp_hdgst_len(queue);
2402
2403	memset(pdu, 0, sizeof(*pdu));
2404	pdu->hdr.type = nvme_tcp_cmd;
2405	if (queue->hdr_digest)
2406		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2407	pdu->hdr.hlen = sizeof(*pdu);
2408	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2409
2410	cmd->common.opcode = nvme_admin_async_event;
2411	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2412	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2413	nvme_tcp_set_sg_null(cmd);
2414
2415	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2416	ctrl->async_req.offset = 0;
2417	ctrl->async_req.curr_bio = NULL;
2418	ctrl->async_req.data_len = 0;
2419
2420	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2421}
2422
2423static void nvme_tcp_complete_timed_out(struct request *rq)
2424{
2425	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2426	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2427
2428	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2429	nvmf_complete_timed_out_request(rq);
2430}
2431
2432static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2433{
2434	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2435	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2436	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2437	struct nvme_command *cmd = &pdu->cmd;
2438	int qid = nvme_tcp_queue_id(req->queue);
2439
2440	dev_warn(ctrl->device,
2441		 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n",
2442		 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode,
2443		 nvme_fabrics_opcode_str(qid, cmd), qid);
2444
2445	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2446		/*
2447		 * If we are resetting, connecting or deleting we should
2448		 * complete immediately because we may block controller
2449		 * teardown or setup sequence
2450		 * - ctrl disable/shutdown fabrics requests
2451		 * - connect requests
2452		 * - initialization admin requests
2453		 * - I/O requests that entered after unquiescing and
2454		 *   the controller stopped responding
2455		 *
2456		 * All other requests should be cancelled by the error
2457		 * recovery work, so it's fine that we fail it here.
2458		 */
2459		nvme_tcp_complete_timed_out(rq);
2460		return BLK_EH_DONE;
2461	}
2462
2463	/*
2464	 * LIVE state should trigger the normal error recovery which will
2465	 * handle completing this request.
2466	 */
2467	nvme_tcp_error_recovery(ctrl);
2468	return BLK_EH_RESET_TIMER;
2469}
2470
2471static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2472			struct request *rq)
2473{
2474	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2475	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2476	struct nvme_command *c = &pdu->cmd;
2477
2478	c->common.flags |= NVME_CMD_SGL_METABUF;
2479
2480	if (!blk_rq_nr_phys_segments(rq))
2481		nvme_tcp_set_sg_null(c);
2482	else if (rq_data_dir(rq) == WRITE &&
2483	    req->data_len <= nvme_tcp_inline_data_size(req))
2484		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2485	else
2486		nvme_tcp_set_sg_host_data(c, req->data_len);
2487
2488	return 0;
2489}
2490
2491static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2492		struct request *rq)
2493{
2494	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2495	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2496	struct nvme_tcp_queue *queue = req->queue;
2497	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2498	blk_status_t ret;
2499
2500	ret = nvme_setup_cmd(ns, rq);
2501	if (ret)
2502		return ret;
2503
2504	req->state = NVME_TCP_SEND_CMD_PDU;
2505	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2506	req->offset = 0;
2507	req->data_sent = 0;
2508	req->pdu_len = 0;
2509	req->pdu_sent = 0;
2510	req->h2cdata_left = 0;
2511	req->data_len = blk_rq_nr_phys_segments(rq) ?
2512				blk_rq_payload_bytes(rq) : 0;
2513	req->curr_bio = rq->bio;
2514	if (req->curr_bio && req->data_len)
2515		nvme_tcp_init_iter(req, rq_data_dir(rq));
2516
2517	if (rq_data_dir(rq) == WRITE &&
2518	    req->data_len <= nvme_tcp_inline_data_size(req))
2519		req->pdu_len = req->data_len;
2520
2521	pdu->hdr.type = nvme_tcp_cmd;
2522	pdu->hdr.flags = 0;
2523	if (queue->hdr_digest)
2524		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2525	if (queue->data_digest && req->pdu_len) {
2526		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2527		ddgst = nvme_tcp_ddgst_len(queue);
2528	}
2529	pdu->hdr.hlen = sizeof(*pdu);
2530	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2531	pdu->hdr.plen =
2532		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2533
2534	ret = nvme_tcp_map_data(queue, rq);
2535	if (unlikely(ret)) {
2536		nvme_cleanup_cmd(rq);
2537		dev_err(queue->ctrl->ctrl.device,
2538			"Failed to map data (%d)\n", ret);
2539		return ret;
2540	}
2541
2542	return 0;
2543}
2544
2545static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2546{
2547	struct nvme_tcp_queue *queue = hctx->driver_data;
2548
2549	if (!llist_empty(&queue->req_list))
2550		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2551}
2552
2553static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2554		const struct blk_mq_queue_data *bd)
2555{
2556	struct nvme_ns *ns = hctx->queue->queuedata;
2557	struct nvme_tcp_queue *queue = hctx->driver_data;
2558	struct request *rq = bd->rq;
2559	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2560	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2561	blk_status_t ret;
2562
2563	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2564		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2565
2566	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2567	if (unlikely(ret))
2568		return ret;
2569
2570	nvme_start_request(rq);
2571
2572	nvme_tcp_queue_request(req, true, bd->last);
2573
2574	return BLK_STS_OK;
2575}
2576
2577static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2578{
2579	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2580
2581	nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2582}
2583
2584static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2585{
2586	struct nvme_tcp_queue *queue = hctx->driver_data;
2587	struct sock *sk = queue->sock->sk;
2588
2589	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2590		return 0;
2591
2592	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2593	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2594		sk_busy_loop(sk, true);
2595	nvme_tcp_try_recv(queue);
2596	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2597	return queue->nr_cqe;
2598}
2599
2600static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2601{
2602	struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2603	struct sockaddr_storage src_addr;
2604	int ret, len;
2605
2606	len = nvmf_get_address(ctrl, buf, size);
2607
2608	mutex_lock(&queue->queue_lock);
2609
2610	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2611		goto done;
2612	ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2613	if (ret > 0) {
2614		if (len > 0)
2615			len--; /* strip trailing newline */
2616		len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2617				(len) ? "," : "", &src_addr);
2618	}
2619done:
2620	mutex_unlock(&queue->queue_lock);
2621
2622	return len;
2623}
2624
2625static const struct blk_mq_ops nvme_tcp_mq_ops = {
2626	.queue_rq	= nvme_tcp_queue_rq,
2627	.commit_rqs	= nvme_tcp_commit_rqs,
2628	.complete	= nvme_complete_rq,
2629	.init_request	= nvme_tcp_init_request,
2630	.exit_request	= nvme_tcp_exit_request,
2631	.init_hctx	= nvme_tcp_init_hctx,
2632	.timeout	= nvme_tcp_timeout,
2633	.map_queues	= nvme_tcp_map_queues,
2634	.poll		= nvme_tcp_poll,
2635};
2636
2637static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2638	.queue_rq	= nvme_tcp_queue_rq,
2639	.complete	= nvme_complete_rq,
2640	.init_request	= nvme_tcp_init_request,
2641	.exit_request	= nvme_tcp_exit_request,
2642	.init_hctx	= nvme_tcp_init_admin_hctx,
2643	.timeout	= nvme_tcp_timeout,
2644};
2645
2646static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2647	.name			= "tcp",
2648	.module			= THIS_MODULE,
2649	.flags			= NVME_F_FABRICS | NVME_F_BLOCKING,
2650	.reg_read32		= nvmf_reg_read32,
2651	.reg_read64		= nvmf_reg_read64,
2652	.reg_write32		= nvmf_reg_write32,
2653	.free_ctrl		= nvme_tcp_free_ctrl,
2654	.submit_async_event	= nvme_tcp_submit_async_event,
2655	.delete_ctrl		= nvme_tcp_delete_ctrl,
2656	.get_address		= nvme_tcp_get_address,
2657	.stop_ctrl		= nvme_tcp_stop_ctrl,
2658};
2659
2660static bool
2661nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2662{
2663	struct nvme_tcp_ctrl *ctrl;
2664	bool found = false;
2665
2666	mutex_lock(&nvme_tcp_ctrl_mutex);
2667	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2668		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2669		if (found)
2670			break;
2671	}
2672	mutex_unlock(&nvme_tcp_ctrl_mutex);
2673
2674	return found;
2675}
2676
2677static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2678		struct nvmf_ctrl_options *opts)
2679{
2680	struct nvme_tcp_ctrl *ctrl;
2681	int ret;
2682
2683	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2684	if (!ctrl)
2685		return ERR_PTR(-ENOMEM);
2686
2687	INIT_LIST_HEAD(&ctrl->list);
2688	ctrl->ctrl.opts = opts;
2689	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2690				opts->nr_poll_queues + 1;
2691	ctrl->ctrl.sqsize = opts->queue_size - 1;
2692	ctrl->ctrl.kato = opts->kato;
2693
2694	INIT_DELAYED_WORK(&ctrl->connect_work,
2695			nvme_tcp_reconnect_ctrl_work);
2696	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2697	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2698
2699	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2700		opts->trsvcid =
2701			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2702		if (!opts->trsvcid) {
2703			ret = -ENOMEM;
2704			goto out_free_ctrl;
2705		}
2706		opts->mask |= NVMF_OPT_TRSVCID;
2707	}
2708
2709	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2710			opts->traddr, opts->trsvcid, &ctrl->addr);
2711	if (ret) {
2712		pr_err("malformed address passed: %s:%s\n",
2713			opts->traddr, opts->trsvcid);
2714		goto out_free_ctrl;
2715	}
2716
2717	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2718		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2719			opts->host_traddr, NULL, &ctrl->src_addr);
2720		if (ret) {
2721			pr_err("malformed src address passed: %s\n",
2722			       opts->host_traddr);
2723			goto out_free_ctrl;
2724		}
2725	}
2726
2727	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2728		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2729			pr_err("invalid interface passed: %s\n",
2730			       opts->host_iface);
2731			ret = -ENODEV;
2732			goto out_free_ctrl;
2733		}
2734	}
2735
2736	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2737		ret = -EALREADY;
2738		goto out_free_ctrl;
2739	}
2740
2741	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2742				GFP_KERNEL);
2743	if (!ctrl->queues) {
2744		ret = -ENOMEM;
2745		goto out_free_ctrl;
2746	}
2747
2748	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2749	if (ret)
2750		goto out_kfree_queues;
2751
2752	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2753		WARN_ON_ONCE(1);
2754		ret = -EINTR;
2755		goto out_uninit_ctrl;
2756	}
2757
2758	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2759	if (ret)
2760		goto out_uninit_ctrl;
2761
2762	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n",
2763		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2764
2765	mutex_lock(&nvme_tcp_ctrl_mutex);
2766	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2767	mutex_unlock(&nvme_tcp_ctrl_mutex);
2768
2769	return &ctrl->ctrl;
2770
2771out_uninit_ctrl:
2772	nvme_uninit_ctrl(&ctrl->ctrl);
2773	nvme_put_ctrl(&ctrl->ctrl);
2774	if (ret > 0)
2775		ret = -EIO;
2776	return ERR_PTR(ret);
2777out_kfree_queues:
2778	kfree(ctrl->queues);
2779out_free_ctrl:
2780	kfree(ctrl);
2781	return ERR_PTR(ret);
2782}
2783
2784static struct nvmf_transport_ops nvme_tcp_transport = {
2785	.name		= "tcp",
2786	.module		= THIS_MODULE,
2787	.required_opts	= NVMF_OPT_TRADDR,
2788	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2789			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2790			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2791			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2792			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
2793			  NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY,
2794	.create_ctrl	= nvme_tcp_create_ctrl,
2795};
2796
2797static int __init nvme_tcp_init_module(void)
2798{
2799	unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS;
2800
2801	BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2802	BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2803	BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2804	BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2805	BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2806	BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2807	BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2808	BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2809
2810	if (wq_unbound)
2811		wq_flags |= WQ_UNBOUND;
2812
2813	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0);
2814	if (!nvme_tcp_wq)
2815		return -ENOMEM;
2816
2817	nvmf_register_transport(&nvme_tcp_transport);
2818	return 0;
2819}
2820
2821static void __exit nvme_tcp_cleanup_module(void)
2822{
2823	struct nvme_tcp_ctrl *ctrl;
2824
2825	nvmf_unregister_transport(&nvme_tcp_transport);
2826
2827	mutex_lock(&nvme_tcp_ctrl_mutex);
2828	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2829		nvme_delete_ctrl(&ctrl->ctrl);
2830	mutex_unlock(&nvme_tcp_ctrl_mutex);
2831	flush_workqueue(nvme_delete_wq);
2832
2833	destroy_workqueue(nvme_tcp_wq);
2834}
2835
2836module_init(nvme_tcp_init_module);
2837module_exit(nvme_tcp_cleanup_module);
2838
2839MODULE_DESCRIPTION("NVMe host TCP transport driver");
2840MODULE_LICENSE("GPL v2");
2841